| /***************************************************************************** |
| * * |
| * File: sge.c * |
| * $Revision: 1.26 $ * |
| * $Date: 2005/06/21 18:29:48 $ * |
| * Description: * |
| * DMA engine. * |
| * part of the Chelsio 10Gb Ethernet Driver. * |
| * * |
| * This program is free software; you can redistribute it and/or modify * |
| * it under the terms of the GNU General Public License, version 2, as * |
| * published by the Free Software Foundation. * |
| * * |
| * You should have received a copy of the GNU General Public License along * |
| * with this program; if not, write to the Free Software Foundation, Inc., * |
| * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * |
| * * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * |
| * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * |
| * * |
| * http://www.chelsio.com * |
| * * |
| * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * |
| * All rights reserved. * |
| * * |
| * Maintainers: maintainers@chelsio.com * |
| * * |
| * Authors: Dimitrios Michailidis <dm@chelsio.com> * |
| * Tina Yang <tainay@chelsio.com> * |
| * Felix Marti <felix@chelsio.com> * |
| * Scott Bardone <sbardone@chelsio.com> * |
| * Kurt Ottaway <kottaway@chelsio.com> * |
| * Frank DiMambro <frank@chelsio.com> * |
| * * |
| * History: * |
| * * |
| ****************************************************************************/ |
| |
| #include "common.h" |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_vlan.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/ip.h> |
| #include <linux/in.h> |
| #include <linux/if_arp.h> |
| |
| #include "cpl5_cmd.h" |
| #include "sge.h" |
| #include "regs.h" |
| #include "espi.h" |
| |
| |
| #ifdef NETIF_F_TSO |
| #include <linux/tcp.h> |
| #endif |
| |
| #define SGE_CMDQ_N 2 |
| #define SGE_FREELQ_N 2 |
| #define SGE_CMDQ0_E_N 1024 |
| #define SGE_CMDQ1_E_N 128 |
| #define SGE_FREEL_SIZE 4096 |
| #define SGE_JUMBO_FREEL_SIZE 512 |
| #define SGE_FREEL_REFILL_THRESH 16 |
| #define SGE_RESPQ_E_N 1024 |
| #define SGE_INTRTIMER_NRES 1000 |
| #define SGE_RX_COPY_THRES 256 |
| #define SGE_RX_SM_BUF_SIZE 1536 |
| |
| # define SGE_RX_DROP_THRES 2 |
| |
| #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) |
| |
| /* |
| * Period of the TX buffer reclaim timer. This timer does not need to run |
| * frequently as TX buffers are usually reclaimed by new TX packets. |
| */ |
| #define TX_RECLAIM_PERIOD (HZ / 4) |
| |
| #ifndef NET_IP_ALIGN |
| # define NET_IP_ALIGN 2 |
| #endif |
| |
| #define M_CMD_LEN 0x7fffffff |
| #define V_CMD_LEN(v) (v) |
| #define G_CMD_LEN(v) ((v) & M_CMD_LEN) |
| #define V_CMD_GEN1(v) ((v) << 31) |
| #define V_CMD_GEN2(v) (v) |
| #define F_CMD_DATAVALID (1 << 1) |
| #define F_CMD_SOP (1 << 2) |
| #define V_CMD_EOP(v) ((v) << 3) |
| |
| /* |
| * Command queue, receive buffer list, and response queue descriptors. |
| */ |
| #if defined(__BIG_ENDIAN_BITFIELD) |
| struct cmdQ_e { |
| u32 addr_lo; |
| u32 len_gen; |
| u32 flags; |
| u32 addr_hi; |
| }; |
| |
| struct freelQ_e { |
| u32 addr_lo; |
| u32 len_gen; |
| u32 gen2; |
| u32 addr_hi; |
| }; |
| |
| struct respQ_e { |
| u32 Qsleeping : 4; |
| u32 Cmdq1CreditReturn : 5; |
| u32 Cmdq1DmaComplete : 5; |
| u32 Cmdq0CreditReturn : 5; |
| u32 Cmdq0DmaComplete : 5; |
| u32 FreelistQid : 2; |
| u32 CreditValid : 1; |
| u32 DataValid : 1; |
| u32 Offload : 1; |
| u32 Eop : 1; |
| u32 Sop : 1; |
| u32 GenerationBit : 1; |
| u32 BufferLength; |
| }; |
| #elif defined(__LITTLE_ENDIAN_BITFIELD) |
| struct cmdQ_e { |
| u32 len_gen; |
| u32 addr_lo; |
| u32 addr_hi; |
| u32 flags; |
| }; |
| |
| struct freelQ_e { |
| u32 len_gen; |
| u32 addr_lo; |
| u32 addr_hi; |
| u32 gen2; |
| }; |
| |
| struct respQ_e { |
| u32 BufferLength; |
| u32 GenerationBit : 1; |
| u32 Sop : 1; |
| u32 Eop : 1; |
| u32 Offload : 1; |
| u32 DataValid : 1; |
| u32 CreditValid : 1; |
| u32 FreelistQid : 2; |
| u32 Cmdq0DmaComplete : 5; |
| u32 Cmdq0CreditReturn : 5; |
| u32 Cmdq1DmaComplete : 5; |
| u32 Cmdq1CreditReturn : 5; |
| u32 Qsleeping : 4; |
| } ; |
| #endif |
| |
| /* |
| * SW Context Command and Freelist Queue Descriptors |
| */ |
| struct cmdQ_ce { |
| struct sk_buff *skb; |
| DECLARE_PCI_UNMAP_ADDR(dma_addr); |
| DECLARE_PCI_UNMAP_LEN(dma_len); |
| }; |
| |
| struct freelQ_ce { |
| struct sk_buff *skb; |
| DECLARE_PCI_UNMAP_ADDR(dma_addr); |
| DECLARE_PCI_UNMAP_LEN(dma_len); |
| }; |
| |
| /* |
| * SW command, freelist and response rings |
| */ |
| struct cmdQ { |
| unsigned long status; /* HW DMA fetch status */ |
| unsigned int in_use; /* # of in-use command descriptors */ |
| unsigned int size; /* # of descriptors */ |
| unsigned int processed; /* total # of descs HW has processed */ |
| unsigned int cleaned; /* total # of descs SW has reclaimed */ |
| unsigned int stop_thres; /* SW TX queue suspend threshold */ |
| u16 pidx; /* producer index (SW) */ |
| u16 cidx; /* consumer index (HW) */ |
| u8 genbit; /* current generation (=valid) bit */ |
| u8 sop; /* is next entry start of packet? */ |
| struct cmdQ_e *entries; /* HW command descriptor Q */ |
| struct cmdQ_ce *centries; /* SW command context descriptor Q */ |
| spinlock_t lock; /* Lock to protect cmdQ enqueuing */ |
| dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ |
| }; |
| |
| struct freelQ { |
| unsigned int credits; /* # of available RX buffers */ |
| unsigned int size; /* free list capacity */ |
| u16 pidx; /* producer index (SW) */ |
| u16 cidx; /* consumer index (HW) */ |
| u16 rx_buffer_size; /* Buffer size on this free list */ |
| u16 dma_offset; /* DMA offset to align IP headers */ |
| u16 recycleq_idx; /* skb recycle q to use */ |
| u8 genbit; /* current generation (=valid) bit */ |
| struct freelQ_e *entries; /* HW freelist descriptor Q */ |
| struct freelQ_ce *centries; /* SW freelist context descriptor Q */ |
| dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ |
| }; |
| |
| struct respQ { |
| unsigned int credits; /* credits to be returned to SGE */ |
| unsigned int size; /* # of response Q descriptors */ |
| u16 cidx; /* consumer index (SW) */ |
| u8 genbit; /* current generation(=valid) bit */ |
| struct respQ_e *entries; /* HW response descriptor Q */ |
| dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ |
| }; |
| |
| /* Bit flags for cmdQ.status */ |
| enum { |
| CMDQ_STAT_RUNNING = 1, /* fetch engine is running */ |
| CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */ |
| }; |
| |
| /* |
| * Main SGE data structure |
| * |
| * Interrupts are handled by a single CPU and it is likely that on a MP system |
| * the application is migrated to another CPU. In that scenario, we try to |
| * seperate the RX(in irq context) and TX state in order to decrease memory |
| * contention. |
| */ |
| struct sge { |
| struct adapter *adapter; /* adapter backpointer */ |
| struct net_device *netdev; /* netdevice backpointer */ |
| struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */ |
| struct respQ respQ; /* response Q */ |
| unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */ |
| unsigned int rx_pkt_pad; /* RX padding for L2 packets */ |
| unsigned int jumbo_fl; /* jumbo freelist Q index */ |
| unsigned int intrtimer_nres; /* no-resource interrupt timer */ |
| unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */ |
| struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ |
| struct timer_list espibug_timer; |
| unsigned int espibug_timeout; |
| struct sk_buff *espibug_skb; |
| u32 sge_control; /* shadow value of sge control reg */ |
| struct sge_intr_counts stats; |
| struct sge_port_stats port_stats[MAX_NPORTS]; |
| struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; |
| }; |
| |
| /* |
| * PIO to indicate that memory mapped Q contains valid descriptor(s). |
| */ |
| static inline void doorbell_pio(struct adapter *adapter, u32 val) |
| { |
| wmb(); |
| writel(val, adapter->regs + A_SG_DOORBELL); |
| } |
| |
| /* |
| * Frees all RX buffers on the freelist Q. The caller must make sure that |
| * the SGE is turned off before calling this function. |
| */ |
| static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) |
| { |
| unsigned int cidx = q->cidx; |
| |
| while (q->credits--) { |
| struct freelQ_ce *ce = &q->centries[cidx]; |
| |
| pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(ce->skb); |
| ce->skb = NULL; |
| if (++cidx == q->size) |
| cidx = 0; |
| } |
| } |
| |
| /* |
| * Free RX free list and response queue resources. |
| */ |
| static void free_rx_resources(struct sge *sge) |
| { |
| struct pci_dev *pdev = sge->adapter->pdev; |
| unsigned int size, i; |
| |
| if (sge->respQ.entries) { |
| size = sizeof(struct respQ_e) * sge->respQ.size; |
| pci_free_consistent(pdev, size, sge->respQ.entries, |
| sge->respQ.dma_addr); |
| } |
| |
| for (i = 0; i < SGE_FREELQ_N; i++) { |
| struct freelQ *q = &sge->freelQ[i]; |
| |
| if (q->centries) { |
| free_freelQ_buffers(pdev, q); |
| kfree(q->centries); |
| } |
| if (q->entries) { |
| size = sizeof(struct freelQ_e) * q->size; |
| pci_free_consistent(pdev, size, q->entries, |
| q->dma_addr); |
| } |
| } |
| } |
| |
| /* |
| * Allocates basic RX resources, consisting of memory mapped freelist Qs and a |
| * response queue. |
| */ |
| static int alloc_rx_resources(struct sge *sge, struct sge_params *p) |
| { |
| struct pci_dev *pdev = sge->adapter->pdev; |
| unsigned int size, i; |
| |
| for (i = 0; i < SGE_FREELQ_N; i++) { |
| struct freelQ *q = &sge->freelQ[i]; |
| |
| q->genbit = 1; |
| q->size = p->freelQ_size[i]; |
| q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; |
| size = sizeof(struct freelQ_e) * q->size; |
| q->entries = (struct freelQ_e *) |
| pci_alloc_consistent(pdev, size, &q->dma_addr); |
| if (!q->entries) |
| goto err_no_mem; |
| memset(q->entries, 0, size); |
| size = sizeof(struct freelQ_ce) * q->size; |
| q->centries = kmalloc(size, GFP_KERNEL); |
| if (!q->centries) |
| goto err_no_mem; |
| memset(q->centries, 0, size); |
| } |
| |
| /* |
| * Calculate the buffer sizes for the two free lists. FL0 accommodates |
| * regular sized Ethernet frames, FL1 is sized not to exceed 16K, |
| * including all the sk_buff overhead. |
| * |
| * Note: For T2 FL0 and FL1 are reversed. |
| */ |
| sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE + |
| sizeof(struct cpl_rx_data) + |
| sge->freelQ[!sge->jumbo_fl].dma_offset; |
| sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) - |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| /* |
| * Setup which skb recycle Q should be used when recycling buffers from |
| * each free list. |
| */ |
| sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; |
| sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; |
| |
| sge->respQ.genbit = 1; |
| sge->respQ.size = SGE_RESPQ_E_N; |
| sge->respQ.credits = 0; |
| size = sizeof(struct respQ_e) * sge->respQ.size; |
| sge->respQ.entries = (struct respQ_e *) |
| pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); |
| if (!sge->respQ.entries) |
| goto err_no_mem; |
| memset(sge->respQ.entries, 0, size); |
| return 0; |
| |
| err_no_mem: |
| free_rx_resources(sge); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Reclaims n TX descriptors and frees the buffers associated with them. |
| */ |
| static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) |
| { |
| struct cmdQ_ce *ce; |
| struct pci_dev *pdev = sge->adapter->pdev; |
| unsigned int cidx = q->cidx; |
| |
| q->in_use -= n; |
| ce = &q->centries[cidx]; |
| while (n--) { |
| if (q->sop) |
| pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), |
| PCI_DMA_TODEVICE); |
| else |
| pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), |
| PCI_DMA_TODEVICE); |
| q->sop = 0; |
| if (ce->skb) { |
| dev_kfree_skb(ce->skb); |
| q->sop = 1; |
| } |
| ce++; |
| if (++cidx == q->size) { |
| cidx = 0; |
| ce = q->centries; |
| } |
| } |
| q->cidx = cidx; |
| } |
| |
| /* |
| * Free TX resources. |
| * |
| * Assumes that SGE is stopped and all interrupts are disabled. |
| */ |
| static void free_tx_resources(struct sge *sge) |
| { |
| struct pci_dev *pdev = sge->adapter->pdev; |
| unsigned int size, i; |
| |
| for (i = 0; i < SGE_CMDQ_N; i++) { |
| struct cmdQ *q = &sge->cmdQ[i]; |
| |
| if (q->centries) { |
| if (q->in_use) |
| free_cmdQ_buffers(sge, q, q->in_use); |
| kfree(q->centries); |
| } |
| if (q->entries) { |
| size = sizeof(struct cmdQ_e) * q->size; |
| pci_free_consistent(pdev, size, q->entries, |
| q->dma_addr); |
| } |
| } |
| } |
| |
| /* |
| * Allocates basic TX resources, consisting of memory mapped command Qs. |
| */ |
| static int alloc_tx_resources(struct sge *sge, struct sge_params *p) |
| { |
| struct pci_dev *pdev = sge->adapter->pdev; |
| unsigned int size, i; |
| |
| for (i = 0; i < SGE_CMDQ_N; i++) { |
| struct cmdQ *q = &sge->cmdQ[i]; |
