| /* |
| * linux/arch/m68k/mm/memory.c |
| * |
| * Copyright (C) 1995 Hamish Macdonald |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/pagemap.h> |
| |
| #include <asm/setup.h> |
| #include <asm/segment.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/system.h> |
| #include <asm/traps.h> |
| #include <asm/machdep.h> |
| |
| |
| /* ++andreas: {get,free}_pointer_table rewritten to use unused fields from |
| struct page instead of separately kmalloced struct. Stolen from |
| arch/sparc/mm/srmmu.c ... */ |
| |
| typedef struct list_head ptable_desc; |
| static LIST_HEAD(ptable_list); |
| |
| #define PD_PTABLE(page) ((ptable_desc *)&(virt_to_page(page)->lru)) |
| #define PD_PAGE(ptable) (list_entry(ptable, struct page, lru)) |
| #define PD_MARKBITS(dp) (*(unsigned char *)&PD_PAGE(dp)->index) |
| |
| #define PTABLE_SIZE (PTRS_PER_PMD * sizeof(pmd_t)) |
| |
| void __init init_pointer_table(unsigned long ptable) |
| { |
| ptable_desc *dp; |
| unsigned long page = ptable & PAGE_MASK; |
| unsigned char mask = 1 << ((ptable - page)/PTABLE_SIZE); |
| |
| dp = PD_PTABLE(page); |
| if (!(PD_MARKBITS(dp) & mask)) { |
| PD_MARKBITS(dp) = 0xff; |
| list_add(dp, &ptable_list); |
| } |
| |
| PD_MARKBITS(dp) &= ~mask; |
| #ifdef DEBUG |
| printk("init_pointer_table: %lx, %x\n", ptable, PD_MARKBITS(dp)); |
| #endif |
| |
| /* unreserve the page so it's possible to free that page */ |
| PD_PAGE(dp)->flags &= ~(1 << PG_reserved); |
| init_page_count(PD_PAGE(dp)); |
| |
| return; |
| } |
| |
| pmd_t *get_pointer_table (void) |
| { |
| ptable_desc *dp = ptable_list.next; |
| unsigned char mask = PD_MARKBITS (dp); |
| unsigned char tmp; |
| unsigned int off; |
| |
| /* |
| * For a pointer table for a user process address space, a |
| * table is taken from a page allocated for the purpose. Each |
| * page can hold 8 pointer tables. The page is remapped in |
| * virtual address space to be noncacheable. |
| */ |
| if (mask == 0) { |
| void *page; |
| ptable_desc *new; |
| |
| if (!(page = (void *)get_zeroed_page(GFP_KERNEL))) |
| return NULL; |
| |
| flush_tlb_kernel_page(page); |
| nocache_page(page); |
| |
| new = PD_PTABLE(page); |
| PD_MARKBITS(new) = 0xfe; |
| list_add_tail(new, dp); |
| |
| return (pmd_t *)page; |
| } |
| |
| for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += PTABLE_SIZE) |
| ; |
| PD_MARKBITS(dp) = mask & ~tmp; |
| if (!PD_MARKBITS(dp)) { |
| /* move to end of list */ |
| list_move_tail(dp, &ptable_list); |
| } |
| return (pmd_t *) (page_address(PD_PAGE(dp)) + off); |
| } |
| |
| int free_pointer_table (pmd_t *ptable) |
| { |
| ptable_desc *dp; |
| unsigned long page = (unsigned long)ptable & PAGE_MASK; |
| unsigned char mask = 1 << (((unsigned long)ptable - page)/PTABLE_SIZE); |
| |
| dp = PD_PTABLE(page); |
| if (PD_MARKBITS (dp) & mask) |
| panic ("table already free!"); |
| |
| PD_MARKBITS (dp) |= mask; |
| |
| if (PD_MARKBITS(dp) == 0xff) { |
| /* all tables in page are free, free page */ |
| list_del(dp); |
| cache_page((void *)page); |
| free_page (page); |
| return 1; |
| } else if (ptable_list.next != dp) { |
| /* |
| * move this descriptor to the front of the list, since |
| * it has one or more free tables. |
| */ |
| list_move(dp, &ptable_list); |
| } |
| return 0; |
| } |
| |
| #ifdef DEBUG_INVALID_PTOV |
| int mm_inv_cnt = 5; |
| #endif |
