blob: 2314ad7ee5fef4544ab2159cd7e253ed6e1d3889 [file] [log] [blame]
/*
* Copyright (c) 2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Copyright (C) 2006-2008 Intel Corporation
* Author: Ashok Raj <ashok.raj@intel.com>
* Author: Shaohua Li <shaohua.li@intel.com>
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* Author: Fenghua Yu <fenghua.yu@intel.com>
*/
#include <linux/init.h>
#include <linux/bitmap.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
#include <linux/timer.h>
#include <linux/iova.h>
#include <linux/iommu.h>
#include <linux/intel-iommu.h>
#include <linux/sysdev.h>
#include <asm/cacheflush.h>
#include <asm/iommu.h>
#include "pci.h"
#define ROOT_SIZE VTD_PAGE_SIZE
#define CONTEXT_SIZE VTD_PAGE_SIZE
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
#define IOAPIC_RANGE_START (0xfee00000)
#define IOAPIC_RANGE_END (0xfeefffff)
#define IOVA_START_ADDR (0x1000)
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
#define MAX_AGAW_WIDTH 64
#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
#define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
return page_to_dma_pfn(virt_to_page(p));
}
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;
static int rwbf_quirk;
/*
* 0: Present
* 1-11: Reserved
* 12-63: Context Ptr (12 - (haw-1))
* 64-127: Reserved
*/
struct root_entry {
u64 val;
u64 rsvd1;
};
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
static inline bool root_present(struct root_entry *root)
{
return (root->val & 1);
}
static inline void set_root_present(struct root_entry *root)
{
root->val |= 1;
}
static inline void set_root_value(struct root_entry *root, unsigned long value)
{
root->val |= value & VTD_PAGE_MASK;
}
static inline struct context_entry *
get_context_addr_from_root(struct root_entry *root)
{
return (struct context_entry *)
(root_present(root)?phys_to_virt(
root->val & VTD_PAGE_MASK) :
NULL);
}
/*
* low 64 bits:
* 0: present
* 1: fault processing disable
* 2-3: translation type
* 12-63: address space root
* high 64 bits:
* 0-2: address width
* 3-6: aval
* 8-23: domain id
*/
struct context_entry {
u64 lo;
u64 hi;
};
static inline bool context_present(struct context_entry *context)
{
return (context->lo & 1);
}
static inline void context_set_present(struct context_entry *context)
{
context->lo |= 1;
}
static inline void context_set_fault_enable(struct context_entry *context)
{
context->lo &= (((u64)-1) << 2) | 1;
}
static inline void context_set_translation_type(struct context_entry *context,
unsigned long value)
{
context->lo &= (((u64)-1) << 4) | 3;
context->lo |= (value & 3) << 2;
}
static inline void context_set_address_root(struct context_entry *context,
unsigned long value)
{
context->lo |= value & VTD_PAGE_MASK;
}
static inline void context_set_address_width(struct context_entry *context,
unsigned long value)
{
context->hi |= value & 7;
}
static inline void context_set_domain_id(struct context_entry *context,
unsigned long value)
{
context->hi |= (value & ((1 << 16) - 1)) << 8;
}
static inline void context_clear_entry(struct context_entry *context)
{
context->lo = 0;
context->hi = 0;
}
/*
* 0: readable
* 1: writable
* 2-6: reserved
* 7: super page
* 8-10: available
* 11: snoop behavior
* 12-63: Host physcial address
*/
struct dma_pte {
u64 val;
};
static inline void dma_clear_pte(struct dma_pte *pte)
{
pte->val = 0;
}
static inline void dma_set_pte_readable(struct dma_pte *pte)
{
pte->val |= DMA_PTE_READ;
}
static inline void dma_set_pte_writable(struct dma_pte *pte)
{
pte->val |= DMA_PTE_WRITE;
}
static inline void dma_set_pte_snp(struct dma_pte *pte)
{
pte->val |= DMA_PTE_SNP;
}
static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
{
pte->val = (pte->val & ~3) | (prot & 3);
}
static inline u64 dma_pte_addr(struct dma_pte *pte)
{
#ifdef CONFIG_64BIT
return pte->val & VTD_PAGE_MASK;
#else
/* Must have a full atomic 64-bit read */
return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
#endif
}
static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
{
pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
}
static inline bool dma_pte_present(struct dma_pte *pte)
{
return (pte->val & 3) != 0;
}
static inline int first_pte_in_page(struct dma_pte *pte)
{
return !((unsigned long)pte & ~VTD_PAGE_MASK);
}
/*
* This domain is a statically identity mapping domain.
* 1. This domain creats a static 1:1 mapping to all usable memory.
* 2. It maps to each iommu if successful.
* 3. Each iommu mapps to this domain if successful.
*/
struct dmar_domain *si_domain;
/* devices under the same p2p bridge are owned in one domain */
#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
/* domain represents a virtual machine, more than one devices
* across iommus may be owned in one domain, e.g. kvm guest.
*/
#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
/* si_domain contains mulitple devices */
#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
struct dmar_domain {
int id; /* domain id */
unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
struct list_head devices; /* all devices' list */
struct iova_domain iovad; /* iova's that belong to this domain */
struct dma_pte *pgd; /* virtual address */
int gaw; /* max guest address width */
/* adjusted guest address width, 0 is level 2 30-bit */
int agaw;
int flags; /* flags to find out type of domain */
int iommu_coherency;/* indicate coherency of iommu access */
int iommu_snooping; /* indicate snooping control feature*/
int iommu_count; /* reference count of iommu */
spinlock_t iommu_lock; /* protect iommu set in domain */
u64 max_addr; /* maximum mapped address */
};
/* PCI domain-device relationship */
struct device_domain_info {
struct list_head link; /* link to domain siblings */
struct list_head global; /* link to global list */
int segment; /* PCI domain */
u8 bus; /* PCI bus number */
u8 devfn; /* PCI devfn number */
struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
struct intel_iommu *iommu; /* IOMMU used by this device */
struct dmar_domain *domain; /* pointer to domain */
};
static void flush_unmaps_timeout(unsigned long data);
DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
#define HIGH_WATER_MARK 250
struct deferred_flush_tables {
int next;
struct iova *iova[HIGH_WATER_MARK];
struct dmar_domain *domain[HIGH_WATER_MARK];
};
static struct deferred_flush_tables *deferred_flush;
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;
static DEFINE_SPINLOCK(async_umap_flush_lock);
static LIST_HEAD(unmaps_to_do);
static int timer_on;
static long list_size;
static void domain_remove_dev_info(struct dmar_domain *domain);
#ifdef CONFIG_DMAR_DEFAULT_ON
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
#endif /*CONFIG_DMAR_DEFAULT_ON*/
static int __initdata dmar_map_gfx = 1;
static int dmar_forcedac;
static int intel_iommu_strict;
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);
static struct iommu_ops intel_iommu_ops;
static int __init intel_iommu_setup(char *str)
{
if (!str)
return -EINVAL;
while (*str) {
if (!strncmp(str, "on", 2)) {
dmar_disabled = 0;
printk(KERN_INFO "Intel-IOMMU: enabled\n");
} else if (!strncmp(str, "off", 3)) {
dmar_disabled = 1;
printk(KERN_INFO "Intel-IOMMU: disabled\n");
} else if (!strncmp(str, "igfx_off", 8)) {
dmar_map_gfx = 0;
printk(KERN_INFO
"Intel-IOMMU: disable GFX device mapping\n");
} else if (!strncmp(str, "forcedac", 8)) {
printk(KERN_INFO
"Intel-IOMMU: Forcing DAC for PCI devices\n");
dmar_forcedac = 1;
} else if (!strncmp(str, "strict", 6)) {
printk(KERN_INFO
"Intel-IOMMU: disable batched IOTLB flush\n");
intel_iommu_strict = 1;
}
str += strcspn(str, ",");
while (*str == ',')
str++;
}
return 0;
}
__setup("intel_iommu=", intel_iommu_setup);
static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;
static struct kmem_cache *iommu_iova_cache;
static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
{
unsigned int flags;
void *vaddr;
/* trying to avoid low memory issues */
flags = current->flags & PF_MEMALLOC;
current->flags |= PF_MEMALLOC;
vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
current->flags &= (~PF_MEMALLOC | flags);
return vaddr;
}
static inline void *alloc_pgtable_page(void)
{
unsigned int flags;
void *vaddr;
/* trying to avoid low memory issues */
flags = current->flags & PF_MEMALLOC;
current->flags |= PF_MEMALLOC;
vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
current->flags &= (~PF_MEMALLOC | flags);
return vaddr;
}
static inline void free_pgtable_page(void *vaddr)
{
free_page((unsigned long)vaddr);
}
static inline void *alloc_domain_mem(void)
{
return iommu_kmem_cache_alloc(iommu_domain_cache);
}
static void free_domain_mem(void *vaddr)
{
kmem_cache_free(iommu_domain_cache, vaddr);
}
static inline void * alloc_devinfo_mem(void)
{
return iommu_kmem_cache_alloc(iommu_devinfo_cache);
}
static inline void free_devinfo_mem(void *vaddr)
{
kmem_cache_free(iommu_devinfo_cache, vaddr);
}
struct iova *alloc_iova_mem(void)
{
return iommu_kmem_cache_alloc(iommu_iova_cache);
}
void free_iova_mem(struct iova *iova)
{
kmem_cache_free(iommu_iova_cache, iova);
}
static inline int width_to_agaw(int width);
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
{
unsigned long sagaw;
int agaw = -1;
sagaw = cap_sagaw(iommu->cap);
for (agaw = width_to_agaw(max_gaw);
agaw >= 0; agaw--) {
if (test_bit(agaw, &sagaw))
break;
}
return agaw;
}
/*
* Calculate max SAGAW for each iommu.
*/
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}
/*
* calculate agaw for each iommu.
* "SAGAW" may be different across iommus, use a default agaw, and
* get a supported less agaw for iommus that don't support the default agaw.
