| /* -*- mode: c; c-basic-offset: 8; -*- |
| * vim: noexpandtab sw=8 ts=8 sts=0: |
| * |
| * alloc.c |
| * |
| * Extent allocs and frees |
| * |
| * Copyright (C) 2002, 2004 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/highmem.h> |
| #include <linux/swap.h> |
| |
| #define MLOG_MASK_PREFIX ML_DISK_ALLOC |
| #include <cluster/masklog.h> |
| |
| #include "ocfs2.h" |
| |
| #include "alloc.h" |
| #include "aops.h" |
| #include "dlmglue.h" |
| #include "extent_map.h" |
| #include "inode.h" |
| #include "journal.h" |
| #include "localalloc.h" |
| #include "suballoc.h" |
| #include "sysfile.h" |
| #include "file.h" |
| #include "super.h" |
| #include "uptodate.h" |
| |
| #include "buffer_head_io.h" |
| |
| static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); |
| static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, |
| struct ocfs2_extent_block *eb); |
| |
| /* |
| * Structures which describe a path through a btree, and functions to |
| * manipulate them. |
| * |
| * The idea here is to be as generic as possible with the tree |
| * manipulation code. |
| */ |
| struct ocfs2_path_item { |
| struct buffer_head *bh; |
| struct ocfs2_extent_list *el; |
| }; |
| |
| #define OCFS2_MAX_PATH_DEPTH 5 |
| |
| struct ocfs2_path { |
| int p_tree_depth; |
| struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; |
| }; |
| |
| #define path_root_bh(_path) ((_path)->p_node[0].bh) |
| #define path_root_el(_path) ((_path)->p_node[0].el) |
| #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) |
| #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) |
| #define path_num_items(_path) ((_path)->p_tree_depth + 1) |
| |
| /* |
| * Reset the actual path elements so that we can re-use the structure |
| * to build another path. Generally, this involves freeing the buffer |
| * heads. |
| */ |
| static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) |
| { |
| int i, start = 0, depth = 0; |
| struct ocfs2_path_item *node; |
| |
| if (keep_root) |
| start = 1; |
| |
| for(i = start; i < path_num_items(path); i++) { |
| node = &path->p_node[i]; |
| |
| brelse(node->bh); |
| node->bh = NULL; |
| node->el = NULL; |
| } |
| |
| /* |
| * Tree depth may change during truncate, or insert. If we're |
| * keeping the root extent list, then make sure that our path |
| * structure reflects the proper depth. |
| */ |
| if (keep_root) |
| depth = le16_to_cpu(path_root_el(path)->l_tree_depth); |
| |
| path->p_tree_depth = depth; |
| } |
| |
| static void ocfs2_free_path(struct ocfs2_path *path) |
| { |
| if (path) { |
| ocfs2_reinit_path(path, 0); |
| kfree(path); |
| } |
| } |
| |
| /* |
| * All the elements of src into dest. After this call, src could be freed |
| * without affecting dest. |
| * |
| * Both paths should have the same root. Any non-root elements of dest |
| * will be freed. |
| */ |
| static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) |
| { |
| int i; |
| |
| BUG_ON(path_root_bh(dest) != path_root_bh(src)); |
| BUG_ON(path_root_el(dest) != path_root_el(src)); |
| |
| ocfs2_reinit_path(dest, 1); |
| |
| for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { |
| dest->p_node[i].bh = src->p_node[i].bh; |
| dest->p_node[i].el = src->p_node[i].el; |
| |
| if (dest->p_node[i].bh) |
| get_bh(dest->p_node[i].bh); |
| } |
| } |
| |
| /* |
| * Make the *dest path the same as src and re-initialize src path to |
| * have a root only. |
| */ |
| static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) |
| { |
| int i; |
| |
| BUG_ON(path_root_bh(dest) != path_root_bh(src)); |
| |
| for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { |
| brelse(dest->p_node[i].bh); |
| |
| dest->p_node[i].bh = src->p_node[i].bh; |
| dest->p_node[i].el = src->p_node[i].el; |
| |
| src->p_node[i].bh = NULL; |
| src->p_node[i].el = NULL; |
| } |
| } |
| |
| /* |
| * Insert an extent block at given index. |
| * |
| * This will not take an additional reference on eb_bh. |
| */ |
| static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, |
| struct buffer_head *eb_bh) |
| { |
| struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; |
| |
| /* |
| * Right now, no root bh is an extent block, so this helps |
| * catch code errors with dinode trees. The assertion can be |
| * safely removed if we ever need to insert extent block |
| * structures at the root. |
| */ |
| BUG_ON(index == 0); |
| |
| path->p_node[index].bh = eb_bh; |
| path->p_node[index].el = &eb->h_list; |
| } |
| |
| static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, |
| struct ocfs2_extent_list *root_el) |
| { |
| struct ocfs2_path *path; |
| |
| BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); |
| |
| path = kzalloc(sizeof(*path), GFP_NOFS); |
| if (path) { |
| path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); |
| get_bh(root_bh); |
| path_root_bh(path) = root_bh; |
| path_root_el(path) = root_el; |
| } |
| |
| return path; |
| } |
| |
| /* |
| * Allocate and initialize a new path based on a disk inode tree. |
| */ |
| static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) |
| { |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| struct ocfs2_extent_list *el = &di->id2.i_list; |
| |
| return ocfs2_new_path(di_bh, el); |
| } |
| |
| /* |
| * Convenience function to journal all components in a path. |
| */ |
| static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *path) |
| { |
| int i, ret = 0; |
| |
| if (!path) |
| goto out; |
| |
| for(i = 0; i < path_num_items(path); i++) { |
| ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Return the index of the extent record which contains cluster #v_cluster. |
| * -1 is returned if it was not found. |
| * |
| * Should work fine on interior and exterior nodes. |
| */ |
| int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) |
| { |
| int ret = -1; |
| int i; |
| struct ocfs2_extent_rec *rec; |
| u32 rec_end, rec_start, clusters; |
| |
| for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { |
| rec = &el->l_recs[i]; |
| |
| rec_start = le32_to_cpu(rec->e_cpos); |
| clusters = ocfs2_rec_clusters(el, rec); |
| |
| rec_end = rec_start + clusters; |
| |
| if (v_cluster >= rec_start && v_cluster < rec_end) { |
| ret = i; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| enum ocfs2_contig_type { |
| CONTIG_NONE = 0, |
| CONTIG_LEFT, |
| CONTIG_RIGHT, |
| CONTIG_LEFTRIGHT, |
| }; |
| |
| |
| /* |
| * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and |
| * ocfs2_extent_contig only work properly against leaf nodes! |
| */ |
| static int ocfs2_block_extent_contig(struct super_block *sb, |
| struct ocfs2_extent_rec *ext, |
| u64 blkno) |
| { |
| u64 blk_end = le64_to_cpu(ext->e_blkno); |
| |
| blk_end += ocfs2_clusters_to_blocks(sb, |
| le16_to_cpu(ext->e_leaf_clusters)); |
| |
| return blkno == blk_end; |
| } |
| |
| static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, |
| struct ocfs2_extent_rec *right) |
| { |
| u32 left_range; |
| |
| left_range = le32_to_cpu(left->e_cpos) + |
| le16_to_cpu(left->e_leaf_clusters); |
| |
| return (left_range == le32_to_cpu(right->e_cpos)); |
| } |
| |
| static enum ocfs2_contig_type |
| ocfs2_extent_contig(struct inode *inode, |
| struct ocfs2_extent_rec *ext, |
| struct ocfs2_extent_rec *insert_rec) |
| { |
| u64 blkno = le64_to_cpu(insert_rec->e_blkno); |
| |
| /* |
| * Refuse to coalesce extent records with different flag |
| * fields - we don't want to mix unwritten extents with user |
| * data. |
| */ |
| if (ext->e_flags != insert_rec->e_flags) |
| return CONTIG_NONE; |
| |
| if (ocfs2_extents_adjacent(ext, insert_rec) && |
| ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) |
| return CONTIG_RIGHT; |
| |
| blkno = le64_to_cpu(ext->e_blkno); |
| if (ocfs2_extents_adjacent(insert_rec, ext) && |
| ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) |
| return CONTIG_LEFT; |
| |
| return CONTIG_NONE; |
| } |
| |
| /* |
| * NOTE: We can have pretty much any combination of contiguousness and |
| * appending. |
| * |
| * The usefulness of APPEND_TAIL is more in that it lets us know that |
| * we'll have to update the path to that leaf. |
| */ |
| enum ocfs2_append_type { |
| APPEND_NONE = 0, |
| APPEND_TAIL, |
| }; |
| |
| enum ocfs2_split_type { |
| SPLIT_NONE = 0, |
| SPLIT_LEFT, |
| SPLIT_RIGHT, |
| }; |
| |
| struct ocfs2_insert_type { |
| enum ocfs2_split_type ins_split; |
| enum ocfs2_append_type ins_appending; |
| enum ocfs2_contig_type ins_contig; |
| int ins_contig_index; |
| int ins_tree_depth; |
| }; |
| |
| struct ocfs2_merge_ctxt { |
| enum ocfs2_contig_type c_contig_type; |
| int c_has_empty_extent; |
| int c_split_covers_rec; |
| }; |
| |
| /* |
| * How many free extents have we got before we need more meta data? |
| */ |
| int ocfs2_num_free_extents(struct ocfs2_super *osb, |
| struct inode *inode, |
| struct ocfs2_dinode *fe) |
| { |
| int retval; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_extent_block *eb; |
| struct buffer_head *eb_bh = NULL; |
| |
| mlog_entry_void(); |
| |
| if (!OCFS2_IS_VALID_DINODE(fe)) { |
| OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); |
| retval = -EIO; |
| goto bail; |
| } |
| |
| if (fe->i_last_eb_blk) { |
| retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), |
| &eb_bh, OCFS2_BH_CACHED, inode); |
| if (retval < 0) { |
| mlog_errno(retval); |
| goto bail; |
| } |
| eb = (struct ocfs2_extent_block *) eb_bh->b_data; |
| el = &eb->h_list; |
| } else |
| el = &fe->id2.i_list; |
| |
| BUG_ON(el->l_tree_depth != 0); |
| |
| retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); |
| bail: |
| if (eb_bh) |
| brelse(eb_bh); |
| |
| mlog_exit(retval); |
| return retval; |
| } |
| |
| /* expects array to already be allocated |
| * |
| * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and |
| * l_count for you |
| */ |
| static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, |
| handle_t *handle, |
| struct inode *inode, |
| int wanted, |
| struct ocfs2_alloc_context *meta_ac, |
| struct buffer_head *bhs[]) |
| { |
| int count, status, i; |
| u16 suballoc_bit_start; |
| u32 num_got; |
| u64 first_blkno; |
| struct ocfs2_extent_block *eb; |
| |
| mlog_entry_void(); |
| |
| count = 0; |
| while (count < wanted) { |
| status = ocfs2_claim_metadata(osb, |
| handle, |
| meta_ac, |
| wanted - count, |
| &suballoc_bit_start, |
| &num_got, |
| &first_blkno); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| for(i = count; i < (num_got + count); i++) { |
| bhs[i] = sb_getblk(osb->sb, first_blkno); |
| if (bhs[i] == NULL) { |
| status = -EIO; |
| mlog_errno(status); |
| goto bail; |
| } |
| ocfs2_set_new_buffer_uptodate(inode, bhs[i]); |
| |
| status = ocfs2_journal_access(handle, inode, bhs[i], |
| OCFS2_JOURNAL_ACCESS_CREATE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); |
| eb = (struct ocfs2_extent_block *) bhs[i]->b_data; |
| /* Ok, setup the minimal stuff here. */ |
| strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); |
| eb->h_blkno = cpu_to_le64(first_blkno); |
| eb->h_fs_generation = cpu_to_le32(osb->fs_generation); |
| eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); |
| eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); |
| eb->h_list.l_count = |
| cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); |
| |
| suballoc_bit_start++; |
| first_blkno++; |
| |
| /* We'll also be dirtied by the caller, so |
| * this isn't absolutely necessary. */ |
| status = ocfs2_journal_dirty(handle, bhs[i]); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| |
| count += num_got; |
| } |
| |
| status = 0; |
| bail: |
| if (status < 0) { |
| for(i = 0; i < wanted; i++) { |
| if (bhs[i]) |
| brelse(bhs[i]); |
| bhs[i] = NULL; |
| } |
| } |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* |
| * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). |
| * |
| * Returns the sum of the rightmost extent rec logical offset and |
| * cluster count. |
| * |
| * ocfs2_add_branch() uses this to determine what logical cluster |
| * value should be populated into the leftmost new branch records. |
| * |
| * ocfs2_shift_tree_depth() uses this to determine the # clusters |
| * value for the new topmost tree record. |
| */ |
| static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) |
| { |
| int i; |
| |
| i = le16_to_cpu(el->l_next_free_rec) - 1; |
| |
| return le32_to_cpu(el->l_recs[i].e_cpos) + |
| ocfs2_rec_clusters(el, &el->l_recs[i]); |
| } |
| |
| /* |
| * Add an entire tree branch to our inode. eb_bh is the extent block |
| * to start at, if we don't want to start the branch at the dinode |
| * structure. |
| * |
| * last_eb_bh is required as we have to update it's next_leaf pointer |
| * for the new last extent block. |
| * |
| * the new branch will be 'empty' in the sense that every block will |
| * contain a single record with cluster count == 0. |
| */ |
| static int ocfs2_add_branch(struct ocfs2_super *osb, |
| handle_t *handle, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| struct buffer_head *eb_bh, |
| struct buffer_head **last_eb_bh, |
| struct ocfs2_alloc_context *meta_ac) |
| { |
| int status, new_blocks, i; |
| u64 next_blkno, new_last_eb_blk; |
| struct buffer_head *bh; |
| struct buffer_head **new_eb_bhs = NULL; |
| struct ocfs2_dinode *fe; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *eb_el; |
| struct ocfs2_extent_list *el; |
| u32 new_cpos; |
| |
| mlog_entry_void(); |
| |
| BUG_ON(!last_eb_bh || !*last_eb_bh); |
| |
| fe = (struct ocfs2_dinode *) fe_bh->b_data; |
| |
| if (eb_bh) { |
| eb = (struct ocfs2_extent_block *) eb_bh->b_data; |
| el = &eb->h_list; |
| } else |
| el = &fe->id2.i_list; |
| |
| /* we never add a branch to a leaf. */ |
| BUG_ON(!el->l_tree_depth); |
| |
| new_blocks = le16_to_cpu(el->l_tree_depth); |
| |
| /* allocate the number of new eb blocks we need */ |
| new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), |
| GFP_KERNEL); |
| if (!new_eb_bhs) { |
| status = -ENOMEM; |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, |
| meta_ac, new_eb_bhs); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; |
| new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); |
| |
| /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be |
| * linked with the rest of the tree. |
| * conversly, new_eb_bhs[0] is the new bottommost leaf. |
| * |
| * when we leave the loop, new_last_eb_blk will point to the |
| * newest leaf, and next_blkno will point to the topmost extent |
| * block. */ |
| next_blkno = new_last_eb_blk = 0; |
| for(i = 0; i < new_blocks; i++) { |
| bh = new_eb_bhs[i]; |
| eb = (struct ocfs2_extent_block *) bh->b_data; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| status = -EIO; |
| goto bail; |
| } |
| eb_el = &eb->h_list; |
| |
| status = ocfs2_journal_access(handle, inode, bh, |
| OCFS2_JOURNAL_ACCESS_CREATE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| eb->h_next_leaf_blk = 0; |
| eb_el->l_tree_depth = cpu_to_le16(i); |
| eb_el->l_next_free_rec = cpu_to_le16(1); |
| /* |
| * This actually counts as an empty extent as |
| * c_clusters == 0 |
| */ |
| eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); |
| eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); |
| /* |
| * eb_el isn't always an interior node, but even leaf |
| * nodes want a zero'd flags and reserved field so |
| * this gets the whole 32 bits regardless of use. |
| */ |
| eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); |
| if (!eb_el->l_tree_depth) |
| new_last_eb_blk = le64_to_cpu(eb->h_blkno); |
| |
| status = ocfs2_journal_dirty(handle, bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| next_blkno = le64_to_cpu(eb->h_blkno); |
| } |
| |
| /* This is a bit hairy. We want to update up to three blocks |
| * here without leaving any of them in an inconsistent state |
| * in case of error. We don't have to worry about |
| * journal_dirty erroring as it won't unless we've aborted the |
| * handle (in which case we would never be here) so reserving |
| * the write with journal_access is all we need to do. */ |
| status = ocfs2_journal_access(handle, inode, *last_eb_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| status = ocfs2_journal_access(handle, inode, fe_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| if (eb_bh) { |
| status = ocfs2_journal_access(handle, inode, eb_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| |
| /* Link the new branch into the rest of the tree (el will |
| * either be on the fe, or the extent block passed in. */ |
| i = le16_to_cpu(el->l_next_free_rec); |
| el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); |
| el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); |
| el->l_recs[i].e_int_clusters = 0; |
| le16_add_cpu(&el->l_next_free_rec, 1); |
| |
| /* fe needs a new last extent block pointer, as does the |
| * next_leaf on the previously last-extent-block. */ |
| fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); |
| |
| eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; |
| eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); |
| |
| status = ocfs2_journal_dirty(handle, *last_eb_bh); |
| if (status < 0) |
| mlog_errno(status); |
| status = ocfs2_journal_dirty(handle, fe_bh); |
| if (status < 0) |
| mlog_errno(status); |
| if (eb_bh) { |
| status = ocfs2_journal_dirty(handle, eb_bh); |
| if (status < 0) |
| mlog_errno(status); |
| } |
| |
| /* |
| * Some callers want to track the rightmost leaf so pass it |
| * back here. |
| */ |
| brelse(*last_eb_bh); |
| get_bh(new_eb_bhs[0]); |
| *last_eb_bh = new_eb_bhs[0]; |
| |
| status = 0; |
| bail: |
| if (new_eb_bhs) { |
| for (i = 0; i < new_blocks; i++) |
| if (new_eb_bhs[i]) |
| brelse(new_eb_bhs[i]); |
| kfree(new_eb_bhs); |
| } |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* |
| * adds another level to the allocation tree. |
| * returns back the new extent block so you can add a branch to it |
| * after this call. |
| */ |
| static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, |
| handle_t *handle, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| struct ocfs2_alloc_context *meta_ac, |
| struct buffer_head **ret_new_eb_bh) |
| { |
| int status, i; |
| u32 new_clusters; |
| struct buffer_head *new_eb_bh = NULL; |
| struct ocfs2_dinode *fe; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *fe_el; |
| struct ocfs2_extent_list *eb_el; |
| |
| mlog_entry_void(); |
| |
| status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, |
| &new_eb_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| status = -EIO; |
| goto bail; |
| } |
| |
| eb_el = &eb->h_list; |
| fe = (struct ocfs2_dinode *) fe_bh->b_data; |
| fe_el = &fe->id2.i_list; |
| |
| status = ocfs2_journal_access(handle, inode, new_eb_bh, |
| OCFS2_JOURNAL_ACCESS_CREATE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| /* copy the fe data into the new extent block */ |
| eb_el->l_tree_depth = fe_el->l_tree_depth; |
| eb_el->l_next_free_rec = fe_el->l_next_free_rec; |
| for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) |
| eb_el->l_recs[i] = fe_el->l_recs[i]; |
| |
| status = ocfs2_journal_dirty(handle, new_eb_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| status = ocfs2_journal_access(handle, inode, fe_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| new_clusters = ocfs2_sum_rightmost_rec(eb_el); |
| |
| /* update fe now */ |
| le16_add_cpu(&fe_el->l_tree_depth, 1); |
| fe_el->l_recs[0].e_cpos = 0; |
| fe_el->l_recs[0].e_blkno = eb->h_blkno; |
| fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); |
| for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) |
| memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); |
| fe_el->l_next_free_rec = cpu_to_le16(1); |
| |
| /* If this is our 1st tree depth shift, then last_eb_blk |
