| /* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/platform_device.h> |
| #include <linux/errno.h> |
| #include <linux/power_supply.h> |
| #include <linux/mfd/pm8xxx/pm8921-bms.h> |
| #include <linux/mfd/pm8xxx/core.h> |
| #include <linux/mfd/pm8xxx/pm8xxx-adc.h> |
| #include <linux/mfd/pm8xxx/pm8921-charger.h> |
| #include <linux/mfd/pm8xxx/ccadc.h> |
| #include <linux/interrupt.h> |
| #include <linux/bitops.h> |
| #include <linux/debugfs.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/rtc.h> |
| |
| #define BMS_CONTROL 0x224 |
| #define BMS_S1_DELAY 0x225 |
| #define BMS_OUTPUT0 0x230 |
| #define BMS_OUTPUT1 0x231 |
| #define BMS_TOLERANCES 0x232 |
| #define BMS_TEST1 0x237 |
| |
| #define ADC_ARB_SECP_CNTRL 0x190 |
| #define ADC_ARB_SECP_AMUX_CNTRL 0x191 |
| #define ADC_ARB_SECP_ANA_PARAM 0x192 |
| #define ADC_ARB_SECP_DIG_PARAM 0x193 |
| #define ADC_ARB_SECP_RSV 0x194 |
| #define ADC_ARB_SECP_DATA1 0x195 |
| #define ADC_ARB_SECP_DATA0 0x196 |
| |
| #define ADC_ARB_BMS_CNTRL 0x18D |
| #define AMUX_TRIM_2 0x322 |
| #define TEST_PROGRAM_REV 0x339 |
| |
| #define TEMP_SOC_STORAGE 0x107 |
| |
| #define TEMP_IAVG_STORAGE 0x105 |
| #define TEMP_IAVG_STORAGE_USE_MASK 0x0F |
| |
| enum pmic_bms_interrupts { |
| PM8921_BMS_SBI_WRITE_OK, |
| PM8921_BMS_CC_THR, |
| PM8921_BMS_VSENSE_THR, |
| PM8921_BMS_VSENSE_FOR_R, |
| PM8921_BMS_OCV_FOR_R, |
| PM8921_BMS_GOOD_OCV, |
| PM8921_BMS_VSENSE_AVG, |
| PM_BMS_MAX_INTS, |
| }; |
| |
| struct pm8921_soc_params { |
| uint16_t last_good_ocv_raw; |
| int cc; |
| |
| int last_good_ocv_uv; |
| }; |
| |
| /** |
| * struct pm8921_bms_chip - |
| * @bms_output_lock: lock to prevent concurrent bms reads |
| * |
| * @last_ocv_uv_mutex: mutex to protect simultaneous invocations of calculate |
| * state of charge, note that last_ocv_uv could be |
| * changed as soc is adjusted. This mutex protects |
| * simultaneous updates of last_ocv_uv as well. This mutex |
| * also protects changes to *_at_100 variables used in |
| * faking 100% SOC. |
| */ |
| struct pm8921_bms_chip { |
| struct device *dev; |
| struct dentry *dent; |
| unsigned int r_sense; |
| unsigned int v_cutoff; |
| unsigned int fcc; |
| struct single_row_lut *fcc_temp_lut; |
| struct single_row_lut *fcc_sf_lut; |
| struct pc_temp_ocv_lut *pc_temp_ocv_lut; |
| struct sf_lut *pc_sf_lut; |
| struct sf_lut *rbatt_sf_lut; |
| int delta_rbatt_mohm; |
| struct work_struct calib_hkadc_work; |
| struct delayed_work calib_hkadc_delayed_work; |
| struct mutex calib_mutex; |
| unsigned int revision; |
| unsigned int xoadc_v0625_usb_present; |
| unsigned int xoadc_v0625_usb_absent; |
| unsigned int xoadc_v0625; |
| unsigned int xoadc_v125; |
| unsigned int batt_temp_channel; |
| unsigned int vbat_channel; |
| unsigned int ref625mv_channel; |
| unsigned int ref1p25v_channel; |
| unsigned int batt_id_channel; |
| unsigned int pmic_bms_irq[PM_BMS_MAX_INTS]; |
| DECLARE_BITMAP(enabled_irqs, PM_BMS_MAX_INTS); |
| struct mutex bms_output_lock; |
| struct single_row_lut *adjusted_fcc_temp_lut; |
| unsigned int charging_began; |
| unsigned int start_percent; |
| unsigned int end_percent; |
| int charge_time_us; |
| int catch_up_time_us; |
| enum battery_type batt_type; |
| uint16_t ocv_reading_at_100; |
| int cc_reading_at_100; |
| int max_voltage_uv; |
| |
| int chg_term_ua; |
| int default_rbatt_mohm; |
| int amux_2_trim_delta; |
| uint16_t prev_last_good_ocv_raw; |
| unsigned int rconn_mohm; |
| struct mutex last_ocv_uv_mutex; |
| int last_ocv_uv; |
| int pon_ocv_uv; |
| int last_cc_uah; |
| unsigned long tm_sec; |
| int enable_fcc_learning; |
| int shutdown_soc; |
| int shutdown_iavg_ua; |
| struct delayed_work calculate_soc_delayed_work; |
| struct timespec t_soc_queried; |
| int shutdown_soc_valid_limit; |
| int ignore_shutdown_soc; |
| int prev_iavg_ua; |
| int prev_uuc_iavg_ma; |
| int prev_pc_unusable; |
| int adjust_soc_low_threshold; |
| |
| int ibat_at_cv_ua; |
| int soc_at_cv; |
| int prev_chg_soc; |
| }; |
| |
| /* |
| * protects against simultaneous adjustment of ocv based on shutdown soc and |
| * invalidating the shutdown soc |
| */ |
| static DEFINE_MUTEX(soc_invalidation_mutex); |
| static int shutdown_soc_invalid; |
| static struct pm8921_bms_chip *the_chip; |
| |
| #define DEFAULT_RBATT_MOHMS 128 |
| #define DEFAULT_OCV_MICROVOLTS 3900000 |
| #define DEFAULT_CHARGE_CYCLES 0 |
| |
| static int last_usb_cal_delta_uv = 1800; |
| module_param(last_usb_cal_delta_uv, int, 0644); |
| |
| static int last_chargecycles = DEFAULT_CHARGE_CYCLES; |
| static int last_charge_increase; |
| module_param(last_chargecycles, int, 0644); |
| module_param(last_charge_increase, int, 0644); |
| |
| static int calculated_soc = -EINVAL; |
| static int last_soc = -EINVAL; |
| static int last_real_fcc_mah = -EINVAL; |
| static int last_real_fcc_batt_temp = -EINVAL; |
| |
| static int bms_ops_set(const char *val, const struct kernel_param *kp) |
| { |
| if (*(int *)kp->arg == -EINVAL) |
| return param_set_int(val, kp); |
| else |
| return 0; |
| } |
| |
| static struct kernel_param_ops bms_param_ops = { |
| .set = bms_ops_set, |
| .get = param_get_int, |
| }; |
| |
| module_param_cb(last_soc, &bms_param_ops, &last_soc, 0644); |
| |
| /* |
| * bms_fake_battery is set in setups where a battery emulator is used instead |
| * of a real battery. This makes the bms driver report a different/fake value |
| * regardless of the calculated state of charge. |
| */ |
| static int bms_fake_battery = -EINVAL; |
| module_param(bms_fake_battery, int, 0644); |
| |
| /* bms_start_XXX and bms_end_XXX are read only */ |
| static int bms_start_percent; |
| static int bms_start_ocv_uv; |
| static int bms_start_cc_uah; |
| static int bms_end_percent; |
| static int bms_end_ocv_uv; |
| static int bms_end_cc_uah; |
| |
| static int bms_ro_ops_set(const char *val, const struct kernel_param *kp) |
| { |
| return -EINVAL; |
| } |
| |
| static struct kernel_param_ops bms_ro_param_ops = { |
| .set = bms_ro_ops_set, |
| .get = param_get_int, |
| }; |
| module_param_cb(bms_start_percent, &bms_ro_param_ops, &bms_start_percent, 0644); |
| module_param_cb(bms_start_ocv_uv, &bms_ro_param_ops, &bms_start_ocv_uv, 0644); |
| module_param_cb(bms_start_cc_uah, &bms_ro_param_ops, &bms_start_cc_uah, 0644); |
| |
| module_param_cb(bms_end_percent, &bms_ro_param_ops, &bms_end_percent, 0644); |
| module_param_cb(bms_end_ocv_uv, &bms_ro_param_ops, &bms_end_ocv_uv, 0644); |
| module_param_cb(bms_end_cc_uah, &bms_ro_param_ops, &bms_end_cc_uah, 0644); |
| |
| static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp); |
| static void readjust_fcc_table(void) |
| { |
| struct single_row_lut *temp, *old; |
| int i, fcc, ratio; |
| |
| if (!the_chip->fcc_temp_lut) { |
| pr_err("The static fcc lut table is NULL\n"); |
| return; |
| } |
| |
| temp = kzalloc(sizeof(struct single_row_lut), GFP_KERNEL); |
| if (!temp) { |
| pr_err("Cannot allocate memory for adjusted fcc table\n"); |
| return; |
| } |
| |
| fcc = interpolate_fcc(the_chip, last_real_fcc_batt_temp); |
| |
| temp->cols = the_chip->fcc_temp_lut->cols; |
| for (i = 0; i < the_chip->fcc_temp_lut->cols; i++) { |
| temp->x[i] = the_chip->fcc_temp_lut->x[i]; |
| ratio = div_u64(the_chip->fcc_temp_lut->y[i] * 1000, fcc); |
| temp->y[i] = (ratio * last_real_fcc_mah); |
| temp->y[i] /= 1000; |
| pr_debug("temp=%d, staticfcc=%d, adjfcc=%d, ratio=%d\n", |
| temp->x[i], the_chip->fcc_temp_lut->y[i], |
| temp->y[i], ratio); |
| } |
| |
| old = the_chip->adjusted_fcc_temp_lut; |
| the_chip->adjusted_fcc_temp_lut = temp; |
| kfree(old); |
| } |
| |
| static int bms_last_real_fcc_set(const char *val, |
| const struct kernel_param *kp) |
| { |
| int rc = 0; |
| |
| if (last_real_fcc_mah == -EINVAL) |
| rc = param_set_int(val, kp); |
| if (rc) { |
| pr_err("Failed to set last_real_fcc_mah rc=%d\n", rc); |
| return rc; |
| } |
| if (last_real_fcc_batt_temp != -EINVAL) |
| readjust_fcc_table(); |
| return rc; |
| } |
| static struct kernel_param_ops bms_last_real_fcc_param_ops = { |
| .set = bms_last_real_fcc_set, |
| .get = param_get_int, |
| }; |
| module_param_cb(last_real_fcc_mah, &bms_last_real_fcc_param_ops, |
| &last_real_fcc_mah, 0644); |
| |
| static int bms_last_real_fcc_batt_temp_set(const char *val, |
| const struct kernel_param *kp) |
| { |
| int rc = 0; |
| |
| if (last_real_fcc_batt_temp == -EINVAL) |
| rc = param_set_int(val, kp); |
| if (rc) { |
| pr_err("Failed to set last_real_fcc_batt_temp rc=%d\n", rc); |
| return rc; |
| } |
| if (last_real_fcc_mah != -EINVAL) |
| readjust_fcc_table(); |
| return rc; |
| } |
| |
| static struct kernel_param_ops bms_last_real_fcc_batt_temp_param_ops = { |
| .set = bms_last_real_fcc_batt_temp_set, |
| .get = param_get_int, |
| }; |
| module_param_cb(last_real_fcc_batt_temp, &bms_last_real_fcc_batt_temp_param_ops, |
| &last_real_fcc_batt_temp, 0644); |
| |
| static int pm_bms_get_rt_status(struct pm8921_bms_chip *chip, int irq_id) |
| { |
| return pm8xxx_read_irq_stat(chip->dev->parent, |
| chip->pmic_bms_irq[irq_id]); |
| } |
| |
| static void pm8921_bms_enable_irq(struct pm8921_bms_chip *chip, int interrupt) |
| { |
| if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) { |
| dev_dbg(chip->dev, "%s %d\n", __func__, |
| chip->pmic_bms_irq[interrupt]); |
| enable_irq(chip->pmic_bms_irq[interrupt]); |
| } |
| } |
| |
| static void pm8921_bms_disable_irq(struct pm8921_bms_chip *chip, int interrupt) |
| { |
| if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) { |
| pr_debug("%d\n", chip->pmic_bms_irq[interrupt]); |
| disable_irq_nosync(chip->pmic_bms_irq[interrupt]); |
| } |
| } |
| |
| static int pm_bms_masked_write(struct pm8921_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| int rc; |
| u8 reg; |
| |
| rc = pm8xxx_readb(chip->dev->parent, addr, ®); |
| if (rc) { |
| pr_err("read failed addr = %03X, rc = %d\n", addr, rc); |
| return rc; |
| } |
| reg &= ~mask; |
| reg |= val & mask; |
| rc = pm8xxx_writeb(chip->dev->parent, addr, reg); |
| if (rc) { |
| pr_err("write failed addr = %03X, rc = %d\n", addr, rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int usb_chg_plugged_in(void) |
| { |
| int val = pm8921_is_usb_chg_plugged_in(); |
| |
| /* treat as if usb is not present in case of error */ |
| if (val == -EINVAL) |
| val = 0; |
| |
| return val; |
| } |
| |
| #define HOLD_OREG_DATA BIT(1) |
| static int pm_bms_lock_output_data(struct pm8921_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, |
| HOLD_OREG_DATA); |
| if (rc) { |
| pr_err("couldnt lock bms output rc = %d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int pm_bms_unlock_output_data(struct pm8921_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, 0); |
| if (rc) { |
| pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| #define SELECT_OUTPUT_DATA 0x1C |
| #define SELECT_OUTPUT_TYPE_SHIFT 2 |
| #define OCV_FOR_RBATT 0x0 |
| #define VSENSE_FOR_RBATT 0x1 |
| #define VBATT_FOR_RBATT 0x2 |
| #define CC_MSB 0x3 |
| #define CC_LSB 0x4 |
| #define LAST_GOOD_OCV_VALUE 0x5 |
| #define VSENSE_AVG 0x6 |
| #define VBATT_AVG 0x7 |
| |
| static int pm_bms_read_output_data(struct pm8921_bms_chip *chip, int type, |
| int16_t *result) |
| { |
| int rc; |
| u8 reg; |
| |
| if (!result) { |
| pr_err("result pointer null\n"); |
| return -EINVAL; |
| } |
| *result = 0; |
| if (type < OCV_FOR_RBATT || type > VBATT_AVG) { |
| pr_err("invalid type %d asked to read\n", type); |
| return -EINVAL; |
| } |
| |
| rc = pm_bms_masked_write(chip, BMS_CONTROL, SELECT_OUTPUT_DATA, |
| type << SELECT_OUTPUT_TYPE_SHIFT); |
| if (rc) { |
| pr_err("fail to select %d type in BMS_CONTROL rc = %d\n", |
