| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "irq.h" |
| #include "mmu.h" |
| #include "cpuid.h" |
| |
| #include <linux/kvm_host.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <linux/moduleparam.h> |
| #include <linux/ftrace_event.h> |
| #include <linux/slab.h> |
| #include <linux/tboot.h> |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| |
| #include <asm/io.h> |
| #include <asm/desc.h> |
| #include <asm/vmx.h> |
| #include <asm/virtext.h> |
| #include <asm/mce.h> |
| #include <asm/i387.h> |
| #include <asm/xcr.h> |
| #include <asm/perf_event.h> |
| |
| #include "trace.h" |
| |
| #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| #define __ex_clear(x, reg) \ |
| ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| static bool __read_mostly enable_vpid = 1; |
| module_param_named(vpid, enable_vpid, bool, 0444); |
| |
| static bool __read_mostly flexpriority_enabled = 1; |
| module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); |
| |
| static bool __read_mostly enable_ept = 1; |
| module_param_named(ept, enable_ept, bool, S_IRUGO); |
| |
| static bool __read_mostly enable_unrestricted_guest = 1; |
| module_param_named(unrestricted_guest, |
| enable_unrestricted_guest, bool, S_IRUGO); |
| |
| static bool __read_mostly emulate_invalid_guest_state = 0; |
| module_param(emulate_invalid_guest_state, bool, S_IRUGO); |
| |
| static bool __read_mostly vmm_exclusive = 1; |
| module_param(vmm_exclusive, bool, S_IRUGO); |
| |
| static bool __read_mostly yield_on_hlt = 1; |
| module_param(yield_on_hlt, bool, S_IRUGO); |
| |
| static bool __read_mostly fasteoi = 1; |
| module_param(fasteoi, bool, S_IRUGO); |
| |
| /* |
| * If nested=1, nested virtualization is supported, i.e., guests may use |
| * VMX and be a hypervisor for its own guests. If nested=0, guests may not |
| * use VMX instructions. |
| */ |
| static bool __read_mostly nested = 0; |
| module_param(nested, bool, S_IRUGO); |
| |
| #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \ |
| (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD) |
| #define KVM_GUEST_CR0_MASK \ |
| (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) |
| #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \ |
| (X86_CR0_WP | X86_CR0_NE) |
| #define KVM_VM_CR0_ALWAYS_ON \ |
| (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) |
| #define KVM_CR4_GUEST_OWNED_BITS \ |
| (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ |
| | X86_CR4_OSXMMEXCPT) |
| |
| #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) |
| #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) |
| |
| #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) |
| |
| /* |
| * These 2 parameters are used to config the controls for Pause-Loop Exiting: |
| * ple_gap: upper bound on the amount of time between two successive |
| * executions of PAUSE in a loop. Also indicate if ple enabled. |
| * According to test, this time is usually smaller than 128 cycles. |
| * ple_window: upper bound on the amount of time a guest is allowed to execute |
| * in a PAUSE loop. Tests indicate that most spinlocks are held for |
| * less than 2^12 cycles |
| * Time is measured based on a counter that runs at the same rate as the TSC, |
| * refer SDM volume 3b section 21.6.13 & 22.1.3. |
| */ |
| #define KVM_VMX_DEFAULT_PLE_GAP 128 |
| #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 |
| static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP; |
| module_param(ple_gap, int, S_IRUGO); |
| |
| static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; |
| module_param(ple_window, int, S_IRUGO); |
| |
| #define NR_AUTOLOAD_MSRS 8 |
| #define VMCS02_POOL_SIZE 1 |
| |
| struct vmcs { |
| u32 revision_id; |
| u32 abort; |
| char data[0]; |
| }; |
| |
| /* |
| * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also |
| * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs |
| * loaded on this CPU (so we can clear them if the CPU goes down). |
| */ |
| struct loaded_vmcs { |
| struct vmcs *vmcs; |
| int cpu; |
| int launched; |
| struct list_head loaded_vmcss_on_cpu_link; |
| }; |
| |
| struct shared_msr_entry { |
| unsigned index; |
| u64 data; |
| u64 mask; |
| }; |
| |
| /* |
| * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a |
| * single nested guest (L2), hence the name vmcs12. Any VMX implementation has |
| * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is |
| * stored in guest memory specified by VMPTRLD, but is opaque to the guest, |
| * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. |
| * More than one of these structures may exist, if L1 runs multiple L2 guests. |
| * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the |
| * underlying hardware which will be used to run L2. |
| * This structure is packed to ensure that its layout is identical across |
| * machines (necessary for live migration). |
| * If there are changes in this struct, VMCS12_REVISION must be changed. |
| */ |
| typedef u64 natural_width; |
| struct __packed vmcs12 { |
| /* According to the Intel spec, a VMCS region must start with the |
| * following two fields. Then follow implementation-specific data. |
| */ |
| u32 revision_id; |
| u32 abort; |
| |
| u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ |
| u32 padding[7]; /* room for future expansion */ |
| |
| u64 io_bitmap_a; |
| u64 io_bitmap_b; |
| u64 msr_bitmap; |
| u64 vm_exit_msr_store_addr; |
| u64 vm_exit_msr_load_addr; |
| u64 vm_entry_msr_load_addr; |
| u64 tsc_offset; |
| u64 virtual_apic_page_addr; |
| u64 apic_access_addr; |
| u64 ept_pointer; |
| u64 guest_physical_address; |
| u64 vmcs_link_pointer; |
| u64 guest_ia32_debugctl; |
| u64 guest_ia32_pat; |
| u64 guest_ia32_efer; |
| u64 guest_ia32_perf_global_ctrl; |
| u64 guest_pdptr0; |
| u64 guest_pdptr1; |
| u64 guest_pdptr2; |
| u64 guest_pdptr3; |
| u64 host_ia32_pat; |
| u64 host_ia32_efer; |
| u64 host_ia32_perf_global_ctrl; |
| u64 padding64[8]; /* room for future expansion */ |
| /* |
| * To allow migration of L1 (complete with its L2 guests) between |
| * machines of different natural widths (32 or 64 bit), we cannot have |
| * unsigned long fields with no explict size. We use u64 (aliased |
| * natural_width) instead. Luckily, x86 is little-endian. |
| */ |
| natural_width cr0_guest_host_mask; |
| natural_width cr4_guest_host_mask; |
| natural_width cr0_read_shadow; |
| natural_width cr4_read_shadow; |
| natural_width cr3_target_value0; |
| natural_width cr3_target_value1; |
| natural_width cr3_target_value2; |
| natural_width cr3_target_value3; |
| natural_width exit_qualification; |
| natural_width guest_linear_address; |
| natural_width guest_cr0; |
| natural_width guest_cr3; |
| natural_width guest_cr4; |
| natural_width guest_es_base; |
| natural_width guest_cs_base; |
| natural_width guest_ss_base; |
| natural_width guest_ds_base; |
| natural_width guest_fs_base; |
| natural_width guest_gs_base; |
| natural_width guest_ldtr_base; |
| natural_width guest_tr_base; |
| natural_width guest_gdtr_base; |
| natural_width guest_idtr_base; |
| natural_width guest_dr7; |
| natural_width guest_rsp; |
| natural_width guest_rip; |
| natural_width guest_rflags; |
| natural_width guest_pending_dbg_exceptions; |
| natural_width guest_sysenter_esp; |
| natural_width guest_sysenter_eip; |
| natural_width host_cr0; |
| natural_width host_cr3; |
| natural_width host_cr4; |
| natural_width host_fs_base; |
| natural_width host_gs_base; |
| natural_width host_tr_base; |
| natural_width host_gdtr_base; |
| natural_width host_idtr_base; |
| natural_width host_ia32_sysenter_esp; |
| natural_width host_ia32_sysenter_eip; |
| natural_width host_rsp; |
| natural_width host_rip; |
| natural_width paddingl[8]; /* room for future expansion */ |
| u32 pin_based_vm_exec_control; |
| u32 cpu_based_vm_exec_control; |
| u32 exception_bitmap; |
| u32 page_fault_error_code_mask; |
| u32 page_fault_error_code_match; |
| u32 cr3_target_count; |
| u32 vm_exit_controls; |
| u32 vm_exit_msr_store_count; |
| u32 vm_exit_msr_load_count; |
| u32 vm_entry_controls; |
| u32 vm_entry_msr_load_count; |
| u32 vm_entry_intr_info_field; |
| u32 vm_entry_exception_error_code; |
| u32 vm_entry_instruction_len; |
| u32 tpr_threshold; |
| u32 secondary_vm_exec_control; |
| u32 vm_instruction_error; |
| u32 vm_exit_reason; |
| u32 vm_exit_intr_info; |
| u32 vm_exit_intr_error_code; |
| u32 idt_vectoring_info_field; |
| u32 idt_vectoring_error_code; |
| u32 vm_exit_instruction_len; |
| u32 vmx_instruction_info; |
| u32 guest_es_limit; |
| u32 guest_cs_limit; |
| u32 guest_ss_limit; |
| u32 guest_ds_limit; |
| u32 guest_fs_limit; |
| u32 guest_gs_limit; |
| u32 guest_ldtr_limit; |
| u32 guest_tr_limit; |
| u32 guest_gdtr_limit; |
| u32 guest_idtr_limit; |
| u32 guest_es_ar_bytes; |
| u32 guest_cs_ar_bytes; |
| u32 guest_ss_ar_bytes; |
| u32 guest_ds_ar_bytes; |
| u32 guest_fs_ar_bytes; |
| u32 guest_gs_ar_bytes; |
| u32 guest_ldtr_ar_bytes; |
| u32 guest_tr_ar_bytes; |