*/
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}
/* This functionin only returns single iommu in a domain */
static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
{
int iommu_id;
/* si_domain and vm domain should not get here. */
BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
return NULL;
return g_iommus[iommu_id];
}
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
int i;
domain->iommu_coherency = 1;
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
for (; i < g_num_of_iommus; ) {
if (!ecap_coherent(g_iommus[i]->ecap)) {
domain->iommu_coherency = 0;
break;
}
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
}
}
static void domain_update_iommu_snooping(struct dmar_domain *domain)
{
int i;
domain->iommu_snooping = 1;
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
for (; i < g_num_of_iommus; ) {
if (!ecap_sc_support(g_iommus[i]->ecap)) {
domain->iommu_snooping = 0;
break;
}
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
}
}
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
domain_update_iommu_coherency(domain);
domain_update_iommu_snooping(domain);
}
static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
{
struct dmar_drhd_unit *drhd = NULL;
int i;
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
if (segment != drhd->segment)
continue;
for (i = 0; i < drhd->devices_cnt; i++) {
if (drhd->devices[i] &&
drhd->devices[i]->bus->number == bus &&
drhd->devices[i]->devfn == devfn)
return drhd->iommu;
if (drhd->devices[i] &&
drhd->devices[i]->subordinate &&
drhd->devices[i]->subordinate->number <= bus &&
drhd->devices[i]->subordinate->subordinate >= bus)
return drhd->iommu;
}
if (drhd->include_all)
return drhd->iommu;
}
return NULL;
}
static void domain_flush_cache(struct dmar_domain *domain,
void *addr, int size)
{
if (!domain->iommu_coherency)
clflush_cache_range(addr, size);
}
/* Gets context entry for a given bus and devfn */
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
u8 bus, u8 devfn)
{
struct root_entry *root;
struct context_entry *context;
unsigned long phy_addr;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
root = &iommu->root_entry[bus];
context = get_context_addr_from_root(root);
if (!context) {
context = (struct context_entry *)alloc_pgtable_page();
if (!context) {
spin_unlock_irqrestore(&iommu->lock, flags);
return NULL;
}
__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
phy_addr = virt_to_phys((void *)context);
set_root_value(root, phy_addr);
set_root_present(root);
__iommu_flush_cache(iommu, root, sizeof(*root));
}
spin_unlock_irqrestore(&iommu->lock, flags);
return &context[devfn];
}
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
struct root_entry *root;
struct context_entry *context;
int ret;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
root = &iommu->root_entry[bus];
context = get_context_addr_from_root(root);
if (!context) {
ret = 0;
goto out;
}
ret = context_present(&context[devfn]);
out:
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
struct root_entry *root;
struct context_entry *context;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
root = &iommu->root_entry[bus];
context = get_context_addr_from_root(root);
if (context) {
context_clear_entry(&context[devfn]);
__iommu_flush_cache(iommu, &context[devfn], \
sizeof(*context));
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void free_context_table(struct intel_iommu *iommu)
{
struct root_entry *root;
int i;
unsigned long flags;
struct context_entry *context;
spin_lock_irqsave(&iommu->lock, flags);
if (!iommu->root_entry) {
goto out;
}
for (i = 0; i < ROOT_ENTRY_NR; i++) {
root = &iommu->root_entry[i];
context = get_context_addr_from_root(root);
if (context)
free_pgtable_page(context);
}
free_pgtable_page(iommu->root_entry);
iommu->root_entry = NULL;
out:
spin_unlock_irqrestore(&iommu->lock, flags);
}
/* page table handling */
#define LEVEL_STRIDE (9)
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
static inline int agaw_to_level(int agaw)
{
return agaw + 2;
}
static inline int agaw_to_width(int agaw)
{
return 30 + agaw * LEVEL_STRIDE;
}
static inline int width_to_agaw(int width)
{
return (width - 30) / LEVEL_STRIDE;
}
static inline unsigned int level_to_offset_bits(int level)
{
return (level - 1) * LEVEL_STRIDE;
}
static inline int pfn_level_offset(unsigned long pfn, int level)
{
return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}
static inline unsigned long level_mask(int level)
{
return -1UL << level_to_offset_bits(level);
}
static inline unsigned long level_size(int level)
{
return 1UL << level_to_offset_bits(level);
}
static inline unsigned long align_to_level(unsigned long pfn, int level)
{
return (pfn + level_size(level) - 1) & level_mask(level);
}
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
unsigned long pfn)
{
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
struct dma_pte *parent, *pte = NULL;
int level = agaw_to_level(domain->agaw);
int offset;
BUG_ON(!domain->pgd);
BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
parent = domain->pgd;
while (level > 0) {
void *tmp_page;
offset = pfn_level_offset(pfn, level);
pte = &parent[offset];
if (level == 1)
break;
if (!dma_pte_present(pte)) {
uint64_t pteval;
tmp_page = alloc_pgtable_page();
if (!tmp_page)
return NULL;
domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
if (cmpxchg64(&pte->val, 0ULL, pteval)) {
/* Someone else set it while we were thinking; use theirs. */
free_pgtable_page(tmp_page);
} else {
dma_pte_addr(pte);
domain_flush_cache(domain, pte, sizeof(*pte));
}
}
parent = phys_to_virt(dma_pte_addr(pte));
level--;
}
return pte;
}
/* return address's pte at specific level */
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
unsigned long pfn,
int level)
{
struct dma_pte *parent, *pte = NULL;
int total = agaw_to_level(domain->agaw);
int offset;
parent = domain->pgd;
while (level <= total) {
offset = pfn_level_offset(pfn, total);
pte = &parent[offset];
if (level == total)
return pte;
if (!dma_pte_present(pte))
break;
parent = phys_to_virt(dma_pte_addr(pte));
total--;
}
return NULL;
}
/* clear last level pte, a tlb flush should be followed */
static void dma_pte_clear_range(struct dmar_domain *domain,
unsigned long start_pfn,
unsigned long last_pfn)
{
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
struct dma_pte *first_pte, *pte;
BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
/* we don't need lock here; nobody else touches the iova range */
while (start_pfn <= last_pfn) {
first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
if (!pte) {
start_pfn = align_to_level(start_pfn + 1, 2);
continue;
}
do {
dma_clear_pte(pte);
start_pfn++;
pte++;
} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
domain_flush_cache(domain, first_pte,
(void *)pte - (void *)first_pte);
}
}
/* free page table pages. last level pte should already be cleared */
static void dma_pte_free_pagetable(struct dmar_domain *domain,
unsigned long start_pfn,
unsigned long last_pfn)
{
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
struct dma_pte *first_pte, *pte;
int total = agaw_to_level(domain->agaw);
int level;
unsigned long tmp;
BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
/* We don't need lock here; nobody else touches the iova range */
level = 2;
while (level <= total) {
tmp = align_to_level(start_pfn, level);
/* If we can't even clear one PTE at this level, we're done */
if (tmp + level_size(level) - 1 > last_pfn)
return;
while (tmp + level_size(level) - 1 <= last_pfn) {
first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
if (!pte) {
tmp = align_to_level(tmp + 1, level + 1);
continue;
}
do {
if (dma_pte_present(pte)) {
free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
dma_clear_pte(pte);
}
pte++;
tmp += level_size(level);
} while (!first_pte_in_page(pte) &&
tmp + level_size(level) - 1 <= last_pfn);
domain_flush_cache(domain, first_pte,
(void *)pte - (void *)first_pte);
}
level++;
}
/* free pgd */
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
free_pgtable_page(domain->pgd);
domain->pgd = NULL;
}
}
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
struct root_entry *root;
unsigned long flags;
root = (struct root_entry *)alloc_pgtable_page();
if (!root)
return -ENOMEM;
__iommu_flush_cache(iommu, root, ROOT_SIZE);
spin_lock_irqsave(&iommu->lock, flags);
iommu->root_entry = root;
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static void iommu_set_root_entry(struct intel_iommu *iommu)
{
void *addr;
u32 sts;
unsigned long flag;
addr = iommu->root_entry;
spin_lock_irqsave(&iommu->register_lock, flag);
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (sts & DMA_GSTS_RTPS), sts);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
static void iommu_flush_write_buffer(struct intel_iommu *iommu)
{
u32 val;
unsigned long flag;
if (!rwbf_quirk && !cap_rwbf(iommu->cap))
return;
spin_lock_irqsave(&iommu->register_lock, flag);
writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (!(val & DMA_GSTS_WBFS)), val);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
/* return value determine if we need a write buffer flush */
static void __iommu_flush_context(struct intel_iommu *iommu,
u16 did, u16 source_id, u8 function_mask,
u64 type)
{
u64 val = 0;
unsigned long flag;
switch (type) {
case DMA_CCMD_GLOBAL_INVL:
val = DMA_CCMD_GLOBAL_INVL;
break;
case DMA_CCMD_DOMAIN_INVL:
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
break;
case DMA_CCMD_DEVICE_INVL:
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
break;
default:
BUG();
}
val |= DMA_CCMD_ICC;
spin_lock_irqsave(&iommu->register_lock, flag);
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
/* return value determine if we need a write buffer flush */
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
u64 addr, unsigned int size_order, u64 type)
{
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
u64 val = 0, val_iva = 0;
unsigned long flag;
switch (type) {
case DMA_TLB_GLOBAL_FLUSH:
/* global flush doesn't need set IVA_REG */
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
break;
case DMA_TLB_DSI_FLUSH:
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
break;
case DMA_TLB_PSI_FLUSH:
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
/* Note: always flush non-leaf currently */
val_iva = size_order | addr;
break;
default:
BUG();
}
/* Note: set drain read/write */
#if 0
/*
* This is probably to be super secure.. Looks like we can
* ignore it without any impact.