| * becomes the allocated extent block */ |
| if (fe_el->l_tree_depth == cpu_to_le16(1)) |
| fe->i_last_eb_blk = eb->h_blkno; |
| |
| status = ocfs2_journal_dirty(handle, fe_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| *ret_new_eb_bh = new_eb_bh; |
| new_eb_bh = NULL; |
| status = 0; |
| bail: |
| if (new_eb_bh) |
| brelse(new_eb_bh); |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* |
| * Should only be called when there is no space left in any of the |
| * leaf nodes. What we want to do is find the lowest tree depth |
| * non-leaf extent block with room for new records. There are three |
| * valid results of this search: |
| * |
| * 1) a lowest extent block is found, then we pass it back in |
| * *lowest_eb_bh and return '0' |
| * |
| * 2) the search fails to find anything, but the dinode has room. We |
| * pass NULL back in *lowest_eb_bh, but still return '0' |
| * |
| * 3) the search fails to find anything AND the dinode is full, in |
| * which case we return > 0 |
| * |
| * return status < 0 indicates an error. |
| */ |
| static int ocfs2_find_branch_target(struct ocfs2_super *osb, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| struct buffer_head **target_bh) |
| { |
| int status = 0, i; |
| u64 blkno; |
| struct ocfs2_dinode *fe; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| struct buffer_head *bh = NULL; |
| struct buffer_head *lowest_bh = NULL; |
| |
| mlog_entry_void(); |
| |
| *target_bh = NULL; |
| |
| fe = (struct ocfs2_dinode *) fe_bh->b_data; |
| el = &fe->id2.i_list; |
| |
| while(le16_to_cpu(el->l_tree_depth) > 1) { |
| if (le16_to_cpu(el->l_next_free_rec) == 0) { |
| ocfs2_error(inode->i_sb, "Dinode %llu has empty " |
| "extent list (next_free_rec == 0)", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| status = -EIO; |
| goto bail; |
| } |
| i = le16_to_cpu(el->l_next_free_rec) - 1; |
| blkno = le64_to_cpu(el->l_recs[i].e_blkno); |
| if (!blkno) { |
| ocfs2_error(inode->i_sb, "Dinode %llu has extent " |
| "list where extent # %d has no physical " |
| "block start", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, i); |
| status = -EIO; |
| goto bail; |
| } |
| |
| if (bh) { |
| brelse(bh); |
| bh = NULL; |
| } |
| |
| status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, |
| inode); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| eb = (struct ocfs2_extent_block *) bh->b_data; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| status = -EIO; |
| goto bail; |
| } |
| el = &eb->h_list; |
| |
| if (le16_to_cpu(el->l_next_free_rec) < |
| le16_to_cpu(el->l_count)) { |
| if (lowest_bh) |
| brelse(lowest_bh); |
| lowest_bh = bh; |
| get_bh(lowest_bh); |
| } |
| } |
| |
| /* If we didn't find one and the fe doesn't have any room, |
| * then return '1' */ |
| if (!lowest_bh |
| && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) |
| status = 1; |
| |
| *target_bh = lowest_bh; |
| bail: |
| if (bh) |
| brelse(bh); |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* |
| * Grow a b-tree so that it has more records. |
| * |
| * We might shift the tree depth in which case existing paths should |
| * be considered invalid. |
| * |
| * Tree depth after the grow is returned via *final_depth. |
| * |
| * *last_eb_bh will be updated by ocfs2_add_branch(). |
| */ |
| static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, |
| struct buffer_head *di_bh, int *final_depth, |
| struct buffer_head **last_eb_bh, |
| struct ocfs2_alloc_context *meta_ac) |
| { |
| int ret, shift; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| int depth = le16_to_cpu(di->id2.i_list.l_tree_depth); |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| struct buffer_head *bh = NULL; |
| |
| BUG_ON(meta_ac == NULL); |
| |
| shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh); |
| if (shift < 0) { |
| ret = shift; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* We traveled all the way to the bottom of the allocation tree |
| * and didn't find room for any more extents - we need to add |
| * another tree level */ |
| if (shift) { |
| BUG_ON(bh); |
| mlog(0, "need to shift tree depth (current = %d)\n", depth); |
| |
| /* ocfs2_shift_tree_depth will return us a buffer with |
| * the new extent block (so we can pass that to |
| * ocfs2_add_branch). */ |
| ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh, |
| meta_ac, &bh); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| depth++; |
| if (depth == 1) { |
| /* |
| * Special case: we have room now if we shifted from |
| * tree_depth 0, so no more work needs to be done. |
| * |
| * We won't be calling add_branch, so pass |
| * back *last_eb_bh as the new leaf. At depth |
| * zero, it should always be null so there's |
| * no reason to brelse. |
| */ |
| BUG_ON(*last_eb_bh); |
| get_bh(bh); |
| *last_eb_bh = bh; |
| goto out; |
| } |
| } |
| |
| /* call ocfs2_add_branch to add the final part of the tree with |
| * the new data. */ |
| mlog(0, "add branch. bh = %p\n", bh); |
| ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh, |
| meta_ac); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| out: |
| if (final_depth) |
| *final_depth = depth; |
| brelse(bh); |
| return ret; |
| } |
| |
| /* |
| * This is only valid for leaf nodes, which are the only ones that can |
| * have empty extents anyway. |
| */ |
| static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) |
| { |
| return !rec->e_leaf_clusters; |
| } |
| |
| /* |
| * This function will discard the rightmost extent record. |
| */ |
| static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) |
| { |
| int next_free = le16_to_cpu(el->l_next_free_rec); |
| int count = le16_to_cpu(el->l_count); |
| unsigned int num_bytes; |
| |
| BUG_ON(!next_free); |
| /* This will cause us to go off the end of our extent list. */ |
| BUG_ON(next_free >= count); |
| |
| num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; |
| |
| memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); |
| } |
| |
| static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, |
| struct ocfs2_extent_rec *insert_rec) |
| { |
| int i, insert_index, next_free, has_empty, num_bytes; |
| u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); |
| struct ocfs2_extent_rec *rec; |
| |
| next_free = le16_to_cpu(el->l_next_free_rec); |
| has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); |
| |
| BUG_ON(!next_free); |
| |
| /* The tree code before us didn't allow enough room in the leaf. */ |
| if (el->l_next_free_rec == el->l_count && !has_empty) |
| BUG(); |
| |
| /* |
| * The easiest way to approach this is to just remove the |
| * empty extent and temporarily decrement next_free. |
| */ |
| if (has_empty) { |
| /* |
| * If next_free was 1 (only an empty extent), this |
| * loop won't execute, which is fine. We still want |
| * the decrement above to happen. |
| */ |
| for(i = 0; i < (next_free - 1); i++) |
| el->l_recs[i] = el->l_recs[i+1]; |
| |
| next_free--; |
| } |
| |
| /* |
| * Figure out what the new record index should be. |
| */ |
| for(i = 0; i < next_free; i++) { |
| rec = &el->l_recs[i]; |
| |
| if (insert_cpos < le32_to_cpu(rec->e_cpos)) |
| break; |
| } |
| insert_index = i; |
| |
| mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", |
| insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); |
| |
| BUG_ON(insert_index < 0); |
| BUG_ON(insert_index >= le16_to_cpu(el->l_count)); |
| BUG_ON(insert_index > next_free); |
| |
| /* |
| * No need to memmove if we're just adding to the tail. |
| */ |
| if (insert_index != next_free) { |
| BUG_ON(next_free >= le16_to_cpu(el->l_count)); |
| |
| num_bytes = next_free - insert_index; |
| num_bytes *= sizeof(struct ocfs2_extent_rec); |
| memmove(&el->l_recs[insert_index + 1], |
| &el->l_recs[insert_index], |
| num_bytes); |
| } |
| |
| /* |
| * Either we had an empty extent, and need to re-increment or |
| * there was no empty extent on a non full rightmost leaf node, |
| * in which case we still need to increment. |
| */ |
| next_free++; |
| el->l_next_free_rec = cpu_to_le16(next_free); |
| /* |
| * Make sure none of the math above just messed up our tree. |
| */ |
| BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); |
| |
| el->l_recs[insert_index] = *insert_rec; |
| |
| } |
| |
| static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) |
| { |
| int size, num_recs = le16_to_cpu(el->l_next_free_rec); |
| |
| BUG_ON(num_recs == 0); |
| |
| if (ocfs2_is_empty_extent(&el->l_recs[0])) { |
| num_recs--; |
| size = num_recs * sizeof(struct ocfs2_extent_rec); |
| memmove(&el->l_recs[0], &el->l_recs[1], size); |
| memset(&el->l_recs[num_recs], 0, |
| sizeof(struct ocfs2_extent_rec)); |
| el->l_next_free_rec = cpu_to_le16(num_recs); |
| } |
| } |
| |
| /* |
| * Create an empty extent record . |
| * |
| * l_next_free_rec may be updated. |
| * |
| * If an empty extent already exists do nothing. |
| */ |
| static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) |
| { |
| int next_free = le16_to_cpu(el->l_next_free_rec); |
| |
| BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); |
| |
| if (next_free == 0) |
| goto set_and_inc; |
| |
| if (ocfs2_is_empty_extent(&el->l_recs[0])) |
| return; |
| |
| mlog_bug_on_msg(el->l_count == el->l_next_free_rec, |
| "Asked to create an empty extent in a full list:\n" |
| "count = %u, tree depth = %u", |
| le16_to_cpu(el->l_count), |
| le16_to_cpu(el->l_tree_depth)); |
| |
| ocfs2_shift_records_right(el); |
| |
| set_and_inc: |
| le16_add_cpu(&el->l_next_free_rec, 1); |
| memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); |
| } |
| |
| /* |
| * For a rotation which involves two leaf nodes, the "root node" is |
| * the lowest level tree node which contains a path to both leafs. This |
| * resulting set of information can be used to form a complete "subtree" |
| * |
| * This function is passed two full paths from the dinode down to a |
| * pair of adjacent leaves. It's task is to figure out which path |
| * index contains the subtree root - this can be the root index itself |
| * in a worst-case rotation. |
| * |
| * The array index of the subtree root is passed back. |
| */ |
| static int ocfs2_find_subtree_root(struct inode *inode, |
| struct ocfs2_path *left, |
| struct ocfs2_path *right) |
| { |
| int i = 0; |
| |
| /* |
| * Check that the caller passed in two paths from the same tree. |
| */ |
| BUG_ON(path_root_bh(left) != path_root_bh(right)); |
| |
| do { |
| i++; |
| |
| /* |
| * The caller didn't pass two adjacent paths. |
| */ |
| mlog_bug_on_msg(i > left->p_tree_depth, |
| "Inode %lu, left depth %u, right depth %u\n" |
| "left leaf blk %llu, right leaf blk %llu\n", |
| inode->i_ino, left->p_tree_depth, |
| right->p_tree_depth, |
| (unsigned long long)path_leaf_bh(left)->b_blocknr, |
| (unsigned long long)path_leaf_bh(right)->b_blocknr); |
| } while (left->p_node[i].bh->b_blocknr == |
| right->p_node[i].bh->b_blocknr); |
| |
| return i - 1; |
| } |
| |
| typedef void (path_insert_t)(void *, struct buffer_head *); |
| |
| /* |
| * Traverse a btree path in search of cpos, starting at root_el. |
| * |
| * This code can be called with a cpos larger than the tree, in which |
| * case it will return the rightmost path. |
| */ |
| static int __ocfs2_find_path(struct inode *inode, |
| struct ocfs2_extent_list *root_el, u32 cpos, |
| path_insert_t *func, void *data) |
| { |
| int i, ret = 0; |
| u32 range; |
| u64 blkno; |
| struct buffer_head *bh = NULL; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_extent_rec *rec; |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| |
| el = root_el; |
| while (el->l_tree_depth) { |
| if (le16_to_cpu(el->l_next_free_rec) == 0) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has empty extent list at " |
| "depth %u\n", |
| (unsigned long long)oi->ip_blkno, |
| le16_to_cpu(el->l_tree_depth)); |
| ret = -EROFS; |
| goto out; |
| |
| } |
| |
| for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { |
| rec = &el->l_recs[i]; |
| |
| /* |
| * In the case that cpos is off the allocation |
| * tree, this should just wind up returning the |
| * rightmost record. |
| */ |
| range = le32_to_cpu(rec->e_cpos) + |
| ocfs2_rec_clusters(el, rec); |
| if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) |
| break; |
| } |
| |
| blkno = le64_to_cpu(el->l_recs[i].e_blkno); |
| if (blkno == 0) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has bad blkno in extent list " |
| "at depth %u (index %d)\n", |
| (unsigned long long)oi->ip_blkno, |
| le16_to_cpu(el->l_tree_depth), i); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| brelse(bh); |
| bh = NULL; |
| ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, |
| &bh, OCFS2_BH_CACHED, inode); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| eb = (struct ocfs2_extent_block *) bh->b_data; |
| el = &eb->h_list; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (le16_to_cpu(el->l_next_free_rec) > |
| le16_to_cpu(el->l_count)) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has bad count in extent list " |
| "at block %llu (next free=%u, count=%u)\n", |
| (unsigned long long)oi->ip_blkno, |
| (unsigned long long)bh->b_blocknr, |
| le16_to_cpu(el->l_next_free_rec), |
| le16_to_cpu(el->l_count)); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| if (func) |
| func(data, bh); |
| } |
| |
| out: |
| /* |
| * Catch any trailing bh that the loop didn't handle. |
| */ |
| brelse(bh); |
| |
| return ret; |
| } |
| |
| /* |
| * Given an initialized path (that is, it has a valid root extent |
| * list), this function will traverse the btree in search of the path |
| * which would contain cpos. |
| * |
| * The path traveled is recorded in the path structure. |
| * |
| * Note that this will not do any comparisons on leaf node extent |
| * records, so it will work fine in the case that we just added a tree |
| * branch. |
| */ |
| struct find_path_data { |
| int index; |
| struct ocfs2_path *path; |
| }; |
| static void find_path_ins(void *data, struct buffer_head *bh) |
| { |
| struct find_path_data *fp = data; |
| |
| get_bh(bh); |
| ocfs2_path_insert_eb(fp->path, fp->index, bh); |
| fp->index++; |
| } |
| static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, |
| u32 cpos) |
| { |
| struct find_path_data data; |
| |
| data.index = 1; |
| data.path = path; |
| return __ocfs2_find_path(inode, path_root_el(path), cpos, |
| find_path_ins, &data); |
| } |
| |
| static void find_leaf_ins(void *data, struct buffer_head *bh) |
| { |
| struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; |
| struct ocfs2_extent_list *el = &eb->h_list; |
| struct buffer_head **ret = data; |
| |
| /* We want to retain only the leaf block. */ |
| if (le16_to_cpu(el->l_tree_depth) == 0) { |
| get_bh(bh); |
| *ret = bh; |
| } |
| } |
| /* |
| * Find the leaf block in the tree which would contain cpos. No |
| * checking of the actual leaf is done. |
| * |
| * Some paths want to call this instead of allocating a path structure |
| * and calling ocfs2_find_path(). |
| * |
| * This function doesn't handle non btree extent lists. |
| */ |
| int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, |
| u32 cpos, struct buffer_head **leaf_bh) |
| { |
| int ret; |
| struct buffer_head *bh = NULL; |
| |
| ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| *leaf_bh = bh; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. |
| * |
| * Basically, we've moved stuff around at the bottom of the tree and |
| * we need to fix up the extent records above the changes to reflect |
| * the new changes. |
| * |
| * left_rec: the record on the left. |
| * left_child_el: is the child list pointed to by left_rec |
| * right_rec: the record to the right of left_rec |
| * right_child_el: is the child list pointed to by right_rec |
| * |
| * By definition, this only works on interior nodes. |
| */ |
| static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, |
| struct ocfs2_extent_list *left_child_el, |
| struct ocfs2_extent_rec *right_rec, |
| struct ocfs2_extent_list *right_child_el) |
| { |
| u32 left_clusters, right_end; |
| |
| /* |
| * Interior nodes never have holes. Their cpos is the cpos of |
| * the leftmost record in their child list. Their cluster |
| * count covers the full theoretical range of their child list |
| * - the range between their cpos and the cpos of the record |
| * immediately to their right. |
| */ |
| left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); |
| if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { |
| BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); |
| left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); |
| } |
| left_clusters -= le32_to_cpu(left_rec->e_cpos); |
| left_rec->e_int_clusters = cpu_to_le32(left_clusters); |
| |
| /* |
| * Calculate the rightmost cluster count boundary before |
| * moving cpos - we will need to adjust clusters after |
| * updating e_cpos to keep the same highest cluster count. |
| */ |
| right_end = le32_to_cpu(right_rec->e_cpos); |
| right_end += le32_to_cpu(right_rec->e_int_clusters); |
| |
| right_rec->e_cpos = left_rec->e_cpos; |
| le32_add_cpu(&right_rec->e_cpos, left_clusters); |
| |
| right_end -= le32_to_cpu(right_rec->e_cpos); |
| right_rec->e_int_clusters = cpu_to_le32(right_end); |
| } |
| |
| /* |
| * Adjust the adjacent root node records involved in a |
| * rotation. left_el_blkno is passed in as a key so that we can easily |
| * find it's index in the root list. |
| */ |
| static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, |
| struct ocfs2_extent_list *left_el, |
| struct ocfs2_extent_list *right_el, |
| u64 left_el_blkno) |
| { |
| int i; |
| |
| BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= |
| le16_to_cpu(left_el->l_tree_depth)); |
| |
| for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { |
| if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) |
| break; |
| } |
| |
| /* |
| * The path walking code should have never returned a root and |
| * two paths which are not adjacent. |
| */ |
| BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); |
| |
| ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, |
| &root_el->l_recs[i + 1], right_el); |
| } |
| |
| /* |
| * We've changed a leaf block (in right_path) and need to reflect that |
| * change back up the subtree. |
| * |
| * This happens in multiple places: |
| * - When we've moved an extent record from the left path leaf to the right |
| * path leaf to make room for an empty extent in the left path leaf. |
| * - When our insert into the right path leaf is at the leftmost edge |
| * and requires an update of the path immediately to it's left. This |
| * can occur at the end of some types of rotation and appending inserts. |
| */ |
| static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *left_path, |
| struct ocfs2_path *right_path, |
| int subtree_index) |
| { |
| int ret, i, idx; |
| struct ocfs2_extent_list *el, *left_el, *right_el; |
| struct ocfs2_extent_rec *left_rec, *right_rec; |
| struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; |
| |
| /* |
| * Update the counts and position values within all the |
| * interior nodes to reflect the leaf rotation we just did. |
| * |
| * The root node is handled below the loop. |
| * |
| * We begin the loop with right_el and left_el pointing to the |
| * leaf lists and work our way up. |
| * |
| * NOTE: within this loop, left_el and right_el always refer |
| * to the *child* lists. |
| */ |
| left_el = path_leaf_el(left_path); |
| right_el = path_leaf_el(right_path); |
| for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { |
| mlog(0, "Adjust records at index %u\n", i); |
| |
| /* |
| * One nice property of knowing that all of these |