| |
| q->genbit = 1; |
| q->sop = 1; |
| q->size = p->cmdQ_size[i]; |
| q->in_use = 0; |
| q->status = 0; |
| q->processed = q->cleaned = 0; |
| q->stop_thres = 0; |
| spin_lock_init(&q->lock); |
| size = sizeof(struct cmdQ_e) * q->size; |
| q->entries = (struct cmdQ_e *) |
| pci_alloc_consistent(pdev, size, &q->dma_addr); |
| if (!q->entries) |
| goto err_no_mem; |
| memset(q->entries, 0, size); |
| size = sizeof(struct cmdQ_ce) * q->size; |
| q->centries = kmalloc(size, GFP_KERNEL); |
| if (!q->centries) |
| goto err_no_mem; |
| memset(q->centries, 0, size); |
| } |
| |
| /* |
| * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE |
| * only. For queue 0 set the stop threshold so we can handle one more |
| * packet from each port, plus reserve an additional 24 entries for |
| * Ethernet packets only. Queue 1 never suspends nor do we reserve |
| * space for Ethernet packets. |
| */ |
| sge->cmdQ[0].stop_thres = sge->adapter->params.nports * |
| (MAX_SKB_FRAGS + 1); |
| return 0; |
| |
| err_no_mem: |
| free_tx_resources(sge); |
| return -ENOMEM; |
| } |
| |
| static inline void setup_ring_params(struct adapter *adapter, u64 addr, |
| u32 size, int base_reg_lo, |
| int base_reg_hi, int size_reg) |
| { |
| writel((u32)addr, adapter->regs + base_reg_lo); |
| writel(addr >> 32, adapter->regs + base_reg_hi); |
| writel(size, adapter->regs + size_reg); |
| } |
| |
| /* |
| * Enable/disable VLAN acceleration. |
| */ |
| void t1_set_vlan_accel(struct adapter *adapter, int on_off) |
| { |
| struct sge *sge = adapter->sge; |
| |
| sge->sge_control &= ~F_VLAN_XTRACT; |
| if (on_off) |
| sge->sge_control |= F_VLAN_XTRACT; |
| if (adapter->open_device_map) { |
| writel(sge->sge_control, adapter->regs + A_SG_CONTROL); |
| readl(adapter->regs + A_SG_CONTROL); /* flush */ |
| } |
| } |
| |
| /* |
| * Programs the various SGE registers. However, the engine is not yet enabled, |
| * but sge->sge_control is setup and ready to go. |
| */ |
| static void configure_sge(struct sge *sge, struct sge_params *p) |
| { |
| struct adapter *ap = sge->adapter; |
| |
| writel(0, ap->regs + A_SG_CONTROL); |
| setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, |
| A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); |
| setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, |
| A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); |
| setup_ring_params(ap, sge->freelQ[0].dma_addr, |
| sge->freelQ[0].size, A_SG_FL0BASELWR, |
| A_SG_FL0BASEUPR, A_SG_FL0SIZE); |
| setup_ring_params(ap, sge->freelQ[1].dma_addr, |
| sge->freelQ[1].size, A_SG_FL1BASELWR, |
| A_SG_FL1BASEUPR, A_SG_FL1SIZE); |
| |
| /* The threshold comparison uses <. */ |
| writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); |
| |
| setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, |
| A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); |
| writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); |
| |
| sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | |
| F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | |
| V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | |
| F_DISABLE_FL0_GTS | F_DISABLE_FL1_GTS | |
| V_RX_PKT_OFFSET(sge->rx_pkt_pad); |
| |
| #if defined(__BIG_ENDIAN_BITFIELD) |
| sge->sge_control |= F_ENABLE_BIG_ENDIAN; |
| #endif |
| |
| /* Initialize no-resource timer */ |
| sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); |
| |
| t1_sge_set_coalesce_params(sge, p); |
| } |
| |
| /* |
| * Return the payload capacity of the jumbo free-list buffers. |
| */ |
| static inline unsigned int jumbo_payload_capacity(const struct sge *sge) |
| { |
| return sge->freelQ[sge->jumbo_fl].rx_buffer_size - |
| sge->freelQ[sge->jumbo_fl].dma_offset - |
| sizeof(struct cpl_rx_data); |
| } |
| |
| /* |
| * Frees all SGE related resources and the sge structure itself |
| */ |
| void t1_sge_destroy(struct sge *sge) |
| { |
| if (sge->espibug_skb) |
| kfree_skb(sge->espibug_skb); |
| |
| free_tx_resources(sge); |
| free_rx_resources(sge); |
| kfree(sge); |
| } |
| |
| /* |
| * Allocates new RX buffers on the freelist Q (and tracks them on the freelist |
| * context Q) until the Q is full or alloc_skb fails. |
| * |
| * It is possible that the generation bits already match, indicating that the |
| * buffer is already valid and nothing needs to be done. This happens when we |
| * copied a received buffer into a new sk_buff during the interrupt processing. |
| * |
| * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad), |
| * we specify a RX_OFFSET in order to make sure that the IP header is 4B |
| * aligned. |
| */ |
| static void refill_free_list(struct sge *sge, struct freelQ *q) |
| { |
| struct pci_dev *pdev = sge->adapter->pdev; |
| struct freelQ_ce *ce = &q->centries[q->pidx]; |
| struct freelQ_e *e = &q->entries[q->pidx]; |
| unsigned int dma_len = q->rx_buffer_size - q->dma_offset; |
| |
| |
| while (q->credits < q->size) { |
| struct sk_buff *skb; |
| dma_addr_t mapping; |
| |
| skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC); |
| if (!skb) |
| break; |
| |
| skb_reserve(skb, q->dma_offset); |
| mapping = pci_map_single(pdev, skb->data, dma_len, |
| PCI_DMA_FROMDEVICE); |
| ce->skb = skb; |
| pci_unmap_addr_set(ce, dma_addr, mapping); |
| pci_unmap_len_set(ce, dma_len, dma_len); |
| e->addr_lo = (u32)mapping; |
| e->addr_hi = (u64)mapping >> 32; |
| e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); |
| wmb(); |
| e->gen2 = V_CMD_GEN2(q->genbit); |
| |
| e++; |
| ce++; |
| if (++q->pidx == q->size) { |
| q->pidx = 0; |
| q->genbit ^= 1; |
| ce = q->centries; |
| e = q->entries; |
| } |
| q->credits++; |
| } |
| |
| } |
| |
| /* |
| * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 |
| * of both rings, we go into 'few interrupt mode' in order to give the system |
| * time to free up resources. |
| */ |
| static void freelQs_empty(struct sge *sge) |
| { |
| struct adapter *adapter = sge->adapter; |
| u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); |
| u32 irqholdoff_reg; |
| |
| refill_free_list(sge, &sge->freelQ[0]); |
| refill_free_list(sge, &sge->freelQ[1]); |
| |
| if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && |
| sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { |
| irq_reg |= F_FL_EXHAUSTED; |
| irqholdoff_reg = sge->fixed_intrtimer; |
| } else { |
| /* Clear the F_FL_EXHAUSTED interrupts for now */ |