*/
if (cap_read_drain(iommu->cap))
val |= DMA_TLB_READ_DRAIN;
#endif
if (cap_write_drain(iommu->cap))
val |= DMA_TLB_WRITE_DRAIN;
spin_lock_irqsave(&iommu->register_lock, flag);
/* Note: Only uses first TLB reg currently */
if (val_iva)
dmar_writeq(iommu->reg + tlb_offset, val_iva);
dmar_writeq(iommu->reg + tlb_offset + 8, val);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
dmar_readq, (!(val & DMA_TLB_IVT)), val);
spin_unlock_irqrestore(&iommu->register_lock, flag);
/* check IOTLB invalidation granularity */
if (DMA_TLB_IAIG(val) == 0)
printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
(unsigned long long)DMA_TLB_IIRG(type),
(unsigned long long)DMA_TLB_IAIG(val));
}
static struct device_domain_info *iommu_support_dev_iotlb(
struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
{
int found = 0;
unsigned long flags;
struct device_domain_info *info;
struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
if (!ecap_dev_iotlb_support(iommu->ecap))
return NULL;
if (!iommu->qi)
return NULL;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(info, &domain->devices, link)
if (info->bus == bus && info->devfn == devfn) {
found = 1;
break;
}
spin_unlock_irqrestore(&device_domain_lock, flags);
if (!found || !info->dev)
return NULL;
if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
return NULL;
if (!dmar_find_matched_atsr_unit(info->dev))
return NULL;
info->iommu = iommu;
return info;
}
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
{
if (!info)
return;
pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
}
static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
if (!info->dev || !pci_ats_enabled(info->dev))
return;
pci_disable_ats(info->dev);
}
static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
u64 addr, unsigned mask)
{
u16 sid, qdep;
unsigned long flags;
struct device_domain_info *info;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(info, &domain->devices, link) {
if (!info->dev || !pci_ats_enabled(info->dev))
continue;
sid = info->bus << 8 | info->devfn;
qdep = pci_ats_queue_depth(info->dev);
qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
unsigned long pfn, unsigned int pages)
{
unsigned int mask = ilog2(__roundup_pow_of_two(pages));
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
BUG_ON(pages == 0);
/*
* Fallback to domain selective flush if no PSI support or the size is
* too big.
* PSI requires page size to be 2 ^ x, and the base address is naturally
* aligned to the size
*/
if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
iommu->flush.flush_iotlb(iommu, did, 0, 0,
DMA_TLB_DSI_FLUSH);
else
iommu->flush.flush_iotlb(iommu, did, addr, mask,
DMA_TLB_PSI_FLUSH);
/*
* In caching mode, domain ID 0 is reserved for non-present to present
* mapping flush. Device IOTLB doesn't need to be flushed in this case.
*/
if (!cap_caching_mode(iommu->cap) || did)
iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
}
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
u32 pmen;
unsigned long flags;
spin_lock_irqsave(&iommu->register_lock, flags);
pmen = readl(iommu->reg + DMAR_PMEN_REG);
pmen &= ~DMA_PMEN_EPM;
writel(pmen, iommu->reg + DMAR_PMEN_REG);
/* wait for the protected region status bit to clear */
IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
readl, !(pmen & DMA_PMEN_PRS), pmen);
spin_unlock_irqrestore(&iommu->register_lock, flags);
}
static int iommu_enable_translation(struct intel_iommu *iommu)
{
u32 sts;
unsigned long flags;
spin_lock_irqsave(&iommu->register_lock, flags);
iommu->gcmd |= DMA_GCMD_TE;
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (sts & DMA_GSTS_TES), sts);
spin_unlock_irqrestore(&iommu->register_lock, flags);
return 0;
}
static int iommu_disable_translation(struct intel_iommu *iommu)
{
u32 sts;
unsigned long flag;
spin_lock_irqsave(&iommu->register_lock, flag);
iommu->gcmd &= ~DMA_GCMD_TE;
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (!(sts & DMA_GSTS_TES)), sts);
spin_unlock_irqrestore(&iommu->register_lock, flag);
return 0;
}
static int iommu_init_domains(struct intel_iommu *iommu)
{
unsigned long ndomains;
unsigned long nlongs;
ndomains = cap_ndoms(iommu->cap);
pr_debug("Number of Domains supportd <%ld>\n", ndomains);
nlongs = BITS_TO_LONGS(ndomains);
/* TBD: there might be 64K domains,
* consider other allocation for future chip
*/
iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
if (!iommu->domain_ids) {
printk(KERN_ERR "Allocating domain id array failed\n");
return -ENOMEM;
}
iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
GFP_KERNEL);
if (!iommu->domains) {
printk(KERN_ERR "Allocating domain array failed\n");
kfree(iommu->domain_ids);
return -ENOMEM;
}
spin_lock_init(&iommu->lock);
/*
* if Caching mode is set, then invalid translations are tagged
* with domainid 0. Hence we need to pre-allocate it.
*/
if (cap_caching_mode(iommu->cap))
set_bit(0, iommu->domain_ids);
return 0;
}
static void domain_exit(struct dmar_domain *domain);
static void vm_domain_exit(struct dmar_domain *domain);
void free_dmar_iommu(struct intel_iommu *iommu)
{
struct dmar_domain *domain;
int i;
unsigned long flags;
i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
for (; i < cap_ndoms(iommu->cap); ) {
domain = iommu->domains[i];
clear_bit(i, iommu->domain_ids);
spin_lock_irqsave(&domain->iommu_lock, flags);
if (--domain->iommu_count == 0) {
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
vm_domain_exit(domain);
else
domain_exit(domain);
}
spin_unlock_irqrestore(&domain->iommu_lock, flags);
i = find_next_bit(iommu->domain_ids,
cap_ndoms(iommu->cap), i+1);
}
if (iommu->gcmd & DMA_GCMD_TE)
iommu_disable_translation(iommu);
if (iommu->irq) {
set_irq_data(iommu->irq, NULL);
/* This will mask the irq */
free_irq(iommu->irq, iommu);
destroy_irq(iommu->irq);
}
kfree(iommu->domains);
kfree(iommu->domain_ids);
g_iommus[iommu->seq_id] = NULL;
/* if all iommus are freed, free g_iommus */
for (i = 0; i < g_num_of_iommus; i++) {
if (g_iommus[i])
break;
}
if (i == g_num_of_iommus)
kfree(g_iommus);
/* free context mapping */
free_context_table(iommu);
}
static struct dmar_domain *alloc_domain(void)
{
struct dmar_domain *domain;
domain = alloc_domain_mem();
if (!domain)
return NULL;
memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
domain->flags = 0;
return domain;
}
static int iommu_attach_domain(struct dmar_domain *domain,
struct intel_iommu *iommu)
{
int num;
unsigned long ndomains;
unsigned long flags;
ndomains = cap_ndoms(iommu->cap);
spin_lock_irqsave(&iommu->lock, flags);
num = find_first_zero_bit(iommu->domain_ids, ndomains);
if (num >= ndomains) {
spin_unlock_irqrestore(&iommu->lock, flags);
printk(KERN_ERR "IOMMU: no free domain ids\n");
return -ENOMEM;
}
domain->id = num;
set_bit(num, iommu->domain_ids);
set_bit(iommu->seq_id, &domain->iommu_bmp);
iommu->domains[num] = domain;
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static void iommu_detach_domain(struct dmar_domain *domain,
struct intel_iommu *iommu)
{
unsigned long flags;
int num, ndomains;
int found = 0;
spin_lock_irqsave(&iommu->lock, flags);
ndomains = cap_ndoms(iommu->cap);
num = find_first_bit(iommu->domain_ids, ndomains);
for (; num < ndomains; ) {
if (iommu->domains[num] == domain) {
found = 1;
break;
}
num = find_next_bit(iommu->domain_ids,
cap_ndoms(iommu->cap), num+1);
}
if (found) {
clear_bit(num, iommu->domain_ids);
clear_bit(iommu->seq_id, &domain->iommu_bmp);
iommu->domains[num] = NULL;
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static struct iova_domain reserved_iova_list;
static struct lock_class_key reserved_alloc_key;
static struct lock_class_key reserved_rbtree_key;
static void dmar_init_reserved_ranges(void)
{
struct pci_dev *pdev = NULL;
struct iova *iova;
int i;
init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
&reserved_alloc_key);
lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
&reserved_rbtree_key);
/* IOAPIC ranges shouldn't be accessed by DMA */
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
IOVA_PFN(IOAPIC_RANGE_END));
if (!iova)
printk(KERN_ERR "Reserve IOAPIC range failed\n");
/* Reserve all PCI MMIO to avoid peer-to-peer access */
for_each_pci_dev(pdev) {
struct resource *r;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
r = &pdev->resource[i];
if (!r->flags || !(r->flags & IORESOURCE_MEM))
continue;
iova = reserve_iova(&reserved_iova_list,
IOVA_PFN(r->start),
IOVA_PFN(r->end));
if (!iova)
printk(KERN_ERR "Reserve iova failed\n");
}
}
}
static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}
static inline int guestwidth_to_adjustwidth(int gaw)
{
int agaw;
int r = (gaw - 12) % 9;
if (r == 0)
agaw = gaw;
else
agaw = gaw + 9 - r;
if (agaw > 64)
agaw = 64;
return agaw;
}
static int domain_init(struct dmar_domain *domain, int guest_width)
{
struct intel_iommu *iommu;
int adjust_width, agaw;
unsigned long sagaw;
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
spin_lock_init(&domain->iommu_lock);
domain_reserve_special_ranges(domain);
/* calculate AGAW */
iommu = domain_get_iommu(domain);
if (guest_width > cap_mgaw(iommu->cap))
guest_width = cap_mgaw(iommu->cap);
domain->gaw = guest_width;
adjust_width = guestwidth_to_adjustwidth(guest_width);
agaw = width_to_agaw(adjust_width);
sagaw = cap_sagaw(iommu->cap);
if (!test_bit(agaw, &sagaw)) {
/* hardware doesn't support it, choose a bigger one */
pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
agaw = find_next_bit(&sagaw, 5, agaw);
if (agaw >= 5)
return -ENODEV;
}
domain->agaw = agaw;
INIT_LIST_HEAD(&domain->devices);
if (ecap_coherent(iommu->ecap))
domain->iommu_coherency = 1;
else
domain->iommu_coherency = 0;
if (ecap_sc_support(iommu->ecap))
domain->iommu_snooping = 1;
else
domain->iommu_snooping = 0;
domain->iommu_count = 1;
/* always allocate the top pgd */
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
if (!domain->pgd)
return -ENOMEM;
__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
return 0;
}
static void domain_exit(struct dmar_domain *domain)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
/* Domain 0 is reserved, so dont process it */
if (!domain)
return;
domain_remove_dev_info(domain);
/* destroy iovas */
put_iova_domain(&domain->iovad);
/* clear ptes */
dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
/* free page tables */
dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
for_each_active_iommu(iommu, drhd)
if (test_bit(iommu->seq_id, &domain->iommu_bmp))
iommu_detach_domain(domain, iommu);
free_domain_mem(domain);
}
static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
u8 bus, u8 devfn, int translation)
{
struct context_entry *context;
unsigned long flags;
struct intel_iommu *iommu;
struct dma_pte *pgd;
unsigned long num;
unsigned long ndomains;
int id;
int agaw;
struct device_domain_info *info = NULL;
pr_debug("Set context mapping for %02x:%02x.%d\n",
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
BUG_ON(!domain->pgd);
BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
translation != CONTEXT_TT_MULTI_LEVEL);
iommu = device_to_iommu(segment, bus, devfn);
if (!iommu)
return -ENODEV;
context = device_to_context_entry(iommu, bus, devfn);
if (!context)
return -ENOMEM;
spin_lock_irqsave(&iommu->lock, flags);
if (context_present(context)) {
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
id = domain->id;
pgd = domain->pgd;
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
int found = 0;
/* find an available domain id for this device in iommu */
ndomains = cap_ndoms(iommu->cap);
num = find_first_bit(iommu->domain_ids, ndomains);
for (; num < ndomains; ) {
if (iommu->domains[num] == domain) {
id = num;
found = 1;
break;
}
num = find_next_bit(iommu->domain_ids,
cap_ndoms(iommu->cap), num+1);
}
if (found == 0) {
num = find_first_zero_bit(iommu->domain_ids, ndomains);
if (num >= ndomains) {
spin_unlock_irqrestore(&iommu->lock, flags);
printk(KERN_ERR "IOMMU: no free domain ids\n");
return -EFAULT;
}
set_bit(num, iommu->domain_ids);
iommu->domains[num] = domain;
id = num;
}
/* Skip top levels of page tables for
* iommu which has less agaw than default.