| type, rc); |
| return rc; |
| } |
| |
| rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT0, ®); |
| if (rc) { |
| pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n", |
| type, rc); |
| return rc; |
| } |
| *result = reg; |
| rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT1, ®); |
| if (rc) { |
| pr_err("fail to read BMS_OUTPUT1 for type %d rc = %d\n", |
| type, rc); |
| return rc; |
| } |
| *result |= reg << 8; |
| pr_debug("type %d result %x", type, *result); |
| return 0; |
| } |
| |
| #define V_PER_BIT_MUL_FACTOR 97656 |
| #define V_PER_BIT_DIV_FACTOR 1000 |
| #define XOADC_INTRINSIC_OFFSET 0x6000 |
| static int xoadc_reading_to_microvolt(unsigned int a) |
| { |
| if (a <= XOADC_INTRINSIC_OFFSET) |
| return 0; |
| |
| return (a - XOADC_INTRINSIC_OFFSET) |
| * V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR; |
| } |
| |
| #define XOADC_CALIB_UV 625000 |
| #define VBATT_MUL_FACTOR 3 |
| static int adjust_xo_vbatt_reading(struct pm8921_bms_chip *chip, |
| int usb_chg, unsigned int uv) |
| { |
| s64 numerator, denominator; |
| int local_delta; |
| |
| if (uv == 0) |
| return 0; |
| |
| /* dont adjust if not calibrated */ |
| if (chip->xoadc_v0625 == 0 || chip->xoadc_v125 == 0) { |
| pr_debug("No cal yet return %d\n", VBATT_MUL_FACTOR * uv); |
| return VBATT_MUL_FACTOR * uv; |
| } |
| |
| if (usb_chg) |
| local_delta = last_usb_cal_delta_uv; |
| else |
| local_delta = 0; |
| |
| pr_debug("using delta = %d\n", local_delta); |
| numerator = ((s64)uv - chip->xoadc_v0625 - local_delta) |
| * XOADC_CALIB_UV; |
| denominator = (s64)chip->xoadc_v125 - chip->xoadc_v0625 - local_delta; |
| if (denominator == 0) |
| return uv * VBATT_MUL_FACTOR; |
| return (XOADC_CALIB_UV + local_delta + div_s64(numerator, denominator)) |
| * VBATT_MUL_FACTOR; |
| } |
| |
| #define CC_RESOLUTION_N 868056 |
| #define CC_RESOLUTION_D 10000 |
| |
| static s64 cc_to_microvolt(struct pm8921_bms_chip *chip, s64 cc) |
| { |
| return div_s64(cc * CC_RESOLUTION_N, CC_RESOLUTION_D); |
| } |
| |
| #define CC_READING_TICKS 56 |
| #define SLEEP_CLK_HZ 32764 |
| #define SECONDS_PER_HOUR 3600 |
| /** |
| * ccmicrovolt_to_nvh - |
| * @cc_uv: coulumb counter converted to uV |
| * |
| * RETURNS: coulumb counter based charge in nVh |
| * (nano Volt Hour) |
| */ |
| static s64 ccmicrovolt_to_nvh(s64 cc_uv) |
| { |
| return div_s64(cc_uv * CC_READING_TICKS * 1000, |
| SLEEP_CLK_HZ * SECONDS_PER_HOUR); |
| } |
| |
| /* returns the signed value read from the hardware */ |
| static int read_cc(struct pm8921_bms_chip *chip, int *result) |
| { |
| int rc; |
| uint16_t msw, lsw; |
| |
| rc = pm_bms_read_output_data(chip, CC_LSB, &lsw); |
| if (rc) { |
| pr_err("fail to read CC_LSB rc = %d\n", rc); |
| return rc; |
| } |
| rc = pm_bms_read_output_data(chip, CC_MSB, &msw); |
| if (rc) { |
| pr_err("fail to read CC_MSB rc = %d\n", rc); |
| return rc; |
| } |
| *result = msw << 16 | lsw; |
| pr_debug("msw = %04x lsw = %04x cc = %d\n", msw, lsw, *result); |
| return 0; |
| } |
| |
| static int adjust_xo_vbatt_reading_for_mbg(struct pm8921_bms_chip *chip, |
| int result) |
| { |
| int64_t numerator; |
| int64_t denominator; |
| |
| if (chip->amux_2_trim_delta == 0) |
| return result; |
| |
| numerator = (s64)result * 1000000; |
| denominator = (1000000 + (410 * (s64)chip->amux_2_trim_delta)); |
| return div_s64(numerator, denominator); |
| } |
| |
| static int convert_vbatt_raw_to_uv(struct pm8921_bms_chip *chip, |
| int usb_chg, |
| uint16_t reading, int *result) |
| { |
| *result = xoadc_reading_to_microvolt(reading); |
| pr_debug("raw = %04x vbatt = %u\n", reading, *result); |
| *result = adjust_xo_vbatt_reading(chip, usb_chg, *result); |
| pr_debug("after adj vbatt = %u\n", *result); |
| *result = adjust_xo_vbatt_reading_for_mbg(chip, *result); |
| return 0; |
| } |
| |
| static int convert_vsense_to_uv(struct pm8921_bms_chip *chip, |
| int16_t reading, int *result) |
| { |
| *result = pm8xxx_ccadc_reading_to_microvolt(chip->revision, reading); |
| pr_debug("raw = %04x vsense = %d\n", reading, *result); |
| *result = pm8xxx_cc_adjust_for_gain(*result); |
| pr_debug("after adj vsense = %d\n", *result); |
| return 0; |
| } |
| |
| static int read_vsense_avg(struct pm8921_bms_chip *chip, int *result) |
| { |
| int rc; |
| int16_t reading; |
| |
| rc = pm_bms_read_output_data(chip, VSENSE_AVG, &reading); |
| if (rc) { |
| pr_err("fail to read VSENSE_AVG rc = %d\n", rc); |
| return rc; |
| } |
| |
| convert_vsense_to_uv(chip, reading, result); |
| return 0; |
| } |
| |
| static int linear_interpolate(int y0, int x0, int y1, int x1, int x) |
| { |
| if (y0 == y1 || x == x0) |
| return y0; |
| if (x1 == x0 || x == x1) |
| return y1; |
| |
| return y0 + ((y1 - y0) * (x - x0) / (x1 - x0)); |
| } |
| |
| static int interpolate_single_lut(struct single_row_lut *lut, int x) |
| { |
| int i, result; |
| |
| if (x < lut->x[0]) { |
| pr_debug("x %d less than known range return y = %d lut = %pS\n", |
| x, lut->y[0], lut); |
| return lut->y[0]; |
| } |
| if (x > lut->x[lut->cols - 1]) { |
| pr_debug("x %d more than known range return y = %d lut = %pS\n", |
| x, lut->y[lut->cols - 1], lut); |
| return lut->y[lut->cols - 1]; |
| } |
| |
| for (i = 0; i < lut->cols; i++) |
| if (x <= lut->x[i]) |
| break; |
| if (x == lut->x[i]) { |
| result = lut->y[i]; |
| } else { |
| result = linear_interpolate( |
| lut->y[i - 1], |
| lut->x[i - 1], |
| lut->y[i], |
| lut->x[i], |
| x); |
| } |
| return result; |
| } |
| |
| static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp) |
| { |
| /* batt_temp is in tenths of degC - convert it to degC for lookups */ |
| batt_temp = batt_temp/10; |
| return interpolate_single_lut(chip->fcc_temp_lut, batt_temp); |
| } |
| |
| static int interpolate_fcc_adjusted(struct pm8921_bms_chip *chip, int batt_temp) |
| { |
| /* batt_temp is in tenths of degC - convert it to degC for lookups */ |
| batt_temp = batt_temp/10; |
| return interpolate_single_lut(chip->adjusted_fcc_temp_lut, batt_temp); |
| } |
| |
| static int interpolate_scalingfactor_fcc(struct pm8921_bms_chip *chip, |
| int cycles) |
| { |
| /* |
| * sf table could be null when no battery aging data is available, in |
| * that case return 100% |
| */ |
| if (chip->fcc_sf_lut) |
| return interpolate_single_lut(chip->fcc_sf_lut, cycles); |
| else |
| return 100; |
| } |
| |
| static int interpolate_scalingfactor(struct pm8921_bms_chip *chip, |
| struct sf_lut *sf_lut, |
| int row_entry, int pc) |
| { |
| int i, scalefactorrow1, scalefactorrow2, scalefactor; |
| int rows, cols; |
| int row1 = 0; |
| int row2 = 0; |
| |
| /* |
| * sf table could be null when no battery aging data is available, in |
| * that case return 100% |
| */ |
| if (!sf_lut) |
| return 100; |
| |
| rows = sf_lut->rows; |
| cols = sf_lut->cols; |
| if (pc > sf_lut->percent[0]) { |
| pr_debug("pc %d greater than known pc ranges for sfd\n", pc); |
| row1 = 0; |
| row2 = 0; |
| } |
| if (pc < sf_lut->percent[rows - 1]) { |
| pr_debug("pc %d less than known pc ranges for sf", pc); |
| row1 = rows - 1; |
| row2 = rows - 1; |
| } |
| for (i = 0; i < rows; i++) { |
| if (pc == sf_lut->percent[i]) { |
| row1 = i; |
| row2 = i; |
| break; |
| } |
| if (pc > sf_lut->percent[i]) { |
| row1 = i - 1; |
| row2 = i; |
| break; |
| } |
| } |
| |
| if (row_entry < sf_lut->row_entries[0]) |
| row_entry = sf_lut->row_entries[0]; |
| if (row_entry > sf_lut->row_entries[cols - 1]) |
| row_entry = sf_lut->row_entries[cols - 1]; |
| |
| for (i = 0; i < cols; i++) |
| if (row_entry <= sf_lut->row_entries[i]) |
| break; |
| if (row_entry == sf_lut->row_entries[i]) { |
| scalefactor = linear_interpolate( |
| sf_lut->sf[row1][i], |
| sf_lut->percent[row1], |
| sf_lut->sf[row2][i], |
| sf_lut->percent[row2], |
| pc); |
| return scalefactor; |
| } |
| |
| scalefactorrow1 = linear_interpolate( |
| sf_lut->sf[row1][i - 1], |
| sf_lut->row_entries[i - 1], |
| sf_lut->sf[row1][i], |
| sf_lut->row_entries[i], |
| row_entry); |
| |
| scalefactorrow2 = linear_interpolate( |
| sf_lut->sf[row2][i - 1], |
| sf_lut->row_entries[i - 1], |
| sf_lut->sf[row2][i], |
| sf_lut->row_entries[i], |
| row_entry); |
| |
| scalefactor = linear_interpolate( |
| scalefactorrow1, |
| sf_lut->percent[row1], |
| scalefactorrow2, |
| sf_lut->percent[row2], |
| pc); |
| |
| return scalefactor; |
| } |
| |
| static int is_between(int left, int right, int value) |
| { |
| if (left >= right && left >= value && value >= right) |
| return 1; |
| if (left <= right && left <= value && value <= right) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* get ocv given a soc -- reverse lookup */ |
| static int interpolate_ocv(struct pm8921_bms_chip *chip, |
| int batt_temp_degc, int pc) |
| { |
| int i, ocvrow1, ocvrow2, ocv; |
| int rows, cols; |
| int row1 = 0; |
| int row2 = 0; |
| |
| rows = chip->pc_temp_ocv_lut->rows; |
| cols = chip->pc_temp_ocv_lut->cols; |
| if (pc > chip->pc_temp_ocv_lut->percent[0]) { |
| pr_debug("pc %d greater than known pc ranges for sfd\n", pc); |
| row1 = 0; |
| row2 = 0; |
| } |
| if (pc < chip->pc_temp_ocv_lut->percent[rows - 1]) { |
| pr_debug("pc %d less than known pc ranges for sf\n", pc); |
| row1 = rows - 1; |
| row2 = rows - 1; |
| } |
| for (i = 0; i < rows; i++) { |
| if (pc == chip->pc_temp_ocv_lut->percent[i]) { |
| row1 = i; |
| row2 = i; |
| break; |
| } |
| if (pc > chip->pc_temp_ocv_lut->percent[i]) { |
| row1 = i - 1; |
| row2 = i; |
| break; |
| } |
| } |
| |
| if (batt_temp_degc < chip->pc_temp_ocv_lut->temp[0]) |
| batt_temp_degc = chip->pc_temp_ocv_lut->temp[0]; |
| if (batt_temp_degc > chip->pc_temp_ocv_lut->temp[cols - 1]) |
| batt_temp_degc = chip->pc_temp_ocv_lut->temp[cols - 1]; |
| |
| for (i = 0; i < cols; i++) |
| if (batt_temp_degc <= chip->pc_temp_ocv_lut->temp[i]) |
| break; |
| if (batt_temp_degc == chip->pc_temp_ocv_lut->temp[i]) { |
| ocv = linear_interpolate( |
| chip->pc_temp_ocv_lut->ocv[row1][i], |
| chip->pc_temp_ocv_lut->percent[row1], |
| chip->pc_temp_ocv_lut->ocv[row2][i], |
| chip->pc_temp_ocv_lut->percent[row2], |
| pc); |
| return ocv; |
| } |
| |
| ocvrow1 = linear_interpolate( |
| chip->pc_temp_ocv_lut->ocv[row1][i - 1], |
| chip->pc_temp_ocv_lut->temp[i - 1], |
| chip->pc_temp_ocv_lut->ocv[row1][i], |
| chip->pc_temp_ocv_lut->temp[i], |
| batt_temp_degc); |
| |
| ocvrow2 = linear_interpolate( |
| chip->pc_temp_ocv_lut->ocv[row2][i - 1], |
| chip->pc_temp_ocv_lut->temp[i - 1], |
| chip->pc_temp_ocv_lut->ocv[row2][i], |
| chip->pc_temp_ocv_lut->temp[i], |
| batt_temp_degc); |
| |
| ocv = linear_interpolate( |
| ocvrow1, |
| chip->pc_temp_ocv_lut->percent[row1], |
| ocvrow2, |
| chip->pc_temp_ocv_lut->percent[row2], |
| pc); |
| |
| return ocv; |
| } |
| |
| static int interpolate_pc(struct pm8921_bms_chip *chip, |
| int batt_temp, int ocv) |
| { |
| int i, j, pcj, pcj_minus_one, pc; |
| int rows = chip->pc_temp_ocv_lut->rows; |
| int cols = chip->pc_temp_ocv_lut->cols; |
| |
| /* batt_temp is in tenths of degC - convert it to degC for lookups */ |
| batt_temp = batt_temp/10; |
| |
| if (batt_temp < chip->pc_temp_ocv_lut->temp[0]) { |
| pr_debug("batt_temp %d < known temp range for pc\n", batt_temp); |
| batt_temp = chip->pc_temp_ocv_lut->temp[0]; |
| } |
| if (batt_temp > chip->pc_temp_ocv_lut->temp[cols - 1]) { |
| pr_debug("batt_temp %d > known temp range for pc\n", batt_temp); |
| batt_temp = chip->pc_temp_ocv_lut->temp[cols - 1]; |
| } |
| |
| for (j = 0; j < cols; j++) |
| if (batt_temp <= chip->pc_temp_ocv_lut->temp[j]) |
| break; |
| if (batt_temp == chip->pc_temp_ocv_lut->temp[j]) { |
| /* found an exact match for temp in the table */ |