| * nodes are below the root is that we only deal with |
| * the leftmost right node record and the rightmost |
| * left node record. |
| */ |
| el = left_path->p_node[i].el; |
| idx = le16_to_cpu(left_el->l_next_free_rec) - 1; |
| left_rec = &el->l_recs[idx]; |
| |
| el = right_path->p_node[i].el; |
| right_rec = &el->l_recs[0]; |
| |
| ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, |
| right_el); |
| |
| ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| /* |
| * Setup our list pointers now so that the current |
| * parents become children in the next iteration. |
| */ |
| left_el = left_path->p_node[i].el; |
| right_el = right_path->p_node[i].el; |
| } |
| |
| /* |
| * At the root node, adjust the two adjacent records which |
| * begin our path to the leaves. |
| */ |
| |
| el = left_path->p_node[subtree_index].el; |
| left_el = left_path->p_node[subtree_index + 1].el; |
| right_el = right_path->p_node[subtree_index + 1].el; |
| |
| ocfs2_adjust_root_records(el, left_el, right_el, |
| left_path->p_node[subtree_index + 1].bh->b_blocknr); |
| |
| root_bh = left_path->p_node[subtree_index].bh; |
| |
| ret = ocfs2_journal_dirty(handle, root_bh); |
| if (ret) |
| mlog_errno(ret); |
| } |
| |
| static int ocfs2_rotate_subtree_right(struct inode *inode, |
| handle_t *handle, |
| struct ocfs2_path *left_path, |
| struct ocfs2_path *right_path, |
| int subtree_index) |
| { |
| int ret, i; |
| struct buffer_head *right_leaf_bh; |
| struct buffer_head *left_leaf_bh = NULL; |
| struct buffer_head *root_bh; |
| struct ocfs2_extent_list *right_el, *left_el; |
| struct ocfs2_extent_rec move_rec; |
| |
| left_leaf_bh = path_leaf_bh(left_path); |
| left_el = path_leaf_el(left_path); |
| |
| if (left_el->l_next_free_rec != left_el->l_count) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has non-full interior leaf node %llu" |
| "(next free = %u)", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)left_leaf_bh->b_blocknr, |
| le16_to_cpu(left_el->l_next_free_rec)); |
| return -EROFS; |
| } |
| |
| /* |
| * This extent block may already have an empty record, so we |
| * return early if so. |
| */ |
| if (ocfs2_is_empty_extent(&left_el->l_recs[0])) |
| return 0; |
| |
| root_bh = left_path->p_node[subtree_index].bh; |
| BUG_ON(root_bh != right_path->p_node[subtree_index].bh); |
| |
| ret = ocfs2_journal_access(handle, inode, root_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| for(i = subtree_index + 1; i < path_num_items(right_path); i++) { |
| ret = ocfs2_journal_access(handle, inode, |
| right_path->p_node[i].bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access(handle, inode, |
| left_path->p_node[i].bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| right_leaf_bh = path_leaf_bh(right_path); |
| right_el = path_leaf_el(right_path); |
| |
| /* This is a code error, not a disk corruption. */ |
| mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " |
| "because rightmost leaf block %llu is empty\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)right_leaf_bh->b_blocknr); |
| |
| ocfs2_create_empty_extent(right_el); |
| |
| ret = ocfs2_journal_dirty(handle, right_leaf_bh); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* Do the copy now. */ |
| i = le16_to_cpu(left_el->l_next_free_rec) - 1; |
| move_rec = left_el->l_recs[i]; |
| right_el->l_recs[0] = move_rec; |
| |
| /* |
| * Clear out the record we just copied and shift everything |
| * over, leaving an empty extent in the left leaf. |
| * |
| * We temporarily subtract from next_free_rec so that the |
| * shift will lose the tail record (which is now defunct). |
| */ |
| le16_add_cpu(&left_el->l_next_free_rec, -1); |
| ocfs2_shift_records_right(left_el); |
| memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); |
| le16_add_cpu(&left_el->l_next_free_rec, 1); |
| |
| ret = ocfs2_journal_dirty(handle, left_leaf_bh); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_complete_edge_insert(inode, handle, left_path, right_path, |
| subtree_index); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Given a full path, determine what cpos value would return us a path |
| * containing the leaf immediately to the left of the current one. |
| * |
| * Will return zero if the path passed in is already the leftmost path. |
| */ |
| static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, |
| struct ocfs2_path *path, u32 *cpos) |
| { |
| int i, j, ret = 0; |
| u64 blkno; |
| struct ocfs2_extent_list *el; |
| |
| BUG_ON(path->p_tree_depth == 0); |
| |
| *cpos = 0; |
| |
| blkno = path_leaf_bh(path)->b_blocknr; |
| |
| /* Start at the tree node just above the leaf and work our way up. */ |
| i = path->p_tree_depth - 1; |
| while (i >= 0) { |
| el = path->p_node[i].el; |
| |
| /* |
| * Find the extent record just before the one in our |
| * path. |
| */ |
| for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { |
| if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { |
| if (j == 0) { |
| if (i == 0) { |
| /* |
| * We've determined that the |
| * path specified is already |
| * the leftmost one - return a |
| * cpos of zero. |
| */ |
| goto out; |
| } |
| /* |
| * The leftmost record points to our |
| * leaf - we need to travel up the |
| * tree one level. |
| */ |
| goto next_node; |
| } |
| |
| *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); |
| *cpos = *cpos + ocfs2_rec_clusters(el, |
| &el->l_recs[j - 1]); |
| *cpos = *cpos - 1; |
| goto out; |
| } |
| } |
| |
| /* |
| * If we got here, we never found a valid node where |
| * the tree indicated one should be. |
| */ |
| ocfs2_error(sb, |
| "Invalid extent tree at extent block %llu\n", |
| (unsigned long long)blkno); |
| ret = -EROFS; |
| goto out; |
| |
| next_node: |
| blkno = path->p_node[i].bh->b_blocknr; |
| i--; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Extend the transaction by enough credits to complete the rotation, |
| * and still leave at least the original number of credits allocated |
| * to this transaction. |
| */ |
| static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, |
| int op_credits, |
| struct ocfs2_path *path) |
| { |
| int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; |
| |
| if (handle->h_buffer_credits < credits) |
| return ocfs2_extend_trans(handle, credits); |
| |
| return 0; |
| } |
| |
| /* |
| * Trap the case where we're inserting into the theoretical range past |
| * the _actual_ left leaf range. Otherwise, we'll rotate a record |
| * whose cpos is less than ours into the right leaf. |
| * |
| * It's only necessary to look at the rightmost record of the left |
| * leaf because the logic that calls us should ensure that the |
| * theoretical ranges in the path components above the leaves are |
| * correct. |
| */ |
| static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, |
| u32 insert_cpos) |
| { |
| struct ocfs2_extent_list *left_el; |
| struct ocfs2_extent_rec *rec; |
| int next_free; |
| |
| left_el = path_leaf_el(left_path); |
| next_free = le16_to_cpu(left_el->l_next_free_rec); |
| rec = &left_el->l_recs[next_free - 1]; |
| |
| if (insert_cpos > le32_to_cpu(rec->e_cpos)) |
| return 1; |
| return 0; |
| } |
| |
| static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) |
| { |
| int next_free = le16_to_cpu(el->l_next_free_rec); |
| unsigned int range; |
| struct ocfs2_extent_rec *rec; |
| |
| if (next_free == 0) |
| return 0; |
| |
| rec = &el->l_recs[0]; |
| if (ocfs2_is_empty_extent(rec)) { |
| /* Empty list. */ |
| if (next_free == 1) |
| return 0; |
| rec = &el->l_recs[1]; |
| } |
| |
| range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); |
| if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Rotate all the records in a btree right one record, starting at insert_cpos. |
| * |
| * The path to the rightmost leaf should be passed in. |
| * |
| * The array is assumed to be large enough to hold an entire path (tree depth). |
| * |
| * Upon succesful return from this function: |
| * |
| * - The 'right_path' array will contain a path to the leaf block |
| * whose range contains e_cpos. |
| * - That leaf block will have a single empty extent in list index 0. |
| * - In the case that the rotation requires a post-insert update, |
| * *ret_left_path will contain a valid path which can be passed to |
| * ocfs2_insert_path(). |
| */ |
| static int ocfs2_rotate_tree_right(struct inode *inode, |
| handle_t *handle, |
| enum ocfs2_split_type split, |
| u32 insert_cpos, |
| struct ocfs2_path *right_path, |
| struct ocfs2_path **ret_left_path) |
| { |
| int ret, start, orig_credits = handle->h_buffer_credits; |
| u32 cpos; |
| struct ocfs2_path *left_path = NULL; |
| |
| *ret_left_path = NULL; |
| |
| left_path = ocfs2_new_path(path_root_bh(right_path), |
| path_root_el(right_path)); |
| if (!left_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); |
| |
| /* |
| * What we want to do here is: |
| * |
| * 1) Start with the rightmost path. |
| * |
| * 2) Determine a path to the leaf block directly to the left |
| * of that leaf. |
| * |
| * 3) Determine the 'subtree root' - the lowest level tree node |
| * which contains a path to both leaves. |
| * |
| * 4) Rotate the subtree. |
| * |
| * 5) Find the next subtree by considering the left path to be |
| * the new right path. |
| * |
| * The check at the top of this while loop also accepts |
| * insert_cpos == cpos because cpos is only a _theoretical_ |
| * value to get us the left path - insert_cpos might very well |
| * be filling that hole. |
| * |
| * Stop at a cpos of '0' because we either started at the |
| * leftmost branch (i.e., a tree with one branch and a |
| * rotation inside of it), or we've gone as far as we can in |
| * rotating subtrees. |
| */ |
| while (cpos && insert_cpos <= cpos) { |
| mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", |
| insert_cpos, cpos); |
| |
| ret = ocfs2_find_path(inode, left_path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| mlog_bug_on_msg(path_leaf_bh(left_path) == |
| path_leaf_bh(right_path), |
| "Inode %lu: error during insert of %u " |
| "(left path cpos %u) results in two identical " |
| "paths ending at %llu\n", |
| inode->i_ino, insert_cpos, cpos, |
| (unsigned long long) |
| path_leaf_bh(left_path)->b_blocknr); |
| |
| if (split == SPLIT_NONE && |
| ocfs2_rotate_requires_path_adjustment(left_path, |
| insert_cpos)) { |
| |
| /* |
| * We've rotated the tree as much as we |
| * should. The rest is up to |
| * ocfs2_insert_path() to complete, after the |
| * record insertion. We indicate this |
| * situation by returning the left path. |
| * |
| * The reason we don't adjust the records here |
| * before the record insert is that an error |
| * later might break the rule where a parent |
| * record e_cpos will reflect the actual |
| * e_cpos of the 1st nonempty record of the |
| * child list. |
| */ |
| *ret_left_path = left_path; |
| goto out_ret_path; |
| } |
| |
| start = ocfs2_find_subtree_root(inode, left_path, right_path); |
| |
| mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", |
| start, |
| (unsigned long long) right_path->p_node[start].bh->b_blocknr, |
| right_path->p_tree_depth); |
| |
| ret = ocfs2_extend_rotate_transaction(handle, start, |
| orig_credits, right_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_rotate_subtree_right(inode, handle, left_path, |
| right_path, start); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (split != SPLIT_NONE && |
| ocfs2_leftmost_rec_contains(path_leaf_el(right_path), |
| insert_cpos)) { |
| /* |
| * A rotate moves the rightmost left leaf |
| * record over to the leftmost right leaf |
| * slot. If we're doing an extent split |
| * instead of a real insert, then we have to |
| * check that the extent to be split wasn't |
| * just moved over. If it was, then we can |
| * exit here, passing left_path back - |
| * ocfs2_split_extent() is smart enough to |
| * search both leaves. |
| */ |
| *ret_left_path = left_path; |
| goto out_ret_path; |
| } |
| |
| /* |
| * There is no need to re-read the next right path |
| * as we know that it'll be our current left |
| * path. Optimize by copying values instead. |
| */ |
| ocfs2_mv_path(right_path, left_path); |
| |
| ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, |
| &cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| out: |
| ocfs2_free_path(left_path); |
| |
| out_ret_path: |
| return ret; |
| } |
| |
| static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *path) |
| { |
| int i, idx; |
| struct ocfs2_extent_rec *rec; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_extent_block *eb; |
| u32 range; |
| |
| /* Path should always be rightmost. */ |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; |
| BUG_ON(eb->h_next_leaf_blk != 0ULL); |
| |
| el = &eb->h_list; |
| BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); |
| idx = le16_to_cpu(el->l_next_free_rec) - 1; |
| rec = &el->l_recs[idx]; |
| range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); |
| |
| for (i = 0; i < path->p_tree_depth; i++) { |
| el = path->p_node[i].el; |
| idx = le16_to_cpu(el->l_next_free_rec) - 1; |
| rec = &el->l_recs[idx]; |
| |
| rec->e_int_clusters = cpu_to_le32(range); |
| le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); |
| |
| ocfs2_journal_dirty(handle, path->p_node[i].bh); |
| } |
| } |
| |
| static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, |
| struct ocfs2_cached_dealloc_ctxt *dealloc, |
| struct ocfs2_path *path, int unlink_start) |
| { |
| int ret, i; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| struct buffer_head *bh; |
| |
| for(i = unlink_start; i < path_num_items(path); i++) { |
| bh = path->p_node[i].bh; |
| |
| eb = (struct ocfs2_extent_block *)bh->b_data; |
| /* |
| * Not all nodes might have had their final count |
| * decremented by the caller - handle this here. |
| */ |
| el = &eb->h_list; |
| if (le16_to_cpu(el->l_next_free_rec) > 1) { |
| mlog(ML_ERROR, |
| "Inode %llu, attempted to remove extent block " |
| "%llu with %u records\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)le64_to_cpu(eb->h_blkno), |
| le16_to_cpu(el->l_next_free_rec)); |
| |
| ocfs2_journal_dirty(handle, bh); |
| ocfs2_remove_from_cache(inode, bh); |
| continue; |
| } |
| |
| el->l_next_free_rec = 0; |
| memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); |
| |
| ocfs2_journal_dirty(handle, bh); |
| |
| ret = ocfs2_cache_extent_block_free(dealloc, eb); |
| if (ret) |
| mlog_errno(ret); |
| |
| ocfs2_remove_from_cache(inode, bh); |
| } |
| } |
| |
| static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *left_path, |
| struct ocfs2_path *right_path, |
| int subtree_index, |
| struct ocfs2_cached_dealloc_ctxt *dealloc) |
| { |
| int i; |
| struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; |
| struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_extent_block *eb; |
| |
| el = path_leaf_el(left_path); |
| |
| eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; |
| |
| for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) |
| if (root_el->l_recs[i].e_blkno == eb->h_blkno) |
| break; |
| |
| BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); |
| |
| memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); |
| le16_add_cpu(&root_el->l_next_free_rec, -1); |
| |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; |
| eb->h_next_leaf_blk = 0; |
| |
| ocfs2_journal_dirty(handle, root_bh); |
| ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); |
| |
| ocfs2_unlink_path(inode, handle, dealloc, right_path, |
| subtree_index + 1); |
| } |
| |
| static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *left_path, |
| struct ocfs2_path *right_path, |
| int subtree_index, |
| struct ocfs2_cached_dealloc_ctxt *dealloc, |
| int *deleted) |
| { |
| int ret, i, del_right_subtree = 0, right_has_empty = 0; |
| struct buffer_head *root_bh, *di_bh = path_root_bh(right_path); |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; |
| struct ocfs2_extent_block *eb; |
| |
| *deleted = 0; |
| |
| right_leaf_el = path_leaf_el(right_path); |
| left_leaf_el = path_leaf_el(left_path); |
| root_bh = left_path->p_node[subtree_index].bh; |
| BUG_ON(root_bh != right_path->p_node[subtree_index].bh); |
| |
| if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) |
| return 0; |
| |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; |
| if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { |
| /* |
| * It's legal for us to proceed if the right leaf is |
| * the rightmost one and it has an empty extent. There |
| * are two cases to handle - whether the leaf will be |
| * empty after removal or not. If the leaf isn't empty |
| * then just remove the empty extent up front. The |
| * next block will handle empty leaves by flagging |
| * them for unlink. |
| * |
| * Non rightmost leaves will throw -EAGAIN and the |
| * caller can manually move the subtree and retry. |
| */ |
| |
| if (eb->h_next_leaf_blk != 0ULL) |
| return -EAGAIN; |
| |
| if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { |
| ret = ocfs2_journal_access(handle, inode, |
| path_leaf_bh(right_path), |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_remove_empty_extent(right_leaf_el); |
| } else |
| right_has_empty = 1; |
| } |
| |
| if (eb->h_next_leaf_blk == 0ULL && |
| le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { |
| /* |
| * We have to update i_last_eb_blk during the meta |
| * data delete. |
| */ |
| ret = ocfs2_journal_access(handle, inode, di_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| del_right_subtree = 1; |
| } |
| |
| /* |
| * Getting here with an empty extent in the right path implies |
| * that it's the rightmost path and will be deleted. |
| */ |
| BUG_ON(right_has_empty && !del_right_subtree); |
| |
| ret = ocfs2_journal_access(handle, inode, root_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| for(i = subtree_index + 1; i < path_num_items(right_path); i++) { |
| ret = ocfs2_journal_access(handle, inode, |
| right_path->p_node[i].bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access(handle, inode, |
| left_path->p_node[i].bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| if (!right_has_empty) { |
| /* |
| * Only do this if we're moving a real |
| * record. Otherwise, the action is delayed until |
| * after removal of the right path in which case we |
| * can do a simple shift to remove the empty extent. |
| */ |
| ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); |
| memset(&right_leaf_el->l_recs[0], 0, |
| sizeof(struct ocfs2_extent_rec)); |
| } |
| if (eb->h_next_leaf_blk == 0ULL) { |
| /* |
| * Move recs over to get rid of empty extent, decrease |
| * next_free. This is allowed to remove the last |
| * extent in our leaf (setting l_next_free_rec to |
| * zero) - the delete code below won't care. |
| */ |
| ocfs2_remove_empty_extent(right_leaf_el); |
| } |
| |
| ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); |
| if (ret) |
| mlog_errno(ret); |
| ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); |
| if (ret) |
| mlog_errno(ret); |
| |
| if (del_right_subtree) { |
| ocfs2_unlink_subtree(inode, handle, left_path, right_path, |
| subtree_index, dealloc); |
| ocfs2_update_edge_lengths(inode, handle, left_path); |
| |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; |
| di->i_last_eb_blk = eb->h_blkno; |
| |
| /* |
| * Removal of the extent in the left leaf was skipped |
| * above so we could delete the right path |
| * 1st. |
| */ |
| if (right_has_empty) |
| ocfs2_remove_empty_extent(left_leaf_el); |
| |
| ret = ocfs2_journal_dirty(handle, di_bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| *deleted = 1; |
| } else |
| ocfs2_complete_edge_insert(inode, handle, left_path, right_path, |