*/
for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
pgd = phys_to_virt(dma_pte_addr(pgd));
if (!dma_pte_present(pgd)) {
spin_unlock_irqrestore(&iommu->lock, flags);
return -ENOMEM;
}
}
}
context_set_domain_id(context, id);
if (translation != CONTEXT_TT_PASS_THROUGH) {
info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
translation = info ? CONTEXT_TT_DEV_IOTLB :
CONTEXT_TT_MULTI_LEVEL;
}
/*
* In pass through mode, AW must be programmed to indicate the largest
* AGAW value supported by hardware. And ASR is ignored by hardware.
*/
if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
context_set_address_width(context, iommu->msagaw);
else {
context_set_address_root(context, virt_to_phys(pgd));
context_set_address_width(context, iommu->agaw);
}
context_set_translation_type(context, translation);
context_set_fault_enable(context);
context_set_present(context);
domain_flush_cache(domain, context, sizeof(*context));
/*
* It's a non-present to present mapping. If hardware doesn't cache
* non-present entry we only need to flush the write-buffer. If the
* _does_ cache non-present entries, then it does so in the special
* domain #0, which we have to flush:
*/
if (cap_caching_mode(iommu->cap)) {
iommu->flush.flush_context(iommu, 0,
(((u16)bus) << 8) | devfn,
DMA_CCMD_MASK_NOBIT,
DMA_CCMD_DEVICE_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
} else {
iommu_flush_write_buffer(iommu);
}
iommu_enable_dev_iotlb(info);
spin_unlock_irqrestore(&iommu->lock, flags);
spin_lock_irqsave(&domain->iommu_lock, flags);
if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
domain->iommu_count++;
domain_update_iommu_cap(domain);
}
spin_unlock_irqrestore(&domain->iommu_lock, flags);
return 0;
}
static int
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
int translation)
{
int ret;
struct pci_dev *tmp, *parent;
ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
pdev->bus->number, pdev->devfn,
translation);
if (ret)
return ret;
/* dependent device mapping */
tmp = pci_find_upstream_pcie_bridge(pdev);
if (!tmp)
return 0;
/* Secondary interface's bus number and devfn 0 */
parent = pdev->bus->self;
while (parent != tmp) {
ret = domain_context_mapping_one(domain,
pci_domain_nr(parent->bus),
parent->bus->number,
parent->devfn, translation);
if (ret)
return ret;
parent = parent->bus->self;
}
if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
return domain_context_mapping_one(domain,
pci_domain_nr(tmp->subordinate),
tmp->subordinate->number, 0,
translation);
else /* this is a legacy PCI bridge */
return domain_context_mapping_one(domain,
pci_domain_nr(tmp->bus),
tmp->bus->number,
tmp->devfn,
translation);
}
static int domain_context_mapped(struct pci_dev *pdev)
{
int ret;
struct pci_dev *tmp, *parent;
struct intel_iommu *iommu;
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
pdev->devfn);
if (!iommu)
return -ENODEV;
ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
if (!ret)
return ret;
/* dependent device mapping */
tmp = pci_find_upstream_pcie_bridge(pdev);
if (!tmp)
return ret;
/* Secondary interface's bus number and devfn 0 */
parent = pdev->bus->self;
while (parent != tmp) {
ret = device_context_mapped(iommu, parent->bus->number,
parent->devfn);
if (!ret)
return ret;
parent = parent->bus->self;
}
if (tmp->is_pcie)
return device_context_mapped(iommu, tmp->subordinate->number,
0);
else
return device_context_mapped(iommu, tmp->bus->number,
tmp->devfn);
}
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
size_t size)
{
host_addr &= ~PAGE_MASK;
return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
struct scatterlist *sg, unsigned long phys_pfn,
unsigned long nr_pages, int prot)
{
struct dma_pte *first_pte = NULL, *pte = NULL;
phys_addr_t uninitialized_var(pteval);
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
unsigned long sg_res;
BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
return -EINVAL;
prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
if (sg)
sg_res = 0;
else {
sg_res = nr_pages + 1;
pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
}
while (nr_pages--) {
uint64_t tmp;
if (!sg_res) {
sg_res = aligned_nrpages(sg->offset, sg->length);
sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
sg->dma_length = sg->length;
pteval = page_to_phys(sg_page(sg)) | prot;
}
if (!pte) {
first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
if (!pte)
return -ENOMEM;
}
/* We don't need lock here, nobody else
* touches the iova range
*/
tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
if (tmp) {
static int dumps = 5;
printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
iov_pfn, tmp, (unsigned long long)pteval);
if (dumps) {
dumps--;
debug_dma_dump_mappings(NULL);
}
WARN_ON(1);
}
pte++;
if (!nr_pages || first_pte_in_page(pte)) {
domain_flush_cache(domain, first_pte,
(void *)pte - (void *)first_pte);
pte = NULL;
}
iov_pfn++;
pteval += VTD_PAGE_SIZE;
sg_res--;
if (!sg_res)
sg = sg_next(sg);
}
return 0;
}
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
struct scatterlist *sg, unsigned long nr_pages,
int prot)
{
return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
}
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
unsigned long phys_pfn, unsigned long nr_pages,
int prot)
{
return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
}
static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
if (!iommu)
return;
clear_context_table(iommu, bus, devfn);
iommu->flush.flush_context(iommu, 0, 0, 0,
DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
}
static void domain_remove_dev_info(struct dmar_domain *domain)
{
struct device_domain_info *info;
unsigned long flags;
struct intel_iommu *iommu;
spin_lock_irqsave(&device_domain_lock, flags);
while (!list_empty(&domain->devices)) {
info = list_entry(domain->devices.next,
struct device_domain_info, link);
list_del(&info->link);
list_del(&info->global);
if (info->dev)
info->dev->dev.archdata.iommu = NULL;
spin_unlock_irqrestore(&device_domain_lock, flags);
iommu_disable_dev_iotlb(info);
iommu = device_to_iommu(info->segment, info->bus, info->devfn);
iommu_detach_dev(iommu, info->bus, info->devfn);
free_devinfo_mem(info);
spin_lock_irqsave(&device_domain_lock, flags);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
/*
* find_domain
* Note: we use struct pci_dev->dev.archdata.iommu stores the info
*/
static struct dmar_domain *
find_domain(struct pci_dev *pdev)
{
struct device_domain_info *info;
/* No lock here, assumes no domain exit in normal case */
info = pdev->dev.archdata.iommu;
if (info)
return info->domain;
return NULL;
}
/* domain is initialized */
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
{
struct dmar_domain *domain, *found = NULL;
struct intel_iommu *iommu;
struct dmar_drhd_unit *drhd;
struct device_domain_info *info, *tmp;
struct pci_dev *dev_tmp;
unsigned long flags;
int bus = 0, devfn = 0;
int segment;
int ret;
domain = find_domain(pdev);
if (domain)
return domain;
segment = pci_domain_nr(pdev->bus);
dev_tmp = pci_find_upstream_pcie_bridge(pdev);
if (dev_tmp) {
if (dev_tmp->is_pcie) {
bus = dev_tmp->subordinate->number;
devfn = 0;
} else {
bus = dev_tmp->bus->number;
devfn = dev_tmp->devfn;
}
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(info, &device_domain_list, global) {
if (info->segment == segment &&
info->bus == bus && info->devfn == devfn) {
found = info->domain;
break;
}
}
spin_unlock_irqrestore(&device_domain_lock, flags);
/* pcie-pci bridge already has a domain, uses it */
if (found) {
domain = found;
goto found_domain;
}
}
domain = alloc_domain();
if (!domain)
goto error;
/* Allocate new domain for the device */
drhd = dmar_find_matched_drhd_unit(pdev);
if (!drhd) {
printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
pci_name(pdev));
return NULL;
}
iommu = drhd->iommu;
ret = iommu_attach_domain(domain, iommu);
if (ret) {
domain_exit(domain);
goto error;
}
if (domain_init(domain, gaw)) {
domain_exit(domain);
goto error;
}
/* register pcie-to-pci device */
if (dev_tmp) {
info = alloc_devinfo_mem();
if (!info) {
domain_exit(domain);
goto error;
}
info->segment = segment;
info->bus = bus;
info->devfn = devfn;
info->dev = NULL;
info->domain = domain;
/* This domain is shared by devices under p2p bridge */
domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
/* pcie-to-pci bridge already has a domain, uses it */
found = NULL;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(tmp, &device_domain_list, global) {
if (tmp->segment == segment &&
tmp->bus == bus && tmp->devfn == devfn) {
found = tmp->domain;
break;
}
}
if (found) {
free_devinfo_mem(info);
domain_exit(domain);
domain = found;
} else {
list_add(&info->link, &domain->devices);
list_add(&info->global, &device_domain_list);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
found_domain:
info = alloc_devinfo_mem();
if (!info)
goto error;
info->segment = segment;
info->bus = pdev->bus->number;
info->devfn = pdev->devfn;
info->dev = pdev;
info->domain = domain;
spin_lock_irqsave(&device_domain_lock, flags);