| if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j]) |
| return chip->pc_temp_ocv_lut->percent[0]; |
| if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j]) |
| return chip->pc_temp_ocv_lut->percent[rows - 1]; |
| for (i = 0; i < rows; i++) { |
| if (ocv >= chip->pc_temp_ocv_lut->ocv[i][j]) { |
| if (ocv == chip->pc_temp_ocv_lut->ocv[i][j]) |
| return |
| chip->pc_temp_ocv_lut->percent[i]; |
| pc = linear_interpolate( |
| chip->pc_temp_ocv_lut->percent[i], |
| chip->pc_temp_ocv_lut->ocv[i][j], |
| chip->pc_temp_ocv_lut->percent[i - 1], |
| chip->pc_temp_ocv_lut->ocv[i - 1][j], |
| ocv); |
| return pc; |
| } |
| } |
| } |
| |
| /* |
| * batt_temp is within temperature for |
| * column j-1 and j |
| */ |
| if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j]) |
| return chip->pc_temp_ocv_lut->percent[0]; |
| if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j - 1]) |
| return chip->pc_temp_ocv_lut->percent[rows - 1]; |
| |
| pcj_minus_one = 0; |
| pcj = 0; |
| for (i = 0; i < rows-1; i++) { |
| if (pcj == 0 |
| && is_between(chip->pc_temp_ocv_lut->ocv[i][j], |
| chip->pc_temp_ocv_lut->ocv[i+1][j], ocv)) { |
| pcj = linear_interpolate( |
| chip->pc_temp_ocv_lut->percent[i], |
| chip->pc_temp_ocv_lut->ocv[i][j], |
| chip->pc_temp_ocv_lut->percent[i + 1], |
| chip->pc_temp_ocv_lut->ocv[i+1][j], |
| ocv); |
| } |
| |
| if (pcj_minus_one == 0 |
| && is_between(chip->pc_temp_ocv_lut->ocv[i][j-1], |
| chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv)) { |
| |
| pcj_minus_one = linear_interpolate( |
| chip->pc_temp_ocv_lut->percent[i], |
| chip->pc_temp_ocv_lut->ocv[i][j-1], |
| chip->pc_temp_ocv_lut->percent[i + 1], |
| chip->pc_temp_ocv_lut->ocv[i+1][j-1], |
| ocv); |
| } |
| |
| if (pcj && pcj_minus_one) { |
| pc = linear_interpolate( |
| pcj_minus_one, |
| chip->pc_temp_ocv_lut->temp[j-1], |
| pcj, |
| chip->pc_temp_ocv_lut->temp[j], |
| batt_temp); |
| return pc; |
| } |
| } |
| |
| if (pcj) |
| return pcj; |
| |
| if (pcj_minus_one) |
| return pcj_minus_one; |
| |
| pr_debug("%d ocv wasn't found for temp %d in the LUT returning 100%%", |
| ocv, batt_temp); |
| return 100; |
| } |
| |
| #define BMS_MODE_BIT BIT(6) |
| #define EN_VBAT_BIT BIT(5) |
| #define OVERRIDE_MODE_DELAY_MS 20 |
| int override_mode_simultaneous_battery_voltage_and_current(int *ibat_ua, |
| int *vbat_uv) |
| { |
| int16_t vsense_raw; |
| int16_t vbat_raw; |
| int vsense_uv; |
| int usb_chg; |
| |
| mutex_lock(&the_chip->bms_output_lock); |
| |
| pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x00); |
| pm_bms_masked_write(the_chip, BMS_CONTROL, |
| BMS_MODE_BIT | EN_VBAT_BIT, BMS_MODE_BIT | EN_VBAT_BIT); |
| |
| msleep(OVERRIDE_MODE_DELAY_MS); |
| |
| pm_bms_lock_output_data(the_chip); |
| pm_bms_read_output_data(the_chip, VSENSE_AVG, &vsense_raw); |
| pm_bms_read_output_data(the_chip, VBATT_AVG, &vbat_raw); |
| pm_bms_unlock_output_data(the_chip); |
| pm_bms_masked_write(the_chip, BMS_CONTROL, |
| BMS_MODE_BIT | EN_VBAT_BIT, 0); |
| |
| pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x0B); |
| |
| mutex_unlock(&the_chip->bms_output_lock); |
| |
| usb_chg = usb_chg_plugged_in(); |
| |
| convert_vbatt_raw_to_uv(the_chip, usb_chg, vbat_raw, vbat_uv); |
| convert_vsense_to_uv(the_chip, vsense_raw, &vsense_uv); |
| *ibat_ua = vsense_uv * 1000 / (int)the_chip->r_sense; |
| |
| pr_debug("vsense_raw = 0x%x vbat_raw = 0x%x" |
| " ibat_ua = %d vbat_uv = %d\n", |
| (uint16_t)vsense_raw, (uint16_t)vbat_raw, |
| *ibat_ua, *vbat_uv); |
| return 0; |
| } |
| |
| #define MBG_TRANSIENT_ERROR_RAW 51 |
| static void adjust_pon_ocv_raw(struct pm8921_bms_chip *chip, |
| struct pm8921_soc_params *raw) |
| { |
| /* in 8921 parts the PON ocv is taken when the MBG is not settled. |
| * decrease the pon ocv by 15mV raw value to account for it |
| * Since a 1/3rd of vbatt is supplied to the adc the raw value |
| * needs to be adjusted by 5mV worth bits |
| */ |
| if (raw->last_good_ocv_raw >= MBG_TRANSIENT_ERROR_RAW) |
| raw->last_good_ocv_raw -= MBG_TRANSIENT_ERROR_RAW; |
| } |
| |
| static int read_soc_params_raw(struct pm8921_bms_chip *chip, |
| struct pm8921_soc_params *raw) |
| { |
| int usb_chg; |
| |
| mutex_lock(&chip->bms_output_lock); |
| pm_bms_lock_output_data(chip); |
| |
| pm_bms_read_output_data(chip, |
| LAST_GOOD_OCV_VALUE, &raw->last_good_ocv_raw); |
| read_cc(chip, &raw->cc); |
| |
| pm_bms_unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| usb_chg = usb_chg_plugged_in(); |
| |
| if (chip->prev_last_good_ocv_raw == 0) { |
| chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw; |
| adjust_pon_ocv_raw(chip, raw); |
| convert_vbatt_raw_to_uv(chip, usb_chg, |
| raw->last_good_ocv_raw, &raw->last_good_ocv_uv); |
| chip->last_ocv_uv = raw->last_good_ocv_uv; |
| pr_debug("PON_OCV_UV = %d\n", chip->last_ocv_uv); |
| } else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) { |
| chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw; |
| convert_vbatt_raw_to_uv(chip, usb_chg, |
| raw->last_good_ocv_raw, &raw->last_good_ocv_uv); |
| chip->last_ocv_uv = raw->last_good_ocv_uv; |
| /* forget the old cc value upon ocv */ |
| chip->last_cc_uah = 0; |
| } else { |
| raw->last_good_ocv_uv = chip->last_ocv_uv; |
| } |
| |
| /* fake a high OCV if we are just done charging */ |
| if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) { |
| chip->ocv_reading_at_100 = 0; |
| chip->cc_reading_at_100 = 0; |
| } else { |
| /* |
| * force 100% ocv by selecting the highest voltage the |
| * battery could ever reach |
| */ |
| raw->last_good_ocv_uv = chip->max_voltage_uv; |
| chip->last_ocv_uv = chip->max_voltage_uv; |
| } |
| pr_debug("0p625 = %duV\n", chip->xoadc_v0625); |
| pr_debug("1p25 = %duV\n", chip->xoadc_v125); |
| pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n", |
| raw->last_good_ocv_raw, raw->last_good_ocv_uv); |
| pr_debug("cc_raw= 0x%x\n", raw->cc); |
| return 0; |
| } |
| |
| static int get_rbatt(struct pm8921_bms_chip *chip, int soc_rbatt, int batt_temp) |
| { |
| int rbatt, scalefactor; |
| |
| rbatt = chip->default_rbatt_mohm; |
| pr_debug("rbatt before scaling = %d\n", rbatt); |
| if (chip->rbatt_sf_lut == NULL) { |
| pr_debug("RBATT = %d\n", rbatt); |
| return rbatt; |
| } |
| /* Convert the batt_temp to DegC from deciDegC */ |
| batt_temp = batt_temp / 10; |
| scalefactor = interpolate_scalingfactor(chip, chip->rbatt_sf_lut, |
| batt_temp, soc_rbatt); |
| pr_debug("rbatt sf = %d for batt_temp = %d, soc_rbatt = %d\n", |
| scalefactor, batt_temp, soc_rbatt); |
| rbatt = (rbatt * scalefactor) / 100; |
| |
| rbatt += the_chip->rconn_mohm; |
| pr_debug("adding rconn_mohm = %d rbatt = %d\n", |
| the_chip->rconn_mohm, rbatt); |
| |
| if (is_between(20, 10, soc_rbatt)) |
| rbatt = rbatt |
| + ((20 - soc_rbatt) * chip->delta_rbatt_mohm) / 10; |
| else |
| if (is_between(10, 0, soc_rbatt)) |
| rbatt = rbatt + chip->delta_rbatt_mohm; |
| |
| pr_debug("RBATT = %d\n", rbatt); |
| return rbatt; |
| } |
| |
| static int calculate_fcc_uah(struct pm8921_bms_chip *chip, int batt_temp, |
| int chargecycles) |
| { |
| int initfcc, result, scalefactor = 0; |
| |
| if (chip->adjusted_fcc_temp_lut == NULL) { |
| initfcc = interpolate_fcc(chip, batt_temp); |
| |
| scalefactor = interpolate_scalingfactor_fcc(chip, chargecycles); |
| |
| /* Multiply the initial FCC value by the scale factor. */ |
| result = (initfcc * scalefactor * 1000) / 100; |
| pr_debug("fcc = %d uAh\n", result); |
| return result; |
| } else { |
| return 1000 * interpolate_fcc_adjusted(chip, batt_temp); |
| } |
| } |
| |
| static int get_battery_uvolts(struct pm8921_bms_chip *chip, int *uvolts) |
| { |
| int rc; |
| struct pm8xxx_adc_chan_result result; |
| |
| rc = pm8xxx_adc_read(chip->vbat_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| chip->vbat_channel, rc); |
| return rc; |
| } |
| pr_debug("mvolts phy = %lld meas = 0x%llx", result.physical, |
| result.measurement); |
| *uvolts = (int)result.physical; |
| return 0; |
| } |
| |
| static int adc_based_ocv(struct pm8921_bms_chip *chip, int *ocv) |
| { |
| int vbatt, rbatt, ibatt_ua, rc; |
| |
| rc = get_battery_uvolts(chip, &vbatt); |
| if (rc) { |
| pr_err("failed to read vbatt from adc rc = %d\n", rc); |
| return rc; |
| } |
| |
| rc = pm8921_bms_get_battery_current(&ibatt_ua); |
| if (rc) { |
| pr_err("failed to read batt current rc = %d\n", rc); |
| return rc; |
| } |
| |
| rbatt = chip->default_rbatt_mohm; |
| *ocv = vbatt + (ibatt_ua * rbatt)/1000; |
| return 0; |
| } |
| |
| static int calculate_pc(struct pm8921_bms_chip *chip, int ocv_uv, int batt_temp, |
| int chargecycles) |
| { |
| int pc, scalefactor; |
| |
| pc = interpolate_pc(chip, batt_temp, ocv_uv / 1000); |
| pr_debug("pc = %u for ocv = %dmicroVolts batt_temp = %d\n", |
| pc, ocv_uv, batt_temp); |
| |
| scalefactor = interpolate_scalingfactor(chip, |
| chip->pc_sf_lut, chargecycles, pc); |
| pr_debug("scalefactor = %u batt_temp = %d\n", scalefactor, batt_temp); |
| |
| /* Multiply the initial FCC value by the scale factor. */ |
| pc = (pc * scalefactor) / 100; |
| return pc; |
| } |
| |
| /** |
| * calculate_cc_uah - |
| * @chip: the bms chip pointer |
| * @cc: the cc reading from bms h/w |
| * @val: return value |
| * @coulumb_counter: adjusted coulumb counter for 100% |
| * |
| * RETURNS: in val pointer coulumb counter based charger in uAh |
| * (micro Amp hour) |
| */ |
| static void calculate_cc_uah(struct pm8921_bms_chip *chip, int cc, int *val) |
| { |
| int64_t cc_voltage_uv, cc_nvh, cc_uah; |
| |
| cc_voltage_uv = cc; |
| cc_voltage_uv -= chip->cc_reading_at_100; |
| pr_debug("cc = %d. after subtracting 0x%x cc = %lld\n", |
| cc, chip->cc_reading_at_100, |
| cc_voltage_uv); |
| cc_voltage_uv = cc_to_microvolt(chip, cc_voltage_uv); |
| cc_voltage_uv = pm8xxx_cc_adjust_for_gain(cc_voltage_uv); |
| pr_debug("cc_voltage_uv = %lld microvolts\n", cc_voltage_uv); |
| cc_nvh = ccmicrovolt_to_nvh(cc_voltage_uv); |
| pr_debug("cc_nvh = %lld nano_volt_hour\n", cc_nvh); |
| cc_uah = div_s64(cc_nvh, chip->r_sense); |
| *val = cc_uah; |
| } |
| |
| static int calculate_termination_uuc(struct pm8921_bms_chip *chip, |
| int batt_temp, int chargecycles, |
| int fcc_uah, int i_ma, |
| int *ret_pc_unusable) |
| { |
| int unusable_uv, pc_unusable, uuc; |
| int i = 0; |
| int ocv_mv; |
| int batt_temp_degc = batt_temp / 10; |
| int rbatt_mohm; |
| int delta_uv; |
| int prev_delta_uv = 0; |
| int prev_rbatt_mohm = 0; |
| int prev_ocv_mv = 0; |
| int uuc_rbatt_uv; |
| |
| for (i = 0; i <= 100; i++) { |
| ocv_mv = interpolate_ocv(chip, batt_temp_degc, i); |
| rbatt_mohm = get_rbatt(chip, i, batt_temp); |
| unusable_uv = (rbatt_mohm * i_ma) + (chip->v_cutoff * 1000); |
| delta_uv = ocv_mv * 1000 - unusable_uv; |
| |
| pr_debug("soc = %d ocv = %d rbat = %d u_uv = %d delta_v = %d\n", |
| i, ocv_mv, rbatt_mohm, unusable_uv, delta_uv); |
| |
| if (delta_uv > 0) |
| break; |
| |
| prev_delta_uv = delta_uv; |
| prev_rbatt_mohm = rbatt_mohm; |
| prev_ocv_mv = ocv_mv; |
| } |
| |
| uuc_rbatt_uv = linear_interpolate(rbatt_mohm, delta_uv, |
| prev_rbatt_mohm, prev_delta_uv, |
| 0); |
| |
| unusable_uv = (uuc_rbatt_uv * i_ma) + (chip->v_cutoff * 1000); |
| |
| pc_unusable = calculate_pc(chip, unusable_uv, batt_temp, chargecycles); |
| uuc = (fcc_uah * pc_unusable) / 100; |
| pr_debug("For i_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d uuc = %d\n", |
| i_ma, uuc_rbatt_uv, unusable_uv, |
| pc_unusable, uuc); |
| *ret_pc_unusable = pc_unusable; |
| return uuc; |
| } |
| |
| static int adjust_uuc(struct pm8921_bms_chip *chip, int fcc_uah, |
| int new_pc_unusable, |
| int new_uuc, |
| int batt_temp, |