| subtree_index); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Given a full path, determine what cpos value would return us a path |
| * containing the leaf immediately to the right of the current one. |
| * |
| * Will return zero if the path passed in is already the rightmost path. |
| * |
| * This looks similar, but is subtly different to |
| * ocfs2_find_cpos_for_left_leaf(). |
| */ |
| static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, |
| struct ocfs2_path *path, u32 *cpos) |
| { |
| int i, j, ret = 0; |
| u64 blkno; |
| struct ocfs2_extent_list *el; |
| |
| *cpos = 0; |
| |
| if (path->p_tree_depth == 0) |
| return 0; |
| |
| blkno = path_leaf_bh(path)->b_blocknr; |
| |
| /* Start at the tree node just above the leaf and work our way up. */ |
| i = path->p_tree_depth - 1; |
| while (i >= 0) { |
| int next_free; |
| |
| el = path->p_node[i].el; |
| |
| /* |
| * Find the extent record just after the one in our |
| * path. |
| */ |
| next_free = le16_to_cpu(el->l_next_free_rec); |
| for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { |
| if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { |
| if (j == (next_free - 1)) { |
| if (i == 0) { |
| /* |
| * We've determined that the |
| * path specified is already |
| * the rightmost one - return a |
| * cpos of zero. |
| */ |
| goto out; |
| } |
| /* |
| * The rightmost record points to our |
| * leaf - we need to travel up the |
| * tree one level. |
| */ |
| goto next_node; |
| } |
| |
| *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); |
| goto out; |
| } |
| } |
| |
| /* |
| * If we got here, we never found a valid node where |
| * the tree indicated one should be. |
| */ |
| ocfs2_error(sb, |
| "Invalid extent tree at extent block %llu\n", |
| (unsigned long long)blkno); |
| ret = -EROFS; |
| goto out; |
| |
| next_node: |
| blkno = path->p_node[i].bh->b_blocknr; |
| i--; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, |
| handle_t *handle, |
| struct buffer_head *bh, |
| struct ocfs2_extent_list *el) |
| { |
| int ret; |
| |
| if (!ocfs2_is_empty_extent(&el->l_recs[0])) |
| return 0; |
| |
| ret = ocfs2_journal_access(handle, inode, bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_remove_empty_extent(el); |
| |
| ret = ocfs2_journal_dirty(handle, bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| return ret; |
| } |
| |
| static int __ocfs2_rotate_tree_left(struct inode *inode, |
| handle_t *handle, int orig_credits, |
| struct ocfs2_path *path, |
| struct ocfs2_cached_dealloc_ctxt *dealloc, |
| struct ocfs2_path **empty_extent_path) |
| { |
| int ret, subtree_root, deleted; |
| u32 right_cpos; |
| struct ocfs2_path *left_path = NULL; |
| struct ocfs2_path *right_path = NULL; |
| |
| BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); |
| |
| *empty_extent_path = NULL; |
| |
| ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, |
| &right_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| left_path = ocfs2_new_path(path_root_bh(path), |
| path_root_el(path)); |
| if (!left_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_cp_path(left_path, path); |
| |
| right_path = ocfs2_new_path(path_root_bh(path), |
| path_root_el(path)); |
| if (!right_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| while (right_cpos) { |
| ret = ocfs2_find_path(inode, right_path, right_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| subtree_root = ocfs2_find_subtree_root(inode, left_path, |
| right_path); |
| |
| mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", |
| subtree_root, |
| (unsigned long long) |
| right_path->p_node[subtree_root].bh->b_blocknr, |
| right_path->p_tree_depth); |
| |
| ret = ocfs2_extend_rotate_transaction(handle, subtree_root, |
| orig_credits, left_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_rotate_subtree_left(inode, handle, left_path, |
| right_path, subtree_root, |
| dealloc, &deleted); |
| if (ret == -EAGAIN) { |
| /* |
| * The rotation has to temporarily stop due to |
| * the right subtree having an empty |
| * extent. Pass it back to the caller for a |
| * fixup. |
| */ |
| *empty_extent_path = right_path; |
| right_path = NULL; |
| goto out; |
| } |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * The subtree rotate might have removed records on |
| * the rightmost edge. If so, then rotation is |
| * complete. |
| */ |
| if (deleted) |
| break; |
| |
| ocfs2_mv_path(left_path, right_path); |
| |
| ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, |
| &right_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| out: |
| ocfs2_free_path(right_path); |
| ocfs2_free_path(left_path); |
| |
| return ret; |
| } |
| |
| static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *path, |
| struct ocfs2_cached_dealloc_ctxt *dealloc) |
| { |
| int ret, subtree_index; |
| u32 cpos; |
| struct ocfs2_path *left_path = NULL; |
| struct ocfs2_dinode *di; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| |
| /* |
| * XXX: This code assumes that the root is an inode, which is |
| * true for now but may change as tree code gets generic. |
| */ |
| di = (struct ocfs2_dinode *)path_root_bh(path)->b_data; |
| if (!OCFS2_IS_VALID_DINODE(di)) { |
| ret = -EIO; |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has invalid path root", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| goto out; |
| } |
| |
| /* |
| * There's two ways we handle this depending on |
| * whether path is the only existing one. |
| */ |
| ret = ocfs2_extend_rotate_transaction(handle, 0, |
| handle->h_buffer_credits, |
| path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access_path(inode, handle, path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (cpos) { |
| /* |
| * We have a path to the left of this one - it needs |
| * an update too. |
| */ |
| left_path = ocfs2_new_path(path_root_bh(path), |
| path_root_el(path)); |
| if (!left_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_path(inode, left_path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access_path(inode, handle, left_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| subtree_index = ocfs2_find_subtree_root(inode, left_path, path); |
| |
| ocfs2_unlink_subtree(inode, handle, left_path, path, |
| subtree_index, dealloc); |
| ocfs2_update_edge_lengths(inode, handle, left_path); |
| |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; |
| di->i_last_eb_blk = eb->h_blkno; |
| } else { |
| /* |
| * 'path' is also the leftmost path which |
| * means it must be the only one. This gets |
| * handled differently because we want to |
| * revert the inode back to having extents |
| * in-line. |
| */ |
| ocfs2_unlink_path(inode, handle, dealloc, path, 1); |
| |
| el = &di->id2.i_list; |
| el->l_tree_depth = 0; |
| el->l_next_free_rec = 0; |
| memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); |
| |
| di->i_last_eb_blk = 0; |
| } |
| |
| ocfs2_journal_dirty(handle, path_root_bh(path)); |
| |
| out: |
| ocfs2_free_path(left_path); |
| return ret; |
| } |
| |
| /* |
| * Left rotation of btree records. |
| * |
| * In many ways, this is (unsurprisingly) the opposite of right |
| * rotation. We start at some non-rightmost path containing an empty |
| * extent in the leaf block. The code works its way to the rightmost |
| * path by rotating records to the left in every subtree. |
| * |
| * This is used by any code which reduces the number of extent records |
| * in a leaf. After removal, an empty record should be placed in the |
| * leftmost list position. |
| * |
| * This won't handle a length update of the rightmost path records if |
| * the rightmost tree leaf record is removed so the caller is |
| * responsible for detecting and correcting that. |
| */ |
| static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *path, |
| struct ocfs2_cached_dealloc_ctxt *dealloc) |
| { |
| int ret, orig_credits = handle->h_buffer_credits; |
| struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| |
| el = path_leaf_el(path); |
| if (!ocfs2_is_empty_extent(&el->l_recs[0])) |
| return 0; |
| |
| if (path->p_tree_depth == 0) { |
| rightmost_no_delete: |
| /* |
| * In-inode extents. This is trivially handled, so do |
| * it up front. |
| */ |
| ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, |
| path_leaf_bh(path), |
| path_leaf_el(path)); |
| if (ret) |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Handle rightmost branch now. There's several cases: |
| * 1) simple rotation leaving records in there. That's trivial. |
| * 2) rotation requiring a branch delete - there's no more |
| * records left. Two cases of this: |
| * a) There are branches to the left. |
| * b) This is also the leftmost (the only) branch. |
| * |
| * 1) is handled via ocfs2_rotate_rightmost_leaf_left() |
| * 2a) we need the left branch so that we can update it with the unlink |
| * 2b) we need to bring the inode back to inline extents. |
| */ |
| |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; |
| el = &eb->h_list; |
| if (eb->h_next_leaf_blk == 0) { |
| /* |
| * This gets a bit tricky if we're going to delete the |
| * rightmost path. Get the other cases out of the way |
| * 1st. |
| */ |
| if (le16_to_cpu(el->l_next_free_rec) > 1) |
| goto rightmost_no_delete; |
| |
| if (le16_to_cpu(el->l_next_free_rec) == 0) { |
| ret = -EIO; |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has empty extent block at %llu", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)le64_to_cpu(eb->h_blkno)); |
| goto out; |
| } |
| |
| /* |
| * XXX: The caller can not trust "path" any more after |
| * this as it will have been deleted. What do we do? |
| * |
| * In theory the rotate-for-merge code will never get |
| * here because it'll always ask for a rotate in a |
| * nonempty list. |
| */ |
| |
| ret = ocfs2_remove_rightmost_path(inode, handle, path, |
| dealloc); |
| if (ret) |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Now we can loop, remembering the path we get from -EAGAIN |
| * and restarting from there. |
| */ |
| try_rotate: |
| ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, |
| dealloc, &restart_path); |
| if (ret && ret != -EAGAIN) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| while (ret == -EAGAIN) { |
| tmp_path = restart_path; |
| restart_path = NULL; |
| |
| ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, |
| tmp_path, dealloc, |
| &restart_path); |
| if (ret && ret != -EAGAIN) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_free_path(tmp_path); |
| tmp_path = NULL; |
| |
| if (ret == 0) |
| goto try_rotate; |
| } |
| |
| out: |
| ocfs2_free_path(tmp_path); |
| ocfs2_free_path(restart_path); |
| return ret; |
| } |
| |
| static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, |
| int index) |
| { |
| struct ocfs2_extent_rec *rec = &el->l_recs[index]; |
| unsigned int size; |
| |
| if (rec->e_leaf_clusters == 0) { |
| /* |
| * We consumed all of the merged-from record. An empty |
| * extent cannot exist anywhere but the 1st array |
| * position, so move things over if the merged-from |
| * record doesn't occupy that position. |
| * |
| * This creates a new empty extent so the caller |
| * should be smart enough to have removed any existing |
| * ones. |
| */ |
| if (index > 0) { |
| BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); |
| size = index * sizeof(struct ocfs2_extent_rec); |
| memmove(&el->l_recs[1], &el->l_recs[0], size); |
| } |
| |
| /* |
| * Always memset - the caller doesn't check whether it |
| * created an empty extent, so there could be junk in |
| * the other fields. |
| */ |
| memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); |
| } |
| } |
| |
| /* |
| * Remove split_rec clusters from the record at index and merge them |
| * onto the beginning of the record at index + 1. |
| */ |
| static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh, |
| handle_t *handle, |
| struct ocfs2_extent_rec *split_rec, |
| struct ocfs2_extent_list *el, int index) |
| { |
| int ret; |
| unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); |
| struct ocfs2_extent_rec *left_rec; |
| struct ocfs2_extent_rec *right_rec; |
| |
| BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); |
| |
| left_rec = &el->l_recs[index]; |
| right_rec = &el->l_recs[index + 1]; |
| |
| ret = ocfs2_journal_access(handle, inode, bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); |
| |
| le32_add_cpu(&right_rec->e_cpos, -split_clusters); |
| le64_add_cpu(&right_rec->e_blkno, |
| -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); |
| le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); |
| |
| ocfs2_cleanup_merge(el, index); |
| |
| ret = ocfs2_journal_dirty(handle, bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Remove split_rec clusters from the record at index and merge them |
| * onto the tail of the record at index - 1. |
| */ |
| static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh, |
| handle_t *handle, |
| struct ocfs2_extent_rec *split_rec, |
| struct ocfs2_extent_list *el, int index) |
| { |
| int ret, has_empty_extent = 0; |
| unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); |
| struct ocfs2_extent_rec *left_rec; |
| struct ocfs2_extent_rec *right_rec; |
| |
| BUG_ON(index <= 0); |
| |
| left_rec = &el->l_recs[index - 1]; |
| right_rec = &el->l_recs[index]; |
| if (ocfs2_is_empty_extent(&el->l_recs[0])) |
| has_empty_extent = 1; |
| |
| ret = ocfs2_journal_access(handle, inode, bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (has_empty_extent && index == 1) { |
| /* |
| * The easy case - we can just plop the record right in. |
| */ |
| *left_rec = *split_rec; |
| |
| has_empty_extent = 0; |
| } else { |
| le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); |
| } |
| |
| le32_add_cpu(&right_rec->e_cpos, split_clusters); |
| le64_add_cpu(&right_rec->e_blkno, |
| ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); |
| le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); |
| |
| ocfs2_cleanup_merge(el, index); |
| |
| ret = ocfs2_journal_dirty(handle, bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_try_to_merge_extent(struct inode *inode, |
| handle_t *handle, |
| struct ocfs2_path *left_path, |
| int split_index, |
| struct ocfs2_extent_rec *split_rec, |
| struct ocfs2_cached_dealloc_ctxt *dealloc, |
| struct ocfs2_merge_ctxt *ctxt) |
| |
| { |
| int ret = 0; |
| struct ocfs2_extent_list *el = path_leaf_el(left_path); |
| struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; |
| |
| BUG_ON(ctxt->c_contig_type == CONTIG_NONE); |
| |
| if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { |
| /* |
| * The merge code will need to create an empty |
| * extent to take the place of the newly |
| * emptied slot. Remove any pre-existing empty |
| * extents - having more than one in a leaf is |
| * illegal. |
| */ |
| ret = ocfs2_rotate_tree_left(inode, handle, left_path, |
| dealloc); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| split_index--; |
| rec = &el->l_recs[split_index]; |
| } |
| |
| if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { |
| /* |
| * Left-right contig implies this. |
| */ |
| BUG_ON(!ctxt->c_split_covers_rec); |
| BUG_ON(split_index == 0); |
| |
| /* |
| * Since the leftright insert always covers the entire |
| * extent, this call will delete the insert record |
| * entirely, resulting in an empty extent record added to |
| * the extent block. |
| * |
| * Since the adding of an empty extent shifts |
| * everything back to the right, there's no need to |
| * update split_index here. |
| */ |
| ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path), |
| handle, split_rec, el, split_index); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * We can only get this from logic error above. |
| */ |
| BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); |
| |
| /* |
| * The left merge left us with an empty extent, remove |
| * it. |
| */ |
| ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| split_index--; |
| rec = &el->l_recs[split_index]; |
| |
| /* |
| * Note that we don't pass split_rec here on purpose - |
| * we've merged it into the left side. |
| */ |
| ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path), |
| handle, rec, el, split_index); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); |
| |
| ret = ocfs2_rotate_tree_left(inode, handle, left_path, |
| dealloc); |
| /* |
| * Error from this last rotate is not critical, so |
| * print but don't bubble it up. |
| */ |
| if (ret) |
| mlog_errno(ret); |
| ret = 0; |
| } else { |
| /* |
| * Merge a record to the left or right. |
| * |
| * 'contig_type' is relative to the existing record, |
| * so for example, if we're "right contig", it's to |
| * the record on the left (hence the left merge). |
| */ |
| if (ctxt->c_contig_type == CONTIG_RIGHT) { |
| ret = ocfs2_merge_rec_left(inode, |
| path_leaf_bh(left_path), |
| handle, split_rec, el, |
| split_index); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } else { |
| ret = ocfs2_merge_rec_right(inode, |
| path_leaf_bh(left_path), |
| handle, split_rec, el, |
| split_index); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| if (ctxt->c_split_covers_rec) { |
| /* |
| * The merge may have left an empty extent in |
| * our leaf. Try to rotate it away. |
| */ |
| ret = ocfs2_rotate_tree_left(inode, handle, left_path, |
| dealloc); |
| if (ret) |
| mlog_errno(ret); |
| ret = 0; |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static void ocfs2_subtract_from_rec(struct super_block *sb, |
| enum ocfs2_split_type split, |
| struct ocfs2_extent_rec *rec, |
| struct ocfs2_extent_rec *split_rec) |
| { |
| u64 len_blocks; |
| |
| len_blocks = ocfs2_clusters_to_blocks(sb, |
| le16_to_cpu(split_rec->e_leaf_clusters)); |
| |
| if (split == SPLIT_LEFT) { |
| /* |
| * Region is on the left edge of the existing |
| * record. |
| */ |
| le32_add_cpu(&rec->e_cpos, |
| le16_to_cpu(split_rec->e_leaf_clusters)); |
| le64_add_cpu(&rec->e_blkno, len_blocks); |
| le16_add_cpu(&rec->e_leaf_clusters, |
| -le16_to_cpu(split_rec->e_leaf_clusters)); |
| } else { |
| /* |
| * Region is on the right edge of the existing |
| * record. |
| */ |
| le16_add_cpu(&rec->e_leaf_clusters, |
| -le16_to_cpu(split_rec->e_leaf_clusters)); |
| } |
| } |
| |
| /* |
| * Do the final bits of extent record insertion at the target leaf |
| * list. If this leaf is part of an allocation tree, it is assumed |
| * that the tree above has been prepared. |
| */ |
| static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, |
| struct ocfs2_extent_list *el, |
| struct ocfs2_insert_type *insert, |
| struct inode *inode) |
| { |
| int i = insert->ins_contig_index; |
| unsigned int range; |
| struct ocfs2_extent_rec *rec; |
| |
| BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); |
| |
| if (insert->ins_split != SPLIT_NONE) { |
| i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); |
| BUG_ON(i == -1); |
| rec = &el->l_recs[i]; |
| ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, |
| insert_rec); |
| goto rotate; |
| } |
| |
| /* |
| * Contiguous insert - either left or right. |
| */ |
| if (insert->ins_contig != CONTIG_NONE) { |
| rec = &el->l_recs[i]; |
| if (insert->ins_contig == CONTIG_LEFT) { |
| rec->e_blkno = insert_rec->e_blkno; |
| rec->e_cpos = insert_rec->e_cpos; |
| } |
| le16_add_cpu(&rec->e_leaf_clusters, |
| le16_to_cpu(insert_rec->e_leaf_clusters)); |
| return; |
| } |
| |
| /* |
| * Handle insert into an empty leaf. |
| */ |
| if (le16_to_cpu(el->l_next_free_rec) == 0 || |
| ((le16_to_cpu(el->l_next_free_rec) == 1) && |
| ocfs2_is_empty_extent(&el->l_recs[0]))) { |
| el->l_recs[0] = *insert_rec; |
| el->l_next_free_rec = cpu_to_le16(1); |
| return; |