/* somebody is fast */
found = find_domain(pdev);
if (found != NULL) {
spin_unlock_irqrestore(&device_domain_lock, flags);
if (found != domain) {
domain_exit(domain);
domain = found;
}
free_devinfo_mem(info);
return domain;
}
list_add(&info->link, &domain->devices);
list_add(&info->global, &device_domain_list);
pdev->dev.archdata.iommu = info;
spin_unlock_irqrestore(&device_domain_lock, flags);
return domain;
error:
/* recheck it here, maybe others set it */
return find_domain(pdev);
}
static int iommu_identity_mapping;
static int iommu_domain_identity_map(struct dmar_domain *domain,
unsigned long long start,
unsigned long long end)
{
unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
dma_to_mm_pfn(last_vpfn))) {
printk(KERN_ERR "IOMMU: reserve iova failed\n");
return -ENOMEM;
}
pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
start, end, domain->id);
/*
* RMRR range might have overlap with physical memory range,
* clear it first
*/
dma_pte_clear_range(domain, first_vpfn, last_vpfn);
return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
last_vpfn - first_vpfn + 1,
DMA_PTE_READ|DMA_PTE_WRITE);
}
static int iommu_prepare_identity_map(struct pci_dev *pdev,
unsigned long long start,
unsigned long long end)
{
struct dmar_domain *domain;
int ret;
printk(KERN_INFO
"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
pci_name(pdev), start, end);
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
if (!domain)
return -ENOMEM;
ret = iommu_domain_identity_map(domain, start, end);
if (ret)
goto error;
/* context entry init */
ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
if (ret)
goto error;
return 0;
error:
domain_exit(domain);
return ret;
}
static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
struct pci_dev *pdev)
{
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
return 0;
return iommu_prepare_identity_map(pdev, rmrr->base_address,
rmrr->end_address + 1);
}
#ifdef CONFIG_DMAR_FLOPPY_WA
static inline void iommu_prepare_isa(void)
{
struct pci_dev *pdev;
int ret;
pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
if (!pdev)
return;
printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
if (ret)
printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
"floppy might not work\n");
}
#else
static inline void iommu_prepare_isa(void)
{
return;
}
#endif /* !CONFIG_DMAR_FLPY_WA */
/* Initialize each context entry as pass through.*/
static int __init init_context_pass_through(void)
{
struct pci_dev *pdev = NULL;
struct dmar_domain *domain;
int ret;
for_each_pci_dev(pdev) {
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
ret = domain_context_mapping(domain, pdev,
CONTEXT_TT_PASS_THROUGH);
if (ret)
return ret;
}
return 0;
}
static int md_domain_init(struct dmar_domain *domain, int guest_width);
static int __init si_domain_work_fn(unsigned long start_pfn,
unsigned long end_pfn, void *datax)
{
int *ret = datax;
*ret = iommu_domain_identity_map(si_domain,
(uint64_t)start_pfn << PAGE_SHIFT,
(uint64_t)end_pfn << PAGE_SHIFT);
return *ret;
}
static int si_domain_init(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
int nid, ret = 0;
si_domain = alloc_domain();
if (!si_domain)
return -EFAULT;
pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
for_each_active_iommu(iommu, drhd) {
ret = iommu_attach_domain(si_domain, iommu);
if (ret) {
domain_exit(si_domain);
return -EFAULT;
}
}
if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
domain_exit(si_domain);
return -EFAULT;
}
si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
for_each_online_node(nid) {
work_with_active_regions(nid, si_domain_work_fn, &ret);
if (ret)
return ret;
}
return 0;
}
static void domain_remove_one_dev_info(struct dmar_domain *domain,
struct pci_dev *pdev);
static int identity_mapping(struct pci_dev *pdev)
{
struct device_domain_info *info;
if (likely(!iommu_identity_mapping))
return 0;
list_for_each_entry(info, &si_domain->devices, link)
if (info->dev == pdev)
return 1;
return 0;
}
static int domain_add_dev_info(struct dmar_domain *domain,
struct pci_dev *pdev)
{
struct device_domain_info *info;
unsigned long flags;
info = alloc_devinfo_mem();
if (!info)
return -ENOMEM;
info->segment = pci_domain_nr(pdev->bus);
info->bus = pdev->bus->number;
info->devfn = pdev->devfn;
info->dev = pdev;
info->domain = domain;
spin_lock_irqsave(&device_domain_lock, flags);
list_add(&info->link, &domain->devices);
list_add(&info->global, &device_domain_list);
pdev->dev.archdata.iommu = info;
spin_unlock_irqrestore(&device_domain_lock, flags);
return 0;
}
static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
{
if (iommu_identity_mapping == 2)
return IS_GFX_DEVICE(pdev);
/*
* We want to start off with all devices in the 1:1 domain, and
* take them out later if we find they can't access all of memory.
*
* However, we can't do this for PCI devices behind bridges,
* because all PCI devices behind the same bridge will end up
* with the same source-id on their transactions.
*
* Practically speaking, we can't change things around for these
* devices at run-time, because we can't be sure there'll be no
* DMA transactions in flight for any of their siblings.
*
* So PCI devices (unless they're on the root bus) as well as
* their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
* the 1:1 domain, just in _case_ one of their siblings turns out
* not to be able to map all of memory.
*/
if (!pdev->is_pcie) {
if (!pci_is_root_bus(pdev->bus))
return 0;
if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
return 0;
} else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
return 0;
/*
* At boot time, we don't yet know if devices will be 64-bit capable.
* Assume that they will -- if they turn out not to be, then we can
* take them out of the 1:1 domain later.
*/
if (!startup)
return pdev->dma_mask > DMA_BIT_MASK(32);
return 1;
}
static int iommu_prepare_static_identity_mapping(void)
{
struct pci_dev *pdev = NULL;
int ret;
ret = si_domain_init();
if (ret)
return -EFAULT;
for_each_pci_dev(pdev) {
if (iommu_should_identity_map(pdev, 1)) {
printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
pci_name(pdev));
ret = domain_context_mapping(si_domain, pdev,
CONTEXT_TT_MULTI_LEVEL);
if (ret)
return ret;
ret = domain_add_dev_info(si_domain, pdev);
if (ret)
return ret;
}
}
return 0;
}
int __init init_dmars(void)
{
struct dmar_drhd_unit *drhd;
struct dmar_rmrr_unit *rmrr;
struct pci_dev *pdev;
struct intel_iommu *iommu;
int i, ret;
int pass_through = 1;
/*
* In case pass through can not be enabled, iommu tries to use identity
* mapping.
*/
if (iommu_pass_through)
iommu_identity_mapping = 1;
/*
* for each drhd
* allocate root
* initialize and program root entry to not present
* endfor
*/
for_each_drhd_unit(drhd) {
g_num_of_iommus++;
/*
* lock not needed as this is only incremented in the single
* threaded kernel __init code path all other access are read
* only
*/
}
g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
GFP_KERNEL);
if (!g_iommus) {
printk(KERN_ERR "Allocating global iommu array failed\n");
ret = -ENOMEM;
goto error;
}
deferred_flush = kzalloc(g_num_of_iommus *
sizeof(struct deferred_flush_tables), GFP_KERNEL);
if (!deferred_flush) {
kfree(g_iommus);
ret = -ENOMEM;
goto error;
}
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
g_iommus[iommu->seq_id] = iommu;
ret = iommu_init_domains(iommu);
if (ret)
goto error;
/*
* TBD:
* we could share the same root & context tables
* amoung all IOMMU's. Need to Split it later.
*/
ret = iommu_alloc_root_entry(iommu);
if (ret) {
printk(KERN_ERR "IOMMU: allocate root entry failed\n");
goto error;
}
if (!ecap_pass_through(iommu->ecap))
pass_through = 0;
}
if (iommu_pass_through)
if (!pass_through) {
printk(KERN_INFO
"Pass Through is not supported by hardware.\n");
iommu_pass_through = 0;
}
/*
* Start from the sane iommu hardware state.
*/
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
/*
* If the queued invalidation is already initialized by us
* (for example, while enabling interrupt-remapping) then
* we got the things already rolling from a sane state.
*/
if (iommu->qi)
continue;
/*
* Clear any previous faults.
*/
dmar_fault(-1, iommu);
/*
* Disable queued invalidation if supported and already enabled
* before OS handover.
*/
dmar_disable_qi(iommu);
}
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
if (dmar_enable_qi(iommu)) {
/*
* Queued Invalidate not enabled, use Register Based
* Invalidate
*/
iommu->flush.flush_context = __iommu_flush_context;
iommu->flush.flush_iotlb = __iommu_flush_iotlb;
printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
"invalidation\n",
(unsigned long long)drhd->reg_base_addr);
} else {
iommu->flush.flush_context = qi_flush_context;
iommu->flush.flush_iotlb = qi_flush_iotlb;
printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
"invalidation\n",
(unsigned long long)drhd->reg_base_addr);
}
}
/*
* If pass through is set and enabled, context entries of all pci
* devices are intialized by pass through translation type.