| int rbatt, |
| int *iavg_ma) |
| { |
| int new_unusable_mv; |
| int batt_temp_degc = batt_temp / 10; |
| |
| if (chip->prev_pc_unusable == -EINVAL |
| || abs(chip->prev_pc_unusable - new_pc_unusable) <= 1) { |
| chip->prev_pc_unusable = new_pc_unusable; |
| return new_uuc; |
| } |
| |
| /* the uuc is trying to change more than 1% restrict it */ |
| if (new_pc_unusable > chip->prev_pc_unusable) |
| chip->prev_pc_unusable++; |
| else |
| chip->prev_pc_unusable--; |
| |
| new_uuc = (fcc_uah * chip->prev_pc_unusable) / 100; |
| |
| /* also find update the iavg_ma accordingly */ |
| new_unusable_mv = interpolate_ocv(chip, batt_temp_degc, |
| chip->prev_pc_unusable); |
| if (new_unusable_mv < chip->v_cutoff) |
| new_unusable_mv = chip->v_cutoff; |
| |
| *iavg_ma = (new_unusable_mv - chip->v_cutoff) * 1000 / rbatt; |
| if (*iavg_ma == 0) |
| *iavg_ma = 1; |
| pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n", |
| new_uuc, chip->prev_pc_unusable, |
| new_unusable_mv, *iavg_ma); |
| |
| return new_uuc; |
| } |
| |
| static void calculate_iavg_ua(struct pm8921_bms_chip *chip, int cc_uah, |
| int *iavg_ua, int *delta_time_s) |
| { |
| int delta_cc_uah; |
| struct rtc_time tm; |
| struct rtc_device *rtc; |
| unsigned long now_tm_sec = 0; |
| int rc = 0; |
| |
| /* if anything fails report the previous iavg_ua */ |
| *iavg_ua = chip->prev_iavg_ua; |
| |
| rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); |
| if (rtc == NULL) { |
| pr_err("%s: unable to open rtc device (%s)\n", |
| __FILE__, CONFIG_RTC_HCTOSYS_DEVICE); |
| goto out; |
| } |
| |
| rc = rtc_read_time(rtc, &tm); |
| if (rc) { |
| pr_err("Error reading rtc device (%s) : %d\n", |
| CONFIG_RTC_HCTOSYS_DEVICE, rc); |
| goto out; |
| } |
| |
| rc = rtc_valid_tm(&tm); |
| if (rc) { |
| pr_err("Invalid RTC time (%s): %d\n", |
| CONFIG_RTC_HCTOSYS_DEVICE, rc); |
| goto out; |
| } |
| rtc_tm_to_time(&tm, &now_tm_sec); |
| |
| if (chip->tm_sec == 0) { |
| *delta_time_s = 0; |
| pm8921_bms_get_battery_current(iavg_ua); |
| goto out; |
| } |
| |
| *delta_time_s = (now_tm_sec - chip->tm_sec); |
| |
| /* use the previous iavg if called within 15 seconds */ |
| if (*delta_time_s < 15) { |
| *iavg_ua = chip->prev_iavg_ua; |
| goto out; |
| } |
| |
| delta_cc_uah = cc_uah - chip->last_cc_uah; |
| |
| *iavg_ua = div_s64((s64)delta_cc_uah * 3600, *delta_time_s); |
| |
| pr_debug("tm_sec = %ld, now_tm_sec = %ld delta_s = %d delta_cc = %d iavg_ua = %d\n", |
| chip->tm_sec, now_tm_sec, |
| *delta_time_s, delta_cc_uah, (int)*iavg_ua); |
| |
| out: |
| /* remember the iavg */ |
| chip->prev_iavg_ua = *iavg_ua; |
| |
| /* remember cc_uah */ |
| chip->last_cc_uah = cc_uah; |
| |
| /* remember this time */ |
| chip->tm_sec = now_tm_sec; |
| } |
| |
| #define IAVG_SAMPLES 16 |
| #define CHARGING_IAVG_MA 250 |
| #define MIN_SECONDS_FOR_VALID_SAMPLE 20 |
| static int calculate_unusable_charge_uah(struct pm8921_bms_chip *chip, |
| int rbatt, int fcc_uah, int cc_uah, |
| int soc_rbatt, int batt_temp, int chargecycles, |
| int iavg_ua, int delta_time_s) |
| { |
| int uuc_uah_iavg; |
| int i; |
| int iavg_ma = iavg_ua / 1000; |
| static int iavg_samples[IAVG_SAMPLES]; |
| static int iavg_index; |
| static int iavg_num_samples; |
| static int firsttime = 1; |
| int pc_unusable; |
| |
| /* |
| * if we are called first time fill all the |
| * samples with the the shutdown_iavg_ua |
| */ |
| if (firsttime && chip->shutdown_iavg_ua != 0) { |
| pr_emerg("Using shutdown_iavg_ua = %d in all samples\n", |
| chip->shutdown_iavg_ua); |
| for (i = 0; i < IAVG_SAMPLES; i++) |
| iavg_samples[i] = chip->shutdown_iavg_ua; |
| |
| iavg_index = 0; |
| iavg_num_samples = IAVG_SAMPLES; |
| } |
| |
| /* |
| * if we are charging use a nominal avg current so that we keep |
| * a reasonable UUC while charging |
| */ |
| if (iavg_ma < 0) |
| iavg_ma = CHARGING_IAVG_MA; |
| iavg_samples[iavg_index] = iavg_ma; |
| iavg_index = (iavg_index + 1) % IAVG_SAMPLES; |
| iavg_num_samples++; |
| if (iavg_num_samples >= IAVG_SAMPLES) |
| iavg_num_samples = IAVG_SAMPLES; |
| |
| /* now that this sample is added calcualte the average */ |
| iavg_ma = 0; |
| if (iavg_num_samples != 0) { |
| for (i = 0; i < iavg_num_samples; i++) { |
| pr_debug("iavg_samples[%d] = %d\n", i, iavg_samples[i]); |
| iavg_ma += iavg_samples[i]; |
| } |
| |
| iavg_ma = DIV_ROUND_CLOSEST(iavg_ma, iavg_num_samples); |
| } |
| |
| uuc_uah_iavg = calculate_termination_uuc(chip, |
| batt_temp, chargecycles, |
| fcc_uah, iavg_ma, |
| &pc_unusable); |
| pr_debug("iavg = %d uuc_iavg = %d\n", iavg_ma, uuc_uah_iavg); |
| |
| /* restrict the uuc such that it can increase only by one percent */ |
| uuc_uah_iavg = adjust_uuc(chip, fcc_uah, pc_unusable, uuc_uah_iavg, |
| batt_temp, rbatt, &iavg_ma); |
| |
| /* find out what the avg current should be for this uuc */ |
| chip->prev_uuc_iavg_ma = iavg_ma; |
| |
| firsttime = 0; |
| return uuc_uah_iavg; |
| } |
| |
| /* calculate remainging charge at the time of ocv */ |
| static int calculate_remaining_charge_uah(struct pm8921_bms_chip *chip, |
| struct pm8921_soc_params *raw, |
| int fcc_uah, int batt_temp, |
| int chargecycles) |
| { |
| int ocv, pc; |
| |
| ocv = raw->last_good_ocv_uv; |
| pc = calculate_pc(chip, ocv, batt_temp, chargecycles); |
| pr_debug("ocv = %d pc = %d\n", ocv, pc); |
| return (fcc_uah * pc) / 100; |
| } |
| |
| static void calculate_soc_params(struct pm8921_bms_chip *chip, |
| struct pm8921_soc_params *raw, |
| int batt_temp, int chargecycles, |
| int *fcc_uah, |
| int *unusable_charge_uah, |
| int *remaining_charge_uah, |
| int *cc_uah, |
| int *rbatt, |
| int *iavg_ua, |
| int *delta_time_s) |
| { |
| int soc_rbatt; |
| |
| *fcc_uah = calculate_fcc_uah(chip, batt_temp, chargecycles); |
| pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n", |
| *fcc_uah, batt_temp, chargecycles); |
| |
| |
| /* calculate remainging charge */ |
| *remaining_charge_uah = calculate_remaining_charge_uah(chip, raw, |
| *fcc_uah, batt_temp, chargecycles); |
| pr_debug("RC = %uuAh\n", *remaining_charge_uah); |
| |
| /* calculate cc micro_volt_hour */ |
| calculate_cc_uah(chip, raw->cc, cc_uah); |
| pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %x\n", |
| *cc_uah, raw->cc, |
| (int64_t)raw->cc - chip->cc_reading_at_100, |
| chip->cc_reading_at_100); |
| |
| soc_rbatt = ((*remaining_charge_uah - *cc_uah) * 100) / *fcc_uah; |
| if (soc_rbatt < 0) |
| soc_rbatt = 0; |
| *rbatt = get_rbatt(chip, soc_rbatt, batt_temp); |
| |
| calculate_iavg_ua(chip, *cc_uah, iavg_ua, delta_time_s); |
| |
| *unusable_charge_uah = calculate_unusable_charge_uah(chip, *rbatt, |
| *fcc_uah, *cc_uah, soc_rbatt, |
| batt_temp, chargecycles, *iavg_ua, |
| *delta_time_s); |
| pr_debug("UUC = %uuAh\n", *unusable_charge_uah); |
| } |
| |
| static int calculate_real_fcc_uah(struct pm8921_bms_chip *chip, |
| struct pm8921_soc_params *raw, |
| int batt_temp, int chargecycles, |
| int *ret_fcc_uah) |
| { |
| int fcc_uah, unusable_charge_uah; |
| int remaining_charge_uah; |
| int cc_uah; |
| int real_fcc_uah; |
| int rbatt; |
| int iavg_ua; |
| int delta_time_s; |
| |
| calculate_soc_params(chip, raw, batt_temp, chargecycles, |
| &fcc_uah, |
| &unusable_charge_uah, |
| &remaining_charge_uah, |
| &cc_uah, |
| &rbatt, |
| &iavg_ua, |
| &delta_time_s); |
| |
| real_fcc_uah = remaining_charge_uah - cc_uah; |
| *ret_fcc_uah = fcc_uah; |
| pr_debug("real_fcc = %d, RC = %d CC = %d fcc = %d\n", |
| real_fcc_uah, remaining_charge_uah, cc_uah, fcc_uah); |
| return real_fcc_uah; |
| } |
| |
| int pm8921_bms_get_simultaneous_battery_voltage_and_current(int *ibat_ua, |
| int *vbat_uv) |
| { |
| int rc; |
| |
| if (the_chip == NULL) { |
| pr_err("Called too early\n"); |
| return -EINVAL; |
| } |
| |
| if (pm8921_is_batfet_closed()) { |
| return override_mode_simultaneous_battery_voltage_and_current( |
| ibat_ua, |
| vbat_uv); |
| } else { |
| pr_debug("batfet is open using separate vbat and ibat meas\n"); |
| rc = get_battery_uvolts(the_chip, vbat_uv); |
| if (rc < 0) { |
| pr_err("adc vbat failed err = %d\n", rc); |
| return rc; |
| } |
| rc = pm8921_bms_get_battery_current(ibat_ua); |
| if (rc < 0) { |
| pr_err("bms ibat failed err = %d\n", rc); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(pm8921_bms_get_simultaneous_battery_voltage_and_current); |
| |
| static void find_ocv_for_soc(struct pm8921_bms_chip *chip, |
| int batt_temp, |
| int chargecycles, |
| int fcc_uah, |
| int uuc_uah, |
| int cc_uah, |
| int shutdown_soc, |
| int *rc_uah, |
| int *ocv_uv) |
| { |
| s64 rc; |
| int pc, new_pc; |
| int batt_temp_degc = batt_temp / 10; |
| int ocv; |
| |
| rc = (s64)shutdown_soc * (fcc_uah - uuc_uah); |
| rc = div_s64(rc, 100) + cc_uah + uuc_uah; |
| pc = DIV_ROUND_CLOSEST((int)rc * 100, fcc_uah); |
| pc = clamp(pc, 0, 100); |
| |
| ocv = interpolate_ocv(chip, batt_temp_degc, pc); |
| |
| pr_debug("s_soc = %d, fcc = %d uuc = %d rc = %d, pc = %d, ocv mv = %d\n", |
| shutdown_soc, fcc_uah, uuc_uah, (int)rc, pc, ocv); |
| new_pc = interpolate_pc(chip, batt_temp_degc, ocv); |
| pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv); |
| |
| while (abs(new_pc - pc) > 1) { |
| int delta_mv = 5; |
| |
| if (new_pc > pc) |
| delta_mv = -1 * delta_mv; |
| |
| ocv = ocv + delta_mv; |
| new_pc = interpolate_pc(chip, batt_temp_degc, ocv); |
| pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv); |
| } |
| |
| *ocv_uv = ocv * 1000; |
| *rc_uah = (int)rc; |
| } |
| |
| static void adjust_rc_and_uuc_for_specific_soc( |
| struct pm8921_bms_chip *chip, |
| int batt_temp, |
| int chargecycles, |
| int soc, |
| int fcc_uah, |
| int uuc_uah, |
| int cc_uah, |
| int rc_uah, |
| int rbatt, |
| int *ret_ocv, |
| int *ret_rc, |
| int *ret_uuc, |
| int *ret_rbatt) |
| { |
| int ocv_uv; |
| |
| find_ocv_for_soc(chip, batt_temp, chargecycles, |
| fcc_uah, uuc_uah, cc_uah, |
| soc, |
| &rc_uah, &ocv_uv); |
| |
| *ret_ocv = ocv_uv; |
| *ret_rbatt = rbatt; |
| *ret_rc = rc_uah; |
| *ret_uuc = uuc_uah; |
| } |
| static int bound_soc(int soc) |
| { |
| soc = max(0, soc); |
| soc = min(100, soc); |
| return soc; |
| } |
| |
| static int charging_adjustments(struct pm8921_bms_chip *chip, |
| int soc, int vbat_uv, int ibat_ua, |
| int batt_temp, int chargecycles, |
| int fcc_uah, int cc_uah, int uuc_uah) |
| { |
| int chg_soc; |
| |
| if (chip->soc_at_cv == -EINVAL) { |
| /* In constant current charging return the calc soc */ |
| if (vbat_uv <= chip->max_voltage_uv) |
| pr_debug("CC CHG SOC %d\n", soc); |
| |
| /* Note the CC to CV point */ |
| if (vbat_uv >= chip->max_voltage_uv) { |
| chip->soc_at_cv = soc; |
| chip->prev_chg_soc = soc; |
| chip->ibat_at_cv_ua = ibat_ua; |
| pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n", |
| ibat_ua, soc); |
| } |
| return soc; |
| } |
| |
| /* |
| * battery is in CV phase - begin liner inerpolation of soc based on |
| * battery charge current |
| */ |
| |
| /* |
| * if voltage lessened (possibly because of a system load) |
| * keep reporting the prev chg soc |
| */ |
| if (vbat_uv <= chip->max_voltage_uv) { |
| pr_debug("vbat %d < max = %d CC CHG SOC %d\n", |
| vbat_uv, chip->max_voltage_uv, chip->prev_chg_soc); |
| return chip->prev_chg_soc; |
| } |
| |
| chg_soc = linear_interpolate(chip->soc_at_cv, chip->ibat_at_cv_ua, |
| 100, -100000, |
| ibat_ua); |
| |
| /* always report a higher soc */ |
| if (chg_soc > chip->prev_chg_soc) { |
| int new_ocv_uv; |
| int new_rc; |
| |
| chip->prev_chg_soc = chg_soc; |
| |
| find_ocv_for_soc(chip, batt_temp, chargecycles, |
| fcc_uah, uuc_uah, cc_uah, |
| chg_soc, |
| &new_rc, &new_ocv_uv); |
| the_chip->last_ocv_uv = new_ocv_uv; |
| pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n", |
| new_ocv_uv, |
| chip->prev_chg_soc); |
| } |
| |
| pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc); |
| return chip->prev_chg_soc; |
| } |
| |
| static int last_soc_est = -EINVAL; |
| static int adjust_soc(struct pm8921_bms_chip *chip, int soc, |
| int batt_temp, int chargecycles, |
| int rbatt, int fcc_uah, int uuc_uah, int cc_uah) |
| { |
| int ibat_ua = 0, vbat_uv = 0; |
| int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0; |
| int delta_ocv_uv = 0; |
| int n = 0; |
| int rc_new_uah = 0; |
| int pc_new = 0; |
| int soc_new = 0; |
| int m = 0; |
| int rc = 0; |
| int delta_ocv_uv_limit = 0; |
| |
| rc = pm8921_bms_get_simultaneous_battery_voltage_and_current( |
| &ibat_ua, |
| &vbat_uv); |
| if (rc < 0) { |
| pr_err("simultaneous vbat ibat failed err = %d\n", rc); |
| goto out; |
| } |
| |
| |
| delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000); |
| |
| ocv_est_uv = vbat_uv + (ibat_ua * rbatt)/1000; |
| pc_est = calculate_pc(chip, ocv_est_uv, batt_temp, last_chargecycles); |
| soc_est = div_s64((s64)fcc_uah * pc_est - uuc_uah*100, |
| (s64)fcc_uah - uuc_uah); |
| soc_est = bound_soc(soc_est); |
| |
| if (ibat_ua < 0) { |
| soc = charging_adjustments(chip, soc, vbat_uv, ibat_ua, |
| batt_temp, chargecycles, |
| fcc_uah, cc_uah, uuc_uah); |
| goto out; |
| } |
| |
| /* |
| * do not adjust |
| * if soc is same as what bms calculated |
| * if soc_est is between 45 and 25, this is the flat portion of the |
| * curve where soc_est is not so accurate. We generally don't want to |
| * adjust when soc_est is inaccurate except for the cases when soc is |
| * way far off (higher than 50 or lesser than 20). |
| * Also don't adjust soc if it is above 90 becuase we might pull it low |
| * and cause a bad user experience |
| */ |
| if (soc_est == soc |
| || (is_between(45, chip->adjust_soc_low_threshold, soc_est) |
| && is_between(50, chip->adjust_soc_low_threshold - 5, soc)) |
| || soc >= 90) |
| goto out; |
| |
| if (last_soc_est == -EINVAL) |
| last_soc_est = soc; |
| |
| n = min(200, max(1 , soc + soc_est + last_soc_est)); |
| /* remember the last soc_est in last_soc_est */ |
| last_soc_est = soc_est; |
| |
| pc = calculate_pc(chip, chip->last_ocv_uv, |
| batt_temp, last_chargecycles); |
| if (pc > 0) { |
| pc_new = calculate_pc(chip, chip->last_ocv_uv - (++m * 1000), |
| batt_temp, last_chargecycles); |
| while (pc_new == pc) { |
| /* start taking 10mV steps */ |
| m = m + 10; |
| pc_new = calculate_pc(chip, |
| chip->last_ocv_uv - (m * 1000), |
| batt_temp, last_chargecycles); |
| } |
| } else { |
| /* |
| * pc is already at the lowest point, |
| * assume 1 millivolt translates to 1% pc |
| */ |
| pc = 1; |
| pc_new = 0; |
| m = 1; |
| } |
| |
| delta_ocv_uv = div_s64((soc - soc_est) * (s64)m * 1000, |
| n * (pc - pc_new)); |
| |
| if (abs(delta_ocv_uv) > delta_ocv_uv_limit) { |
| pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv, |
| delta_ocv_uv_limit); |
| |
| if (delta_ocv_uv > 0) |
| delta_ocv_uv = delta_ocv_uv_limit; |
| else |
| delta_ocv_uv = -1 * delta_ocv_uv_limit; |
| pr_debug("new delta ocv = %d\n", delta_ocv_uv); |
| } |
| |
| chip->last_ocv_uv -= delta_ocv_uv; |
| |
| if (chip->last_ocv_uv >= chip->max_voltage_uv) |
| chip->last_ocv_uv = chip->max_voltage_uv; |
| |
| /* calculate the soc based on this new ocv */ |
| pc_new = calculate_pc(chip, chip->last_ocv_uv, |
| batt_temp, last_chargecycles); |
| rc_new_uah = (fcc_uah * pc_new) / 100; |
| soc_new = (rc_new_uah - cc_uah - uuc_uah)*100 / (fcc_uah - uuc_uah); |
| soc_new = bound_soc(soc_new); |
| |
| /* |
| * if soc_new is ZERO force it higher so that phone doesnt report soc=0 |
| * soc = 0 should happen only when soc_est == 0 |
| */ |
| if (soc_new == 0 && soc_est != 0) |
| soc_new = 1; |
| |
| soc = soc_new; |
| |
| out: |
| pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, " |
| "soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, " |
| "pc_new = %d, soc_new = %d, rbatt = %d, m = %d\n", |
| ibat_ua, vbat_uv, ocv_est_uv, pc_est, |
| soc_est, n, delta_ocv_uv, chip->last_ocv_uv, |
| pc_new, soc_new, rbatt, m); |
| |
| return soc; |
| } |
| |
| #define IGNORE_SOC_TEMP_DECIDEG 50 |
| #define IAVG_STEP_SIZE_MA 50 |
| #define IAVG_START 600 |
| #define SOC_ZERO 0xFF |
| static void backup_soc_and_iavg(struct pm8921_bms_chip *chip, int batt_temp, |
| int soc) |
| { |
| u8 temp; |
| int iavg_ma = chip->prev_uuc_iavg_ma; |
| |
| if (iavg_ma > IAVG_START) |
| temp = (iavg_ma - IAVG_START) / IAVG_STEP_SIZE_MA; |
| else |
| temp = 0; |
| |
| pm_bms_masked_write(chip, TEMP_IAVG_STORAGE, |
| TEMP_IAVG_STORAGE_USE_MASK, temp); |
| |
| /* since only 6 bits are available for SOC, we store half the soc */ |
| if (soc == 0) |
| temp = SOC_ZERO; |
| else |
| temp = soc; |
| |
| /* don't store soc if temperature is below 5degC */ |
| if (batt_temp > IGNORE_SOC_TEMP_DECIDEG) |
| pm8xxx_writeb(the_chip->dev->parent, TEMP_SOC_STORAGE, temp); |
| } |
| |
| static void read_shutdown_soc_and_iavg(struct pm8921_bms_chip *chip) |
| { |
| int rc; |
| u8 temp; |
| |
| rc = pm8xxx_readb(chip->dev->parent, TEMP_IAVG_STORAGE, &temp); |
| if (rc) { |
| pr_err("failed to read addr = %d %d assuming %d\n", |
| TEMP_IAVG_STORAGE, rc, IAVG_START); |
| chip->shutdown_iavg_ua = IAVG_START; |
| } else { |
| temp &= TEMP_IAVG_STORAGE_USE_MASK; |
| |
| if (temp == 0) { |
| chip->shutdown_iavg_ua = IAVG_START; |
| } else { |
| chip->shutdown_iavg_ua = IAVG_START |
| + IAVG_STEP_SIZE_MA * (temp + 1); |
| } |
| } |
| |
| rc = pm8xxx_readb(chip->dev->parent, TEMP_SOC_STORAGE, &temp); |
| if (rc) { |
| pr_err("failed to read addr = %d %d\n", TEMP_SOC_STORAGE, rc); |
| } else { |
| chip->shutdown_soc = temp; |
| |
| if (chip->shutdown_soc == 0) { |
| pr_debug("No shutdown soc available\n"); |
| shutdown_soc_invalid = 1; |
| chip->shutdown_iavg_ua = 0; |
| } else if (chip->shutdown_soc == SOC_ZERO) { |
| chip->shutdown_soc = 0; |
| } |
| } |
| |
| if (chip->ignore_shutdown_soc) { |
| shutdown_soc_invalid = 1; |
| chip->shutdown_soc = 0; |
| chip->shutdown_iavg_ua = 0; |
| } |
| |
| pr_debug("shutdown_soc = %d shutdown_iavg = %d shutdown_soc_invalid = %d\n", |
| chip->shutdown_soc, |
| chip->shutdown_iavg_ua, |
| shutdown_soc_invalid); |
| } |
| |
| #define SOC_CATCHUP_SEC_MAX 600 |
| #define SOC_CATCHUP_SEC_PER_PERCENT 60 |
| #define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX/SOC_CATCHUP_SEC_PER_PERCENT) |
| static int scale_soc_while_chg(struct pm8921_bms_chip *chip, |
| int delta_time_us, int new_soc, int prev_soc) |
| { |
| int chg_time_sec; |
| int catch_up_sec; |
| int scaled_soc; |
| int numerator; |
| |
| /* |
| * The device must be charging for reporting a higher soc, if |
| * not ignore this soc and continue reporting the prev_soc. |
| * Also don't report a high value immediately slowly scale the |
| * value from prev_soc to the new soc based on a charge time |
| * weighted average |
| */ |
| |
| /* if we are not charging return last soc */ |
| if (the_chip->start_percent == -EINVAL) |
| return prev_soc; |
| |
| /* if soc is called in quick succession return the last soc */ |
| if (delta_time_us < USEC_PER_SEC) |
| return prev_soc; |
| |
| chg_time_sec = DIV_ROUND_UP(the_chip->charge_time_us, USEC_PER_SEC); |
| catch_up_sec = DIV_ROUND_UP(the_chip->catch_up_time_us, USEC_PER_SEC); |
| pr_debug("cts= %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec); |
| |
| /* |
| * if we have been charging for more than catch_up time simply return |
| * new soc |
| */ |
| if (chg_time_sec > catch_up_sec) |
| return new_soc; |
| |
| numerator = (catch_up_sec - chg_time_sec) * prev_soc |
| + chg_time_sec * new_soc; |
| scaled_soc = numerator / catch_up_sec; |
| |
| pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n", |
| chg_time_sec, new_soc, prev_soc, scaled_soc); |
| |
| return scaled_soc; |
| } |
| |
| static bool is_shutdown_soc_within_limits(struct pm8921_bms_chip *chip, int soc) |
| { |
| if (shutdown_soc_invalid) { |
| pr_debug("NOT forcing shutdown soc = %d\n", chip->shutdown_soc); |
| return 0; |
| } |
| |
| if (abs(chip->shutdown_soc - soc) > chip->shutdown_soc_valid_limit) { |
| pr_debug("rejecting shutdown soc = %d, soc = %d limit = %d\n", |
| chip->shutdown_soc, soc, |
| chip->shutdown_soc_valid_limit); |
| shutdown_soc_invalid = 1; |
| return 0; |
| } |
| |
| return 1; |
| } |
| /* |
| * Remaining Usable Charge = remaining_charge (charge at ocv instance) |
| * - coloumb counter charge |
| * - unusable charge (due to battery resistance) |
| * SOC% = (remaining usable charge/ fcc - usable_charge); |
| */ |
| static int calculate_state_of_charge(struct pm8921_bms_chip *chip, |
| struct pm8921_soc_params *raw, |
| int batt_temp, int chargecycles) |
| { |
| int remaining_usable_charge_uah, fcc_uah, unusable_charge_uah; |
| int remaining_charge_uah, soc; |
| int cc_uah; |
| int rbatt; |
| int iavg_ua; |
| int delta_time_s; |
| int new_ocv; |
| int new_rc_uah; |
| int new_ucc_uah; |
| int new_rbatt; |
| int shutdown_soc; |
| static int firsttime = 1; |
| |
| calculate_soc_params(chip, raw, batt_temp, chargecycles, |
| &fcc_uah, |
| &unusable_charge_uah, |
| &remaining_charge_uah, |
| &cc_uah, |
| &rbatt, |
| &iavg_ua, |
| &delta_time_s); |
| |
| /* calculate remaining usable charge */ |
| remaining_usable_charge_uah = remaining_charge_uah |
| - cc_uah |
| - unusable_charge_uah; |
| |
| pr_debug("RUC = %duAh\n", remaining_usable_charge_uah); |
| if (fcc_uah - unusable_charge_uah <= 0) { |
| pr_warn("FCC = %duAh, UUC = %duAh forcing soc = 0\n", |
| fcc_uah, unusable_charge_uah); |
| soc = 0; |
| } else { |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (fcc_uah - unusable_charge_uah)); |
| } |
| |
| if (firsttime && soc < 0) { |
| /* |
| * first time calcualtion and the pon ocv is too low resulting |
| * in a bad soc. Adjust ocv such that we get 0 soc |
| */ |
| pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc); |
| adjust_rc_and_uuc_for_specific_soc( |
| chip, |
| batt_temp, chargecycles, |
| 0, |
| fcc_uah, unusable_charge_uah, |
| cc_uah, remaining_charge_uah, |
| rbatt, |
| &new_ocv, |
| &new_rc_uah, &new_ucc_uah, |
| &new_rbatt); |
| chip->last_ocv_uv = new_ocv; |
| remaining_charge_uah = new_rc_uah; |
| unusable_charge_uah = new_ucc_uah; |
| rbatt = new_rbatt; |
| |
| remaining_usable_charge_uah = remaining_charge_uah |
| - cc_uah |
| - unusable_charge_uah; |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (fcc_uah - unusable_charge_uah)); |
| pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n", |
| soc, chip->last_ocv_uv); |
| } |
| |
| if (soc > 100) |
| soc = 100; |
| |
| if (bms_fake_battery != -EINVAL) { |
| pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery); |
| return bms_fake_battery; |
| } |
| |
| if (soc < 0) { |
| pr_err("bad rem_usb_chg = %d rem_chg %d," |
| "cc_uah %d, unusb_chg %d\n", |
| remaining_usable_charge_uah, |
| remaining_charge_uah, |
| cc_uah, unusable_charge_uah); |
| |
| pr_err("for bad rem_usb_chg last_ocv_uv = %d" |
| "chargecycles = %d, batt_temp = %d" |
| "fcc = %d soc =%d\n", |
| chip->last_ocv_uv, chargecycles, batt_temp, |
| fcc_uah, soc); |
| soc = 0; |
| } |
| |
| mutex_lock(&soc_invalidation_mutex); |
| shutdown_soc = chip->shutdown_soc; |
| |
| if (firsttime && soc != shutdown_soc |
| && is_shutdown_soc_within_limits(chip, soc)) { |
| /* |
| * soc for the first time - use shutdown soc |
| * to adjust pon ocv since it is a small percent away from |
| * the real soc |
| */ |
| pr_debug("soc = %d before forcing shutdown_soc = %d\n", |
| soc, shutdown_soc); |