| } |
| |
| /* |
| * Appending insert. |
| */ |
| if (insert->ins_appending == APPEND_TAIL) { |
| i = le16_to_cpu(el->l_next_free_rec) - 1; |
| rec = &el->l_recs[i]; |
| range = le32_to_cpu(rec->e_cpos) |
| + le16_to_cpu(rec->e_leaf_clusters); |
| BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); |
| |
| mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= |
| le16_to_cpu(el->l_count), |
| "inode %lu, depth %u, count %u, next free %u, " |
| "rec.cpos %u, rec.clusters %u, " |
| "insert.cpos %u, insert.clusters %u\n", |
| inode->i_ino, |
| le16_to_cpu(el->l_tree_depth), |
| le16_to_cpu(el->l_count), |
| le16_to_cpu(el->l_next_free_rec), |
| le32_to_cpu(el->l_recs[i].e_cpos), |
| le16_to_cpu(el->l_recs[i].e_leaf_clusters), |
| le32_to_cpu(insert_rec->e_cpos), |
| le16_to_cpu(insert_rec->e_leaf_clusters)); |
| i++; |
| el->l_recs[i] = *insert_rec; |
| le16_add_cpu(&el->l_next_free_rec, 1); |
| return; |
| } |
| |
| rotate: |
| /* |
| * Ok, we have to rotate. |
| * |
| * At this point, it is safe to assume that inserting into an |
| * empty leaf and appending to a leaf have both been handled |
| * above. |
| * |
| * This leaf needs to have space, either by the empty 1st |
| * extent record, or by virtue of an l_next_rec < l_count. |
| */ |
| ocfs2_rotate_leaf(el, insert_rec); |
| } |
| |
| static inline void ocfs2_update_dinode_clusters(struct inode *inode, |
| struct ocfs2_dinode *di, |
| u32 clusters) |
| { |
| le32_add_cpu(&di->i_clusters, clusters); |
| spin_lock(&OCFS2_I(inode)->ip_lock); |
| OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); |
| spin_unlock(&OCFS2_I(inode)->ip_lock); |
| } |
| |
| static void ocfs2_adjust_rightmost_records(struct inode *inode, |
| handle_t *handle, |
| struct ocfs2_path *path, |
| struct ocfs2_extent_rec *insert_rec) |
| { |
| int ret, i, next_free; |
| struct buffer_head *bh; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_extent_rec *rec; |
| |
| /* |
| * Update everything except the leaf block. |
| */ |
| for (i = 0; i < path->p_tree_depth; i++) { |
| bh = path->p_node[i].bh; |
| el = path->p_node[i].el; |
| |
| next_free = le16_to_cpu(el->l_next_free_rec); |
| if (next_free == 0) { |
| ocfs2_error(inode->i_sb, |
| "Dinode %llu has a bad extent list", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| ret = -EIO; |
| return; |
| } |
| |
| rec = &el->l_recs[next_free - 1]; |
| |
| rec->e_int_clusters = insert_rec->e_cpos; |
| le32_add_cpu(&rec->e_int_clusters, |
| le16_to_cpu(insert_rec->e_leaf_clusters)); |
| le32_add_cpu(&rec->e_int_clusters, |
| -le32_to_cpu(rec->e_cpos)); |
| |
| ret = ocfs2_journal_dirty(handle, bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| } |
| } |
| |
| static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, |
| struct ocfs2_extent_rec *insert_rec, |
| struct ocfs2_path *right_path, |
| struct ocfs2_path **ret_left_path) |
| { |
| int ret, next_free; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_path *left_path = NULL; |
| |
| *ret_left_path = NULL; |
| |
| /* |
| * This shouldn't happen for non-trees. The extent rec cluster |
| * count manipulation below only works for interior nodes. |
| */ |
| BUG_ON(right_path->p_tree_depth == 0); |
| |
| /* |
| * If our appending insert is at the leftmost edge of a leaf, |
| * then we might need to update the rightmost records of the |
| * neighboring path. |
| */ |
| el = path_leaf_el(right_path); |
| next_free = le16_to_cpu(el->l_next_free_rec); |
| if (next_free == 0 || |
| (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { |
| u32 left_cpos; |
| |
| ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, |
| &left_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| mlog(0, "Append may need a left path update. cpos: %u, " |
| "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), |
| left_cpos); |
| |
| /* |
| * No need to worry if the append is already in the |
| * leftmost leaf. |
| */ |
| if (left_cpos) { |
| left_path = ocfs2_new_path(path_root_bh(right_path), |
| path_root_el(right_path)); |
| if (!left_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_path(inode, left_path, left_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * ocfs2_insert_path() will pass the left_path to the |
| * journal for us. |
| */ |
| } |
| } |
| |
| ret = ocfs2_journal_access_path(inode, handle, right_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); |
| |
| *ret_left_path = left_path; |
| ret = 0; |
| out: |
| if (ret != 0) |
| ocfs2_free_path(left_path); |
| |
| return ret; |
| } |
| |
| static void ocfs2_split_record(struct inode *inode, |
| struct ocfs2_path *left_path, |
| struct ocfs2_path *right_path, |
| struct ocfs2_extent_rec *split_rec, |
| enum ocfs2_split_type split) |
| { |
| int index; |
| u32 cpos = le32_to_cpu(split_rec->e_cpos); |
| struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; |
| struct ocfs2_extent_rec *rec, *tmprec; |
| |
| right_el = path_leaf_el(right_path);; |
| if (left_path) |
| left_el = path_leaf_el(left_path); |
| |
| el = right_el; |
| insert_el = right_el; |
| index = ocfs2_search_extent_list(el, cpos); |
| if (index != -1) { |
| if (index == 0 && left_path) { |
| BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); |
| |
| /* |
| * This typically means that the record |
| * started in the left path but moved to the |
| * right as a result of rotation. We either |
| * move the existing record to the left, or we |
| * do the later insert there. |
| * |
| * In this case, the left path should always |
| * exist as the rotate code will have passed |
| * it back for a post-insert update. |
| */ |
| |
| if (split == SPLIT_LEFT) { |
| /* |
| * It's a left split. Since we know |
| * that the rotate code gave us an |
| * empty extent in the left path, we |
| * can just do the insert there. |
| */ |
| insert_el = left_el; |
| } else { |
| /* |
| * Right split - we have to move the |
| * existing record over to the left |
| * leaf. The insert will be into the |
| * newly created empty extent in the |
| * right leaf. |
| */ |
| tmprec = &right_el->l_recs[index]; |
| ocfs2_rotate_leaf(left_el, tmprec); |
| el = left_el; |
| |
| memset(tmprec, 0, sizeof(*tmprec)); |
| index = ocfs2_search_extent_list(left_el, cpos); |
| BUG_ON(index == -1); |
| } |
| } |
| } else { |
| BUG_ON(!left_path); |
| BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); |
| /* |
| * Left path is easy - we can just allow the insert to |
| * happen. |
| */ |
| el = left_el; |
| insert_el = left_el; |
| index = ocfs2_search_extent_list(el, cpos); |
| BUG_ON(index == -1); |
| } |
| |
| rec = &el->l_recs[index]; |
| ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); |
| ocfs2_rotate_leaf(insert_el, split_rec); |
| } |
| |
| /* |
| * This function only does inserts on an allocation b-tree. For dinode |
| * lists, ocfs2_insert_at_leaf() is called directly. |
| * |
| * right_path is the path we want to do the actual insert |
| * in. left_path should only be passed in if we need to update that |
| * portion of the tree after an edge insert. |
| */ |
| static int ocfs2_insert_path(struct inode *inode, |
| handle_t *handle, |
| struct ocfs2_path *left_path, |
| struct ocfs2_path *right_path, |
| struct ocfs2_extent_rec *insert_rec, |
| struct ocfs2_insert_type *insert) |
| { |
| int ret, subtree_index; |
| struct buffer_head *leaf_bh = path_leaf_bh(right_path); |
| |
| /* |
| * Pass both paths to the journal. The majority of inserts |
| * will be touching all components anyway. |
| */ |
| ret = ocfs2_journal_access_path(inode, handle, right_path); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (left_path) { |
| int credits = handle->h_buffer_credits; |
| |
| /* |
| * There's a chance that left_path got passed back to |
| * us without being accounted for in the |
| * journal. Extend our transaction here to be sure we |
| * can change those blocks. |
| */ |
| credits += left_path->p_tree_depth; |
| |
| ret = ocfs2_extend_trans(handle, credits); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access_path(inode, handle, left_path); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| if (insert->ins_split != SPLIT_NONE) { |
| /* |
| * We could call ocfs2_insert_at_leaf() for some types |
| * of splits, but it's easier to just let one seperate |
| * function sort it all out. |
| */ |
| ocfs2_split_record(inode, left_path, right_path, |
| insert_rec, insert->ins_split); |
| } else |
| ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), |
| insert, inode); |
| |
| ret = ocfs2_journal_dirty(handle, leaf_bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| if (left_path) { |
| /* |
| * The rotate code has indicated that we need to fix |
| * up portions of the tree after the insert. |
| * |
| * XXX: Should we extend the transaction here? |
| */ |
| subtree_index = ocfs2_find_subtree_root(inode, left_path, |
| right_path); |
| ocfs2_complete_edge_insert(inode, handle, left_path, |
| right_path, subtree_index); |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_do_insert_extent(struct inode *inode, |
| handle_t *handle, |
| struct buffer_head *di_bh, |
| struct ocfs2_extent_rec *insert_rec, |
| struct ocfs2_insert_type *type) |
| { |
| int ret, rotate = 0; |
| u32 cpos; |
| struct ocfs2_path *right_path = NULL; |
| struct ocfs2_path *left_path = NULL; |
| struct ocfs2_dinode *di; |
| struct ocfs2_extent_list *el; |
| |
| di = (struct ocfs2_dinode *) di_bh->b_data; |
| el = &di->id2.i_list; |
| |
| ret = ocfs2_journal_access(handle, inode, di_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (le16_to_cpu(el->l_tree_depth) == 0) { |
| ocfs2_insert_at_leaf(insert_rec, el, type, inode); |
| goto out_update_clusters; |
| } |
| |
| right_path = ocfs2_new_inode_path(di_bh); |
| if (!right_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Determine the path to start with. Rotations need the |
| * rightmost path, everything else can go directly to the |
| * target leaf. |
| */ |
| cpos = le32_to_cpu(insert_rec->e_cpos); |
| if (type->ins_appending == APPEND_NONE && |
| type->ins_contig == CONTIG_NONE) { |
| rotate = 1; |
| cpos = UINT_MAX; |
| } |
| |
| ret = ocfs2_find_path(inode, right_path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Rotations and appends need special treatment - they modify |
| * parts of the tree's above them. |
| * |
| * Both might pass back a path immediate to the left of the |
| * one being inserted to. This will be cause |
| * ocfs2_insert_path() to modify the rightmost records of |
| * left_path to account for an edge insert. |
| * |
| * XXX: When modifying this code, keep in mind that an insert |
| * can wind up skipping both of these two special cases... |
| */ |
| if (rotate) { |
| ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, |
| le32_to_cpu(insert_rec->e_cpos), |
| right_path, &left_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } else if (type->ins_appending == APPEND_TAIL |
| && type->ins_contig != CONTIG_LEFT) { |
| ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, |
| right_path, &left_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| ret = ocfs2_insert_path(inode, handle, left_path, right_path, |
| insert_rec, type); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| out_update_clusters: |
| if (type->ins_split == SPLIT_NONE) |
| ocfs2_update_dinode_clusters(inode, di, |
| le16_to_cpu(insert_rec->e_leaf_clusters)); |
| |
| ret = ocfs2_journal_dirty(handle, di_bh); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| ocfs2_free_path(left_path); |
| ocfs2_free_path(right_path); |
| |
| return ret; |
| } |
| |
| static enum ocfs2_contig_type |
| ocfs2_figure_merge_contig_type(struct inode *inode, |
| struct ocfs2_extent_list *el, int index, |
| struct ocfs2_extent_rec *split_rec) |
| { |
| struct ocfs2_extent_rec *rec; |
| enum ocfs2_contig_type ret = CONTIG_NONE; |
| |
| /* |
| * We're careful to check for an empty extent record here - |
| * the merge code will know what to do if it sees one. |
| */ |
| |
| if (index > 0) { |
| rec = &el->l_recs[index - 1]; |
| if (index == 1 && ocfs2_is_empty_extent(rec)) { |
| if (split_rec->e_cpos == el->l_recs[index].e_cpos) |
| ret = CONTIG_RIGHT; |
| } else { |
| ret = ocfs2_extent_contig(inode, rec, split_rec); |
| } |
| } |
| |
| if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) { |
| enum ocfs2_contig_type contig_type; |
| |
| rec = &el->l_recs[index + 1]; |
| contig_type = ocfs2_extent_contig(inode, rec, split_rec); |
| |
| if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) |
| ret = CONTIG_LEFTRIGHT; |
| else if (ret == CONTIG_NONE) |
| ret = contig_type; |
| } |
| |
| return ret; |
| } |
| |
| static void ocfs2_figure_contig_type(struct inode *inode, |
| struct ocfs2_insert_type *insert, |
| struct ocfs2_extent_list *el, |
| struct ocfs2_extent_rec *insert_rec) |
| { |
| int i; |
| enum ocfs2_contig_type contig_type = CONTIG_NONE; |
| |
| BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); |
| |
| for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { |
| contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], |
| insert_rec); |
| if (contig_type != CONTIG_NONE) { |
| insert->ins_contig_index = i; |
| break; |
| } |
| } |
| insert->ins_contig = contig_type; |
| } |
| |
| /* |
| * This should only be called against the righmost leaf extent list. |
| * |
| * ocfs2_figure_appending_type() will figure out whether we'll have to |
| * insert at the tail of the rightmost leaf. |
| * |
| * This should also work against the dinode list for tree's with 0 |
| * depth. If we consider the dinode list to be the rightmost leaf node |
| * then the logic here makes sense. |
| */ |
| static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, |
| struct ocfs2_extent_list *el, |
| struct ocfs2_extent_rec *insert_rec) |
| { |
| int i; |
| u32 cpos = le32_to_cpu(insert_rec->e_cpos); |
| struct ocfs2_extent_rec *rec; |
| |
| insert->ins_appending = APPEND_NONE; |
| |
| BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); |
| |
| if (!el->l_next_free_rec) |
| goto set_tail_append; |
| |
| if (ocfs2_is_empty_extent(&el->l_recs[0])) { |
| /* Were all records empty? */ |
| if (le16_to_cpu(el->l_next_free_rec) == 1) |
| goto set_tail_append; |
| } |
| |
| i = le16_to_cpu(el->l_next_free_rec) - 1; |
| rec = &el->l_recs[i]; |
| |
| if (cpos >= |
| (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) |
| goto set_tail_append; |
| |
| return; |
| |
| set_tail_append: |
| insert->ins_appending = APPEND_TAIL; |
| } |
| |
| /* |
| * Helper function called at the begining of an insert. |
| * |
| * This computes a few things that are commonly used in the process of |
| * inserting into the btree: |
| * - Whether the new extent is contiguous with an existing one. |
| * - The current tree depth. |
| * - Whether the insert is an appending one. |
| * - The total # of free records in the tree. |
| * |
| * All of the information is stored on the ocfs2_insert_type |
| * structure. |
| */ |
| static int ocfs2_figure_insert_type(struct inode *inode, |
| struct buffer_head *di_bh, |
| struct buffer_head **last_eb_bh, |
| struct ocfs2_extent_rec *insert_rec, |
| int *free_records, |
| struct ocfs2_insert_type *insert) |
| { |
| int ret; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_path *path = NULL; |
| struct buffer_head *bh = NULL; |
| |
| insert->ins_split = SPLIT_NONE; |
| |
| el = &di->id2.i_list; |
| insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); |
| |
| if (el->l_tree_depth) { |
| /* |
| * If we have tree depth, we read in the |
| * rightmost extent block ahead of time as |
| * ocfs2_figure_insert_type() and ocfs2_add_branch() |
| * may want it later. |
| */ |
| ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), |
| le64_to_cpu(di->i_last_eb_blk), &bh, |
| OCFS2_BH_CACHED, inode); |
| if (ret) { |
| mlog_exit(ret); |
| goto out; |
| } |
| eb = (struct ocfs2_extent_block *) bh->b_data; |
| el = &eb->h_list; |
| } |
| |
| /* |
| * Unless we have a contiguous insert, we'll need to know if |
| * there is room left in our allocation tree for another |
| * extent record. |
| * |
| * XXX: This test is simplistic, we can search for empty |
| * extent records too. |
| */ |
| *free_records = le16_to_cpu(el->l_count) - |
| le16_to_cpu(el->l_next_free_rec); |
| |
| if (!insert->ins_tree_depth) { |
| ocfs2_figure_contig_type(inode, insert, el, insert_rec); |
| ocfs2_figure_appending_type(insert, el, insert_rec); |
| return 0; |
| } |
| |
| path = ocfs2_new_inode_path(di_bh); |
| if (!path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * In the case that we're inserting past what the tree |
| * currently accounts for, ocfs2_find_path() will return for |
| * us the rightmost tree path. This is accounted for below in |
| * the appending code. |
| */ |
| ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| el = path_leaf_el(path); |
| |
| /* |
| * Now that we have the path, there's two things we want to determine: |
| * 1) Contiguousness (also set contig_index if this is so) |
| * |
| * 2) Are we doing an append? We can trivially break this up |
| * into two types of appends: simple record append, or a |
| * rotate inside the tail leaf. |
| */ |
| ocfs2_figure_contig_type(inode, insert, el, insert_rec); |
| |
| /* |
| * The insert code isn't quite ready to deal with all cases of |
| * left contiguousness. Specifically, if it's an insert into |
| * the 1st record in a leaf, it will require the adjustment of |
| * cluster count on the last record of the path directly to it's |
| * left. For now, just catch that case and fool the layers |
| * above us. This works just fine for tree_depth == 0, which |
| * is why we allow that above. |
| */ |
| if (insert->ins_contig == CONTIG_LEFT && |
| insert->ins_contig_index == 0) |
| insert->ins_contig = CONTIG_NONE; |
| |
| /* |
| * Ok, so we can simply compare against last_eb to figure out |
| * whether the path doesn't exist. This will only happen in |
| * the case that we're doing a tail append, so maybe we can |
| * take advantage of that information somehow. |
| */ |
| if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { |
| /* |
| * Ok, ocfs2_find_path() returned us the rightmost |
| * tree path. This might be an appending insert. There are |
| * two cases: |
| * 1) We're doing a true append at the tail: |
| * -This might even be off the end of the leaf |
| * 2) We're "appending" by rotating in the tail |
| */ |
| ocfs2_figure_appending_type(insert, el, insert_rec); |
| } |
| |
| out: |
| ocfs2_free_path(path); |
| |
| if (ret == 0) |
| *last_eb_bh = bh; |
| else |
| brelse(bh); |
| return ret; |
| } |
| |
| /* |
| * Insert an extent into an inode btree. |
| * |
| * The caller needs to update fe->i_clusters |
| */ |
| int ocfs2_insert_extent(struct ocfs2_super *osb, |
| handle_t *handle, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| u32 cpos, |
| u64 start_blk, |
| u32 new_clusters, |
| u8 flags, |
| struct ocfs2_alloc_context *meta_ac) |
| { |
| int status; |
| int uninitialized_var(free_records); |
| struct buffer_head *last_eb_bh = NULL; |
| struct ocfs2_insert_type insert = {0, }; |
| struct ocfs2_extent_rec rec; |
| |
| mlog(0, "add %u clusters at position %u to inode %llu\n", |
| new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| |
| mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && |
| (OCFS2_I(inode)->ip_clusters != cpos), |
| "Device %s, asking for sparse allocation: inode %llu, " |
| "cpos %u, clusters %u\n", |
| osb->dev_str, |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, |
| OCFS2_I(inode)->ip_clusters); |
| |
| memset(&rec, 0, sizeof(rec)); |
| rec.e_cpos = cpu_to_le32(cpos); |
| rec.e_blkno = cpu_to_le64(start_blk); |