*/
if (iommu_pass_through) {
ret = init_context_pass_through();
if (ret) {
printk(KERN_ERR "IOMMU: Pass through init failed.\n");
iommu_pass_through = 0;
}
}
/*
* If pass through is not set or not enabled, setup context entries for
* identity mappings for rmrr, gfx, and isa and may fall back to static
* identity mapping if iommu_identity_mapping is set.
*/
if (!iommu_pass_through) {
#ifdef CONFIG_DMAR_BROKEN_GFX_WA
if (!iommu_identity_mapping)
iommu_identity_mapping = 2;
#endif
if (iommu_identity_mapping)
iommu_prepare_static_identity_mapping();
/*
* For each rmrr
* for each dev attached to rmrr
* do
* locate drhd for dev, alloc domain for dev
* allocate free domain
* allocate page table entries for rmrr
* if context not allocated for bus
* allocate and init context
* set present in root table for this bus
* init context with domain, translation etc
* endfor
* endfor
*/
printk(KERN_INFO "IOMMU: Setting RMRR:\n");
for_each_rmrr_units(rmrr) {
for (i = 0; i < rmrr->devices_cnt; i++) {
pdev = rmrr->devices[i];
/*
* some BIOS lists non-exist devices in DMAR
* table.
*/
if (!pdev)
continue;
ret = iommu_prepare_rmrr_dev(rmrr, pdev);
if (ret)
printk(KERN_ERR
"IOMMU: mapping reserved region failed\n");
}
}
iommu_prepare_isa();
}
/*
* for each drhd
* enable fault log
* global invalidate context cache
* global invalidate iotlb
* enable translation
*/
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
iommu_flush_write_buffer(iommu);
ret = dmar_set_interrupt(iommu);
if (ret)
goto error;
iommu_set_root_entry(iommu);
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
iommu_disable_protect_mem_regions(iommu);
ret = iommu_enable_translation(iommu);
if (ret)
goto error;
}
return 0;
error:
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
free_iommu(iommu);
}
kfree(g_iommus);
return ret;
}
/* This takes a number of _MM_ pages, not VTD pages */
static struct iova *intel_alloc_iova(struct device *dev,
struct dmar_domain *domain,
unsigned long nrpages, uint64_t dma_mask)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct iova *iova = NULL;
/* Restrict dma_mask to the width that the iommu can handle */
dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
/*
* First try to allocate an io virtual address in
* DMA_BIT_MASK(32) and if that fails then try allocating
* from higher range
*/
iova = alloc_iova(&domain->iovad, nrpages,
IOVA_PFN(DMA_BIT_MASK(32)), 1);
if (iova)
return iova;
}
iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
if (unlikely(!iova)) {
printk(KERN_ERR "Allocating %ld-page iova for %s failed",
nrpages, pci_name(pdev));
return NULL;
}
return iova;
}
static struct dmar_domain *
get_valid_domain_for_dev(struct pci_dev *pdev)
{
struct dmar_domain *domain;
int ret;
domain = get_domain_for_dev(pdev,
DEFAULT_DOMAIN_ADDRESS_WIDTH);
if (!domain) {
printk(KERN_ERR
"Allocating domain for %s failed", pci_name(pdev));
return NULL;
}
/* make sure context mapping is ok */
if (unlikely(!domain_context_mapped(pdev))) {
ret = domain_context_mapping(domain, pdev,
CONTEXT_TT_MULTI_LEVEL);
if (ret) {
printk(KERN_ERR
"Domain context map for %s failed",
pci_name(pdev));
return NULL;
}
}
return domain;
}
static int iommu_dummy(struct pci_dev *pdev)
{
return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}
/* Check if the pdev needs to go through non-identity map and unmap process.*/
static int iommu_no_mapping(struct device *dev)
{
struct pci_dev *pdev;
int found;
if (unlikely(dev->bus != &pci_bus_type))
return 1;
pdev = to_pci_dev(dev);
if (iommu_dummy(pdev))
return 1;
if (!iommu_identity_mapping)
return 0;
found = identity_mapping(pdev);
if (found) {
if (iommu_should_identity_map(pdev, 0))
return 1;
else {
/*
* 32 bit DMA is removed from si_domain and fall back
* to non-identity mapping.
*/
domain_remove_one_dev_info(si_domain, pdev);
printk(KERN_INFO "32bit %s uses non-identity mapping\n",
pci_name(pdev));
return 0;
}
} else {
/*
* In case of a detached 64 bit DMA device from vm, the device
* is put into si_domain for identity mapping.
*/
if (iommu_should_identity_map(pdev, 0)) {
int ret;
ret = domain_add_dev_info(si_domain, pdev);
if (ret)
return 0;
ret = domain_context_mapping(si_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
if (!ret) {
printk(KERN_INFO "64bit %s uses identity mapping\n",
pci_name(pdev));
return 1;
}
}
}
return 0;
}
static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
size_t size, int dir, u64 dma_mask)
{
struct pci_dev *pdev = to_pci_dev(hwdev);
struct dmar_domain *domain;
phys_addr_t start_paddr;
struct iova *iova;
int prot = 0;
int ret;
struct intel_iommu *iommu;
unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
BUG_ON(dir == DMA_NONE);
if (iommu_no_mapping(hwdev))
return paddr;
domain = get_valid_domain_for_dev(pdev);
if (!domain)
return 0;
iommu = domain_get_iommu(domain);
size = aligned_nrpages(paddr, size);
iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
pdev->dma_mask);
if (!iova)
goto error;
/*
* Check if DMAR supports zero-length reads on write only
* mappings..
*/
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
!cap_zlr(iommu->cap))
prot |= DMA_PTE_READ;
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
prot |= DMA_PTE_WRITE;
/*
* paddr - (paddr + size) might be partial page, we should map the whole
* page. Note: if two part of one page are separately mapped, we
* might have two guest_addr mapping to the same host paddr, but this
* is not a big problem
*/
ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
mm_to_dma_pfn(paddr_pfn), size, prot);
if (ret)
goto error;
/* it's a non-present to present mapping. Only flush if caching mode */
if (cap_caching_mode(iommu->cap))
iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
else
iommu_flush_write_buffer(iommu);
start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
start_paddr += paddr & ~PAGE_MASK;
return start_paddr;
error:
if (iova)
__free_iova(&domain->iovad, iova);
printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
pci_name(pdev), size, (unsigned long long)paddr, dir);
return 0;
}
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
return __intel_map_single(dev, page_to_phys(page) + offset, size,
dir, to_pci_dev(dev)->dma_mask);
}
static void flush_unmaps(void)
{
int i, j;
timer_on = 0;
/* just flush them all */
for (i = 0; i < g_num_of_iommus; i++) {
struct intel_iommu *iommu = g_iommus[i];
if (!iommu)
continue;
if (!deferred_flush[i].next)
continue;
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
DMA_TLB_GLOBAL_FLUSH);
for (j = 0; j < deferred_flush[i].next; j++) {
unsigned long mask;
struct iova *iova = deferred_flush[i].iova[j];
mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
mask = ilog2(mask >> VTD_PAGE_SHIFT);
iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
iova->pfn_lo << PAGE_SHIFT, mask);
__free_iova(&deferred_flush[i].domain[j]->iovad, iova);
}
deferred_flush[i].next = 0;
}
list_size = 0;
}
static void flush_unmaps_timeout(unsigned long data)
{
unsigned long flags;
spin_lock_irqsave(&async_umap_flush_lock, flags);
flush_unmaps();
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
}
static void add_unmap(struct dmar_domain *dom, struct iova *iova)
{
unsigned long flags;
int next, iommu_id;
struct intel_iommu *iommu;
spin_lock_irqsave(&async_umap_flush_lock, flags);
if (list_size == HIGH_WATER_MARK)
flush_unmaps();
iommu = domain_get_iommu(dom);
iommu_id = iommu->seq_id;
next = deferred_flush[iommu_id].next;
deferred_flush[iommu_id].domain[next] = dom;
deferred_flush[iommu_id].iova[next] = iova;
deferred_flush[iommu_id].next++;
if (!timer_on) {
mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
timer_on = 1;
}
list_size++;
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
}
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct dmar_domain *domain;
unsigned long start_pfn, last_pfn;
struct iova *iova;
struct intel_iommu *iommu;
if (iommu_no_mapping(dev))
return;
domain = find_domain(pdev);
BUG_ON(!domain);
iommu = domain_get_iommu(domain);
iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
(unsigned long long)dev_addr))
return;
start_pfn = mm_to_dma_pfn(iova->pfn_lo);
last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
pr_debug("Device %s unmapping: pfn %lx-%lx\n",
pci_name(pdev), start_pfn, last_pfn);
/* clear the whole page */
dma_pte_clear_range(domain, start_pfn, last_pfn);
/* free page tables */
dma_pte_free_pagetable(domain, start_pfn, last_pfn);
if (intel_iommu_strict) {
iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
last_pfn - start_pfn + 1);
/* free iova */
__free_iova(&domain->iovad, iova);
} else {
add_unmap(domain, iova);
/*
* queue up the release of the unmap to save the 1/6th of the
* cpu used up by the iotlb flush operation...