| adjust_rc_and_uuc_for_specific_soc( |
| chip, |
| batt_temp, chargecycles, |
| shutdown_soc, |
| fcc_uah, unusable_charge_uah, |
| cc_uah, remaining_charge_uah, |
| rbatt, |
| &new_ocv, |
| &new_rc_uah, &new_ucc_uah, |
| &new_rbatt); |
| |
| chip->pon_ocv_uv = chip->last_ocv_uv; |
| chip->last_ocv_uv = new_ocv; |
| remaining_charge_uah = new_rc_uah; |
| unusable_charge_uah = new_ucc_uah; |
| rbatt = new_rbatt; |
| |
| remaining_usable_charge_uah = remaining_charge_uah |
| - cc_uah |
| - unusable_charge_uah; |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (fcc_uah - unusable_charge_uah)); |
| |
| pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n", |
| shutdown_soc, soc, chip->last_ocv_uv); |
| } |
| mutex_unlock(&soc_invalidation_mutex); |
| |
| pr_debug("SOC before adjustment = %d\n", soc); |
| calculated_soc = adjust_soc(chip, soc, batt_temp, chargecycles, |
| rbatt, fcc_uah, unusable_charge_uah, cc_uah); |
| |
| pr_debug("calculated SOC = %d\n", calculated_soc); |
| firsttime = 0; |
| return calculated_soc; |
| } |
| |
| #define CALCULATE_SOC_MS 20000 |
| static void calculate_soc_work(struct work_struct *work) |
| { |
| struct pm8921_bms_chip *chip = container_of(work, |
| struct pm8921_bms_chip, |
| calculate_soc_delayed_work.work); |
| int batt_temp, rc; |
| struct pm8xxx_adc_chan_result result; |
| struct pm8921_soc_params raw; |
| int soc; |
| |
| rc = pm8xxx_adc_read(chip->batt_temp_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| chip->batt_temp_channel, rc); |
| return; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&chip->last_ocv_uv_mutex); |
| read_soc_params_raw(chip, &raw); |
| |
| soc = calculate_state_of_charge(chip, &raw, |
| batt_temp, last_chargecycles); |
| mutex_unlock(&chip->last_ocv_uv_mutex); |
| |
| schedule_delayed_work(&chip->calculate_soc_delayed_work, |
| round_jiffies_relative(msecs_to_jiffies |
| (CALCULATE_SOC_MS))); |
| } |
| |
| static int report_state_of_charge(struct pm8921_bms_chip *chip) |
| { |
| int soc = calculated_soc; |
| int delta_time_us; |
| struct timespec now; |
| struct pm8xxx_adc_chan_result result; |
| int batt_temp; |
| int rc; |
| |
| rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| the_chip->batt_temp_channel, rc); |
| return rc; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| do_posix_clock_monotonic_gettime(&now); |
| if (chip->t_soc_queried.tv_sec != 0) { |
| delta_time_us |
| = (now.tv_sec - chip->t_soc_queried.tv_sec) * USEC_PER_SEC |
| + (now.tv_nsec - chip->t_soc_queried.tv_nsec) / 1000; |
| } else { |
| /* calculation for the first time */ |
| delta_time_us = 0; |
| } |
| |
| /* |
| * account for charge time - limit it to SOC_CATCHUP_SEC to |
| * avoid overflows when charging continues for extended periods |
| */ |
| if (the_chip->start_percent != -EINVAL) { |
| if (the_chip->charge_time_us == 0) { |
| /* |
| * calculating soc for the first time |
| * after start of chg. Initialize catchup time |
| */ |
| if (abs(soc - last_soc) < MAX_CATCHUP_SOC) |
| the_chip->catch_up_time_us = |
| (soc - last_soc) * SOC_CATCHUP_SEC_PER_PERCENT |
| * USEC_PER_SEC; |
| else |
| the_chip->catch_up_time_us = |
| SOC_CATCHUP_SEC_MAX * USEC_PER_SEC; |
| |
| if (the_chip->catch_up_time_us < 0) |
| the_chip->catch_up_time_us = 0; |
| } |
| |
| /* add charge time */ |
| if (the_chip->charge_time_us |
| < SOC_CATCHUP_SEC_MAX * USEC_PER_SEC) |
| chip->charge_time_us += delta_time_us; |
| |
| /* end catchup if calculated soc and last soc are same */ |
| if (last_soc == soc) |
| the_chip->catch_up_time_us = 0; |
| } |
| |
| /* last_soc < soc ... scale and catch up */ |
| if (last_soc != -EINVAL && last_soc < soc && soc != 100) |
| soc = scale_soc_while_chg(chip, delta_time_us, soc, last_soc); |
| |
| last_soc = soc; |
| backup_soc_and_iavg(chip, batt_temp, last_soc); |
| pr_debug("Reported SOC = %d\n", last_soc); |
| chip->t_soc_queried = now; |
| |
| return last_soc; |
| } |
| |
| void pm8921_bms_invalidate_shutdown_soc(void) |
| { |
| int calculate_soc = 0; |
| struct pm8921_bms_chip *chip = the_chip; |
| int batt_temp, rc; |
| struct pm8xxx_adc_chan_result result; |
| struct pm8921_soc_params raw; |
| int soc; |
| |
| pr_debug("Invalidating shutdown soc - the battery was removed\n"); |
| if (shutdown_soc_invalid) |
| return; |
| |
| mutex_lock(&soc_invalidation_mutex); |
| shutdown_soc_invalid = 1; |
| last_soc = -EINVAL; |
| if (the_chip) { |
| /* reset to pon ocv undoing what the adjusting did */ |
| if (the_chip->pon_ocv_uv) { |
| the_chip->last_ocv_uv = the_chip->pon_ocv_uv; |
| calculate_soc = 1; |
| pr_debug("resetting ocv to pon_ocv = %d\n", |
| the_chip->pon_ocv_uv); |
| } |
| } |
| mutex_unlock(&soc_invalidation_mutex); |
| if (!calculate_soc) |
| return; |
| |
| rc = pm8xxx_adc_read(chip->batt_temp_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| chip->batt_temp_channel, rc); |
| return; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&chip->last_ocv_uv_mutex); |
| read_soc_params_raw(chip, &raw); |
| |
| soc = calculate_state_of_charge(chip, &raw, |
| batt_temp, last_chargecycles); |
| mutex_unlock(&chip->last_ocv_uv_mutex); |
| } |
| EXPORT_SYMBOL(pm8921_bms_invalidate_shutdown_soc); |
| |
| #define MIN_DELTA_625_UV 1000 |
| static void calib_hkadc(struct pm8921_bms_chip *chip) |
| { |
| int voltage, rc; |
| struct pm8xxx_adc_chan_result result; |
| int usb_chg; |
| int this_delta; |
| |
| mutex_lock(&chip->calib_mutex); |
| rc = pm8xxx_adc_read(the_chip->ref1p25v_channel, &result); |
| if (rc) { |
| pr_err("ADC failed for 1.25volts rc = %d\n", rc); |
| goto out; |
| } |
| voltage = xoadc_reading_to_microvolt(result.adc_code); |
| |
| pr_debug("result 1.25v = 0x%x, voltage = %duV adc_meas = %lld\n", |
| result.adc_code, voltage, result.measurement); |
| |
| chip->xoadc_v125 = voltage; |
| |
| rc = pm8xxx_adc_read(the_chip->ref625mv_channel, &result); |
| if (rc) { |
| pr_err("ADC failed for 1.25volts rc = %d\n", rc); |
| goto out; |
| } |
| voltage = xoadc_reading_to_microvolt(result.adc_code); |
| |
| usb_chg = usb_chg_plugged_in(); |
| pr_debug("result 0.625V = 0x%x, voltage = %duV adc_meas = %lld " |
| "usb_chg = %d\n", |
| result.adc_code, voltage, result.measurement, |
| usb_chg); |
| |
| if (usb_chg) |
| chip->xoadc_v0625_usb_present = voltage; |
| else |
| chip->xoadc_v0625_usb_absent = voltage; |
| |
| chip->xoadc_v0625 = voltage; |
| if (chip->xoadc_v0625_usb_present && chip->xoadc_v0625_usb_absent) { |
| this_delta = chip->xoadc_v0625_usb_present |
| - chip->xoadc_v0625_usb_absent; |
| pr_debug("this_delta= %duV\n", this_delta); |
| if (this_delta > MIN_DELTA_625_UV) |
| last_usb_cal_delta_uv = this_delta; |
| pr_debug("625V_present= %d, 625V_absent= %d, delta = %duV\n", |
| chip->xoadc_v0625_usb_present, |
| chip->xoadc_v0625_usb_absent, |
| last_usb_cal_delta_uv); |
| } |
| out: |
| mutex_unlock(&chip->calib_mutex); |
| } |
| |
| static void calibrate_hkadc_work(struct work_struct *work) |
| { |
| struct pm8921_bms_chip *chip = container_of(work, |
| struct pm8921_bms_chip, calib_hkadc_work); |
| |
| calib_hkadc(chip); |
| } |
| |
| void pm8921_bms_calibrate_hkadc(void) |
| { |
| schedule_work(&the_chip->calib_hkadc_work); |
| } |
| |
| #define HKADC_CALIB_DELAY_MS 600000 |
| static void calibrate_hkadc_delayed_work(struct work_struct *work) |
| { |
| struct pm8921_bms_chip *chip = container_of(work, |
| struct pm8921_bms_chip, |
| calib_hkadc_delayed_work.work); |
| |
| calib_hkadc(chip); |
| schedule_delayed_work(&chip->calib_hkadc_delayed_work, |
| round_jiffies_relative(msecs_to_jiffies |
| (HKADC_CALIB_DELAY_MS))); |
| } |
| |
| int pm8921_bms_get_vsense_avg(int *result) |
| { |
| int rc = -EINVAL; |
| |
| if (the_chip) { |
| mutex_lock(&the_chip->bms_output_lock); |
| pm_bms_lock_output_data(the_chip); |
| rc = read_vsense_avg(the_chip, result); |
| pm_bms_unlock_output_data(the_chip); |
| mutex_unlock(&the_chip->bms_output_lock); |
| } |
| |
| pr_err("called before initialization\n"); |
| return rc; |
| } |
| EXPORT_SYMBOL(pm8921_bms_get_vsense_avg); |
| |
| int pm8921_bms_get_battery_current(int *result_ua) |
| { |
| int vsense; |
| |
| if (!the_chip) { |
| pr_err("called before initialization\n"); |
| return -EINVAL; |
| } |
| if (the_chip->r_sense == 0) { |
| pr_err("r_sense is zero\n"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&the_chip->bms_output_lock); |
| pm_bms_lock_output_data(the_chip); |
| read_vsense_avg(the_chip, &vsense); |
| pm_bms_unlock_output_data(the_chip); |
| mutex_unlock(&the_chip->bms_output_lock); |
| pr_debug("vsense=%duV\n", vsense); |
| /* cast for signed division */ |
| *result_ua = vsense * 1000 / (int)the_chip->r_sense; |
| pr_debug("ibat=%duA\n", *result_ua); |
| return 0; |
| } |
| EXPORT_SYMBOL(pm8921_bms_get_battery_current); |
| |
| int pm8921_bms_get_percent_charge(void) |
| { |
| if (!the_chip) { |
| pr_err("called before initialization\n"); |
| return -EINVAL; |
| } |
| |
| return report_state_of_charge(the_chip); |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_get_percent_charge); |
| |
| int pm8921_bms_get_rbatt(void) |
| { |
| int batt_temp, rc; |
| struct pm8xxx_adc_chan_result result; |
| struct pm8921_soc_params raw; |
| int fcc_uah; |
| int unusable_charge_uah; |
| int remaining_charge_uah; |
| int cc_uah; |
| int rbatt; |
| int iavg_ua; |
| int delta_time_s; |
| |
| if (!the_chip) { |
| pr_err("called before initialization\n"); |
| return -EINVAL; |
| } |
| |
| rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| the_chip->batt_temp_channel, rc); |
| return rc; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&the_chip->last_ocv_uv_mutex); |
| |
| read_soc_params_raw(the_chip, &raw); |
| |
| calculate_soc_params(the_chip, &raw, batt_temp, last_chargecycles, |
| &fcc_uah, |
| &unusable_charge_uah, |
| &remaining_charge_uah, |
| &cc_uah, |
| &rbatt, |
| &iavg_ua, |
| &delta_time_s); |
| mutex_unlock(&the_chip->last_ocv_uv_mutex); |
| |
| return rbatt; |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_get_rbatt); |
| |
| int pm8921_bms_get_fcc(void) |
| { |
| int batt_temp, rc; |
| struct pm8xxx_adc_chan_result result; |
| |
| if (!the_chip) { |
| pr_err("called before initialization\n"); |
| return -EINVAL; |
| } |
| |
| rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| the_chip->batt_temp_channel, rc); |
| return rc; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| return calculate_fcc_uah(the_chip, batt_temp, last_chargecycles); |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_get_fcc); |
| |
| #define IBAT_TOL_MASK 0x0F |
| #define OCV_TOL_MASK 0xF0 |
| #define IBAT_TOL_DEFAULT 0x03 |
| #define IBAT_TOL_NOCHG 0x0F |
| #define OCV_TOL_DEFAULT 0x20 |
| #define OCV_TOL_NO_OCV 0x00 |
| void pm8921_bms_charging_began(void) |
| { |
| struct pm8921_soc_params raw; |
| |
| mutex_lock(&the_chip->last_ocv_uv_mutex); |
| read_soc_params_raw(the_chip, &raw); |
| mutex_unlock(&the_chip->last_ocv_uv_mutex); |
| |
| the_chip->start_percent = report_state_of_charge(the_chip); |
| |
| bms_start_percent = the_chip->start_percent; |
| bms_start_ocv_uv = raw.last_good_ocv_uv; |
| calculate_cc_uah(the_chip, raw.cc, &bms_start_cc_uah); |
| pm_bms_masked_write(the_chip, BMS_TOLERANCES, |
| IBAT_TOL_MASK, IBAT_TOL_DEFAULT); |
| the_chip->charge_time_us = 0; |
| the_chip->catch_up_time_us = 0; |
| |
| the_chip->soc_at_cv = -EINVAL; |
| the_chip->prev_chg_soc = -EINVAL; |
| pr_debug("start_percent = %u%%\n", the_chip->start_percent); |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_charging_began); |
| |
| #define DELTA_FCC_PERCENT 3 |
| #define MIN_START_PERCENT_FOR_LEARNING 30 |