| irq_reg &= ~F_FL_EXHAUSTED; |
| irqholdoff_reg = sge->intrtimer_nres; |
| } |
| writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); |
| writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); |
| |
| /* We reenable the Qs to force a freelist GTS interrupt later */ |
| doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); |
| } |
| |
| #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) |
| #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) |
| #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \ |
| F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) |
| |
| /* |
| * Disable SGE Interrupts |
| */ |
| void t1_sge_intr_disable(struct sge *sge) |
| { |
| u32 val = readl(sge->adapter->regs + A_PL_ENABLE); |
| |
| writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); |
| writel(0, sge->adapter->regs + A_SG_INT_ENABLE); |
| } |
| |
| /* |
| * Enable SGE interrupts. |
| */ |
| void t1_sge_intr_enable(struct sge *sge) |
| { |
| u32 en = SGE_INT_ENABLE; |
| u32 val = readl(sge->adapter->regs + A_PL_ENABLE); |
| |
| if (sge->adapter->flags & TSO_CAPABLE) |
| en &= ~F_PACKET_TOO_BIG; |
| writel(en, sge->adapter->regs + A_SG_INT_ENABLE); |
| writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); |
| } |
| |
| /* |
| * Clear SGE interrupts. |
| */ |
| void t1_sge_intr_clear(struct sge *sge) |
| { |
| writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); |
| writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); |
| } |
| |
| /* |
| * SGE 'Error' interrupt handler |
| */ |
| int t1_sge_intr_error_handler(struct sge *sge) |
| { |
| struct adapter *adapter = sge->adapter; |
| u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); |
| |
| if (adapter->flags & TSO_CAPABLE) |
| cause &= ~F_PACKET_TOO_BIG; |
| if (cause & F_RESPQ_EXHAUSTED) |
| sge->stats.respQ_empty++; |
| if (cause & F_RESPQ_OVERFLOW) { |
| sge->stats.respQ_overflow++; |
| CH_ALERT("%s: SGE response queue overflow\n", |
| adapter->name); |
| } |
| if (cause & F_FL_EXHAUSTED) { |
| sge->stats.freelistQ_empty++; |
| freelQs_empty(sge); |
| } |
| if (cause & F_PACKET_TOO_BIG) { |
| sge->stats.pkt_too_big++; |
| CH_ALERT("%s: SGE max packet size exceeded\n", |
| adapter->name); |
| } |
| if (cause & F_PACKET_MISMATCH) { |
| sge->stats.pkt_mismatch++; |
| CH_ALERT("%s: SGE packet mismatch\n", adapter->name); |
| } |
| if (cause & SGE_INT_FATAL) |
| t1_fatal_err(adapter); |
| |
| writel(cause, adapter->regs + A_SG_INT_CAUSE); |
| return 0; |
| } |
| |
| const struct sge_intr_counts *t1_sge_get_intr_counts(struct sge *sge) |
| { |
| return &sge->stats; |
| } |
| |
| const struct sge_port_stats *t1_sge_get_port_stats(struct sge *sge, int port) |
| { |
| return &sge->port_stats[port]; |
| } |
| |
| /** |
| * recycle_fl_buf - recycle a free list buffer |
| * @fl: the free list |
| * @idx: index of buffer to recycle |
| * |
| * Recycles the specified buffer on the given free list by adding it at |
| * the next available slot on the list. |
| */ |
| static void recycle_fl_buf(struct freelQ *fl, int idx) |
| { |
| struct freelQ_e *from = &fl->entries[idx]; |
| struct freelQ_e *to = &fl->entries[fl->pidx]; |
| |
| fl->centries[fl->pidx] = fl->centries[idx]; |
| to->addr_lo = from->addr_lo; |
| to->addr_hi = from->addr_hi; |
| to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); |
| wmb(); |
| to->gen2 = V_CMD_GEN2(fl->genbit); |
| fl->credits++; |
| |
| if (++fl->pidx == fl->size) { |
| fl->pidx = 0; |
| fl->genbit ^= 1; |
| } |
| } |
| |
| /** |
| * get_packet - return the next ingress packet buffer |
| * @pdev: the PCI device that received the packet |
| * @fl: the SGE free list holding the packet |
| * @len: the actual packet length, excluding any SGE padding |
| * @dma_pad: padding at beginning of buffer left by SGE DMA |
| * @skb_pad: padding to be used if the packet is copied |
| * @copy_thres: length threshold under which a packet should be copied |
| * @drop_thres: # of remaining buffers before we start dropping packets |
| * |
| * Get the next packet from a free list and complete setup of the |
| * sk_buff. If the packet is small we make a copy and recycle the |
| * original buffer, otherwise we use the original buffer itself. If a |
| * positive drop threshold is supplied packets are dropped and their |
| * buffers recycled if (a) the number of remaining buffers is under the |
| * threshold and the packet is too big to copy, or (b) the packet should |
| * be copied but there is no memory for the copy. |
| */ |
| static inline struct sk_buff *get_packet(struct pci_dev *pdev, |
| struct freelQ *fl, unsigned int len, |
| int dma_pad, int skb_pad, |
| unsigned int copy_thres, |
| unsigned int drop_thres) |
| { |
| struct sk_buff *skb; |
| struct freelQ_ce *ce = &fl->centries[fl->cidx]; |
| |
| if (len < copy_thres) { |
| skb = alloc_skb(len + skb_pad, GFP_ATOMIC); |
| if (likely(skb != NULL)) { |
| skb_reserve(skb, skb_pad); |
| skb_put(skb, len); |
| pci_dma_sync_single_for_cpu(pdev, |
| pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), |
| PCI_DMA_FROMDEVICE); |
| memcpy(skb->data, ce->skb->data + dma_pad, len); |
| pci_dma_sync_single_for_device(pdev, |
| pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), |
| PCI_DMA_FROMDEVICE); |
| } else if (!drop_thres) |
| goto use_orig_buf; |
| |
| recycle_fl_buf(fl, fl->cidx); |
| return skb; |
| } |
| |
| if (fl->credits < drop_thres) { |
| recycle_fl_buf(fl, fl->cidx); |
| return NULL; |
| } |
| |
| use_orig_buf: |
| pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); |
| skb = ce->skb; |
| skb_reserve(skb, dma_pad); |
| skb_put(skb, len); |
| return skb; |
| } |
| |
| /** |
| * unexpected_offload - handle an unexpected offload packet |
| * @adapter: the adapter |
| * @fl: the free list that received the packet |
| * |
| * Called when we receive an unexpected offload packet (e.g., the TOE |
| * function is disabled or the card is a NIC). Prints a message and |
| * recycles the buffer. |
| */ |
| static void unexpected_offload(struct adapter *adapter, struct freelQ *fl) |
| { |
| struct freelQ_ce *ce = &fl->centries[fl->cidx]; |
| struct sk_buff *skb = ce->skb; |
| |
| pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr), |
| pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); |
| CH_ERR("%s: unexpected offload packet, cmd %u\n", |
| adapter->name, *skb->data); |
| recycle_fl_buf(fl, fl->cidx); |