*/
}
}
static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
int dir)
{
intel_unmap_page(dev, dev_addr, size, dir, NULL);
}
static void *intel_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{
void *vaddr;
int order;
size = PAGE_ALIGN(size);
order = get_order(size);
flags &= ~(GFP_DMA | GFP_DMA32);
vaddr = (void *)__get_free_pages(flags, order);
if (!vaddr)
return NULL;
memset(vaddr, 0, size);
*dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
DMA_BIDIRECTIONAL,
hwdev->coherent_dma_mask);
if (*dma_handle)
return vaddr;
free_pages((unsigned long)vaddr, order);
return NULL;
}
static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
int order;
size = PAGE_ALIGN(size);
order = get_order(size);
intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
free_pages((unsigned long)vaddr, order);
}
static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct pci_dev *pdev = to_pci_dev(hwdev);
struct dmar_domain *domain;
unsigned long start_pfn, last_pfn;
struct iova *iova;
struct intel_iommu *iommu;
if (iommu_no_mapping(hwdev))
return;
domain = find_domain(pdev);
BUG_ON(!domain);
iommu = domain_get_iommu(domain);
iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
(unsigned long long)sglist[0].dma_address))
return;
start_pfn = mm_to_dma_pfn(iova->pfn_lo);
last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
/* clear the whole page */
dma_pte_clear_range(domain, start_pfn, last_pfn);
/* free page tables */
dma_pte_free_pagetable(domain, start_pfn, last_pfn);
iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
(last_pfn - start_pfn + 1));
/* free iova */
__free_iova(&domain->iovad, iova);
}
static int intel_nontranslate_map_sg(struct device *hddev,
struct scatterlist *sglist, int nelems, int dir)
{
int i;
struct scatterlist *sg;
for_each_sg(sglist, sg, nelems, i) {
BUG_ON(!sg_page(sg));
sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
sg->dma_length = sg->length;
}
return nelems;
}
static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
int i;
struct pci_dev *pdev = to_pci_dev(hwdev);
struct dmar_domain *domain;
size_t size = 0;
int prot = 0;
size_t offset_pfn = 0;
struct iova *iova = NULL;
int ret;
struct scatterlist *sg;
unsigned long start_vpfn;
struct intel_iommu *iommu;
BUG_ON(dir == DMA_NONE);
if (iommu_no_mapping(hwdev))
return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
domain = get_valid_domain_for_dev(pdev);
if (!domain)
return 0;
iommu = domain_get_iommu(domain);
for_each_sg(sglist, sg, nelems, i)
size += aligned_nrpages(sg->offset, sg->length);
iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
pdev->dma_mask);
if (!iova) {
sglist->dma_length = 0;
return 0;
}
/*
* Check if DMAR supports zero-length reads on write only
* mappings..
*/
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
!cap_zlr(iommu->cap))
prot |= DMA_PTE_READ;
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
prot |= DMA_PTE_WRITE;
start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
if (unlikely(ret)) {
/* clear the page */
dma_pte_clear_range(domain, start_vpfn,
start_vpfn + size - 1);
/* free page tables */
dma_pte_free_pagetable(domain, start_vpfn,
start_vpfn + size - 1);
/* free iova */
__free_iova(&domain->iovad, iova);
return 0;
}
/* it's a non-present to present mapping. Only flush if caching mode */
if (cap_caching_mode(iommu->cap))
iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
else
iommu_flush_write_buffer(iommu);
return nelems;
}
static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return !dma_addr;
}
struct dma_map_ops intel_dma_ops = {
.alloc_coherent = intel_alloc_coherent,
.free_coherent = intel_free_coherent,
.map_sg = intel_map_sg,
.unmap_sg = intel_unmap_sg,
.map_page = intel_map_page,
.unmap_page = intel_unmap_page,
.mapping_error = intel_mapping_error,
};
static inline int iommu_domain_cache_init(void)
{
int ret = 0;
iommu_domain_cache = kmem_cache_create("iommu_domain",
sizeof(struct dmar_domain),
0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!iommu_domain_cache) {
printk(KERN_ERR "Couldn't create iommu_domain cache\n");
ret = -ENOMEM;
}
return ret;
}
static inline int iommu_devinfo_cache_init(void)
{
int ret = 0;
iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
sizeof(struct device_domain_info),
0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!iommu_devinfo_cache) {
printk(KERN_ERR "Couldn't create devinfo cache\n");
ret = -ENOMEM;
}
return ret;
}
static inline int iommu_iova_cache_init(void)
{
int ret = 0;
iommu_iova_cache = kmem_cache_create("iommu_iova",
sizeof(struct iova),
0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!iommu_iova_cache) {
printk(KERN_ERR "Couldn't create iova cache\n");
ret = -ENOMEM;
}
return ret;
}
static int __init iommu_init_mempool(void)
{
int ret;
ret = iommu_iova_cache_init();
if (ret)
return ret;
ret = iommu_domain_cache_init();
if (ret)
goto domain_error;
ret = iommu_devinfo_cache_init();
if (!ret)
return ret;
kmem_cache_destroy(iommu_domain_cache);
domain_error:
kmem_cache_destroy(iommu_iova_cache);
return -ENOMEM;
}
static void __init iommu_exit_mempool(void)
{
kmem_cache_destroy(iommu_devinfo_cache);
kmem_cache_destroy(iommu_domain_cache);
kmem_cache_destroy(iommu_iova_cache);
}
static void __init init_no_remapping_devices(void)
{
struct dmar_drhd_unit *drhd;
for_each_drhd_unit(drhd) {
if (!drhd->include_all) {
int i;
for (i = 0; i < drhd->devices_cnt; i++)
if (drhd->devices[i] != NULL)
break;
/* ignore DMAR unit if no pci devices exist */
if (i == drhd->devices_cnt)
drhd->ignored = 1;
}
}
if (dmar_map_gfx)
return;
for_each_drhd_unit(drhd) {
int i;
if (drhd->ignored || drhd->include_all)
continue;
for (i = 0; i < drhd->devices_cnt; i++)
if (drhd->devices[i] &&
!IS_GFX_DEVICE(drhd->devices[i]))
break;
if (i < drhd->devices_cnt)
continue;
/* bypass IOMMU if it is just for gfx devices */
drhd->ignored = 1;
for (i = 0; i < drhd->devices_cnt; i++) {
if (!drhd->devices[i])
continue;
drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
}
}
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
for_each_active_iommu(iommu, drhd)
if (iommu->qi)
dmar_reenable_qi(iommu);
for_each_active_iommu(iommu, drhd) {
iommu_flush_write_buffer(iommu);
iommu_set_root_entry(iommu);
iommu->flush.flush_context(iommu, 0, 0, 0,
DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
DMA_TLB_GLOBAL_FLUSH);
iommu_disable_protect_mem_regions(iommu);
iommu_enable_translation(iommu);
}
return 0;
}
static void iommu_flush_all(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
for_each_active_iommu(iommu, drhd) {
iommu->flush.flush_context(iommu, 0, 0, 0,
DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
DMA_TLB_GLOBAL_FLUSH);
}
}
static int iommu_suspend(struct sys_device *dev, pm_message_t state)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
unsigned long flag;
for_each_active_iommu(iommu, drhd) {
iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
GFP_ATOMIC);
if (!iommu->iommu_state)
goto nomem;
}
iommu_flush_all();
for_each_active_iommu(iommu, drhd) {
iommu_disable_translation(iommu);
spin_lock_irqsave(&iommu->register_lock, flag);
iommu->iommu_state[SR_DMAR_FECTL_REG] =
readl(iommu->reg + DMAR_FECTL_REG);
iommu->iommu_state[SR_DMAR_FEDATA_REG] =
readl(iommu->reg + DMAR_FEDATA_REG);
iommu->iommu_state[SR_DMAR_FEADDR_REG] =
readl(iommu->reg + DMAR_FEADDR_REG);
iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
readl(iommu->reg + DMAR_FEUADDR_REG);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
return 0;
nomem:
for_each_active_iommu(iommu, drhd)
kfree(iommu->iommu_state);
return -ENOMEM;
}
static int iommu_resume(struct sys_device *dev)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
unsigned long flag;
if (init_iommu_hw()) {
WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
return -EIO;
}
for_each_active_iommu(iommu, drhd) {
spin_lock_irqsave(&iommu->register_lock, flag);
writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
iommu->reg + DMAR_FECTL_REG);
writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
iommu->reg + DMAR_FEDATA_REG);
writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
iommu->reg + DMAR_FEADDR_REG);
writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
iommu->reg + DMAR_FEUADDR_REG);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
for_each_active_iommu(iommu, drhd)
kfree(iommu->iommu_state);
return 0;
}
static struct sysdev_class iommu_sysclass = {
.name = "iommu",
.resume = iommu_resume,
.suspend = iommu_suspend,
};
static struct sys_device device_iommu = {
.cls = &iommu_sysclass,
};
static int __init init_iommu_sysfs(void)
{
int error;
error = sysdev_class_register(&iommu_sysclass);
if (error)
return error;
error = sysdev_register(&device_iommu);
if (error)
sysdev_class_unregister(&iommu_sysclass);
return error;
}
#else
static int __init init_iommu_sysfs(void)
{
return 0;
}
#endif /* CONFIG_PM */
int __init intel_iommu_init(void)
{
int ret = 0;
if (dmar_table_init())
return -ENODEV;
if (dmar_dev_scope_init())
return -ENODEV;
/*
* Check the need for DMA-remapping initialization now.
* Above initialization will also be used by Interrupt-remapping.