| rec.e_leaf_clusters = cpu_to_le16(new_clusters); |
| rec.e_flags = flags; |
| |
| status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, |
| &free_records, &insert); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| mlog(0, "Insert.appending: %u, Insert.Contig: %u, " |
| "Insert.contig_index: %d, Insert.free_records: %d, " |
| "Insert.tree_depth: %d\n", |
| insert.ins_appending, insert.ins_contig, insert.ins_contig_index, |
| free_records, insert.ins_tree_depth); |
| |
| if (insert.ins_contig == CONTIG_NONE && free_records == 0) { |
| status = ocfs2_grow_tree(inode, handle, fe_bh, |
| &insert.ins_tree_depth, &last_eb_bh, |
| meta_ac); |
| if (status) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| |
| /* Finally, we can add clusters. This might rotate the tree for us. */ |
| status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); |
| if (status < 0) |
| mlog_errno(status); |
| else |
| ocfs2_extent_map_insert_rec(inode, &rec); |
| |
| bail: |
| if (last_eb_bh) |
| brelse(last_eb_bh); |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| static void ocfs2_make_right_split_rec(struct super_block *sb, |
| struct ocfs2_extent_rec *split_rec, |
| u32 cpos, |
| struct ocfs2_extent_rec *rec) |
| { |
| u32 rec_cpos = le32_to_cpu(rec->e_cpos); |
| u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); |
| |
| memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); |
| |
| split_rec->e_cpos = cpu_to_le32(cpos); |
| split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); |
| |
| split_rec->e_blkno = rec->e_blkno; |
| le64_add_cpu(&split_rec->e_blkno, |
| ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); |
| |
| split_rec->e_flags = rec->e_flags; |
| } |
| |
| static int ocfs2_split_and_insert(struct inode *inode, |
| handle_t *handle, |
| struct ocfs2_path *path, |
| struct buffer_head *di_bh, |
| struct buffer_head **last_eb_bh, |
| int split_index, |
| struct ocfs2_extent_rec *orig_split_rec, |
| struct ocfs2_alloc_context *meta_ac) |
| { |
| int ret = 0, depth; |
| unsigned int insert_range, rec_range, do_leftright = 0; |
| struct ocfs2_extent_rec tmprec; |
| struct ocfs2_extent_list *rightmost_el; |
| struct ocfs2_extent_rec rec; |
| struct ocfs2_extent_rec split_rec = *orig_split_rec; |
| struct ocfs2_insert_type insert; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_dinode *di; |
| |
| leftright: |
| /* |
| * Store a copy of the record on the stack - it might move |
| * around as the tree is manipulated below. |
| */ |
| rec = path_leaf_el(path)->l_recs[split_index]; |
| |
| di = (struct ocfs2_dinode *)di_bh->b_data; |
| rightmost_el = &di->id2.i_list; |
| |
| depth = le16_to_cpu(rightmost_el->l_tree_depth); |
| if (depth) { |
| BUG_ON(!(*last_eb_bh)); |
| eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; |
| rightmost_el = &eb->h_list; |
| } |
| |
| if (le16_to_cpu(rightmost_el->l_next_free_rec) == |
| le16_to_cpu(rightmost_el->l_count)) { |
| ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh, |
| meta_ac); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| memset(&insert, 0, sizeof(struct ocfs2_insert_type)); |
| insert.ins_appending = APPEND_NONE; |
| insert.ins_contig = CONTIG_NONE; |
| insert.ins_tree_depth = depth; |
| |
| insert_range = le32_to_cpu(split_rec.e_cpos) + |
| le16_to_cpu(split_rec.e_leaf_clusters); |
| rec_range = le32_to_cpu(rec.e_cpos) + |
| le16_to_cpu(rec.e_leaf_clusters); |
| |
| if (split_rec.e_cpos == rec.e_cpos) { |
| insert.ins_split = SPLIT_LEFT; |
| } else if (insert_range == rec_range) { |
| insert.ins_split = SPLIT_RIGHT; |
| } else { |
| /* |
| * Left/right split. We fake this as a right split |
| * first and then make a second pass as a left split. |
| */ |
| insert.ins_split = SPLIT_RIGHT; |
| |
| ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, |
| &rec); |
| |
| split_rec = tmprec; |
| |
| BUG_ON(do_leftright); |
| do_leftright = 1; |
| } |
| |
| ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, |
| &insert); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (do_leftright == 1) { |
| u32 cpos; |
| struct ocfs2_extent_list *el; |
| |
| do_leftright++; |
| split_rec = *orig_split_rec; |
| |
| ocfs2_reinit_path(path, 1); |
| |
| cpos = le32_to_cpu(split_rec.e_cpos); |
| ret = ocfs2_find_path(inode, path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| el = path_leaf_el(path); |
| split_index = ocfs2_search_extent_list(el, cpos); |
| goto leftright; |
| } |
| out: |
| |
| return ret; |
| } |
| |
| /* |
| * Mark part or all of the extent record at split_index in the leaf |
| * pointed to by path as written. This removes the unwritten |
| * extent flag. |
| * |
| * Care is taken to handle contiguousness so as to not grow the tree. |
| * |
| * meta_ac is not strictly necessary - we only truly need it if growth |
| * of the tree is required. All other cases will degrade into a less |
| * optimal tree layout. |
| * |
| * last_eb_bh should be the rightmost leaf block for any inode with a |
| * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call. |
| * |
| * This code is optimized for readability - several passes might be |
| * made over certain portions of the tree. All of those blocks will |
| * have been brought into cache (and pinned via the journal), so the |
| * extra overhead is not expressed in terms of disk reads. |
| */ |
| static int __ocfs2_mark_extent_written(struct inode *inode, |
| struct buffer_head *di_bh, |
| handle_t *handle, |
| struct ocfs2_path *path, |
| int split_index, |
| struct ocfs2_extent_rec *split_rec, |
| struct ocfs2_alloc_context *meta_ac, |
| struct ocfs2_cached_dealloc_ctxt *dealloc) |
| { |
| int ret = 0; |
| struct ocfs2_extent_list *el = path_leaf_el(path); |
| struct buffer_head *eb_bh, *last_eb_bh = NULL; |
| struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; |
| struct ocfs2_merge_ctxt ctxt; |
| struct ocfs2_extent_list *rightmost_el; |
| |
| if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) { |
| ret = -EIO; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || |
| ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < |
| (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { |
| ret = -EIO; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| eb_bh = path_leaf_bh(path); |
| ret = ocfs2_journal_access(handle, inode, eb_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el, |
| split_index, |
| split_rec); |
| |
| /* |
| * The core merge / split code wants to know how much room is |
| * left in this inodes allocation tree, so we pass the |
| * rightmost extent list. |
| */ |
| if (path->p_tree_depth) { |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| |
| ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), |
| le64_to_cpu(di->i_last_eb_blk), |
| &last_eb_bh, OCFS2_BH_CACHED, inode); |
| if (ret) { |
| mlog_exit(ret); |
| goto out; |
| } |
| |
| eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| rightmost_el = &eb->h_list; |
| } else |
| rightmost_el = path_root_el(path); |
| |
| if (rec->e_cpos == split_rec->e_cpos && |
| rec->e_leaf_clusters == split_rec->e_leaf_clusters) |
| ctxt.c_split_covers_rec = 1; |
| else |
| ctxt.c_split_covers_rec = 0; |
| |
| ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); |
| |
| mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", |
| split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, |
| ctxt.c_split_covers_rec); |
| |
| if (ctxt.c_contig_type == CONTIG_NONE) { |
| if (ctxt.c_split_covers_rec) |
| el->l_recs[split_index] = *split_rec; |
| else |
| ret = ocfs2_split_and_insert(inode, handle, path, di_bh, |
| &last_eb_bh, split_index, |
| split_rec, meta_ac); |
| if (ret) |
| mlog_errno(ret); |
| } else { |
| ret = ocfs2_try_to_merge_extent(inode, handle, path, |
| split_index, split_rec, |
| dealloc, &ctxt); |
| if (ret) |
| mlog_errno(ret); |
| } |
| |
| ocfs2_journal_dirty(handle, eb_bh); |
| |
| out: |
| brelse(last_eb_bh); |
| return ret; |
| } |
| |
| /* |
| * Mark the already-existing extent at cpos as written for len clusters. |
| * |
| * If the existing extent is larger than the request, initiate a |
| * split. An attempt will be made at merging with adjacent extents. |
| * |
| * The caller is responsible for passing down meta_ac if we'll need it. |
| */ |
| int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh, |
| handle_t *handle, u32 cpos, u32 len, u32 phys, |
| struct ocfs2_alloc_context *meta_ac, |
| struct ocfs2_cached_dealloc_ctxt *dealloc) |
| { |
| int ret, index; |
| u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); |
| struct ocfs2_extent_rec split_rec; |
| struct ocfs2_path *left_path = NULL; |
| struct ocfs2_extent_list *el; |
| |
| mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", |
| inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); |
| |
| if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { |
| ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " |
| "that are being written to, but the feature bit " |
| "is not set in the super block.", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| /* |
| * XXX: This should be fixed up so that we just re-insert the |
| * next extent records. |
| */ |
| ocfs2_extent_map_trunc(inode, 0); |
| |
| left_path = ocfs2_new_inode_path(di_bh); |
| if (!left_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_path(inode, left_path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| el = path_leaf_el(left_path); |
| |
| index = ocfs2_search_extent_list(el, cpos); |
| if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has an extent at cpos %u which can no " |
| "longer be found.\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); |
| split_rec.e_cpos = cpu_to_le32(cpos); |
| split_rec.e_leaf_clusters = cpu_to_le16(len); |
| split_rec.e_blkno = cpu_to_le64(start_blkno); |
| split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; |
| split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; |
| |
| ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path, |
| index, &split_rec, meta_ac, dealloc); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| ocfs2_free_path(left_path); |
| return ret; |
| } |
| |
| static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh, |
| handle_t *handle, struct ocfs2_path *path, |
| int index, u32 new_range, |
| struct ocfs2_alloc_context *meta_ac) |
| { |
| int ret, depth, credits = handle->h_buffer_credits; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| struct buffer_head *last_eb_bh = NULL; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *rightmost_el, *el; |
| struct ocfs2_extent_rec split_rec; |
| struct ocfs2_extent_rec *rec; |
| struct ocfs2_insert_type insert; |
| |
| /* |
| * Setup the record to split before we grow the tree. |
| */ |
| el = path_leaf_el(path); |
| rec = &el->l_recs[index]; |
| ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); |
| |
| depth = path->p_tree_depth; |
| if (depth > 0) { |
| ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), |
| le64_to_cpu(di->i_last_eb_blk), |
| &last_eb_bh, OCFS2_BH_CACHED, inode); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; |
| rightmost_el = &eb->h_list; |
| } else |
| rightmost_el = path_leaf_el(path); |
| |
| credits += path->p_tree_depth + ocfs2_extend_meta_needed(di); |
| ret = ocfs2_extend_trans(handle, credits); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (le16_to_cpu(rightmost_el->l_next_free_rec) == |
| le16_to_cpu(rightmost_el->l_count)) { |
| ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh, |
| meta_ac); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| memset(&insert, 0, sizeof(struct ocfs2_insert_type)); |
| insert.ins_appending = APPEND_NONE; |
| insert.ins_contig = CONTIG_NONE; |
| insert.ins_split = SPLIT_RIGHT; |
| insert.ins_tree_depth = depth; |
| |
| ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| brelse(last_eb_bh); |
| return ret; |
| } |
| |
| static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, |
| struct ocfs2_path *path, int index, |
| struct ocfs2_cached_dealloc_ctxt *dealloc, |
| u32 cpos, u32 len) |
| { |
| int ret; |
| u32 left_cpos, rec_range, trunc_range; |
| int wants_rotate = 0, is_rightmost_tree_rec = 0; |
| struct super_block *sb = inode->i_sb; |
| struct ocfs2_path *left_path = NULL; |
| struct ocfs2_extent_list *el = path_leaf_el(path); |
| struct ocfs2_extent_rec *rec; |
| struct ocfs2_extent_block *eb; |
| |
| if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { |
| ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| index--; |
| } |
| |
| if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && |
| path->p_tree_depth) { |
| /* |
| * Check whether this is the rightmost tree record. If |
| * we remove all of this record or part of its right |
| * edge then an update of the record lengths above it |
| * will be required. |
| */ |
| eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; |
| if (eb->h_next_leaf_blk == 0) |
| is_rightmost_tree_rec = 1; |
| } |
| |
| rec = &el->l_recs[index]; |
| if (index == 0 && path->p_tree_depth && |
| le32_to_cpu(rec->e_cpos) == cpos) { |
| /* |
| * Changing the leftmost offset (via partial or whole |
| * record truncate) of an interior (or rightmost) path |
| * means we have to update the subtree that is formed |
| * by this leaf and the one to it's left. |
| * |
| * There are two cases we can skip: |
| * 1) Path is the leftmost one in our inode tree. |
| * 2) The leaf is rightmost and will be empty after |
| * we remove the extent record - the rotate code |
| * knows how to update the newly formed edge. |
| */ |
| |
| ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, |
| &left_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { |
| left_path = ocfs2_new_path(path_root_bh(path), |
| path_root_el(path)); |
| if (!left_path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_path(inode, left_path, left_cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| } |
| |
| ret = ocfs2_extend_rotate_transaction(handle, 0, |
| handle->h_buffer_credits, |
| path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access_path(inode, handle, path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access_path(inode, handle, left_path); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); |
| trunc_range = cpos + len; |
| |
| if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { |
| int next_free; |
| |
| memset(rec, 0, sizeof(*rec)); |
| ocfs2_cleanup_merge(el, index); |
| wants_rotate = 1; |
| |
| next_free = le16_to_cpu(el->l_next_free_rec); |
| if (is_rightmost_tree_rec && next_free > 1) { |
| /* |
| * We skip the edge update if this path will |
| * be deleted by the rotate code. |
| */ |
| rec = &el->l_recs[next_free - 1]; |
| ocfs2_adjust_rightmost_records(inode, handle, path, |
| rec); |
| } |
| } else if (le32_to_cpu(rec->e_cpos) == cpos) { |
| /* Remove leftmost portion of the record. */ |
| le32_add_cpu(&rec->e_cpos, len); |
| le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); |
| le16_add_cpu(&rec->e_leaf_clusters, -len); |
| } else if (rec_range == trunc_range) { |
| /* Remove rightmost portion of the record */ |
| le16_add_cpu(&rec->e_leaf_clusters, -len); |
| if (is_rightmost_tree_rec) |
| ocfs2_adjust_rightmost_records(inode, handle, path, rec); |
| } else { |
| /* Caller should have trapped this. */ |
| mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " |
| "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| le32_to_cpu(rec->e_cpos), |
| le16_to_cpu(rec->e_leaf_clusters), cpos, len); |
| BUG(); |
| } |
| |
| if (left_path) { |
| int subtree_index; |
| |
| subtree_index = ocfs2_find_subtree_root(inode, left_path, path); |
| ocfs2_complete_edge_insert(inode, handle, left_path, path, |
| subtree_index); |
| } |
| |
| ocfs2_journal_dirty(handle, path_leaf_bh(path)); |
| |
| ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| out: |
| ocfs2_free_path(left_path); |
| return ret; |
| } |
| |
| int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh, |
| u32 cpos, u32 len, handle_t *handle, |
| struct ocfs2_alloc_context *meta_ac, |
| struct ocfs2_cached_dealloc_ctxt *dealloc) |
| { |
| int ret, index; |
| u32 rec_range, trunc_range; |
| struct ocfs2_extent_rec *rec; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_path *path; |
| |
| ocfs2_extent_map_trunc(inode, 0); |
| |
| path = ocfs2_new_inode_path(di_bh); |
| if (!path) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_path(inode, path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| el = path_leaf_el(path); |
| index = ocfs2_search_extent_list(el, cpos); |
| if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has an extent at cpos %u which can no " |
| "longer be found.\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| /* |
| * We have 3 cases of extent removal: |
| * 1) Range covers the entire extent rec |
| * 2) Range begins or ends on one edge of the extent rec |
| * 3) Range is in the middle of the extent rec (no shared edges) |
| * |
| * For case 1 we remove the extent rec and left rotate to |
| * fill the hole. |
| * |
| * For case 2 we just shrink the existing extent rec, with a |
| * tree update if the shrinking edge is also the edge of an |
| * extent block. |
| * |
| * For case 3 we do a right split to turn the extent rec into |
| * something case 2 can handle. |
| */ |
| rec = &el->l_recs[index]; |
| rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); |
| trunc_range = cpos + len; |
| |
| BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); |
| |
| mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " |
| "(cpos %u, len %u)\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, |
| le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); |
| |
| if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { |
| ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, |
| cpos, len); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } else { |
| ret = ocfs2_split_tree(inode, di_bh, handle, path, index, |
| trunc_range, meta_ac); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * The split could have manipulated the tree enough to |
| * move the record location, so we have to look for it again. |
| */ |
| ocfs2_reinit_path(path, 1); |
| |
| ret = ocfs2_find_path(inode, path, cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| el = path_leaf_el(path); |
| index = ocfs2_search_extent_list(el, cpos); |
| if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu: split at cpos %u lost record.", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| cpos); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| /* |
| * Double check our values here. If anything is fishy, |
| * it's easier to catch it at the top level. |
| */ |
| rec = &el->l_recs[index]; |
| rec_range = le32_to_cpu(rec->e_cpos) + |
| ocfs2_rec_clusters(el, rec); |
| if (rec_range != trunc_range) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu: error after split at cpos %u" |
| "trunc len %u, existing record is (%u,%u)", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| cpos, len, le32_to_cpu(rec->e_cpos), |
| ocfs2_rec_clusters(el, rec)); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, |
| cpos, len); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| out: |
| ocfs2_free_path(path); |
| return ret; |
| } |
| |
| int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) |
| { |
| struct buffer_head *tl_bh = osb->osb_tl_bh; |
| struct ocfs2_dinode *di; |
| struct ocfs2_truncate_log *tl; |
| |
| di = (struct ocfs2_dinode *) tl_bh->b_data; |
| tl = &di->id2.i_dealloc; |
| |
| mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), |
| "slot %d, invalid truncate log parameters: used = " |
| "%u, count = %u\n", osb->slot_num, |
| le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); |