| } |
| |
| /* |
| * Write the command descriptors to transmit the given skb starting at |
| * descriptor pidx with the given generation. |
| */ |
| static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, |
| unsigned int pidx, unsigned int gen, |
| struct cmdQ *q) |
| { |
| dma_addr_t mapping; |
| struct cmdQ_e *e, *e1; |
| struct cmdQ_ce *ce; |
| unsigned int i, flags, nfrags = skb_shinfo(skb)->nr_frags; |
| |
| mapping = pci_map_single(adapter->pdev, skb->data, |
| skb->len - skb->data_len, PCI_DMA_TODEVICE); |
| ce = &q->centries[pidx]; |
| ce->skb = NULL; |
| pci_unmap_addr_set(ce, dma_addr, mapping); |
| pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len); |
| |
| flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0) | |
| V_CMD_GEN2(gen); |
| e = &q->entries[pidx]; |
| e->addr_lo = (u32)mapping; |
| e->addr_hi = (u64)mapping >> 32; |
| e->len_gen = V_CMD_LEN(skb->len - skb->data_len) | V_CMD_GEN1(gen); |
| for (e1 = e, i = 0; nfrags--; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| ce++; |
| e1++; |
| if (++pidx == q->size) { |
| pidx = 0; |
| gen ^= 1; |
| ce = q->centries; |
| e1 = q->entries; |
| } |
| |
| mapping = pci_map_page(adapter->pdev, frag->page, |
| frag->page_offset, frag->size, |
| PCI_DMA_TODEVICE); |
| ce->skb = NULL; |
| pci_unmap_addr_set(ce, dma_addr, mapping); |
| pci_unmap_len_set(ce, dma_len, frag->size); |
| |
| e1->addr_lo = (u32)mapping; |
| e1->addr_hi = (u64)mapping >> 32; |
| e1->len_gen = V_CMD_LEN(frag->size) | V_CMD_GEN1(gen); |
| e1->flags = F_CMD_DATAVALID | V_CMD_EOP(nfrags == 0) | |
| V_CMD_GEN2(gen); |
| } |
| |
| ce->skb = skb; |
| wmb(); |
| e->flags = flags; |
| } |
| |
| /* |
| * Clean up completed Tx buffers. |
| */ |
| static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) |
| { |
| unsigned int reclaim = q->processed - q->cleaned; |
| |
| if (reclaim) { |
| free_cmdQ_buffers(sge, q, reclaim); |
| q->cleaned += reclaim; |
| } |
| } |
| |
| #ifndef SET_ETHTOOL_OPS |
| # define __netif_rx_complete(dev) netif_rx_complete(dev) |
| #endif |
| |
| /* |
| * We cannot use the standard netif_rx_schedule_prep() because we have multiple |
| * ports plus the TOE all multiplexing onto a single response queue, therefore |
| * accepting new responses cannot depend on the state of any particular port. |
| * So define our own equivalent that omits the netif_running() test. |
| */ |
| static inline int napi_schedule_prep(struct net_device *dev) |
| { |
| return !test_and_set_bit(__LINK_STATE_RX_SCHED, &dev->state); |
| } |
| |
| |
| /** |
| * sge_rx - process an ingress ethernet packet |
| * @sge: the sge structure |
| * @fl: the free list that contains the packet buffer |
| * @len: the packet length |
| * |
| * Process an ingress ethernet pakcet and deliver it to the stack. |
| */ |
| static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) |
| { |
| struct sk_buff *skb; |
| struct cpl_rx_pkt *p; |
| struct adapter *adapter = sge->adapter; |
| |
| sge->stats.ethernet_pkts++; |
| skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad, |
| sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES, |
| SGE_RX_DROP_THRES); |
| if (!skb) { |
| sge->port_stats[0].rx_drops++; /* charge only port 0 for now */ |
| return 0; |
| } |
| |
| p = (struct cpl_rx_pkt *)skb->data; |
| skb_pull(skb, sizeof(*p)); |
| skb->dev = adapter->port[p->iff].dev; |
| skb->dev->last_rx = jiffies; |
| skb->protocol = eth_type_trans(skb, skb->dev); |
| if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff && |
| skb->protocol == htons(ETH_P_IP) && |
| (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { |
| sge->port_stats[p->iff].rx_cso_good++; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| if (unlikely(adapter->vlan_grp && p->vlan_valid)) { |
| sge->port_stats[p->iff].vlan_xtract++; |
| if (adapter->params.sge.polling) |
| vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, |
| ntohs(p->vlan)); |
| else |
| vlan_hwaccel_rx(skb, adapter->vlan_grp, |
| ntohs(p->vlan)); |
| } else if (adapter->params.sge.polling) |
| netif_receive_skb(skb); |
| else |
| netif_rx(skb); |
| return 0; |
| } |
| |
| /* |
| * Returns true if a command queue has enough available descriptors that |
| * we can resume Tx operation after temporarily disabling its packet queue. |
| */ |
| static inline int enough_free_Tx_descs(const struct cmdQ *q) |
| { |
| unsigned int r = q->processed - q->cleaned; |
| |
| return q->in_use - r < (q->size >> 1); |
| } |
| |
| /* |
| * Called when sufficient space has become available in the SGE command queues |
| * after the Tx packet schedulers have been suspended to restart the Tx path. |
| */ |
| static void restart_tx_queues(struct sge *sge) |
| { |
| struct adapter *adap = sge->adapter; |
| |
| if (enough_free_Tx_descs(&sge->cmdQ[0])) { |
| int i; |
| |
| for_each_port(adap, i) { |
| struct net_device *nd = adap->port[i].dev; |
| |
| if (test_and_clear_bit(nd->if_port, |
| &sge->stopped_tx_queues) && |
| netif_running(nd)) { |
| sge->stats.cmdQ_restarted[2]++; |
| netif_wake_queue(nd); |
| } |
| } |
| } |
| } |
| |
| /* |
| * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 |
| * information. |
| */ |
| static unsigned int update_tx_info(struct adapter *adapter, |
| unsigned int flags, |
| unsigned int pr0) |
| { |
| struct sge *sge = adapter->sge; |
| struct cmdQ *cmdq = &sge->cmdQ[0]; |
| |
| cmdq->processed += pr0; |
| |
| if (flags & F_CMDQ0_ENABLE) { |
| clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); |
| |
| if (cmdq->cleaned + cmdq->in_use != cmdq->processed && |
| !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { |
| set_bit(CMDQ_STAT_RUNNING, &cmdq->status); |
| writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); |
| } |
| flags &= ~F_CMDQ0_ENABLE; |
| } |
| |
| if (unlikely(sge->stopped_tx_queues != 0)) |
| restart_tx_queues(sge); |
| |
| return flags; |
| } |
| |
| /* |
| * Process SGE responses, up to the supplied budget. Returns the number of |
| * responses processed. A negative budget is effectively unlimited. |
| */ |
| static int process_responses(struct adapter *adapter, int budget) |
| { |
| struct sge *sge = adapter->sge; |
| struct respQ *q = &sge->respQ; |
| struct respQ_e *e = &q->entries[q->cidx]; |
| int budget_left = budget; |
| unsigned int flags = 0; |
| unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; |
| |
| |
