blob: bbb5a5157e688798abbee1d126762e3e96b0bc81 [file] [log] [blame]
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <asm/hardware/gic.h>
#include <asm/smp_scu.h>
#include <asm/unified.h>
#include <mach/msm_iomap.h>
#include "pm.h"
#include "platsmp.h"
#define CORE_RESET_BASE 0xA8600590
#define MSM_CORE_STATUS_MSK 0x02800000
static DEFINE_PER_CPU(bool, cold_boot_done);
struct per_cpu_data {
unsigned int reset_off;
unsigned int offset;
unsigned int ipc_irq;
void __iomem *reset_core_base;
};
static uint32_t *msm8625_boot_vector;
static struct per_cpu_data cpu_data[CONFIG_NR_CPUS];
static void __iomem *scu_base_addr(void)
{
return MSM_SCU_BASE;
}
static DEFINE_SPINLOCK(boot_lock);
/*
* MP_CORE_IPC will be used to generate interrupt and can be used by either
* of core.
* To bring secondary cores out of GDFS we need to raise the SPI using the
* MP_CORE_IPC.
*/
static void raise_clear_spi(unsigned int cpu, bool set)
{
int value;
value = __raw_readl(MSM_CSR_BASE + 0x54);
if (set)
__raw_writel(value | BIT(cpu), MSM_CSR_BASE + 0x54);
else
__raw_writel(value & ~BIT(cpu), MSM_CSR_BASE + 0x54);
mb();
}
static void clear_pending_spi(unsigned int irq)
{
struct irq_data *d = irq_get_irq_data(irq);
struct irq_chip *c = irq_data_get_irq_chip(d);
c->irq_mask(d);
local_irq_disable();
/* Clear the IRQ from the ENABLE_SET */
gic_clear_irq_pending(irq);
local_irq_enable();
}
void __cpuinit msm8625_platform_secondary_init(unsigned int cpu)
{
WARN_ON(msm_platform_secondary_init(cpu));
/*
* if any interrupts are already enabled for the primary
* core (e.g. timer irq), then they will not have been enabled
* for us: do so
*/
gic_secondary_init(0);
/*
* let the primary processor know we're out of the
* pen, then head off into the C entry point
*/
write_pen_release(-1);
/* clear the IPC pending SPI */
if (per_cpu(power_collapsed, cpu)) {
raise_clear_spi(cpu, false);
clear_pending_spi(cpu_data[cpu].ipc_irq);
per_cpu(power_collapsed, cpu) = 0;
}
/*
* Synchronise with the boot thread.
*/
spin_lock(&boot_lock);
spin_unlock(&boot_lock);
}
static int __cpuinit msm8625_release_secondary(unsigned int cpu)
{
void __iomem *base_ptr;
int value = 0;
unsigned long timeout;
/*
* loop to ensure that the GHS_STATUS_CORE1 bit in the
* MPA5_STATUS_REG(0x3c) is set. The timeout for the while
* loop can be set as 20us as of now
*/
timeout = jiffies + usecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
value = __raw_readl(MSM_CFG_CTL_BASE + cpu_data[cpu].offset);
if ((value & MSM_CORE_STATUS_MSK) ==
MSM_CORE_STATUS_MSK)
break;
udelay(1);
}
if (!value) {
pr_err("Core %u cannot be brought out of Reset!!!\n", cpu);
return -ENODEV;
}
base_ptr = ioremap_nocache(CORE_RESET_BASE +
cpu_data[cpu].reset_off, SZ_4);
if (!base_ptr)
return -ENODEV;
/* Reset core out of reset */
__raw_writel(0x0, base_ptr);
mb();
cpu_data[cpu].reset_core_base = base_ptr;
return 0;
}
void __iomem *core_reset_base(unsigned int cpu)
{
return cpu_data[cpu].reset_core_base;
}
int __cpuinit msm8625_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
unsigned long timeout;
preset_lpj = loops_per_jiffy;
if (per_cpu(cold_boot_done, cpu) == false) {
if (msm8625_release_secondary(cpu)) {
pr_err("Failed to release core %u\n", cpu);
return -ENODEV;
}
per_cpu(cold_boot_done, cpu) = true;
}
/*
* Set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
/*
* This is really belt and braces; we hold unintended secondary
* CPUs in the holding pen until we're ready for them. However,
* since we haven't sent them a soft interrupt, they shouldn't
* be there.