| return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); |
| } |
| |
| static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, |
| unsigned int new_start) |
| { |
| unsigned int tail_index; |
| unsigned int current_tail; |
| |
| /* No records, nothing to coalesce */ |
| if (!le16_to_cpu(tl->tl_used)) |
| return 0; |
| |
| tail_index = le16_to_cpu(tl->tl_used) - 1; |
| current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); |
| current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); |
| |
| return current_tail == new_start; |
| } |
| |
| int ocfs2_truncate_log_append(struct ocfs2_super *osb, |
| handle_t *handle, |
| u64 start_blk, |
| unsigned int num_clusters) |
| { |
| int status, index; |
| unsigned int start_cluster, tl_count; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| struct buffer_head *tl_bh = osb->osb_tl_bh; |
| struct ocfs2_dinode *di; |
| struct ocfs2_truncate_log *tl; |
| |
| mlog_entry("start_blk = %llu, num_clusters = %u\n", |
| (unsigned long long)start_blk, num_clusters); |
| |
| BUG_ON(mutex_trylock(&tl_inode->i_mutex)); |
| |
| start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); |
| |
| di = (struct ocfs2_dinode *) tl_bh->b_data; |
| tl = &di->id2.i_dealloc; |
| if (!OCFS2_IS_VALID_DINODE(di)) { |
| OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); |
| status = -EIO; |
| goto bail; |
| } |
| |
| tl_count = le16_to_cpu(tl->tl_count); |
| mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || |
| tl_count == 0, |
| "Truncate record count on #%llu invalid " |
| "wanted %u, actual %u\n", |
| (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, |
| ocfs2_truncate_recs_per_inode(osb->sb), |
| le16_to_cpu(tl->tl_count)); |
| |
| /* Caller should have known to flush before calling us. */ |
| index = le16_to_cpu(tl->tl_used); |
| if (index >= tl_count) { |
| status = -ENOSPC; |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| status = ocfs2_journal_access(handle, tl_inode, tl_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| mlog(0, "Log truncate of %u clusters starting at cluster %u to " |
| "%llu (index = %d)\n", num_clusters, start_cluster, |
| (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); |
| |
| if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { |
| /* |
| * Move index back to the record we are coalescing with. |
| * ocfs2_truncate_log_can_coalesce() guarantees nonzero |
| */ |
| index--; |
| |
| num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); |
| mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", |
| index, le32_to_cpu(tl->tl_recs[index].t_start), |
| num_clusters); |
| } else { |
| tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); |
| tl->tl_used = cpu_to_le16(index + 1); |
| } |
| tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); |
| |
| status = ocfs2_journal_dirty(handle, tl_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| bail: |
| mlog_exit(status); |
| return status; |
| } |
| |
| static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, |
| handle_t *handle, |
| struct inode *data_alloc_inode, |
| struct buffer_head *data_alloc_bh) |
| { |
| int status = 0; |
| int i; |
| unsigned int num_clusters; |
| u64 start_blk; |
| struct ocfs2_truncate_rec rec; |
| struct ocfs2_dinode *di; |
| struct ocfs2_truncate_log *tl; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| struct buffer_head *tl_bh = osb->osb_tl_bh; |
| |
| mlog_entry_void(); |
| |
| di = (struct ocfs2_dinode *) tl_bh->b_data; |
| tl = &di->id2.i_dealloc; |
| i = le16_to_cpu(tl->tl_used) - 1; |
| while (i >= 0) { |
| /* Caller has given us at least enough credits to |
| * update the truncate log dinode */ |
| status = ocfs2_journal_access(handle, tl_inode, tl_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| tl->tl_used = cpu_to_le16(i); |
| |
| status = ocfs2_journal_dirty(handle, tl_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| /* TODO: Perhaps we can calculate the bulk of the |
| * credits up front rather than extending like |
| * this. */ |
| status = ocfs2_extend_trans(handle, |
| OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| rec = tl->tl_recs[i]; |
| start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, |
| le32_to_cpu(rec.t_start)); |
| num_clusters = le32_to_cpu(rec.t_clusters); |
| |
| /* if start_blk is not set, we ignore the record as |
| * invalid. */ |
| if (start_blk) { |
| mlog(0, "free record %d, start = %u, clusters = %u\n", |
| i, le32_to_cpu(rec.t_start), num_clusters); |
| |
| status = ocfs2_free_clusters(handle, data_alloc_inode, |
| data_alloc_bh, start_blk, |
| num_clusters); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| i--; |
| } |
| |
| bail: |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* Expects you to already be holding tl_inode->i_mutex */ |
| int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) |
| { |
| int status; |
| unsigned int num_to_flush; |
| handle_t *handle; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| struct inode *data_alloc_inode = NULL; |
| struct buffer_head *tl_bh = osb->osb_tl_bh; |
| struct buffer_head *data_alloc_bh = NULL; |
| struct ocfs2_dinode *di; |
| struct ocfs2_truncate_log *tl; |
| |
| mlog_entry_void(); |
| |
| BUG_ON(mutex_trylock(&tl_inode->i_mutex)); |
| |
| di = (struct ocfs2_dinode *) tl_bh->b_data; |
| tl = &di->id2.i_dealloc; |
| if (!OCFS2_IS_VALID_DINODE(di)) { |
| OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); |
| status = -EIO; |
| goto out; |
| } |
| |
| num_to_flush = le16_to_cpu(tl->tl_used); |
| mlog(0, "Flush %u records from truncate log #%llu\n", |
| num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); |
| if (!num_to_flush) { |
| status = 0; |
| goto out; |
| } |
| |
| data_alloc_inode = ocfs2_get_system_file_inode(osb, |
| GLOBAL_BITMAP_SYSTEM_INODE, |
| OCFS2_INVALID_SLOT); |
| if (!data_alloc_inode) { |
| status = -EINVAL; |
| mlog(ML_ERROR, "Could not get bitmap inode!\n"); |
| goto out; |
| } |
| |
| mutex_lock(&data_alloc_inode->i_mutex); |
| |
| status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1); |
| if (status < 0) { |
| mlog_errno(status); |
| goto out_mutex; |
| } |
| |
| handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); |
| if (IS_ERR(handle)) { |
| status = PTR_ERR(handle); |
| mlog_errno(status); |
| goto out_unlock; |
| } |
| |
| status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, |
| data_alloc_bh); |
| if (status < 0) |
| mlog_errno(status); |
| |
| ocfs2_commit_trans(osb, handle); |
| |
| out_unlock: |
| brelse(data_alloc_bh); |
| ocfs2_meta_unlock(data_alloc_inode, 1); |
| |
| out_mutex: |
| mutex_unlock(&data_alloc_inode->i_mutex); |
| iput(data_alloc_inode); |
| |
| out: |
| mlog_exit(status); |
| return status; |
| } |
| |
| int ocfs2_flush_truncate_log(struct ocfs2_super *osb) |
| { |
| int status; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| |
| mutex_lock(&tl_inode->i_mutex); |
| status = __ocfs2_flush_truncate_log(osb); |
| mutex_unlock(&tl_inode->i_mutex); |
| |
| return status; |
| } |
| |
| static void ocfs2_truncate_log_worker(struct work_struct *work) |
| { |
| int status; |
| struct ocfs2_super *osb = |
| container_of(work, struct ocfs2_super, |
| osb_truncate_log_wq.work); |
| |
| mlog_entry_void(); |
| |
| status = ocfs2_flush_truncate_log(osb); |
| if (status < 0) |
| mlog_errno(status); |
| |
| mlog_exit(status); |
| } |
| |
| #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) |
| void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, |
| int cancel) |
| { |
| if (osb->osb_tl_inode) { |
| /* We want to push off log flushes while truncates are |
| * still running. */ |
| if (cancel) |
| cancel_delayed_work(&osb->osb_truncate_log_wq); |
| |
| queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, |
| OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); |
| } |
| } |
| |
| static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, |
| int slot_num, |
| struct inode **tl_inode, |
| struct buffer_head **tl_bh) |
| { |
| int status; |
| struct inode *inode = NULL; |
| struct buffer_head *bh = NULL; |
| |
| inode = ocfs2_get_system_file_inode(osb, |
| TRUNCATE_LOG_SYSTEM_INODE, |
| slot_num); |
| if (!inode) { |
| status = -EINVAL; |
| mlog(ML_ERROR, "Could not get load truncate log inode!\n"); |
| goto bail; |
| } |
| |
| status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, |
| OCFS2_BH_CACHED, inode); |
| if (status < 0) { |
| iput(inode); |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| *tl_inode = inode; |
| *tl_bh = bh; |
| bail: |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* called during the 1st stage of node recovery. we stamp a clean |
| * truncate log and pass back a copy for processing later. if the |
| * truncate log does not require processing, a *tl_copy is set to |
| * NULL. */ |
| int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, |
| int slot_num, |
| struct ocfs2_dinode **tl_copy) |
| { |
| int status; |
| struct inode *tl_inode = NULL; |
| struct buffer_head *tl_bh = NULL; |
| struct ocfs2_dinode *di; |
| struct ocfs2_truncate_log *tl; |
| |
| *tl_copy = NULL; |
| |
| mlog(0, "recover truncate log from slot %d\n", slot_num); |
| |
| status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| di = (struct ocfs2_dinode *) tl_bh->b_data; |
| tl = &di->id2.i_dealloc; |
| if (!OCFS2_IS_VALID_DINODE(di)) { |
| OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); |
| status = -EIO; |
| goto bail; |
| } |
| |
| if (le16_to_cpu(tl->tl_used)) { |
| mlog(0, "We'll have %u logs to recover\n", |
| le16_to_cpu(tl->tl_used)); |
| |
| *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); |
| if (!(*tl_copy)) { |
| status = -ENOMEM; |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| /* Assuming the write-out below goes well, this copy |
| * will be passed back to recovery for processing. */ |
| memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); |
| |
| /* All we need to do to clear the truncate log is set |
| * tl_used. */ |
| tl->tl_used = 0; |
| |
| status = ocfs2_write_block(osb, tl_bh, tl_inode); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| |
| bail: |
| if (tl_inode) |
| iput(tl_inode); |
| if (tl_bh) |
| brelse(tl_bh); |
| |
| if (status < 0 && (*tl_copy)) { |
| kfree(*tl_copy); |
| *tl_copy = NULL; |
| } |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, |
| struct ocfs2_dinode *tl_copy) |
| { |
| int status = 0; |
| int i; |
| unsigned int clusters, num_recs, start_cluster; |
| u64 start_blk; |
| handle_t *handle; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| struct ocfs2_truncate_log *tl; |
| |
| mlog_entry_void(); |
| |
| if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { |
| mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); |
| return -EINVAL; |
| } |
| |
| tl = &tl_copy->id2.i_dealloc; |
| num_recs = le16_to_cpu(tl->tl_used); |
| mlog(0, "cleanup %u records from %llu\n", num_recs, |
| (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); |
| |
| mutex_lock(&tl_inode->i_mutex); |
| for(i = 0; i < num_recs; i++) { |
| if (ocfs2_truncate_log_needs_flush(osb)) { |
| status = __ocfs2_flush_truncate_log(osb); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail_up; |
| } |
| } |
| |
| handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); |
| if (IS_ERR(handle)) { |
| status = PTR_ERR(handle); |
| mlog_errno(status); |
| goto bail_up; |
| } |
| |
| clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); |
| start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); |
| start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); |
| |
| status = ocfs2_truncate_log_append(osb, handle, |
| start_blk, clusters); |
| ocfs2_commit_trans(osb, handle); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail_up; |
| } |
| } |
| |
| bail_up: |
| mutex_unlock(&tl_inode->i_mutex); |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) |
| { |
| int status; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| |
| mlog_entry_void(); |
| |
| if (tl_inode) { |
| cancel_delayed_work(&osb->osb_truncate_log_wq); |
| flush_workqueue(ocfs2_wq); |
| |
| status = ocfs2_flush_truncate_log(osb); |
| if (status < 0) |
| mlog_errno(status); |
| |
| brelse(osb->osb_tl_bh); |
| iput(osb->osb_tl_inode); |
| } |
| |
| mlog_exit_void(); |
| } |
| |
| int ocfs2_truncate_log_init(struct ocfs2_super *osb) |
| { |
| int status; |
| struct inode *tl_inode = NULL; |
| struct buffer_head *tl_bh = NULL; |
| |
| mlog_entry_void(); |
| |
| status = ocfs2_get_truncate_log_info(osb, |
| osb->slot_num, |
| &tl_inode, |
| &tl_bh); |
| if (status < 0) |
| mlog_errno(status); |
| |
| /* ocfs2_truncate_log_shutdown keys on the existence of |
| * osb->osb_tl_inode so we don't set any of the osb variables |
| * until we're sure all is well. */ |
| INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, |
| ocfs2_truncate_log_worker); |
| osb->osb_tl_bh = tl_bh; |
| osb->osb_tl_inode = tl_inode; |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* |
| * Delayed de-allocation of suballocator blocks. |
| * |
| * Some sets of block de-allocations might involve multiple suballocator inodes. |
| * |
| * The locking for this can get extremely complicated, especially when |
| * the suballocator inodes to delete from aren't known until deep |
| * within an unrelated codepath. |
| * |
| * ocfs2_extent_block structures are a good example of this - an inode |
| * btree could have been grown by any number of nodes each allocating |
| * out of their own suballoc inode. |
| * |
| * These structures allow the delay of block de-allocation until a |
| * later time, when locking of multiple cluster inodes won't cause |
| * deadlock. |
| */ |
| |
| /* |
| * Describes a single block free from a suballocator |
| */ |
| struct ocfs2_cached_block_free { |
| struct ocfs2_cached_block_free *free_next; |
| u64 free_blk; |
| unsigned int free_bit; |
| }; |
| |
| struct ocfs2_per_slot_free_list { |
| struct ocfs2_per_slot_free_list *f_next_suballocator; |
| int f_inode_type; |
| int f_slot; |
| struct ocfs2_cached_block_free *f_first; |
| }; |
| |
| static int ocfs2_free_cached_items(struct ocfs2_super *osb, |
| int sysfile_type, |
| int slot, |
| struct ocfs2_cached_block_free *head) |
| { |
| int ret; |
| u64 bg_blkno; |
| handle_t *handle; |
| struct inode *inode; |
| struct buffer_head *di_bh = NULL; |
| struct ocfs2_cached_block_free *tmp; |
| |
| inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); |
| if (!inode) { |
| ret = -EINVAL; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| mutex_lock(&inode->i_mutex); |
| |
| ret = ocfs2_meta_lock(inode, &di_bh, 1); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_mutex; |
| } |
| |
| handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); |
| if (IS_ERR(handle)) { |
| ret = PTR_ERR(handle); |
| mlog_errno(ret); |
| goto out_unlock; |
| } |
| |
| while (head) { |
| bg_blkno = ocfs2_which_suballoc_group(head->free_blk, |
| head->free_bit); |
| mlog(0, "Free bit: (bit %u, blkno %llu)\n", |
| head->free_bit, (unsigned long long)head->free_blk); |
| |
| ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, |
| head->free_bit, bg_blkno, 1); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_journal; |
| } |
| |
| ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_journal; |
| } |
| |
| tmp = head; |
| head = head->free_next; |
| kfree(tmp); |
| } |
| |
| out_journal: |
| ocfs2_commit_trans(osb, handle); |
| |
| out_unlock: |
| ocfs2_meta_unlock(inode, 1); |
| brelse(di_bh); |
| out_mutex: |
| mutex_unlock(&inode->i_mutex); |
| iput(inode); |
| out: |
| while(head) { |
| /* Premature exit may have left some dangling items. */ |
| tmp = head; |
| head = head->free_next; |
| kfree(tmp); |
| } |
| |
| return ret; |
| } |
| |
| int ocfs2_run_deallocs(struct ocfs2_super *osb, |
| struct ocfs2_cached_dealloc_ctxt *ctxt) |
| { |
| int ret = 0, ret2; |
| struct ocfs2_per_slot_free_list *fl; |
| |
| if (!ctxt) |
| return 0; |
| |
| while (ctxt->c_first_suballocator) { |
| fl = ctxt->c_first_suballocator; |
| |
| if (fl->f_first) { |
| mlog(0, "Free items: (type %u, slot %d)\n", |
| fl->f_inode_type, fl->f_slot); |
| ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type, |
| fl->f_slot, fl->f_first); |
| if (ret2) |
| mlog_errno(ret2); |
| if (!ret) |
| ret = ret2; |
| } |
| |
| ctxt->c_first_suballocator = fl->f_next_suballocator; |
| kfree(fl); |
| } |
| |
| return ret; |
| } |
| |
| static struct ocfs2_per_slot_free_list * |
| ocfs2_find_per_slot_free_list(int type, |
| int slot, |
| struct ocfs2_cached_dealloc_ctxt *ctxt) |
| { |
| struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; |
| |
| while (fl) { |
| if (fl->f_inode_type == type && fl->f_slot == slot) |
| return fl; |
| |
| fl = fl->f_next_suballocator; |
| } |
| |
| fl = kmalloc(sizeof(*fl), GFP_NOFS); |
| if (fl) { |
| fl->f_inode_type = type; |
| fl->f_slot = slot; |
| fl->f_first = NULL; |
| fl->f_next_suballocator = ctxt->c_first_suballocator; |
| |
| ctxt->c_first_suballocator = fl; |
| } |
| return fl; |
| } |
| |
| static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, |
| int type, int slot, u64 blkno, |
| unsigned int bit) |
| { |
| int ret; |
| struct ocfs2_per_slot_free_list *fl; |
| struct ocfs2_cached_block_free *item; |
| |
| fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); |
| if (fl == NULL) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| item = kmalloc(sizeof(*item), GFP_NOFS); |
| if (item == NULL) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", |
| type, slot, bit, (unsigned long long)blkno); |
| |
| item->free_blk = blkno; |
| item->free_bit = bit; |
| item->free_next = fl->f_first; |
| |
| fl->f_first = item; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, |
| struct ocfs2_extent_block *eb) |
| { |
| return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, |
| le16_to_cpu(eb->h_suballoc_slot), |
| le64_to_cpu(eb->h_blkno), |
| le16_to_cpu(eb->h_suballoc_bit)); |
| } |
| |
| /* This function will figure out whether the currently last extent |
| * block will be deleted, and if it will, what the new last extent |
| * block will be so we can update his h_next_leaf_blk field, as well |
| * as the dinodes i_last_eb_blk */ |
| static int ocfs2_find_new_last_ext_blk(struct inode *inode, |
| unsigned int clusters_to_del, |
| struct ocfs2_path *path, |
| struct buffer_head **new_last_eb) |
| { |
| int next_free, ret = 0; |
| u32 cpos; |
| struct ocfs2_extent_rec *rec; |
| struct ocfs2_extent_block *eb; |
| struct ocfs2_extent_list *el; |
| struct buffer_head *bh = NULL; |
| |
| *new_last_eb = NULL; |
| |
| /* we have no tree, so of course, no last_eb. */ |
| if (!path->p_tree_depth) |
| goto out; |
| |
| /* trunc to zero special case - this makes tree_depth = 0 |
| * regardless of what it is. */ |
| if (OCFS2_I(inode)->ip_clusters == clusters_to_del) |
| goto out; |
| |
| el = path_leaf_el(path); |
| BUG_ON(!el->l_next_free_rec); |
| |
| /* |
| * Make sure that this extent list will actually be empty |
| * after we clear away the data. We can shortcut out if |
| * there's more than one non-empty extent in the |
| * list. Otherwise, a check of the remaining extent is |
| * necessary. |
| */ |
| next_free = le16_to_cpu(el->l_next_free_rec); |
| rec = NULL; |
| if (ocfs2_is_empty_extent(&el->l_recs[0])) { |
| if (next_free > 2) |
| goto out; |
| |
| /* We may have a valid extent in index 1, check it. */ |
| if (next_free == 2) |
| rec = &el->l_recs[1]; |
| |
| /* |
| * Fall through - no more nonempty extents, so we want |
| * to delete this leaf. |
| */ |
| } else { |
| if (next_free > 1) |
| goto out; |
| |
| rec = &el->l_recs[0]; |
| } |
| |
| if (rec) { |