| while (likely(budget_left && e->GenerationBit == q->genbit)) { |
| flags |= e->Qsleeping; |
| |
| cmdq_processed[0] += e->Cmdq0CreditReturn; |
| cmdq_processed[1] += e->Cmdq1CreditReturn; |
| |
| /* We batch updates to the TX side to avoid cacheline |
| * ping-pong of TX state information on MP where the sender |
| * might run on a different CPU than this function... |
| */ |
| if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) { |
| flags = update_tx_info(adapter, flags, cmdq_processed[0]); |
| cmdq_processed[0] = 0; |
| } |
| if (unlikely(cmdq_processed[1] > 16)) { |
| sge->cmdQ[1].processed += cmdq_processed[1]; |
| cmdq_processed[1] = 0; |
| } |
| if (likely(e->DataValid)) { |
| struct freelQ *fl = &sge->freelQ[e->FreelistQid]; |
| |
| BUG_ON(!e->Sop || !e->Eop); |
| if (unlikely(e->Offload)) |
| unexpected_offload(adapter, fl); |
| else |
| sge_rx(sge, fl, e->BufferLength); |
| |
| /* |
| * Note: this depends on each packet consuming a |
| * single free-list buffer; cf. the BUG above. |
| */ |
| if (++fl->cidx == fl->size) |
| fl->cidx = 0; |
| if (unlikely(--fl->credits < |
| fl->size - SGE_FREEL_REFILL_THRESH)) |
| refill_free_list(sge, fl); |
| } else |
| sge->stats.pure_rsps++; |
| |
| e++; |
| if (unlikely(++q->cidx == q->size)) { |
| q->cidx = 0; |
| q->genbit ^= 1; |
| e = q->entries; |
| } |
| prefetch(e); |
| |
| if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { |
| writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); |
| q->credits = 0; |
| } |
| --budget_left; |
| } |
| |
| flags = update_tx_info(adapter, flags, cmdq_processed[0]); |
| sge->cmdQ[1].processed += cmdq_processed[1]; |
| |
| budget -= budget_left; |
| return budget; |
| } |
| |
| /* |
| * A simpler version of process_responses() that handles only pure (i.e., |
| * non data-carrying) responses. Such respones are too light-weight to justify |
| * calling a softirq when using NAPI, so we handle them specially in hard |
| * interrupt context. The function is called with a pointer to a response, |
| * which the caller must ensure is a valid pure response. Returns 1 if it |
| * encounters a valid data-carrying response, 0 otherwise. |
| */ |
| static int process_pure_responses(struct adapter *adapter, struct respQ_e *e) |
| { |
| struct sge *sge = adapter->sge; |
| struct respQ *q = &sge->respQ; |
| unsigned int flags = 0; |
| unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; |
| |
| do { |
| flags |= e->Qsleeping; |
| |
| cmdq_processed[0] += e->Cmdq0CreditReturn; |
| cmdq_processed[1] += e->Cmdq1CreditReturn; |
| |
| e++; |
| if (unlikely(++q->cidx == q->size)) { |
| q->cidx = 0; |
| q->genbit ^= 1; |
| e = q->entries; |
| } |
| prefetch(e); |
| |
| if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { |
| writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); |
| q->credits = 0; |
| } |
| sge->stats.pure_rsps++; |
| } while (e->GenerationBit == q->genbit && !e->DataValid); |
| |
| flags = update_tx_info(adapter, flags, cmdq_processed[0]); |
| sge->cmdQ[1].processed += cmdq_processed[1]; |
| |
| return e->GenerationBit == q->genbit; |
| } |
| |
| /* |
| * Handler for new data events when using NAPI. This does not need any locking |
| * or protection from interrupts as data interrupts are off at this point and |
| * other adapter interrupts do not interfere. |
| */ |
| static int t1_poll(struct net_device *dev, int *budget) |
| { |
| struct adapter *adapter = dev->priv; |
| int effective_budget = min(*budget, dev->quota); |
| |
| int work_done = process_responses(adapter, effective_budget); |
| *budget -= work_done; |
| dev->quota -= work_done; |
| |
| if (work_done >= effective_budget) |
| return 1; |
| |
| __netif_rx_complete(dev); |
| |
| /* |
| * Because we don't atomically flush the following write it is |
| * possible that in very rare cases it can reach the device in a way |
| * that races with a new response being written plus an error interrupt |
| * causing the NAPI interrupt handler below to return unhandled status |
| * to the OS. To protect against this would require flushing the write |
| * and doing both the write and the flush with interrupts off. Way too |
| * expensive and unjustifiable given the rarity of the race. |
| */ |
| writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); |
| return 0; |
| } |
| |
| /* |
| * Returns true if the device is already scheduled for polling. |
| */ |
| static inline int napi_is_scheduled(struct net_device *dev) |
| { |
| return test_bit(__LINK_STATE_RX_SCHED, &dev->state); |
| } |
| |
| /* |
| * NAPI version of the main interrupt handler. |
| */ |
| static irqreturn_t t1_interrupt_napi(int irq, void *data, struct pt_regs *regs) |
| { |
| int handled; |
| struct adapter *adapter = data; |
| struct sge *sge = adapter->sge; |
| struct respQ *q = &adapter->sge->respQ; |
| |
| /* |
| * Clear the SGE_DATA interrupt first thing. Normally the NAPI |
| * handler has control of the response queue and the interrupt handler |
| * can look at the queue reliably only once it knows NAPI is off. |
| * We can't wait that long to clear the SGE_DATA interrupt because we |
| * could race with t1_poll rearming the SGE interrupt, so we need to |
| * clear the interrupt speculatively and really early on. |
| */ |
| writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); |
| |
| spin_lock(&adapter->async_lock); |
| if (!napi_is_scheduled(sge->netdev)) { |
| struct respQ_e *e = &q->entries[q->cidx]; |
| |
| if (e->GenerationBit == q->genbit) { |
| if (e->DataValid || |
| process_pure_responses(adapter, e)) { |
| if (likely(napi_schedule_prep(sge->netdev))) |
| __netif_rx_schedule(sge->netdev); |
| else |
| printk(KERN_CRIT |
| "NAPI schedule failure!\n"); |
| } else |
| writel(q->cidx, adapter->regs + A_SG_SLEEPING); |
| handled = 1; |
| goto unlock; |
| } else |
| writel(q->cidx, adapter->regs + A_SG_SLEEPING); |
| } else |
| if (readl(adapter->regs + A_PL_CAUSE) & F_PL_INTR_SGE_DATA) |
| printk(KERN_ERR "data interrupt while NAPI running\n"); |
| |
| handled = t1_slow_intr_handler(adapter); |
| if (!handled) |
| sge->stats.unhandled_irqs++; |
| unlock: |
| spin_unlock(&adapter->async_lock); |
| return IRQ_RETVAL(handled != 0); |
| } |
| |
| /* |
| * Main interrupt handler, optimized assuming that we took a 'DATA' |
| * interrupt. |
| * |
| * 1. Clear the interrupt |
| * 2. Loop while we find valid descriptors and process them; accumulate |