*/
write_pen_release(cpu);
/*
* Send the secondary CPU a soft interrupt, thereby causing
* the boot monitor to read the system wide flags register,
* and branch to the address found there.
*
* power_collapsed is the flag which will be updated for Powercollapse.
* Once we are out of PC, as secondary cores will be in the state of
* GDFS which needs to be brought out by raising an SPI.
*/
if (per_cpu(power_collapsed, cpu)) {
gic_configure_and_raise(cpu_data[cpu].ipc_irq, cpu);
raise_clear_spi(cpu, true);
} else {
gic_raise_softirq(cpumask_of(cpu), 1);
}
timeout = jiffies + (1 * HZ);
while (time_before(jiffies, timeout)) {
smp_rmb();
if (pen_release == -1)
break;
udelay(10);
}
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
return 0;
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init msm8625_smp_init_cpus(void)
{
void __iomem *scu_base = scu_base_addr();
unsigned int i, ncores;
ncores = scu_base ? scu_get_core_count(scu_base) : 1;
for (i = 0; i < ncores; i++)
set_cpu_possible(i, true);
set_smp_cross_call(gic_raise_softirq);
}
static void per_cpu_data(unsigned int cpu, unsigned int off,
unsigned int off1, unsigned int irq)
{
cpu_data[cpu].reset_off = off;
cpu_data[cpu].offset = off1;
cpu_data[cpu].ipc_irq = irq;
}
static void enable_boot_remapper(unsigned long bit, unsigned int off)
{
int value;
/* Enable boot remapper address */
value = __raw_readl(MSM_CFG_CTL_BASE + off);
__raw_writel(value | bit, MSM_CFG_CTL_BASE + off) ;
mb();
}
static void remapper_address(unsigned long phys, unsigned int off)
{
/*
* Write the address of secondary startup into the
* boot remapper register. The secondary CPU branches to this address.
*/
__raw_writel(phys, (MSM_CFG_CTL_BASE + off));
mb();
}
static void __init msm8625_boot_vector_init(uint32_t *boot_vector,
unsigned long entry)
{
if (!boot_vector)
return;
msm8625_boot_vector = boot_vector;
msm8625_boot_vector[0] = 0xE51FF004; /* ldr pc, 4 */
msm8625_boot_vector[1] = entry;
}
void __init msm8625_platform_smp_prepare_cpus(unsigned int max_cpus)
{
int cpu, value;
void __iomem *cpu_ptr;
scu_enable(scu_base_addr());
cpu_ptr = ioremap_nocache(MSM8625_CPU_PHYS, SZ_8);
if (!cpu_ptr) {
pr_err("failed to ioremap for secondary cores\n");
return;
}
msm8625_boot_vector_init(cpu_ptr,
virt_to_phys(msm_secondary_startup));
iounmap(cpu_ptr);
for_each_possible_cpu(cpu) {
switch (cpu) {
case 0:
break;
case 1:
remapper_address(MSM8625_CPU_PHYS, 0x34);
per_cpu_data(cpu, 0x0, 0x3c,
MSM8625_INT_ACSR_MP_CORE_IPC1);
enable_boot_remapper(BIT(26), 0x30);
break;
case 2:
remapper_address((MSM8625_CPU_PHYS >> 16), 0x4C);
per_cpu_data(cpu, 0x8, 0x50,
MSM8625_INT_ACSR_MP_CORE_IPC2);
enable_boot_remapper(BIT(25), 0x48);
break;
case 3:
value = __raw_readl(MSM_CFG_CTL_BASE + 0x4C);
remapper_address(value | MSM8625_CPU_PHYS, 0x4C);
per_cpu_data(cpu, 0xC, 0x50,
MSM8625_INT_ACSR_MP_CORE_IPC3);
enable_boot_remapper(BIT(26), 0x48);
break;
}
}
}
struct smp_operations msm8625_smp_ops __initdata = {
.smp_init_cpus = msm8625_smp_init_cpus,
.smp_prepare_cpus = msm8625_platform_smp_prepare_cpus,
.smp_secondary_init = msm8625_platform_secondary_init,
.smp_boot_secondary = msm8625_boot_secondary,
.cpu_kill = platform_cpu_kill,
.cpu_die = platform_cpu_die,
.cpu_disable = platform_cpu_disable
};