| void pm8921_bms_charging_end(int is_battery_full) |
| { |
| int batt_temp, rc; |
| struct pm8xxx_adc_chan_result result; |
| struct pm8921_soc_params raw; |
| |
| if (the_chip == NULL) |
| return; |
| |
| rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| the_chip->batt_temp_channel, rc); |
| return; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&the_chip->last_ocv_uv_mutex); |
| |
| read_soc_params_raw(the_chip, &raw); |
| |
| calculate_cc_uah(the_chip, raw.cc, &bms_end_cc_uah); |
| |
| bms_end_ocv_uv = raw.last_good_ocv_uv; |
| |
| if (is_battery_full && the_chip->enable_fcc_learning |
| && the_chip->start_percent <= MIN_START_PERCENT_FOR_LEARNING) { |
| int fcc_uah, new_fcc_uah, delta_fcc_uah; |
| |
| new_fcc_uah = calculate_real_fcc_uah(the_chip, &raw, |
| batt_temp, last_chargecycles, |
| &fcc_uah); |
| delta_fcc_uah = new_fcc_uah - fcc_uah; |
| if (delta_fcc_uah < 0) |
| delta_fcc_uah = -delta_fcc_uah; |
| |
| if (delta_fcc_uah * 100 > (DELTA_FCC_PERCENT * fcc_uah)) { |
| /* new_fcc_uah is outside the scope limit it */ |
| if (new_fcc_uah > fcc_uah) |
| new_fcc_uah |
| = (fcc_uah + |
| (DELTA_FCC_PERCENT * fcc_uah) / 100); |
| else |
| new_fcc_uah |
| = (fcc_uah - |
| (DELTA_FCC_PERCENT * fcc_uah) / 100); |
| |
| pr_debug("delta_fcc=%d > %d percent of fcc=%d" |
| "restring it to %d\n", |
| delta_fcc_uah, DELTA_FCC_PERCENT, |
| fcc_uah, new_fcc_uah); |
| } |
| |
| last_real_fcc_mah = new_fcc_uah/1000; |
| last_real_fcc_batt_temp = batt_temp; |
| readjust_fcc_table(); |
| } |
| |
| if (is_battery_full) { |
| the_chip->ocv_reading_at_100 = raw.last_good_ocv_raw; |
| the_chip->cc_reading_at_100 = raw.cc; |
| |
| the_chip->last_ocv_uv = the_chip->max_voltage_uv; |
| raw.last_good_ocv_uv = the_chip->max_voltage_uv; |
| /* |
| * since we are treating this as an ocv event |
| * forget the old cc value |
| */ |
| the_chip->last_cc_uah = 0; |
| pr_debug("EOC BATT_FULL ocv_reading = 0x%x cc = 0x%x\n", |
| the_chip->ocv_reading_at_100, |
| the_chip->cc_reading_at_100); |
| } |
| |
| the_chip->end_percent = calculate_state_of_charge(the_chip, &raw, |
| batt_temp, last_chargecycles); |
| mutex_unlock(&the_chip->last_ocv_uv_mutex); |
| |
| bms_end_percent = the_chip->end_percent; |
| |
| if (the_chip->end_percent > the_chip->start_percent) { |
| last_charge_increase += |
| the_chip->end_percent - the_chip->start_percent; |
| if (last_charge_increase > 100) { |
| last_chargecycles++; |
| last_charge_increase = last_charge_increase % 100; |
| } |
| } |
| pr_debug("end_percent = %u%% last_charge_increase = %d" |
| "last_chargecycles = %d\n", |
| the_chip->end_percent, |
| last_charge_increase, |
| last_chargecycles); |
| the_chip->start_percent = -EINVAL; |
| the_chip->end_percent = -EINVAL; |
| the_chip->charge_time_us = 0; |
| the_chip->catch_up_time_us = 0; |
| the_chip->soc_at_cv = -EINVAL; |
| the_chip->prev_chg_soc = -EINVAL; |
| pm_bms_masked_write(the_chip, BMS_TOLERANCES, |
| IBAT_TOL_MASK, IBAT_TOL_NOCHG); |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_charging_end); |
| |
| int pm8921_bms_stop_ocv_updates(struct pm8921_bms_chip *chip) |
| { |
| pr_debug("stopping ocv updates\n"); |
| return pm_bms_masked_write(chip, BMS_TOLERANCES, |
| OCV_TOL_MASK, OCV_TOL_NO_OCV); |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_stop_ocv_updates); |
| |
| int pm8921_bms_start_ocv_updates(struct pm8921_bms_chip *chip) |
| { |
| pr_debug("stopping ocv updates\n"); |
| return pm_bms_masked_write(chip, BMS_TOLERANCES, |
| OCV_TOL_MASK, OCV_TOL_DEFAULT); |
| } |
| EXPORT_SYMBOL_GPL(pm8921_bms_start_ocv_updates); |
| |
| static irqreturn_t pm8921_bms_sbi_write_ok_handler(int irq, void *data) |
| { |
| pr_debug("irq = %d triggered", irq); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pm8921_bms_cc_thr_handler(int irq, void *data) |
| { |
| pr_debug("irq = %d triggered", irq); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pm8921_bms_vsense_thr_handler(int irq, void *data) |
| { |
| pr_debug("irq = %d triggered", irq); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pm8921_bms_vsense_for_r_handler(int irq, void *data) |
| { |
| pr_debug("irq = %d triggered", irq); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pm8921_bms_ocv_for_r_handler(int irq, void *data) |
| { |
| struct pm8921_bms_chip *chip = data; |
| |
| pr_debug("irq = %d triggered", irq); |
| schedule_work(&chip->calib_hkadc_work); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pm8921_bms_good_ocv_handler(int irq, void *data) |
| { |
| struct pm8921_bms_chip *chip = data; |
| |
| pr_debug("irq = %d triggered", irq); |
| schedule_work(&chip->calib_hkadc_work); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pm8921_bms_vsense_avg_handler(int irq, void *data) |
| { |
| pr_debug("irq = %d triggered", irq); |
| return IRQ_HANDLED; |
| } |
| |
| struct pm_bms_irq_init_data { |
| unsigned int irq_id; |
| char *name; |
| unsigned long flags; |
| irqreturn_t (*handler)(int, void *); |
| }; |
| |
| #define BMS_IRQ(_id, _flags, _handler) \ |
| { \ |
| .irq_id = _id, \ |
| .name = #_id, \ |
| .flags = _flags, \ |
| .handler = _handler, \ |
| } |
| |
| struct pm_bms_irq_init_data bms_irq_data[] = { |
| BMS_IRQ(PM8921_BMS_SBI_WRITE_OK, IRQF_TRIGGER_RISING, |
| pm8921_bms_sbi_write_ok_handler), |
| BMS_IRQ(PM8921_BMS_CC_THR, IRQF_TRIGGER_RISING, |
| pm8921_bms_cc_thr_handler), |
| BMS_IRQ(PM8921_BMS_VSENSE_THR, IRQF_TRIGGER_RISING, |
| pm8921_bms_vsense_thr_handler), |
| BMS_IRQ(PM8921_BMS_VSENSE_FOR_R, IRQF_TRIGGER_RISING, |
| pm8921_bms_vsense_for_r_handler), |
| BMS_IRQ(PM8921_BMS_OCV_FOR_R, IRQF_TRIGGER_RISING, |
| pm8921_bms_ocv_for_r_handler), |
| BMS_IRQ(PM8921_BMS_GOOD_OCV, IRQF_TRIGGER_RISING, |
| pm8921_bms_good_ocv_handler), |
| BMS_IRQ(PM8921_BMS_VSENSE_AVG, IRQF_TRIGGER_RISING, |
| pm8921_bms_vsense_avg_handler), |
| }; |
| |
| static void free_irqs(struct pm8921_bms_chip *chip) |
| { |
| int i; |
| |
| for (i = 0; i < PM_BMS_MAX_INTS; i++) |
| if (chip->pmic_bms_irq[i]) { |
| free_irq(chip->pmic_bms_irq[i], NULL); |
| chip->pmic_bms_irq[i] = 0; |
| } |
| } |
| |
| static int __devinit request_irqs(struct pm8921_bms_chip *chip, |
| struct platform_device *pdev) |
| { |
| struct resource *res; |
| int ret, i; |
| |
| ret = 0; |
| bitmap_fill(chip->enabled_irqs, PM_BMS_MAX_INTS); |
| |
| for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) { |
| res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, |
| bms_irq_data[i].name); |
| if (res == NULL) { |
| pr_err("couldn't find %s\n", bms_irq_data[i].name); |
| goto err_out; |
| } |
| ret = request_irq(res->start, bms_irq_data[i].handler, |
| bms_irq_data[i].flags, |
| bms_irq_data[i].name, chip); |
| if (ret < 0) { |
| pr_err("couldn't request %d (%s) %d\n", res->start, |
| bms_irq_data[i].name, ret); |
| goto err_out; |
| } |
| chip->pmic_bms_irq[bms_irq_data[i].irq_id] = res->start; |
| pm8921_bms_disable_irq(chip, bms_irq_data[i].irq_id); |
| } |
| return 0; |
| |
| err_out: |
| free_irqs(chip); |
| return -EINVAL; |
| } |
| |
| #define EN_BMS_BIT BIT(7) |
| #define EN_PON_HS_BIT BIT(0) |
| static int __devinit pm8921_bms_hw_init(struct pm8921_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = pm_bms_masked_write(chip, BMS_CONTROL, |
| EN_BMS_BIT | EN_PON_HS_BIT, EN_BMS_BIT | EN_PON_HS_BIT); |
| if (rc) { |
| pr_err("failed to enable pon and bms addr = %d %d", |
| BMS_CONTROL, rc); |
| } |
| |
| /* The charger will call start charge later if usb is present */ |
| pm_bms_masked_write(chip, BMS_TOLERANCES, |
| IBAT_TOL_MASK, IBAT_TOL_NOCHG); |
| return 0; |
| } |
| |
| static void check_initial_ocv(struct pm8921_bms_chip *chip) |
| { |
| int ocv_uv, rc; |
| int16_t ocv_raw; |
| int usb_chg; |
| |
| /* |
| * Check if a ocv is available in bms hw, |
| * if not compute it here at boot time and save it |
| * in the last_ocv_uv. |
| */ |
| ocv_uv = 0; |
| pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &ocv_raw); |
| usb_chg = usb_chg_plugged_in(); |
| rc = convert_vbatt_raw_to_uv(chip, usb_chg, ocv_raw, &ocv_uv); |
| if (rc || ocv_uv == 0) { |
| rc = adc_based_ocv(chip, &ocv_uv); |
| if (rc) { |
| pr_err("failed to read adc based ocv_uv rc = %d\n", rc); |
| ocv_uv = DEFAULT_OCV_MICROVOLTS; |
| } |
| } |
| chip->last_ocv_uv = ocv_uv; |
| pr_debug("ocv_uv = %d last_ocv_uv = %d\n", ocv_uv, chip->last_ocv_uv); |
| } |
| |
| static int64_t read_battery_id(struct pm8921_bms_chip *chip) |
| { |
| int rc; |
| struct pm8xxx_adc_chan_result result; |
| |
| rc = pm8xxx_adc_read(chip->batt_id_channel, &result); |
| if (rc) { |
| pr_err("error reading batt id channel = %d, rc = %d\n", |
| chip->vbat_channel, rc); |
| return rc; |
| } |
| pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| return result.adc_code; |
| } |
| |
| #define PALLADIUM_ID_MIN 0x7F40 |
| #define PALLADIUM_ID_MAX 0x7F5A |
| #define DESAY_5200_ID_MIN 0x7F7F |
| #define DESAY_5200_ID_MAX 0x802F |
| static int set_battery_data(struct pm8921_bms_chip *chip) |
| { |
| int64_t battery_id; |
| |
| if (chip->batt_type == BATT_DESAY) |
| goto desay; |
| else if (chip->batt_type == BATT_PALLADIUM) |
| goto palladium; |
| |
| battery_id = read_battery_id(chip); |
| if (battery_id < 0) { |
| pr_err("cannot read battery id err = %lld\n", battery_id); |
| return battery_id; |
| } |
| |
| if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, battery_id)) { |
| goto palladium; |
| } else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX, |
| battery_id)) { |
| goto desay; |
| } else { |
| pr_warn("invalid battid, palladium 1500 assumed batt_id %llx\n", |
| battery_id); |
| goto palladium; |
| } |
| |
| palladium: |
| chip->fcc = palladium_1500_data.fcc; |
| chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut; |
| chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut; |
| chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut; |
| chip->pc_sf_lut = palladium_1500_data.pc_sf_lut; |
| chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut; |
| chip->default_rbatt_mohm |
| = palladium_1500_data.default_rbatt_mohm; |
| chip->delta_rbatt_mohm = palladium_1500_data.delta_rbatt_mohm; |
| return 0; |
| desay: |
| chip->fcc = desay_5200_data.fcc; |
| chip->fcc_temp_lut = desay_5200_data.fcc_temp_lut; |
| chip->pc_temp_ocv_lut = desay_5200_data.pc_temp_ocv_lut; |
| chip->pc_sf_lut = desay_5200_data.pc_sf_lut; |
| chip->rbatt_sf_lut = desay_5200_data.rbatt_sf_lut; |
| chip->default_rbatt_mohm = desay_5200_data.default_rbatt_mohm; |
| chip->delta_rbatt_mohm = desay_5200_data.delta_rbatt_mohm; |
| return 0; |
| } |
| |
| enum bms_request_operation { |
| CALC_FCC, |
| CALC_PC, |
| CALC_SOC, |
| CALIB_HKADC, |
| CALIB_CCADC, |
| GET_VBAT_VSENSE_SIMULTANEOUS, |
| STOP_OCV, |
| START_OCV, |
| }; |
| |
| static int test_batt_temp = 5; |
| static int test_chargecycle = 150; |
| static int test_ocv = 3900000; |
| enum { |
| TEST_BATT_TEMP, |
| TEST_CHARGE_CYCLE, |
| TEST_OCV, |
| }; |
| static int get_test_param(void *data, u64 * val) |
| { |
| switch ((int)data) { |
| case TEST_BATT_TEMP: |
| *val = test_batt_temp; |
| break; |
| case TEST_CHARGE_CYCLE: |
| *val = test_chargecycle; |
| break; |
| case TEST_OCV: |
| *val = test_ocv; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| static int set_test_param(void *data, u64 val) |
| { |
| switch ((int)data) { |
| case TEST_BATT_TEMP: |
| test_batt_temp = (int)val; |
| break; |
| case TEST_CHARGE_CYCLE: |
| test_chargecycle = (int)val; |
| break; |
| case TEST_OCV: |
| test_ocv = (int)val; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(temp_fops, get_test_param, set_test_param, "%llu\n"); |
| |
