| /* |
| * Based upon linux/arch/m68k/mm/sun3mmu.c |
| * Based upon linux/arch/ppc/mm/mmu_context.c |
| * |
| * Implementations of mm routines specific to the Coldfire MMU. |
| * |
| * Copyright (c) 2008 Freescale Semiconductor, Inc. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/bootmem.h> |
| |
| #include <asm/setup.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mcf_pgalloc.h> |
| #include <asm/tlbflush.h> |
| |
| #define KMAPAREA(x) ((x >= VMALLOC_START) && (x < KMAP_END)) |
| |
| mm_context_t next_mmu_context; |
| unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1]; |
| atomic_t nr_free_contexts; |
| struct mm_struct *context_mm[LAST_CONTEXT+1]; |
| extern unsigned long num_pages; |
| |
| void free_initmem(void) |
| { |
| } |
| |
| /* |
| * ColdFire paging_init derived from sun3. |
| */ |
| void __init paging_init(void) |
| { |
| pgd_t *pg_dir; |
| pte_t *pg_table; |
| unsigned long address, size; |
| unsigned long next_pgtable, bootmem_end; |
| unsigned long zones_size[MAX_NR_ZONES]; |
| enum zone_type zone; |
| int i; |
| |
| empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE); |
| memset((void *) empty_zero_page, 0, PAGE_SIZE); |
| |
| pg_dir = swapper_pg_dir; |
| memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); |
| |
| size = num_pages * sizeof(pte_t); |
| size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1); |
| next_pgtable = (unsigned long) alloc_bootmem_pages(size); |
| |
| bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK; |
| pg_dir += PAGE_OFFSET >> PGDIR_SHIFT; |
| |
| address = PAGE_OFFSET; |
| while (address < (unsigned long)high_memory) { |
| pg_table = (pte_t *) next_pgtable; |
| next_pgtable += PTRS_PER_PTE * sizeof(pte_t); |
| pgd_val(*pg_dir) = (unsigned long) pg_table; |
| pg_dir++; |
| |
| /* now change pg_table to kernel virtual addresses */ |
| for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) { |
| pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT); |
| if (address >= (unsigned long) high_memory) |
| pte_val(pte) = 0; |
| |
| set_pte(pg_table, pte); |
| address += PAGE_SIZE; |
| } |
| } |
| |
| current->mm = NULL; |
| |
| for (zone = 0; zone < MAX_NR_ZONES; zone++) |
| zones_size[zone] = 0x0; |
| zones_size[ZONE_DMA] = num_pages; |
| free_area_init(zones_size); |
| } |
| |
| int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word) |
| { |
| unsigned long flags, mmuar, mmutr; |
| struct mm_struct *mm; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| int asid; |
| |
| local_irq_save(flags); |
| |
| mmuar = (dtlb) ? mmu_read(MMUAR) : |
| regs->pc + (extension_word * sizeof(long)); |
| |
| mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm; |
| if (!mm) { |
| local_irq_restore(flags); |
| return -1; |
| } |
| |
| pgd = pgd_offset(mm, mmuar); |
| if (pgd_none(*pgd)) { |
| local_irq_restore(flags); |
| return -1; |
| } |
| |
| pmd = pmd_offset(pgd, mmuar); |
| if (pmd_none(*pmd)) { |
| local_irq_restore(flags); |
| return -1; |
| } |
| |
| pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar) |
| : pte_offset_map(pmd, mmuar); |
| if (pte_none(*pte) || !pte_present(*pte)) { |
| local_irq_restore(flags); |
| return -1; |
| } |
| |
| if (write) { |
| if (!pte_write(*pte)) { |
| local_irq_restore(flags); |
| return -1; |
| } |
| set_pte(pte, pte_mkdirty(*pte)); |
| } |
| |
| set_pte(pte, pte_mkyoung(*pte)); |
| asid = mm->context & 0xff; |
| if (!pte_dirty(*pte) && !KMAPAREA(mmuar)) |
| set_pte(pte, pte_wrprotect(*pte)); |
| |
| mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V; |
| if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE)) |
| mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT; |
| mmu_write(MMUTR, mmutr); |
| |
| mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) | |
| ((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X); |
| |
| if (dtlb) |
| mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA); |
| else |
| mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA); |
| |
| local_irq_restore(flags); |
| return 0; |
| } |
| |
| /* |
| * Initialize the context management stuff. |
| * The following was taken from arch/ppc/mmu_context.c |
| */ |
| void __init mmu_context_init(void) |
| { |
| /* |
| * Some processors have too few contexts to reserve one for |
| * init_mm, and require using context 0 for a normal task. |
| * Other processors reserve the use of context zero for the kernel. |
| * This code assumes FIRST_CONTEXT < 32. |
| */ |
| context_map[0] = (1 << FIRST_CONTEXT) - 1; |
| next_mmu_context = FIRST_CONTEXT; |
| atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1); |
| } |
| |
| /* |
| * Steal a context from a task that has one at the moment. |
| * This is only used on 8xx and 4xx and we presently assume that |
| * they don't do SMP. If they do then thicfpgalloc.hs will have to check |
| * whether the MM we steal is in use. |
| * We also assume that this is only used on systems that don't |
| * use an MMU hash table - this is true for 8xx and 4xx. |
| * This isn't an LRU system, it just frees up each context in |
| * turn (sort-of pseudo-random replacement :). This would be the |
| * place to implement an LRU scheme if anyone was motivated to do it. |
| * -- paulus |
| */ |
| void steal_context(void) |
| { |
| struct mm_struct *mm; |
| /* |
| * free up context `next_mmu_context' |
| * if we shouldn't free context 0, don't... |
| */ |
| if (next_mmu_context < FIRST_CONTEXT) |
| next_mmu_context = FIRST_CONTEXT; |
| mm = context_mm[next_mmu_context]; |
| flush_tlb_mm(mm); |
| destroy_context(mm); |
| } |
| |