| /* |
| * linux/arch/i386/kernel/time.c |
| * |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * |
| * This file contains the PC-specific time handling details: |
| * reading the RTC at bootup, etc.. |
| * 1994-07-02 Alan Modra |
| * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime |
| * 1995-03-26 Markus Kuhn |
| * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 |
| * precision CMOS clock update |
| * 1996-05-03 Ingo Molnar |
| * fixed time warps in do_[slow|fast]_gettimeoffset() |
| * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| * 1998-09-05 (Various) |
| * More robust do_fast_gettimeoffset() algorithm implemented |
| * (works with APM, Cyrix 6x86MX and Centaur C6), |
| * monotonic gettimeofday() with fast_get_timeoffset(), |
| * drift-proof precision TSC calibration on boot |
| * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D. |
| * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>; |
| * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>). |
| * 1998-12-16 Andrea Arcangeli |
| * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy |
| * because was not accounting lost_ticks. |
| * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli |
| * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to |
| * serialize accesses to xtime/lost_ticks). |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/sysdev.h> |
| #include <linux/bcd.h> |
| #include <linux/efi.h> |
| #include <linux/mca.h> |
| |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/irq.h> |
| #include <asm/msr.h> |
| #include <asm/delay.h> |
| #include <asm/mpspec.h> |
| #include <asm/uaccess.h> |
| #include <asm/processor.h> |
| #include <asm/timer.h> |
| |
| #include "mach_time.h" |
| |
| #include <linux/timex.h> |
| |
| #include <asm/hpet.h> |
| |
| #include <asm/arch_hooks.h> |
| |
| #include "io_ports.h" |
| |
| #include <asm/i8259.h> |
| |
| int pit_latch_buggy; /* extern */ |
| |
| #include "do_timer.h" |
| |
| unsigned int cpu_khz; /* Detected as we calibrate the TSC */ |
| EXPORT_SYMBOL(cpu_khz); |
| |
| extern unsigned long wall_jiffies; |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| |
| /* |
| * This is a special lock that is owned by the CPU and holds the index |
| * register we are working with. It is required for NMI access to the |
| * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details. |
| */ |
| volatile unsigned long cmos_lock = 0; |
| EXPORT_SYMBOL(cmos_lock); |
| |
| /* Routines for accessing the CMOS RAM/RTC. */ |
| unsigned char rtc_cmos_read(unsigned char addr) |
| { |
| unsigned char val; |
| lock_cmos_prefix(addr); |
| outb_p(addr, RTC_PORT(0)); |
| val = inb_p(RTC_PORT(1)); |
| lock_cmos_suffix(addr); |
| return val; |
| } |
| EXPORT_SYMBOL(rtc_cmos_read); |
| |
| void rtc_cmos_write(unsigned char val, unsigned char addr) |
| { |
| lock_cmos_prefix(addr); |
| outb_p(addr, RTC_PORT(0)); |
| outb_p(val, RTC_PORT(1)); |
| lock_cmos_suffix(addr); |
| } |
| EXPORT_SYMBOL(rtc_cmos_write); |
| |
| static int set_rtc_mmss(unsigned long nowtime) |
| { |
| int retval; |
| unsigned long flags; |
| |
| /* gets recalled with irq locally disabled */ |
| /* XXX - does irqsave resolve this? -johnstul */ |
| spin_lock_irqsave(&rtc_lock, flags); |
| if (efi_enabled) |
| retval = efi_set_rtc_mmss(nowtime); |
| else |
| retval = mach_set_rtc_mmss(nowtime); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| return retval; |
| } |
| |
| |
| int timer_ack; |
| |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| #ifdef CONFIG_SMP |
| if (!user_mode_vm(regs) && in_lock_functions(pc)) { |
| #ifdef CONFIG_FRAME_POINTER |
| return *(unsigned long *)(regs->ebp + 4); |
| #else |
| unsigned long *sp; |
| if ((regs->xcs & 3) == 0) |
| sp = (unsigned long *)®s->esp; |
| else |
| sp = (unsigned long *)regs->esp; |
| /* Return address is either directly at stack pointer |
| or above a saved eflags. Eflags has bits 22-31 zero, |
| kernel addresses don't. */ |
| if (sp[0] >> 22) |
| return sp[0]; |
| if (sp[1] >> 22) |
| return sp[1]; |
| #endif |
| } |
| #endif |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| |
| /* |
| * This is the same as the above, except we _also_ save the current |
| * Time Stamp Counter value at the time of the timer interrupt, so that |
| * we later on can estimate the time of day more exactly. |
| */ |
| irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| /* |
| * Here we are in the timer irq handler. We just have irqs locally |
| * disabled but we don't know if the timer_bh is running on the other |
| * CPU. We need to avoid to SMP race with it. NOTE: we don' t need |
| * the irq version of write_lock because as just said we have irq |
| * locally disabled. -arca |
| */ |
| write_seqlock(&xtime_lock); |
| |
| #ifdef CONFIG_X86_IO_APIC |
| if (timer_ack) { |
| /* |
| * Subtle, when I/O APICs are used we have to ack timer IRQ |
| * manually to reset the IRR bit for do_slow_gettimeoffset(). |
| * This will also deassert NMI lines for the watchdog if run |
| * on an 82489DX-based system. |
| */ |
| spin_lock(&i8259A_lock); |
| outb(0x0c, PIC_MASTER_OCW3); |
| /* Ack the IRQ; AEOI will end it automatically. */ |
| inb(PIC_MASTER_POLL); |
| spin_unlock(&i8259A_lock); |
| } |
| #endif |
| |