| /* |
| * Check it we'll only be trimming off the end of this |
| * cluster. |
| */ |
| if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) |
| goto out; |
| } |
| |
| ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| eb = (struct ocfs2_extent_block *) bh->b_data; |
| el = &eb->h_list; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| *new_last_eb = bh; |
| get_bh(*new_last_eb); |
| mlog(0, "returning block %llu, (cpos: %u)\n", |
| (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); |
| out: |
| brelse(bh); |
| |
| return ret; |
| } |
| |
| /* |
| * Trim some clusters off the rightmost edge of a tree. Only called |
| * during truncate. |
| * |
| * The caller needs to: |
| * - start journaling of each path component. |
| * - compute and fully set up any new last ext block |
| */ |
| static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, |
| handle_t *handle, struct ocfs2_truncate_context *tc, |
| u32 clusters_to_del, u64 *delete_start) |
| { |
| int ret, i, index = path->p_tree_depth; |
| u32 new_edge = 0; |
| u64 deleted_eb = 0; |
| struct buffer_head *bh; |
| struct ocfs2_extent_list *el; |
| struct ocfs2_extent_rec *rec; |
| |
| *delete_start = 0; |
| |
| while (index >= 0) { |
| bh = path->p_node[index].bh; |
| el = path->p_node[index].el; |
| |
| mlog(0, "traveling tree (index = %d, block = %llu)\n", |
| index, (unsigned long long)bh->b_blocknr); |
| |
| BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); |
| |
| if (index != |
| (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { |
| ocfs2_error(inode->i_sb, |
| "Inode %lu has invalid ext. block %llu", |
| inode->i_ino, |
| (unsigned long long)bh->b_blocknr); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| find_tail_record: |
| i = le16_to_cpu(el->l_next_free_rec) - 1; |
| rec = &el->l_recs[i]; |
| |
| mlog(0, "Extent list before: record %d: (%u, %u, %llu), " |
| "next = %u\n", i, le32_to_cpu(rec->e_cpos), |
| ocfs2_rec_clusters(el, rec), |
| (unsigned long long)le64_to_cpu(rec->e_blkno), |
| le16_to_cpu(el->l_next_free_rec)); |
| |
| BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); |
| |
| if (le16_to_cpu(el->l_tree_depth) == 0) { |
| /* |
| * If the leaf block contains a single empty |
| * extent and no records, we can just remove |
| * the block. |
| */ |
| if (i == 0 && ocfs2_is_empty_extent(rec)) { |
| memset(rec, 0, |
| sizeof(struct ocfs2_extent_rec)); |
| el->l_next_free_rec = cpu_to_le16(0); |
| |
| goto delete; |
| } |
| |
| /* |
| * Remove any empty extents by shifting things |
| * left. That should make life much easier on |
| * the code below. This condition is rare |
| * enough that we shouldn't see a performance |
| * hit. |
| */ |
| if (ocfs2_is_empty_extent(&el->l_recs[0])) { |
| le16_add_cpu(&el->l_next_free_rec, -1); |
| |
| for(i = 0; |
| i < le16_to_cpu(el->l_next_free_rec); i++) |
| el->l_recs[i] = el->l_recs[i + 1]; |
| |
| memset(&el->l_recs[i], 0, |
| sizeof(struct ocfs2_extent_rec)); |
| |
| /* |
| * We've modified our extent list. The |
| * simplest way to handle this change |
| * is to being the search from the |
| * start again. |
| */ |
| goto find_tail_record; |
| } |
| |
| le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); |
| |
| /* |
| * We'll use "new_edge" on our way back up the |
| * tree to know what our rightmost cpos is. |
| */ |
| new_edge = le16_to_cpu(rec->e_leaf_clusters); |
| new_edge += le32_to_cpu(rec->e_cpos); |
| |
| /* |
| * The caller will use this to delete data blocks. |
| */ |
| *delete_start = le64_to_cpu(rec->e_blkno) |
| + ocfs2_clusters_to_blocks(inode->i_sb, |
| le16_to_cpu(rec->e_leaf_clusters)); |
| |
| /* |
| * If it's now empty, remove this record. |
| */ |
| if (le16_to_cpu(rec->e_leaf_clusters) == 0) { |
| memset(rec, 0, |
| sizeof(struct ocfs2_extent_rec)); |
| le16_add_cpu(&el->l_next_free_rec, -1); |
| } |
| } else { |
| if (le64_to_cpu(rec->e_blkno) == deleted_eb) { |
| memset(rec, 0, |
| sizeof(struct ocfs2_extent_rec)); |
| le16_add_cpu(&el->l_next_free_rec, -1); |
| |
| goto delete; |
| } |
| |
| /* Can this actually happen? */ |
| if (le16_to_cpu(el->l_next_free_rec) == 0) |
| goto delete; |
| |
| /* |
| * We never actually deleted any clusters |
| * because our leaf was empty. There's no |
| * reason to adjust the rightmost edge then. |
| */ |
| if (new_edge == 0) |
| goto delete; |
| |
| rec->e_int_clusters = cpu_to_le32(new_edge); |
| le32_add_cpu(&rec->e_int_clusters, |
| -le32_to_cpu(rec->e_cpos)); |
| |
| /* |
| * A deleted child record should have been |
| * caught above. |
| */ |
| BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); |
| } |
| |
| delete: |
| ret = ocfs2_journal_dirty(handle, bh); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| mlog(0, "extent list container %llu, after: record %d: " |
| "(%u, %u, %llu), next = %u.\n", |
| (unsigned long long)bh->b_blocknr, i, |
| le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), |
| (unsigned long long)le64_to_cpu(rec->e_blkno), |
| le16_to_cpu(el->l_next_free_rec)); |
| |
| /* |
| * We must be careful to only attempt delete of an |
| * extent block (and not the root inode block). |
| */ |
| if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { |
| struct ocfs2_extent_block *eb = |
| (struct ocfs2_extent_block *)bh->b_data; |
| |
| /* |
| * Save this for use when processing the |
| * parent block. |
| */ |
| deleted_eb = le64_to_cpu(eb->h_blkno); |
| |
| mlog(0, "deleting this extent block.\n"); |
| |
| ocfs2_remove_from_cache(inode, bh); |
| |
| BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); |
| BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); |
| BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); |
| |
| ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); |
| /* An error here is not fatal. */ |
| if (ret < 0) |
| mlog_errno(ret); |
| } else { |
| deleted_eb = 0; |
| } |
| |
| index--; |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_do_truncate(struct ocfs2_super *osb, |
| unsigned int clusters_to_del, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| handle_t *handle, |
| struct ocfs2_truncate_context *tc, |
| struct ocfs2_path *path) |
| { |
| int status; |
| struct ocfs2_dinode *fe; |
| struct ocfs2_extent_block *last_eb = NULL; |
| struct ocfs2_extent_list *el; |
| struct buffer_head *last_eb_bh = NULL; |
| u64 delete_blk = 0; |
| |
| fe = (struct ocfs2_dinode *) fe_bh->b_data; |
| |
| status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, |
| path, &last_eb_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| /* |
| * Each component will be touched, so we might as well journal |
| * here to avoid having to handle errors later. |
| */ |
| status = ocfs2_journal_access_path(inode, handle, path); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| if (last_eb_bh) { |
| status = ocfs2_journal_access(handle, inode, last_eb_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; |
| } |
| |
| el = &(fe->id2.i_list); |
| |
| /* |
| * Lower levels depend on this never happening, but it's best |
| * to check it up here before changing the tree. |
| */ |
| if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { |
| ocfs2_error(inode->i_sb, |
| "Inode %lu has an empty extent record, depth %u\n", |
| inode->i_ino, le16_to_cpu(el->l_tree_depth)); |
| status = -EROFS; |
| goto bail; |
| } |
| |
| spin_lock(&OCFS2_I(inode)->ip_lock); |
| OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - |
| clusters_to_del; |
| spin_unlock(&OCFS2_I(inode)->ip_lock); |
| le32_add_cpu(&fe->i_clusters, -clusters_to_del); |
| inode->i_blocks = ocfs2_inode_sector_count(inode); |
| |
| status = ocfs2_trim_tree(inode, path, handle, tc, |
| clusters_to_del, &delete_blk); |
| if (status) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| if (le32_to_cpu(fe->i_clusters) == 0) { |
| /* trunc to zero is a special case. */ |
| el->l_tree_depth = 0; |
| fe->i_last_eb_blk = 0; |
| } else if (last_eb) |
| fe->i_last_eb_blk = last_eb->h_blkno; |
| |
| status = ocfs2_journal_dirty(handle, fe_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| if (last_eb) { |
| /* If there will be a new last extent block, then by |
| * definition, there cannot be any leaves to the right of |
| * him. */ |
| last_eb->h_next_leaf_blk = 0; |
| status = ocfs2_journal_dirty(handle, last_eb_bh); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| |
| if (delete_blk) { |
| status = ocfs2_truncate_log_append(osb, handle, delete_blk, |
| clusters_to_del); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| status = 0; |
| bail: |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) |
| { |
| set_buffer_uptodate(bh); |
| mark_buffer_dirty(bh); |
| return 0; |
| } |
| |
| static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) |
| { |
| set_buffer_uptodate(bh); |
| mark_buffer_dirty(bh); |
| return ocfs2_journal_dirty_data(handle, bh); |
| } |
| |
| static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, |
| unsigned int from, unsigned int to, |
| struct page *page, int zero, u64 *phys) |
| { |
| int ret, partial = 0; |
| |
| ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); |
| if (ret) |
| mlog_errno(ret); |
| |
| if (zero) |
| zero_user_page(page, from, to - from, KM_USER0); |
| |
| /* |
| * Need to set the buffers we zero'd into uptodate |
| * here if they aren't - ocfs2_map_page_blocks() |
| * might've skipped some |
| */ |
| if (ocfs2_should_order_data(inode)) { |
| ret = walk_page_buffers(handle, |
| page_buffers(page), |
| from, to, &partial, |
| ocfs2_ordered_zero_func); |
| if (ret < 0) |
| mlog_errno(ret); |
| } else { |
| ret = walk_page_buffers(handle, page_buffers(page), |
| from, to, &partial, |
| ocfs2_writeback_zero_func); |
| if (ret < 0) |
| mlog_errno(ret); |
| } |
| |
| if (!partial) |
| SetPageUptodate(page); |
| |
| flush_dcache_page(page); |
| } |
| |
| static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, |
| loff_t end, struct page **pages, |
| int numpages, u64 phys, handle_t *handle) |
| { |
| int i; |
| struct page *page; |
| unsigned int from, to = PAGE_CACHE_SIZE; |
| struct super_block *sb = inode->i_sb; |
| |
| BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); |
| |
| if (numpages == 0) |
| goto out; |
| |
| to = PAGE_CACHE_SIZE; |
| for(i = 0; i < numpages; i++) { |
| page = pages[i]; |
| |
| from = start & (PAGE_CACHE_SIZE - 1); |
| if ((end >> PAGE_CACHE_SHIFT) == page->index) |
| to = end & (PAGE_CACHE_SIZE - 1); |
| |
| BUG_ON(from > PAGE_CACHE_SIZE); |
| BUG_ON(to > PAGE_CACHE_SIZE); |
| |
| ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, |
| &phys); |
| |
| start = (page->index + 1) << PAGE_CACHE_SHIFT; |
| } |
| out: |
| if (pages) |
| ocfs2_unlock_and_free_pages(pages, numpages); |
| } |
| |
| static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, |
| struct page **pages, int *num) |
| { |
| int numpages, ret = 0; |
| struct super_block *sb = inode->i_sb; |
| struct address_space *mapping = inode->i_mapping; |
| unsigned long index; |
| loff_t last_page_bytes; |
| |
| BUG_ON(start > end); |
| |
| BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != |
| (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); |
| |
| numpages = 0; |
| last_page_bytes = PAGE_ALIGN(end); |
| index = start >> PAGE_CACHE_SHIFT; |
| do { |
| pages[numpages] = grab_cache_page(mapping, index); |
| if (!pages[numpages]) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| numpages++; |
| index++; |
| } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); |
| |
| out: |
| if (ret != 0) { |
| if (pages) |
| ocfs2_unlock_and_free_pages(pages, numpages); |
| numpages = 0; |
| } |
| |
| *num = numpages; |
| |
| return ret; |
| } |
| |
| /* |
| * Zero the area past i_size but still within an allocated |
| * cluster. This avoids exposing nonzero data on subsequent file |
| * extends. |
| * |
| * We need to call this before i_size is updated on the inode because |
| * otherwise block_write_full_page() will skip writeout of pages past |
| * i_size. The new_i_size parameter is passed for this reason. |
| */ |
| int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, |
| u64 range_start, u64 range_end) |
| { |
| int ret = 0, numpages; |
| struct page **pages = NULL; |
| u64 phys; |
| unsigned int ext_flags; |
| struct super_block *sb = inode->i_sb; |
| |
| /* |
| * File systems which don't support sparse files zero on every |
| * extend. |
| */ |
| if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) |
| return 0; |
| |
| pages = kcalloc(ocfs2_pages_per_cluster(sb), |
| sizeof(struct page *), GFP_NOFS); |
| if (pages == NULL) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (range_start == range_end) |
| goto out; |
| |
| ret = ocfs2_extent_map_get_blocks(inode, |
| range_start >> sb->s_blocksize_bits, |
| &phys, NULL, &ext_flags); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Tail is a hole, or is marked unwritten. In either case, we |
| * can count on read and write to return/push zero's. |
| */ |
| if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) |
| goto out; |
| |
| ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, |
| &numpages); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, |
| numpages, phys, handle); |
| |
| /* |
| * Initiate writeout of the pages we zero'd here. We don't |
| * wait on them - the truncate_inode_pages() call later will |
| * do that for us. |
| */ |
| ret = do_sync_mapping_range(inode->i_mapping, range_start, |
| range_end - 1, SYNC_FILE_RANGE_WRITE); |
| if (ret) |
| mlog_errno(ret); |
| |
| out: |
| if (pages) |
| kfree(pages); |
| |
| return ret; |
| } |
| |
| /* |
| * It is expected, that by the time you call this function, |
| * inode->i_size and fe->i_size have been adjusted. |
| * |
| * WARNING: This will kfree the truncate context |
| */ |
| int ocfs2_commit_truncate(struct ocfs2_super *osb, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| struct ocfs2_truncate_context *tc) |
| { |
| int status, i, credits, tl_sem = 0; |
| u32 clusters_to_del, new_highest_cpos, range; |
| struct ocfs2_extent_list *el; |
| handle_t *handle = NULL; |
| struct inode *tl_inode = osb->osb_tl_inode; |
| struct ocfs2_path *path = NULL; |
| |
| mlog_entry_void(); |
| |
| new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, |
| i_size_read(inode)); |
| |
| path = ocfs2_new_inode_path(fe_bh); |
| if (!path) { |
| status = -ENOMEM; |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| ocfs2_extent_map_trunc(inode, new_highest_cpos); |
| |
| start: |
| /* |
| * Check that we still have allocation to delete. |
| */ |
| if (OCFS2_I(inode)->ip_clusters == 0) { |
| status = 0; |
| goto bail; |
| } |
| |
| /* |
| * Truncate always works against the rightmost tree branch. |
| */ |
| status = ocfs2_find_path(inode, path, UINT_MAX); |
| if (status) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", |
| OCFS2_I(inode)->ip_clusters, path->p_tree_depth); |
| |
| /* |
| * By now, el will point to the extent list on the bottom most |
| * portion of this tree. Only the tail record is considered in |
| * each pass. |
| * |
| * We handle the following cases, in order: |
| * - empty extent: delete the remaining branch |
| * - remove the entire record |
| * - remove a partial record |
| * - no record needs to be removed (truncate has completed) |
| */ |
| el = path_leaf_el(path); |
| if (le16_to_cpu(el->l_next_free_rec) == 0) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has empty extent block at %llu\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)path_leaf_bh(path)->b_blocknr); |
| status = -EROFS; |
| goto bail; |
| } |
| |
| i = le16_to_cpu(el->l_next_free_rec) - 1; |
| range = le32_to_cpu(el->l_recs[i].e_cpos) + |
| ocfs2_rec_clusters(el, &el->l_recs[i]); |
| if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { |
| clusters_to_del = 0; |
| } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { |
| clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); |
| } else if (range > new_highest_cpos) { |
| clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + |
| le32_to_cpu(el->l_recs[i].e_cpos)) - |
| new_highest_cpos; |
| } else { |
| status = 0; |
| goto bail; |
| } |
| |
| mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", |
| clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); |
| |
| BUG_ON(clusters_to_del == 0); |
| |
| mutex_lock(&tl_inode->i_mutex); |
| tl_sem = 1; |
| /* ocfs2_truncate_log_needs_flush guarantees us at least one |
| * record is free for use. If there isn't any, we flush to get |
| * an empty truncate log. */ |
| if (ocfs2_truncate_log_needs_flush(osb)) { |
| status = __ocfs2_flush_truncate_log(osb); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| } |
| |
| credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, |
| (struct ocfs2_dinode *)fe_bh->b_data, |
| el); |
| handle = ocfs2_start_trans(osb, credits); |
| if (IS_ERR(handle)) { |
| status = PTR_ERR(handle); |
| handle = NULL; |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, |
| tc, path); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| |
| mutex_unlock(&tl_inode->i_mutex); |
| tl_sem = 0; |
| |
| ocfs2_commit_trans(osb, handle); |
| handle = NULL; |
| |
| ocfs2_reinit_path(path, 1); |
| |
| /* |
| * The check above will catch the case where we've truncated |
| * away all allocation. |
| */ |
| goto start; |
| |
| bail: |
| |
| ocfs2_schedule_truncate_log_flush(osb, 1); |
| |
| if (tl_sem) |
| mutex_unlock(&tl_inode->i_mutex); |
| |
| if (handle) |
| ocfs2_commit_trans(osb, handle); |
| |
| ocfs2_run_deallocs(osb, &tc->tc_dealloc); |
| |
| ocfs2_free_path(path); |
| |
| /* This will drop the ext_alloc cluster lock for us */ |
| ocfs2_free_truncate_context(tc); |
| |
| mlog_exit(status); |
| return status; |
| } |
| |
| /* |
| * Expects the inode to already be locked. |
| */ |
| int ocfs2_prepare_truncate(struct ocfs2_super *osb, |
| struct inode *inode, |
| struct buffer_head *fe_bh, |
| struct ocfs2_truncate_context **tc) |
| { |
| int status; |
| unsigned int new_i_clusters; |
| struct ocfs2_dinode *fe; |
| struct ocfs2_extent_block *eb; |
| struct buffer_head *last_eb_bh = NULL; |
| |
| mlog_entry_void(); |
| |
| *tc = NULL; |
| |
| new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, |
| i_size_read(inode)); |
| fe = (struct ocfs2_dinode *) fe_bh->b_data; |
| |
| mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" |
| "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, |
| (unsigned long long)le64_to_cpu(fe->i_size)); |
| |
| *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); |
| if (!(*tc)) { |
| status = -ENOMEM; |
| mlog_errno(status); |
| goto bail; |
| } |
| ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); |
| |
| if (fe->id2.i_list.l_tree_depth) { |
| status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), |
| &last_eb_bh, OCFS2_BH_CACHED, inode); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; |
| if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { |
| OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); |
| |
| brelse(last_eb_bh); |
| status = -EIO; |
| goto bail; |
| } |
| } |
| |
| (*tc)->tc_last_eb_bh = last_eb_bh; |
| |
| status = 0; |
| bail: |
| if (status < 0) { |
| if (*tc) |
| ocfs2_free_truncate_context(*tc); |
| *tc = NULL; |
| } |
| mlog_exit_void(); |
| return status; |
| } |
| |
| static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) |
| { |
| /* |
| * The caller is responsible for completing deallocation |
| * before freeing the context. |
| */ |
| if (tc->tc_dealloc.c_first_suballocator != NULL) |
| mlog(ML_NOTICE, |
| "Truncate completion has non-empty dealloc context\n"); |
| |
| if (tc->tc_last_eb_bh) |
| brelse(tc->tc_last_eb_bh); |
| |
| kfree(tc); |
| } |