| |
| #ifndef CONFIG_SINGLE_MEMORY_CHUNK |
| /* |
| * The following two routines map from a physical address to a kernel |
| * virtual address and vice versa. |
| */ |
| unsigned long mm_vtop(unsigned long vaddr) |
| { |
| int i=0; |
| unsigned long voff = (unsigned long)vaddr - PAGE_OFFSET; |
| |
| do { |
| if (voff < m68k_memory[i].size) { |
| #ifdef DEBUGPV |
| printk ("VTOP(%p)=%lx\n", vaddr, |
| m68k_memory[i].addr + voff); |
| #endif |
| return m68k_memory[i].addr + voff; |
| } |
| voff -= m68k_memory[i].size; |
| } while (++i < m68k_num_memory); |
| |
| /* As a special case allow `__pa(high_memory)'. */ |
| if (voff == 0) |
| return m68k_memory[i-1].addr + m68k_memory[i-1].size; |
| |
| return -1; |
| } |
| EXPORT_SYMBOL(mm_vtop); |
| |
| unsigned long mm_ptov (unsigned long paddr) |
| { |
| int i = 0; |
| unsigned long poff, voff = PAGE_OFFSET; |
| |
| do { |
| poff = paddr - m68k_memory[i].addr; |
| if (poff < m68k_memory[i].size) { |
| #ifdef DEBUGPV |
| printk ("PTOV(%lx)=%lx\n", paddr, poff + voff); |
| #endif |
| return poff + voff; |
| } |
| voff += m68k_memory[i].size; |
| } while (++i < m68k_num_memory); |
| |
| #ifdef DEBUG_INVALID_PTOV |
| if (mm_inv_cnt > 0) { |
| mm_inv_cnt--; |
| printk("Invalid use of phys_to_virt(0x%lx) at 0x%p!\n", |
| paddr, __builtin_return_address(0)); |
| } |
| #endif |
| return -1; |
| } |
| EXPORT_SYMBOL(mm_ptov); |
| #endif |
| |
| /* invalidate page in both caches */ |
| static inline void clear040(unsigned long paddr) |
| { |
| asm volatile ( |
| "nop\n\t" |
| ".chip 68040\n\t" |
| "cinvp %%bc,(%0)\n\t" |
| ".chip 68k" |
| : : "a" (paddr)); |
| } |
| |
| /* invalidate page in i-cache */ |
| static inline void cleari040(unsigned long paddr) |
| { |
| asm volatile ( |
| "nop\n\t" |
| ".chip 68040\n\t" |
| "cinvp %%ic,(%0)\n\t" |
| ".chip 68k" |
| : : "a" (paddr)); |
| } |
| |
| /* push page in both caches */ |
| /* RZ: cpush %bc DOES invalidate %ic, regardless of DPI */ |
| static inline void push040(unsigned long paddr) |
| { |
| asm volatile ( |
| "nop\n\t" |
| ".chip 68040\n\t" |
| "cpushp %%bc,(%0)\n\t" |
| ".chip 68k" |
| : : "a" (paddr)); |
| } |
| |
| /* push and invalidate page in both caches, must disable ints |
| * to avoid invalidating valid data */ |
| static inline void pushcl040(unsigned long paddr) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| push040(paddr); |
| if (CPU_IS_060) |
| clear040(paddr); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * 040: Hit every page containing an address in the range paddr..paddr+len-1. |
| * (Low order bits of the ea of a CINVP/CPUSHP are "don't care"s). |
| * Hit every page until there is a page or less to go. Hit the next page, |
| * and the one after that if the range hits it. |
| */ |
| /* ++roman: A little bit more care is required here: The CINVP instruction |
| * invalidates cache entries WITHOUT WRITING DIRTY DATA BACK! So the beginning |
| * and the end of the region must be treated differently if they are not |
| * exactly at the beginning or end of a page boundary. Else, maybe too much |
| * data becomes invalidated and thus lost forever. CPUSHP does what we need: |
| * it invalidates the page after pushing dirty data to memory. (Thanks to Jes |
| * for discovering the problem!) |
| */ |
| /* ... but on the '060, CPUSH doesn't invalidate (for us, since we have set |