| do_timer_interrupt_hook(regs); |
| |
| |
| if (MCA_bus) { |
| /* The PS/2 uses level-triggered interrupts. You can't |
| turn them off, nor would you want to (any attempt to |
| enable edge-triggered interrupts usually gets intercepted by a |
| special hardware circuit). Hence we have to acknowledge |
| the timer interrupt. Through some incredibly stupid |
| design idea, the reset for IRQ 0 is done by setting the |
| high bit of the PPI port B (0x61). Note that some PS/2s, |
| notably the 55SX, work fine if this is removed. */ |
| |
| irq = inb_p( 0x61 ); /* read the current state */ |
| outb_p( irq|0x80, 0x61 ); /* reset the IRQ */ |
| } |
| |
| write_sequnlock(&xtime_lock); |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| if (using_apic_timer) |
| smp_send_timer_broadcast_ipi(regs); |
| #endif |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* not static: needed by APM */ |
| unsigned long get_cmos_time(void) |
| { |
| unsigned long retval; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| |
| if (efi_enabled) |
| retval = efi_get_time(); |
| else |
| retval = mach_get_cmos_time(); |
| |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(get_cmos_time); |
| |
| static void sync_cmos_clock(unsigned long dummy); |
| |
| static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0); |
| |
| static void sync_cmos_clock(unsigned long dummy) |
| { |
| struct timeval now, next; |
| int fail = 1; |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| * This code is run on a timer. If the clock is set, that timer |
| * may not expire at the correct time. Thus, we adjust... |
| */ |
| if (!ntp_synced()) |
| /* |
| * Not synced, exit, do not restart a timer (if one is |
| * running, let it run out). |
| */ |
| return; |
| |
| do_gettimeofday(&now); |
| if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 && |
| now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2) |
| fail = set_rtc_mmss(now.tv_sec); |
| |
| next.tv_usec = USEC_AFTER - now.tv_usec; |
| if (next.tv_usec <= 0) |
| next.tv_usec += USEC_PER_SEC; |
| |
| if (!fail) |
| next.tv_sec = 659; |
| else |
| next.tv_sec = 0; |
| |
| if (next.tv_usec >= USEC_PER_SEC) { |
| next.tv_sec++; |
| next.tv_usec -= USEC_PER_SEC; |
| } |
| mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next)); |
| } |
| |
| void notify_arch_cmos_timer(void) |
| { |
| mod_timer(&sync_cmos_timer, jiffies + 1); |
| } |
| |
| static long clock_cmos_diff; |
| static unsigned long sleep_start; |
| |
| static int timer_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| /* |
| * Estimate time zone so that set_time can update the clock |
| */ |
| unsigned long ctime = get_cmos_time(); |
| |
| clock_cmos_diff = -ctime; |
| clock_cmos_diff += get_seconds(); |
| sleep_start = ctime; |
| return 0; |
| } |
| |
| static int timer_resume(struct sys_device *dev) |
| { |
| unsigned long flags; |
| unsigned long sec; |
| unsigned long ctime = get_cmos_time(); |
| long sleep_length = (ctime - sleep_start) * HZ; |
| struct timespec ts; |
| |
| if (sleep_length < 0) { |
| printk(KERN_WARNING "CMOS clock skew detected in timer resume!\n"); |
| /* The time after the resume must not be earlier than the time |
| * before the suspend or some nasty things will happen |
| */ |
| sleep_length = 0; |
| ctime = sleep_start; |
| } |
| #ifdef CONFIG_HPET_TIMER |
| if (is_hpet_enabled()) |
| hpet_reenable(); |
| #endif |
| setup_pit_timer(); |
| |
| sec = ctime + clock_cmos_diff; |
| ts.tv_sec = sec; |
| ts.tv_nsec = 0; |
| do_settimeofday(&ts); |
| write_seqlock_irqsave(&xtime_lock, flags); |
| jiffies_64 += sleep_length; |
| wall_jiffies += sleep_length; |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| touch_softlockup_watchdog(); |
| return 0; |
| } |
| |
| static struct sysdev_class timer_sysclass = { |
| .resume = timer_resume, |
| .suspend = timer_suspend, |
| set_kset_name("timer"), |
| }; |
| |
| |
| /* XXX this driverfs stuff should probably go elsewhere later -john */ |
| static struct sys_device device_timer = { |
| .id = 0, |
| .cls = &timer_sysclass, |
| }; |
| |
| static int time_init_device(void) |
| { |
| int error = sysdev_class_register(&timer_sysclass); |
| if (!error) |
| error = sysdev_register(&device_timer); |
| return error; |
| } |
| |
| device_initcall(time_init_device); |
| |
| #ifdef CONFIG_HPET_TIMER |
| extern void (*late_time_init)(void); |
| /* Duplicate of time_init() below, with hpet_enable part added */ |
| static void __init hpet_time_init(void) |
| { |
| struct timespec ts; |
| ts.tv_sec = get_cmos_time(); |
| ts.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| |
| do_settimeofday(&ts); |
| |
| if ((hpet_enable() >= 0) && hpet_use_timer) { |
| printk("Using HPET for base-timer\n"); |
| } |
| |
| time_init_hook(); |
| } |
| #endif |
| |
| void __init time_init(void) |
| { |
| struct timespec ts; |
| #ifdef CONFIG_HPET_TIMER |
| if (is_hpet_capable()) { |
| /* |
| * HPET initialization needs to do memory-mapped io. So, let |
| * us do a late initialization after mem_init(). |
| */ |
| late_time_init = hpet_time_init; |
| return; |
| } |
| #endif |
| ts.tv_sec = get_cmos_time(); |
| ts.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| |
| do_settimeofday(&ts); |
| |
| time_init_hook(); |
| } |