*/
if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
return -ENODEV;
iommu_init_mempool();
dmar_init_reserved_ranges();
init_no_remapping_devices();
ret = init_dmars();
if (ret) {
printk(KERN_ERR "IOMMU: dmar init failed\n");
put_iova_domain(&reserved_iova_list);
iommu_exit_mempool();
return ret;
}
printk(KERN_INFO
"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
init_timer(&unmap_timer);
force_iommu = 1;
if (!iommu_pass_through) {
printk(KERN_INFO
"Multi-level page-table translation for DMAR.\n");
dma_ops = &intel_dma_ops;
} else
printk(KERN_INFO
"DMAR: Pass through translation for DMAR.\n");
init_iommu_sysfs();
register_iommu(&intel_iommu_ops);
return 0;
}
static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
struct pci_dev *pdev)
{
struct pci_dev *tmp, *parent;
if (!iommu || !pdev)
return;
/* dependent device detach */
tmp = pci_find_upstream_pcie_bridge(pdev);
/* Secondary interface's bus number and devfn 0 */
if (tmp) {
parent = pdev->bus->self;
while (parent != tmp) {
iommu_detach_dev(iommu, parent->bus->number,
parent->devfn);
parent = parent->bus->self;
}
if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
iommu_detach_dev(iommu,
tmp->subordinate->number, 0);
else /* this is a legacy PCI bridge */
iommu_detach_dev(iommu, tmp->bus->number,
tmp->devfn);
}
}
static void domain_remove_one_dev_info(struct dmar_domain *domain,
struct pci_dev *pdev)
{
struct device_domain_info *info;
struct intel_iommu *iommu;
unsigned long flags;
int found = 0;
struct list_head *entry, *tmp;
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
pdev->devfn);
if (!iommu)
return;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_safe(entry, tmp, &domain->devices) {
info = list_entry(entry, struct device_domain_info, link);
/* No need to compare PCI domain; it has to be the same */
if (info->bus == pdev->bus->number &&
info->devfn == pdev->devfn) {
list_del(&info->link);
list_del(&info->global);
if (info->dev)
info->dev->dev.archdata.iommu = NULL;
spin_unlock_irqrestore(&device_domain_lock, flags);
iommu_disable_dev_iotlb(info);
iommu_detach_dev(iommu, info->bus, info->devfn);
iommu_detach_dependent_devices(iommu, pdev);
free_devinfo_mem(info);
spin_lock_irqsave(&device_domain_lock, flags);
if (found)
break;
else
continue;
}
/* if there is no other devices under the same iommu
* owned by this domain, clear this iommu in iommu_bmp
* update iommu count and coherency
*/
if (iommu == device_to_iommu(info->segment, info->bus,
info->devfn))
found = 1;
}
if (found == 0) {
unsigned long tmp_flags;
spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
clear_bit(iommu->seq_id, &domain->iommu_bmp);
domain->iommu_count--;
domain_update_iommu_cap(domain);
spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
{
struct device_domain_info *info;
struct intel_iommu *iommu;
unsigned long flags1, flags2;
spin_lock_irqsave(&device_domain_lock, flags1);
while (!list_empty(&domain->devices)) {
info = list_entry(domain->devices.next,
struct device_domain_info, link);
list_del(&info->link);
list_del(&info->global);
if (info->dev)
info->dev->dev.archdata.iommu = NULL;
spin_unlock_irqrestore(&device_domain_lock, flags1);
iommu_disable_dev_iotlb(info);
iommu = device_to_iommu(info->segment, info->bus, info->devfn);
iommu_detach_dev(iommu, info->bus, info->devfn);
iommu_detach_dependent_devices(iommu, info->dev);
/* clear this iommu in iommu_bmp, update iommu count
* and capabilities
*/
spin_lock_irqsave(&domain->iommu_lock, flags2);
if (test_and_clear_bit(iommu->seq_id,
&domain->iommu_bmp)) {
domain->iommu_count--;
domain_update_iommu_cap(domain);
}
spin_unlock_irqrestore(&domain->iommu_lock, flags2);
free_devinfo_mem(info);
spin_lock_irqsave(&device_domain_lock, flags1);
}
spin_unlock_irqrestore(&device_domain_lock, flags1);
}
/* domain id for virtual machine, it won't be set in context */
static unsigned long vm_domid;
static int vm_domain_min_agaw(struct dmar_domain *domain)
{
int i;
int min_agaw = domain->agaw;
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
for (; i < g_num_of_iommus; ) {
if (min_agaw > g_iommus[i]->agaw)
min_agaw = g_iommus[i]->agaw;
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
}
return min_agaw;
}
static struct dmar_domain *iommu_alloc_vm_domain(void)
{
struct dmar_domain *domain;
domain = alloc_domain_mem();
if (!domain)
return NULL;
domain->id = vm_domid++;
memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
return domain;
}
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
int adjust_width;
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
spin_lock_init(&domain->iommu_lock);
domain_reserve_special_ranges(domain);
/* calculate AGAW */
domain->gaw = guest_width;
adjust_width = guestwidth_to_adjustwidth(guest_width);
domain->agaw = width_to_agaw(adjust_width);
INIT_LIST_HEAD(&domain->devices);
domain->iommu_count = 0;
domain->iommu_coherency = 0;
domain->iommu_snooping = 0;
domain->max_addr = 0;
/* always allocate the top pgd */
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
if (!domain->pgd)
return -ENOMEM;
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
return 0;
}
static void iommu_free_vm_domain(struct dmar_domain *domain)
{
unsigned long flags;
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
unsigned long i;
unsigned long ndomains;
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
ndomains = cap_ndoms(iommu->cap);
i = find_first_bit(iommu->domain_ids, ndomains);
for (; i < ndomains; ) {
if (iommu->domains[i] == domain) {
spin_lock_irqsave(&iommu->lock, flags);
clear_bit(i, iommu->domain_ids);
iommu->domains[i] = NULL;
spin_unlock_irqrestore(&iommu->lock, flags);
break;
}
i = find_next_bit(iommu->domain_ids, ndomains, i+1);
}
}
}
static void vm_domain_exit(struct dmar_domain *domain)
{
/* Domain 0 is reserved, so dont process it */
if (!domain)
return;
vm_domain_remove_all_dev_info(domain);
/* destroy iovas */
put_iova_domain(&domain->iovad);
/* clear ptes */
dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
/* free page tables */
dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
iommu_free_vm_domain(domain);
free_domain_mem(domain);
}
static int intel_iommu_domain_init(struct iommu_domain *domain)
{
struct dmar_domain *dmar_domain;
dmar_domain = iommu_alloc_vm_domain();
if (!dmar_domain) {
printk(KERN_ERR
"intel_iommu_domain_init: dmar_domain == NULL\n");
return -ENOMEM;
}
if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
printk(KERN_ERR
"intel_iommu_domain_init() failed\n");
vm_domain_exit(dmar_domain);
return -ENOMEM;
}
domain->priv = dmar_domain;
return 0;
}
static void intel_iommu_domain_destroy(struct iommu_domain *domain)
{
struct dmar_domain *dmar_domain = domain->priv;
domain->priv = NULL;
vm_domain_exit(dmar_domain);
}
static int intel_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct dmar_domain *dmar_domain = domain->priv;
struct pci_dev *pdev = to_pci_dev(dev);
struct intel_iommu *iommu;
int addr_width;
u64 end;
int ret;
/* normally pdev is not mapped */
if (unlikely(domain_context_mapped(pdev))) {
struct dmar_domain *old_domain;
old_domain = find_domain(pdev);
if (old_domain) {
if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
domain_remove_one_dev_info(old_domain, pdev);
else
domain_remove_dev_info(old_domain);
}
}
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
pdev->devfn);
if (!iommu)
return -ENODEV;
/* check if this iommu agaw is sufficient for max mapped address */
addr_width = agaw_to_width(iommu->agaw);
end = DOMAIN_MAX_ADDR(addr_width);
end = end & VTD_PAGE_MASK;
if (end < dmar_domain->max_addr) {
printk(KERN_ERR "%s: iommu agaw (%d) is not "
"sufficient for the mapped address (%llx)\n",
__func__, iommu->agaw, dmar_domain->max_addr);
return -EFAULT;
}
ret = domain_add_dev_info(dmar_domain, pdev);
if (ret)
return ret;
ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
return ret;
}
static void intel_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct dmar_domain *dmar_domain = domain->priv;
struct pci_dev *pdev = to_pci_dev(dev);
domain_remove_one_dev_info(dmar_domain, pdev);
}
static int intel_iommu_map_range(struct iommu_domain *domain,
unsigned long iova, phys_addr_t hpa,
size_t size, int iommu_prot)
{
struct dmar_domain *dmar_domain = domain->priv;
u64 max_addr;
int addr_width;
int prot = 0;
int ret;
if (iommu_prot & IOMMU_READ)
prot |= DMA_PTE_READ;
if (iommu_prot & IOMMU_WRITE)
prot |= DMA_PTE_WRITE;
if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
prot |= DMA_PTE_SNP;
max_addr = iova + size;
if (dmar_domain->max_addr < max_addr) {
int min_agaw;
u64 end;
/* check if minimum agaw is sufficient for mapped address */
min_agaw = vm_domain_min_agaw(dmar_domain);
addr_width = agaw_to_width(min_agaw);
end = DOMAIN_MAX_ADDR(addr_width);
end = end & VTD_PAGE_MASK;
if (end < max_addr) {
printk(KERN_ERR "%s: iommu agaw (%d) is not "
"sufficient for the mapped address (%llx)\n",
__func__, min_agaw, max_addr);
return -EFAULT;
}
dmar_domain->max_addr = max_addr;
}
/* Round up size to next multiple of PAGE_SIZE, if it and
the low bits of hpa would take us onto the next page */
size = aligned_nrpages(hpa, size);
ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
hpa >> VTD_PAGE_SHIFT, size, prot);
return ret;
}
static void intel_iommu_unmap_range(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
struct dmar_domain *dmar_domain = domain->priv;
if (!size)
return;
dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
(iova + size - 1) >> VTD_PAGE_SHIFT);
if (dmar_domain->max_addr == iova + size)
dmar_domain->max_addr = iova;
}
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
unsigned long iova)
{
struct dmar_domain *dmar_domain = domain->priv;
struct dma_pte *pte;
u64 phys = 0;
pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
if (pte)
phys = dma_pte_addr(pte);
return phys;
}
static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
unsigned long cap)
{
struct dmar_domain *dmar_domain = domain->priv;
if (cap == IOMMU_CAP_CACHE_COHERENCY)
return dmar_domain->iommu_snooping;
return 0;
}
static struct iommu_ops intel_iommu_ops = {
.domain_init = intel_iommu_domain_init,
.domain_destroy = intel_iommu_domain_destroy,
.attach_dev = intel_iommu_attach_device,
.detach_dev = intel_iommu_detach_device,
.map = intel_iommu_map_range,
.unmap = intel_iommu_unmap_range,
.iova_to_phys = intel_iommu_iova_to_phys,
.domain_has_cap = intel_iommu_domain_has_cap,
};
static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
{
/*
* Mobile 4 Series Chipset neglects to set RWBF capability,
* but needs it:
*/
printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
rwbf_quirk = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);