| * the DPI bit in the CACR; would it cause problems with temporarily changing |
| * this?). So we have to push first and then additionally to invalidate. |
| */ |
| |
| |
| /* |
| * cache_clear() semantics: Clear any cache entries for the area in question, |
| * without writing back dirty entries first. This is useful if the data will |
| * be overwritten anyway, e.g. by DMA to memory. The range is defined by a |
| * _physical_ address. |
| */ |
| |
| void cache_clear (unsigned long paddr, int len) |
| { |
| if (CPU_IS_040_OR_060) { |
| int tmp; |
| |
| /* |
| * We need special treatment for the first page, in case it |
| * is not page-aligned. Page align the addresses to work |
| * around bug I17 in the 68060. |
| */ |
| if ((tmp = -paddr & (PAGE_SIZE - 1))) { |
| pushcl040(paddr & PAGE_MASK); |
| if ((len -= tmp) <= 0) |
| return; |
| paddr += tmp; |
| } |
| tmp = PAGE_SIZE; |
| paddr &= PAGE_MASK; |
| while ((len -= tmp) >= 0) { |
| clear040(paddr); |
| paddr += tmp; |
| } |
| if ((len += tmp)) |
| /* a page boundary gets crossed at the end */ |
| pushcl040(paddr); |
| } |
| else /* 68030 or 68020 */ |
| asm volatile ("movec %/cacr,%/d0\n\t" |
| "oriw %0,%/d0\n\t" |
| "movec %/d0,%/cacr" |
| : : "i" (FLUSH_I_AND_D) |
| : "d0"); |
| #ifdef CONFIG_M68K_L2_CACHE |
| if(mach_l2_flush) |
| mach_l2_flush(0); |
| #endif |
| } |
| EXPORT_SYMBOL(cache_clear); /* probably can be unexported */ |
| |
| |
| /* |
| * cache_push() semantics: Write back any dirty cache data in the given area, |
| * and invalidate the range in the instruction cache. It needs not (but may) |
| * invalidate those entries also in the data cache. The range is defined by a |
| * _physical_ address. |
| */ |
| |
| void cache_push (unsigned long paddr, int len) |
| { |
| if (CPU_IS_040_OR_060) { |
| int tmp = PAGE_SIZE; |
| |
| /* |
| * on 68040 or 68060, push cache lines for pages in the range; |
| * on the '040 this also invalidates the pushed lines, but not on |
| * the '060! |
| */ |
| len += paddr & (PAGE_SIZE - 1); |
| |
| /* |
| * Work around bug I17 in the 68060 affecting some instruction |
| * lines not being invalidated properly. |
| */ |
| paddr &= PAGE_MASK; |
| |
| do { |
| push040(paddr); |
| paddr += tmp; |
| } while ((len -= tmp) > 0); |
| } |
| /* |
| * 68030/68020 have no writeback cache. On the other hand, |
| * cache_push is actually a superset of cache_clear (the lines |
| * get written back and invalidated), so we should make sure |
| * to perform the corresponding actions. After all, this is getting |
| * called in places where we've just loaded code, or whatever, so |
| * flushing the icache is appropriate; flushing the dcache shouldn't |
| * be required. |
| */ |
| else /* 68030 or 68020 */ |
| asm volatile ("movec %/cacr,%/d0\n\t" |
| "oriw %0,%/d0\n\t" |
| "movec %/d0,%/cacr" |
| : : "i" (FLUSH_I) |
| : "d0"); |
| #ifdef CONFIG_M68K_L2_CACHE |
| if(mach_l2_flush) |
| mach_l2_flush(1); |
| #endif |
| } |
| EXPORT_SYMBOL(cache_push); /* probably can be unexported */ |
| |
| #ifndef CONFIG_SINGLE_MEMORY_CHUNK |
| int mm_end_of_chunk (unsigned long addr, int len) |
| { |
| int i; |
| |
| for (i = 0; i < m68k_num_memory; i++) |
| if (m68k_memory[i].addr + m68k_memory[i].size == addr + len) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mm_end_of_chunk); |
| #endif |