| * information that can be processed after the loop |
| * 3. Tell the SGE at which index we stopped processing descriptors |
| * 4. Bookkeeping; free TX buffers, ring doorbell if there are any |
| * outstanding TX buffers waiting, replenish RX buffers, potentially |
| * reenable upper layers if they were turned off due to lack of TX |
| * resources which are available again. |
| * 5. If we took an interrupt, but no valid respQ descriptors was found we |
| * let the slow_intr_handler run and do error handling. |
| */ |
| static irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs) |
| { |
| int work_done; |
| struct respQ_e *e; |
| struct adapter *adapter = cookie; |
| struct respQ *Q = &adapter->sge->respQ; |
| |
| spin_lock(&adapter->async_lock); |
| e = &Q->entries[Q->cidx]; |
| prefetch(e); |
| |
| writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); |
| |
| if (likely(e->GenerationBit == Q->genbit)) |
| work_done = process_responses(adapter, -1); |
| else |
| work_done = t1_slow_intr_handler(adapter); |
| |
| /* |
| * The unconditional clearing of the PL_CAUSE above may have raced |
| * with DMA completion and the corresponding generation of a response |
| * to cause us to miss the resulting data interrupt. The next write |
| * is also unconditional to recover the missed interrupt and render |
| * this race harmless. |
| */ |
| writel(Q->cidx, adapter->regs + A_SG_SLEEPING); |
| |
| if (!work_done) |
| adapter->sge->stats.unhandled_irqs++; |
| spin_unlock(&adapter->async_lock); |
| return IRQ_RETVAL(work_done != 0); |
| } |
| |
| intr_handler_t t1_select_intr_handler(adapter_t *adapter) |
| { |
| return adapter->params.sge.polling ? t1_interrupt_napi : t1_interrupt; |
| } |
| |
| /* |
| * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. |
| * |
| * The code figures out how many entries the sk_buff will require in the |
| * cmdQ and updates the cmdQ data structure with the state once the enqueue |
| * has complete. Then, it doesn't access the global structure anymore, but |
| * uses the corresponding fields on the stack. In conjuction with a spinlock |
| * around that code, we can make the function reentrant without holding the |
| * lock when we actually enqueue (which might be expensive, especially on |
| * architectures with IO MMUs). |
| * |
| * This runs with softirqs disabled. |
| */ |
| static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, |
| unsigned int qid, struct net_device *dev) |
| { |
| struct sge *sge = adapter->sge; |
| struct cmdQ *q = &sge->cmdQ[qid]; |
| unsigned int credits, pidx, genbit, count; |
| |
| spin_lock(&q->lock); |
| reclaim_completed_tx(sge, q); |
| |
| pidx = q->pidx; |
| credits = q->size - q->in_use; |
| count = 1 + skb_shinfo(skb)->nr_frags; |
| |
| { /* Ethernet packet */ |
| if (unlikely(credits < count)) { |
| netif_stop_queue(dev); |
| set_bit(dev->if_port, &sge->stopped_tx_queues); |
| sge->stats.cmdQ_full[2]++; |
| spin_unlock(&q->lock); |
| if (!netif_queue_stopped(dev)) |
| CH_ERR("%s: Tx ring full while queue awake!\n", |
| adapter->name); |
| return NETDEV_TX_BUSY; |
| } |
| if (unlikely(credits - count < q->stop_thres)) { |
| sge->stats.cmdQ_full[2]++; |
| netif_stop_queue(dev); |
| set_bit(dev->if_port, &sge->stopped_tx_queues); |
| } |
| } |
| q->in_use += count; |
| genbit = q->genbit; |
| q->pidx += count; |
| if (q->pidx >= q->size) { |
| q->pidx -= q->size; |
| q->genbit ^= 1; |
| } |
| spin_unlock(&q->lock); |
| |
| write_tx_descs(adapter, skb, pidx, genbit, q); |
| |
| /* |
| * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring |
| * the doorbell if the Q is asleep. There is a natural race, where |
| * the hardware is going to sleep just after we checked, however, |
| * then the interrupt handler will detect the outstanding TX packet |
| * and ring the doorbell for us. |
| */ |
| if (qid) |
| doorbell_pio(adapter, F_CMDQ1_ENABLE); |
| else { |
| clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); |
| if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { |
| set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); |
| writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); |
| } |
| } |
| return NETDEV_TX_OK; |
| } |
| |
| #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) |
| |
| /* |
| * eth_hdr_len - return the length of an Ethernet header |
| * @data: pointer to the start of the Ethernet header |
| * |
| * Returns the length of an Ethernet header, including optional VLAN tag. |
| */ |
| static inline int eth_hdr_len(const void *data) |
| { |
| const struct ethhdr *e = data; |
| |
| return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; |
| } |
| |
| /* |
| * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. |
| */ |
| int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct adapter *adapter = dev->priv; |
| struct sge_port_stats *st = &adapter->sge->port_stats[dev->if_port]; |
| struct sge *sge = adapter->sge; |
| struct cpl_tx_pkt *cpl; |
| |
| #ifdef NETIF_F_TSO |
| if (skb_is_gso(skb)) { |
| int eth_type; |
| struct cpl_tx_pkt_lso *hdr; |
| |
| st->tso++; |
| |
| eth_type = skb->nh.raw - skb->data == ETH_HLEN ? |
| CPL_ETH_II : CPL_ETH_II_VLAN; |
| |
| hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr)); |
| hdr->opcode = CPL_TX_PKT_LSO; |
| hdr->ip_csum_dis = hdr->l4_csum_dis = 0; |
| hdr->ip_hdr_words = skb->nh.iph->ihl; |
| hdr->tcp_hdr_words = skb->h.th->doff; |
| hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type, |
| skb_shinfo(skb)->gso_size)); |
| hdr->len = htonl(skb->len - sizeof(*hdr)); |
| cpl = (struct cpl_tx_pkt *)hdr; |
| sge->stats.tx_lso_pkts++; |
| } else |
| #endif |
| { |
| /* |
| * Packets shorter than ETH_HLEN can break the MAC, drop them |
| * early. Also, we may get oversized packets because some |
| * parts of the kernel don't handle our unusual hard_header_len |
| * right, drop those too. |
| */ |
| if (unlikely(skb->len < ETH_HLEN || |
| skb->len > dev->mtu + eth_hdr_len(skb->data))) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * We are using a non-standard hard_header_len and some kernel |
| * components, such as pktgen, do not handle it right. |
| * Complain when this happens but try to fix things up. |
| */ |
| if (unlikely(skb_headroom(skb) < |
| dev->hard_header_len - ETH_HLEN)) { |
| struct sk_buff *orig_skb = skb; |
| |
| if (net_ratelimit()) |
| printk(KERN_ERR "%s: inadequate headroom in " |