| static int get_calc(void *data, u64 * val) |
| { |
| int param = (int)data; |
| int ret = 0; |
| int ibat_ua, vbat_uv; |
| struct pm8921_soc_params raw; |
| |
| read_soc_params_raw(the_chip, &raw); |
| |
| *val = 0; |
| |
| /* global irq number passed in via data */ |
| switch (param) { |
| case CALC_FCC: |
| *val = calculate_fcc_uah(the_chip, test_batt_temp, |
| test_chargecycle); |
| break; |
| case CALC_PC: |
| *val = calculate_pc(the_chip, test_ocv, test_batt_temp, |
| test_chargecycle); |
| break; |
| case CALC_SOC: |
| *val = calculate_state_of_charge(the_chip, &raw, |
| test_batt_temp, test_chargecycle); |
| break; |
| case CALIB_HKADC: |
| /* reading this will trigger calibration */ |
| *val = 0; |
| calib_hkadc(the_chip); |
| break; |
| case CALIB_CCADC: |
| /* reading this will trigger calibration */ |
| *val = 0; |
| pm8xxx_calib_ccadc(); |
| break; |
| case GET_VBAT_VSENSE_SIMULTANEOUS: |
| /* reading this will call simultaneous vbat and vsense */ |
| *val = |
| pm8921_bms_get_simultaneous_battery_voltage_and_current( |
| &ibat_ua, |
| &vbat_uv); |
| default: |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| |
| static int set_calc(void *data, u64 val) |
| { |
| int param = (int)data; |
| int ret = 0; |
| |
| switch (param) { |
| case STOP_OCV: |
| pm8921_bms_stop_ocv_updates(the_chip); |
| break; |
| case START_OCV: |
| pm8921_bms_start_ocv_updates(the_chip); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, set_calc, "%llu\n"); |
| |
| static int get_reading(void *data, u64 * val) |
| { |
| int param = (int)data; |
| int ret = 0; |
| struct pm8921_soc_params raw; |
| |
| read_soc_params_raw(the_chip, &raw); |
| |
| *val = 0; |
| |
| switch (param) { |
| case CC_MSB: |
| case CC_LSB: |
| *val = raw.cc; |
| break; |
| case LAST_GOOD_OCV_VALUE: |
| *val = raw.last_good_ocv_uv; |
| break; |
| case VSENSE_AVG: |
| read_vsense_avg(the_chip, (uint *)val); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(reading_fops, get_reading, NULL, "%lld\n"); |
| |
| static int get_rt_status(void *data, u64 * val) |
| { |
| int i = (int)data; |
| int ret; |
| |
| /* global irq number passed in via data */ |
| ret = pm_bms_get_rt_status(the_chip, i); |
| *val = ret; |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n"); |
| |
| static int get_reg(void *data, u64 * val) |
| { |
| int addr = (int)data; |
| int ret; |
| u8 temp; |
| |
| ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp); |
| if (ret) { |
| pr_err("pm8xxx_readb to %x value = %d errored = %d\n", |
| addr, temp, ret); |
| return -EAGAIN; |
| } |
| *val = temp; |
| return 0; |
| } |
| |
| static int set_reg(void *data, u64 val) |
| { |
| int addr = (int)data; |
| int ret; |
| u8 temp; |
| |
| temp = (u8) val; |
| ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp); |
| if (ret) { |
| pr_err("pm8xxx_writeb to %x value = %d errored = %d\n", |
| addr, temp, ret); |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n"); |
| |
| static void create_debugfs_entries(struct pm8921_bms_chip *chip) |
| { |
| int i; |
| |
| chip->dent = debugfs_create_dir("pm8921-bms", NULL); |
| |
| if (IS_ERR(chip->dent)) { |
| pr_err("pmic bms couldnt create debugfs dir\n"); |
| return; |
| } |
| |
| debugfs_create_file("BMS_CONTROL", 0644, chip->dent, |
| (void *)BMS_CONTROL, ®_fops); |
| debugfs_create_file("BMS_OUTPUT0", 0644, chip->dent, |
| (void *)BMS_OUTPUT0, ®_fops); |
| debugfs_create_file("BMS_OUTPUT1", 0644, chip->dent, |
| (void *)BMS_OUTPUT1, ®_fops); |
| debugfs_create_file("BMS_TEST1", 0644, chip->dent, |
| (void *)BMS_TEST1, ®_fops); |
| |
| debugfs_create_file("test_batt_temp", 0644, chip->dent, |
| (void *)TEST_BATT_TEMP, &temp_fops); |
| debugfs_create_file("test_chargecycle", 0644, chip->dent, |
| (void *)TEST_CHARGE_CYCLE, &temp_fops); |
| debugfs_create_file("test_ocv", 0644, chip->dent, |
| (void *)TEST_OCV, &temp_fops); |
| |
| debugfs_create_file("read_cc", 0644, chip->dent, |
| (void *)CC_MSB, &reading_fops); |
| debugfs_create_file("read_last_good_ocv", 0644, chip->dent, |
| (void *)LAST_GOOD_OCV_VALUE, &reading_fops); |
| debugfs_create_file("read_vbatt_for_rbatt", 0644, chip->dent, |
| (void *)VBATT_FOR_RBATT, &reading_fops); |
| debugfs_create_file("read_vsense_for_rbatt", 0644, chip->dent, |
| (void *)VSENSE_FOR_RBATT, &reading_fops); |
| debugfs_create_file("read_ocv_for_rbatt", 0644, chip->dent, |
| (void *)OCV_FOR_RBATT, &reading_fops); |
| debugfs_create_file("read_vsense_avg", 0644, chip->dent, |
| (void *)VSENSE_AVG, &reading_fops); |
| |
| debugfs_create_file("show_fcc", 0644, chip->dent, |
| (void *)CALC_FCC, &calc_fops); |
| debugfs_create_file("show_pc", 0644, chip->dent, |
| (void *)CALC_PC, &calc_fops); |
| debugfs_create_file("show_soc", 0644, chip->dent, |
| (void *)CALC_SOC, &calc_fops); |
| debugfs_create_file("calib_hkadc", 0644, chip->dent, |
| (void *)CALIB_HKADC, &calc_fops); |
| debugfs_create_file("calib_ccadc", 0644, chip->dent, |
| (void *)CALIB_CCADC, &calc_fops); |
| debugfs_create_file("stop_ocv", 0644, chip->dent, |
| (void *)STOP_OCV, &calc_fops); |
| debugfs_create_file("start_ocv", 0644, chip->dent, |
| (void *)START_OCV, &calc_fops); |
| |
| debugfs_create_file("simultaneous", 0644, chip->dent, |
| (void *)GET_VBAT_VSENSE_SIMULTANEOUS, &calc_fops); |
| |
| for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) { |
| if (chip->pmic_bms_irq[bms_irq_data[i].irq_id]) |
| debugfs_create_file(bms_irq_data[i].name, 0444, |
| chip->dent, |
| (void *)bms_irq_data[i].irq_id, |
| &rt_fops); |
| } |
| } |
| |
| #define REG_SBI_CONFIG 0x04F |
| #define PAGE3_ENABLE_MASK 0x6 |
| #define PROGRAM_REV_MASK 0x0F |
| #define PROGRAM_REV 0x9 |
| static int read_ocv_trim(struct pm8921_bms_chip *chip) |
| { |
| int rc; |
| u8 reg, sbi_config; |
| |
| rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, &sbi_config); |
| if (rc) { |
| pr_err("error = %d reading sbi config reg\n", rc); |
| return rc; |
| } |
| |
| reg = sbi_config | PAGE3_ENABLE_MASK; |
| rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, reg); |
| if (rc) { |
| pr_err("error = %d writing sbi config reg\n", rc); |
| return rc; |
| } |
| |
| rc = pm8xxx_readb(chip->dev->parent, TEST_PROGRAM_REV, ®); |
| if (rc) |
| pr_err("Error %d reading %d addr %d\n", |
| rc, reg, TEST_PROGRAM_REV); |
| pr_err("program rev reg is 0x%x\n", reg); |
| reg &= PROGRAM_REV_MASK; |
| |
| /* If the revision is equal or higher do not adjust trim delta */ |
| if (reg >= PROGRAM_REV) { |
| chip->amux_2_trim_delta = 0; |
| goto restore_sbi_config; |
| } |
| |
| rc = pm8xxx_readb(chip->dev->parent, AMUX_TRIM_2, ®); |
| if (rc) { |
| pr_err("error = %d reading trim reg\n", rc); |
| return rc; |
| } |
| |
| pr_err("trim reg is 0x%x\n", reg); |
| chip->amux_2_trim_delta = abs(0x49 - reg); |
| pr_err("trim delta is %d\n", chip->amux_2_trim_delta); |
| |
| restore_sbi_config: |
| rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, sbi_config); |
| if (rc) { |
| pr_err("error = %d writing sbi config reg\n", rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int __devinit pm8921_bms_probe(struct platform_device *pdev) |
| { |
| int rc = 0; |
| int vbatt; |
| struct pm8921_bms_chip *chip; |
| const struct pm8921_bms_platform_data *pdata |
| = pdev->dev.platform_data; |
| |
| if (!pdata) { |
| pr_err("missing platform data\n"); |
| return -EINVAL; |
| } |
| |
| chip = kzalloc(sizeof(struct pm8921_bms_chip), GFP_KERNEL); |
| if (!chip) { |
| pr_err("Cannot allocate pm_bms_chip\n"); |
| return -ENOMEM; |
| } |
| |
| mutex_init(&chip->bms_output_lock); |
| mutex_init(&chip->last_ocv_uv_mutex); |
| chip->dev = &pdev->dev; |
| chip->r_sense = pdata->r_sense; |
| chip->v_cutoff = pdata->v_cutoff; |
| chip->max_voltage_uv = pdata->max_voltage_uv; |
| chip->chg_term_ua = pdata->chg_term_ua; |
| chip->batt_type = pdata->battery_type; |
| chip->rconn_mohm = pdata->rconn_mohm; |
| chip->start_percent = -EINVAL; |
| chip->end_percent = -EINVAL; |
| chip->shutdown_soc_valid_limit = pdata->shutdown_soc_valid_limit; |
| chip->adjust_soc_low_threshold = pdata->adjust_soc_low_threshold; |
| if (chip->adjust_soc_low_threshold >= 45) |
| chip->adjust_soc_low_threshold = 45; |
| |
| chip->prev_pc_unusable = -EINVAL; |
| chip->soc_at_cv = -EINVAL; |
| |
| chip->ignore_shutdown_soc = pdata->ignore_shutdown_soc; |
| rc = set_battery_data(chip); |
| if (rc) { |
| pr_err("%s bad battery data %d\n", __func__, rc); |
| goto free_chip; |
| } |
| |
| if (chip->pc_temp_ocv_lut == NULL) { |
| pr_err("temp ocv lut table is NULL\n"); |
| rc = -EINVAL; |
| goto free_chip; |
| } |
| |
| /* set defaults in the battery data */ |
| if (chip->default_rbatt_mohm <= 0) |
| chip->default_rbatt_mohm = DEFAULT_RBATT_MOHMS; |
| |
| chip->batt_temp_channel = pdata->bms_cdata.batt_temp_channel; |
| chip->vbat_channel = pdata->bms_cdata.vbat_channel; |
| chip->ref625mv_channel = pdata->bms_cdata.ref625mv_channel; |
| chip->ref1p25v_channel = pdata->bms_cdata.ref1p25v_channel; |
| chip->batt_id_channel = pdata->bms_cdata.batt_id_channel; |
| chip->revision = pm8xxx_get_revision(chip->dev->parent); |
| chip->enable_fcc_learning = pdata->enable_fcc_learning; |
| |
| mutex_init(&chip->calib_mutex); |
| INIT_WORK(&chip->calib_hkadc_work, calibrate_hkadc_work); |
| INIT_DELAYED_WORK(&chip->calib_hkadc_delayed_work, |
| calibrate_hkadc_delayed_work); |
| |
| INIT_DELAYED_WORK(&chip->calculate_soc_delayed_work, |
| calculate_soc_work); |
| |
| rc = request_irqs(chip, pdev); |
| if (rc) { |
| pr_err("couldn't register interrupts rc = %d\n", rc); |
| goto free_chip; |
| } |
| |
| rc = pm8921_bms_hw_init(chip); |
| if (rc) { |
| pr_err("couldn't init hardware rc = %d\n", rc); |
| goto free_irqs; |
| } |
| |
| read_shutdown_soc_and_iavg(chip); |
| |
| platform_set_drvdata(pdev, chip); |
| the_chip = chip; |
| create_debugfs_entries(chip); |
| |
| rc = read_ocv_trim(chip); |
| if (rc) { |
| pr_err("couldn't adjust ocv_trim rc= %d\n", rc); |
| goto free_irqs; |
| } |
| check_initial_ocv(chip); |
| |
| /* start periodic hkadc calibration */ |
| schedule_delayed_work(&chip->calib_hkadc_delayed_work, 0); |
| |
| /* enable the vbatt reading interrupts for scheduling hkadc calib */ |
| pm8921_bms_enable_irq(chip, PM8921_BMS_GOOD_OCV); |
| pm8921_bms_enable_irq(chip, PM8921_BMS_OCV_FOR_R); |
| |
| calculate_soc_work(&(chip->calculate_soc_delayed_work.work)); |
| |
| get_battery_uvolts(chip, &vbatt); |
| pr_info("OK battery_capacity_at_boot=%d volt = %d ocv = %d\n", |
| pm8921_bms_get_percent_charge(), |
| vbatt, chip->last_ocv_uv); |
| |
| return 0; |
| |
| free_irqs: |
| free_irqs(chip); |
| free_chip: |
| kfree(chip); |
| return rc; |
| } |
| |
| static int __devexit pm8921_bms_remove(struct platform_device *pdev) |
| { |
| struct pm8921_bms_chip *chip = platform_get_drvdata(pdev); |
| |
| free_irqs(chip); |
| kfree(chip->adjusted_fcc_temp_lut); |
| platform_set_drvdata(pdev, NULL); |
| the_chip = NULL; |
| kfree(chip); |
| return 0; |
| } |
| |
| static struct platform_driver pm8921_bms_driver = { |
| .probe = pm8921_bms_probe, |
| .remove = __devexit_p(pm8921_bms_remove), |
| .driver = { |
| .name = PM8921_BMS_DEV_NAME, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static int __init pm8921_bms_init(void) |
| { |
| return platform_driver_register(&pm8921_bms_driver); |
| } |
| |
| static void __exit pm8921_bms_exit(void) |
| { |
| platform_driver_unregister(&pm8921_bms_driver); |
| } |
| |
| late_initcall(pm8921_bms_init); |
| module_exit(pm8921_bms_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("PMIC8921 bms driver"); |
| MODULE_VERSION("1.0"); |
| MODULE_ALIAS("platform:" PM8921_BMS_DEV_NAME); |