| "Tx packet\n", dev->name); |
| skb = skb_realloc_headroom(skb, sizeof(*cpl)); |
| dev_kfree_skb_any(orig_skb); |
| if (!skb) |
| return NETDEV_TX_OK; |
| } |
| |
| if (!(adapter->flags & UDP_CSUM_CAPABLE) && |
| skb->ip_summed == CHECKSUM_HW && |
| skb->nh.iph->protocol == IPPROTO_UDP) |
| if (unlikely(skb_checksum_help(skb, 0))) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Hmmm, assuming to catch the gratious arp... and we'll use |
| * it to flush out stuck espi packets... |
| */ |
| if (unlikely(!adapter->sge->espibug_skb)) { |
| if (skb->protocol == htons(ETH_P_ARP) && |
| skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) { |
| adapter->sge->espibug_skb = skb; |
| /* We want to re-use this skb later. We |
| * simply bump the reference count and it |
| * will not be freed... |
| */ |
| skb = skb_get(skb); |
| } |
| } |
| |
| cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl)); |
| cpl->opcode = CPL_TX_PKT; |
| cpl->ip_csum_dis = 1; /* SW calculates IP csum */ |
| cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1; |
| /* the length field isn't used so don't bother setting it */ |
| |
| st->tx_cso += (skb->ip_summed == CHECKSUM_HW); |
| sge->stats.tx_do_cksum += (skb->ip_summed == CHECKSUM_HW); |
| sge->stats.tx_reg_pkts++; |
| } |
| cpl->iff = dev->if_port; |
| |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) |
| if (adapter->vlan_grp && vlan_tx_tag_present(skb)) { |
| cpl->vlan_valid = 1; |
| cpl->vlan = htons(vlan_tx_tag_get(skb)); |
| st->vlan_insert++; |
| } else |
| #endif |
| cpl->vlan_valid = 0; |
| |
| dev->trans_start = jiffies; |
| return t1_sge_tx(skb, adapter, 0, dev); |
| } |
| |
| /* |
| * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled. |
| */ |
| static void sge_tx_reclaim_cb(unsigned long data) |
| { |
| int i; |
| struct sge *sge = (struct sge *)data; |
| |
| for (i = 0; i < SGE_CMDQ_N; ++i) { |
| struct cmdQ *q = &sge->cmdQ[i]; |
| |
| if (!spin_trylock(&q->lock)) |
| continue; |
| |
| reclaim_completed_tx(sge, q); |
| if (i == 0 && q->in_use) /* flush pending credits */ |
| writel(F_CMDQ0_ENABLE, |
| sge->adapter->regs + A_SG_DOORBELL); |
| |
| spin_unlock(&q->lock); |
| } |
| mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); |
| } |
| |
| /* |
| * Propagate changes of the SGE coalescing parameters to the HW. |
| */ |
| int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) |
| { |
| sge->netdev->poll = t1_poll; |
| sge->fixed_intrtimer = p->rx_coalesce_usecs * |
| core_ticks_per_usec(sge->adapter); |
| writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); |
| return 0; |
| } |
| |
| /* |
| * Allocates both RX and TX resources and configures the SGE. However, |
| * the hardware is not enabled yet. |
| */ |
| int t1_sge_configure(struct sge *sge, struct sge_params *p) |
| { |
| if (alloc_rx_resources(sge, p)) |
| return -ENOMEM; |
| if (alloc_tx_resources(sge, p)) { |
| free_rx_resources(sge); |
| return -ENOMEM; |
| } |
| configure_sge(sge, p); |
| |
| /* |
| * Now that we have sized the free lists calculate the payload |
| * capacity of the large buffers. Other parts of the driver use |
| * this to set the max offload coalescing size so that RX packets |
| * do not overflow our large buffers. |
| */ |
| p->large_buf_capacity = jumbo_payload_capacity(sge); |
| return 0; |
| } |
| |
| /* |
| * Disables the DMA engine. |
| */ |
| void t1_sge_stop(struct sge *sge) |
| { |
| writel(0, sge->adapter->regs + A_SG_CONTROL); |
| (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ |
| if (is_T2(sge->adapter)) |
| del_timer_sync(&sge->espibug_timer); |
| del_timer_sync(&sge->tx_reclaim_timer); |
| } |
| |
| /* |
| * Enables the DMA engine. |
| */ |
| void t1_sge_start(struct sge *sge) |
| { |
| refill_free_list(sge, &sge->freelQ[0]); |
| refill_free_list(sge, &sge->freelQ[1]); |
| |
| writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); |
| doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); |
| (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ |
| |
| mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); |
| |
| if (is_T2(sge->adapter)) |
| mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); |
| } |
| |
| /* |
| * Callback for the T2 ESPI 'stuck packet feature' workaorund |
| */ |
| static void espibug_workaround(void *data) |
| { |
| struct adapter *adapter = (struct adapter *)data; |
| struct sge *sge = adapter->sge; |
| |
| if (netif_running(adapter->port[0].dev)) { |
| struct sk_buff *skb = sge->espibug_skb; |
| |
| u32 seop = t1_espi_get_mon(adapter, 0x930, 0); |
| |
| if ((seop & 0xfff0fff) == 0xfff && skb) { |
| if (!skb->cb[0]) { |
| u8 ch_mac_addr[ETH_ALEN] = |
| {0x0, 0x7, 0x43, 0x0, 0x0, 0x0}; |
| memcpy(skb->data + sizeof(struct cpl_tx_pkt), |
| ch_mac_addr, ETH_ALEN); |
| memcpy(skb->data + skb->len - 10, ch_mac_addr, |
| ETH_ALEN); |
| skb->cb[0] = 0xff; |
| } |
| |
| /* bump the reference count to avoid freeing of the |
| * skb once the DMA has completed. |
| */ |
| skb = skb_get(skb); |
| t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); |
| } |
| } |
| mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); |
| } |
| |
| /* |
| * Creates a t1_sge structure and returns suggested resource parameters. |
| */ |
| struct sge * __devinit t1_sge_create(struct adapter *adapter, |
| struct sge_params *p) |
| { |
| struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL); |
| |
| if (!sge) |
| return NULL; |
| memset(sge, 0, sizeof(*sge)); |
| |
| sge->adapter = adapter; |
| sge->netdev = adapter->port[0].dev; |
| sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; |
| sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; |
| |
| init_timer(&sge->tx_reclaim_timer); |
| sge->tx_reclaim_timer.data = (unsigned long)sge; |
| sge->tx_reclaim_timer.function = sge_tx_reclaim_cb; |
| |
| if (is_T2(sge->adapter)) { |
| init_timer(&sge->espibug_timer); |
| sge->espibug_timer.function = (void *)&espibug_workaround; |
| sge->espibug_timer.data = (unsigned long)sge->adapter; |
| sge->espibug_timeout = 1; |
| } |
| |
| |
| p->cmdQ_size[0] = SGE_CMDQ0_E_N; |
| p->cmdQ_size[1] = SGE_CMDQ1_E_N; |
| p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; |
| p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; |
| p->rx_coalesce_usecs = 50; |
| p->coalesce_enable = 0; |
| p->sample_interval_usecs = 0; |
| p->polling = 0; |
| |
| return sge; |
| } |