| u32 guest_interruptibility_info; |
| u32 guest_activity_state; |
| u32 guest_sysenter_cs; |
| u32 host_ia32_sysenter_cs; |
| u32 padding32[8]; /* room for future expansion */ |
| u16 virtual_processor_id; |
| u16 guest_es_selector; |
| u16 guest_cs_selector; |
| u16 guest_ss_selector; |
| u16 guest_ds_selector; |
| u16 guest_fs_selector; |
| u16 guest_gs_selector; |
| u16 guest_ldtr_selector; |
| u16 guest_tr_selector; |
| u16 host_es_selector; |
| u16 host_cs_selector; |
| u16 host_ss_selector; |
| u16 host_ds_selector; |
| u16 host_fs_selector; |
| u16 host_gs_selector; |
| u16 host_tr_selector; |
| }; |
| |
| /* |
| * VMCS12_REVISION is an arbitrary id that should be changed if the content or |
| * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and |
| * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. |
| */ |
| #define VMCS12_REVISION 0x11e57ed0 |
| |
| /* |
| * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region |
| * and any VMCS region. Although only sizeof(struct vmcs12) are used by the |
| * current implementation, 4K are reserved to avoid future complications. |
| */ |
| #define VMCS12_SIZE 0x1000 |
| |
| /* Used to remember the last vmcs02 used for some recently used vmcs12s */ |
| struct vmcs02_list { |
| struct list_head list; |
| gpa_t vmptr; |
| struct loaded_vmcs vmcs02; |
| }; |
| |
| /* |
| * The nested_vmx structure is part of vcpu_vmx, and holds information we need |
| * for correct emulation of VMX (i.e., nested VMX) on this vcpu. |
| */ |
| struct nested_vmx { |
| /* Has the level1 guest done vmxon? */ |
| bool vmxon; |
| |
| /* The guest-physical address of the current VMCS L1 keeps for L2 */ |
| gpa_t current_vmptr; |
| /* The host-usable pointer to the above */ |
| struct page *current_vmcs12_page; |
| struct vmcs12 *current_vmcs12; |
| |
| /* vmcs02_list cache of VMCSs recently used to run L2 guests */ |
| struct list_head vmcs02_pool; |
| int vmcs02_num; |
| u64 vmcs01_tsc_offset; |
| /* L2 must run next, and mustn't decide to exit to L1. */ |
| bool nested_run_pending; |
| /* |
| * Guest pages referred to in vmcs02 with host-physical pointers, so |
| * we must keep them pinned while L2 runs. |
| */ |
| struct page *apic_access_page; |
| }; |
| |
| struct vcpu_vmx { |
| struct kvm_vcpu vcpu; |
| unsigned long host_rsp; |
| u8 fail; |
| u8 cpl; |
| bool nmi_known_unmasked; |
| u32 exit_intr_info; |
| u32 idt_vectoring_info; |
| ulong rflags; |
| struct shared_msr_entry *guest_msrs; |
| int nmsrs; |
| int save_nmsrs; |
| #ifdef CONFIG_X86_64 |
| u64 msr_host_kernel_gs_base; |
| u64 msr_guest_kernel_gs_base; |
| #endif |
| /* |
| * loaded_vmcs points to the VMCS currently used in this vcpu. For a |
| * non-nested (L1) guest, it always points to vmcs01. For a nested |
| * guest (L2), it points to a different VMCS. |
| */ |
| struct loaded_vmcs vmcs01; |
| struct loaded_vmcs *loaded_vmcs; |
| bool __launched; /* temporary, used in vmx_vcpu_run */ |
| struct msr_autoload { |
| unsigned nr; |
| struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS]; |
| struct vmx_msr_entry host[NR_AUTOLOAD_MSRS]; |
| } msr_autoload; |
| struct { |
| int loaded; |
| u16 fs_sel, gs_sel, ldt_sel; |
| int gs_ldt_reload_needed; |
| int fs_reload_needed; |
| } host_state; |
| struct { |
| int vm86_active; |
| ulong save_rflags; |
| struct kvm_save_segment { |
| u16 selector; |
| unsigned long base; |
| u32 limit; |
| u32 ar; |
| } tr, es, ds, fs, gs; |
| } rmode; |
| struct { |
| u32 bitmask; /* 4 bits per segment (1 bit per field) */ |
| struct kvm_save_segment seg[8]; |
| } segment_cache; |
| int vpid; |
| bool emulation_required; |
| |
| /* Support for vnmi-less CPUs */ |
| int soft_vnmi_blocked; |
| ktime_t entry_time; |
| s64 vnmi_blocked_time; |
| u32 exit_reason; |
| |
| bool rdtscp_enabled; |
| |
| /* Support for a guest hypervisor (nested VMX) */ |
| struct nested_vmx nested; |
| }; |
| |
| enum segment_cache_field { |
| SEG_FIELD_SEL = 0, |
| SEG_FIELD_BASE = 1, |
| SEG_FIELD_LIMIT = 2, |
| SEG_FIELD_AR = 3, |
| |
| SEG_FIELD_NR = 4 |
| }; |
| |
| static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) |
| { |
| return container_of(vcpu, struct vcpu_vmx, vcpu); |
| } |
| |
| #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) |
| #define FIELD(number, name) [number] = VMCS12_OFFSET(name) |
| #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \ |
| [number##_HIGH] = VMCS12_OFFSET(name)+4 |
| |
| static unsigned short vmcs_field_to_offset_table[] = { |
| FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), |
| FIELD(GUEST_ES_SELECTOR, guest_es_selector), |
| FIELD(GUEST_CS_SELECTOR, guest_cs_selector), |
| FIELD(GUEST_SS_SELECTOR, guest_ss_selector), |
| FIELD(GUEST_DS_SELECTOR, guest_ds_selector), |
| FIELD(GUEST_FS_SELECTOR, guest_fs_selector), |
| FIELD(GUEST_GS_SELECTOR, guest_gs_selector), |
| FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), |
| FIELD(GUEST_TR_SELECTOR, guest_tr_selector), |
| FIELD(HOST_ES_SELECTOR, host_es_selector), |
| FIELD(HOST_CS_SELECTOR, host_cs_selector), |
| FIELD(HOST_SS_SELECTOR, host_ss_selector), |
| FIELD(HOST_DS_SELECTOR, host_ds_selector), |
| FIELD(HOST_FS_SELECTOR, host_fs_selector), |
| FIELD(HOST_GS_SELECTOR, host_gs_selector), |
| FIELD(HOST_TR_SELECTOR, host_tr_selector), |
| FIELD64(IO_BITMAP_A, io_bitmap_a), |
| FIELD64(IO_BITMAP_B, io_bitmap_b), |
| FIELD64(MSR_BITMAP, msr_bitmap), |
| FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), |
| FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), |
| FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), |
| FIELD64(TSC_OFFSET, tsc_offset), |
| FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), |
| FIELD64(APIC_ACCESS_ADDR, apic_access_addr), |
| FIELD64(EPT_POINTER, ept_pointer), |
| FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), |
| FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), |
| FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), |
| FIELD64(GUEST_IA32_PAT, guest_ia32_pat), |
| FIELD64(GUEST_IA32_EFER, guest_ia32_efer), |
| FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), |
| FIELD64(GUEST_PDPTR0, guest_pdptr0), |
| FIELD64(GUEST_PDPTR1, guest_pdptr1), |
| FIELD64(GUEST_PDPTR2, guest_pdptr2), |
| FIELD64(GUEST_PDPTR3, guest_pdptr3), |
| FIELD64(HOST_IA32_PAT, host_ia32_pat), |
| FIELD64(HOST_IA32_EFER, host_ia32_efer), |
| FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), |
| FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), |
| FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), |
| FIELD(EXCEPTION_BITMAP, exception_bitmap), |
| FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), |
| FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), |
| FIELD(CR3_TARGET_COUNT, cr3_target_count), |
| FIELD(VM_EXIT_CONTROLS, vm_exit_controls), |
| FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), |
| FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), |
| FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), |
| FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), |
| FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), |
| FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), |
| FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), |
| FIELD(TPR_THRESHOLD, tpr_threshold), |
| FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), |
| FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), |
| FIELD(VM_EXIT_REASON, vm_exit_reason), |
| FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), |
| FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), |
| FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), |
| FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), |
| FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), |
| FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), |
| FIELD(GUEST_ES_LIMIT, guest_es_limit), |
| FIELD(GUEST_CS_LIMIT, guest_cs_limit), |
| FIELD(GUEST_SS_LIMIT, guest_ss_limit), |
| FIELD(GUEST_DS_LIMIT, guest_ds_limit), |
| FIELD(GUEST_FS_LIMIT, guest_fs_limit), |
| FIELD(GUEST_GS_LIMIT, guest_gs_limit), |
| FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), |
| FIELD(GUEST_TR_LIMIT, guest_tr_limit), |
| FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), |
| FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), |
| FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), |
| FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), |
| FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), |
| FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), |
| FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), |
| FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), |
| FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), |
| FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), |
| FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), |
| FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), |
| FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), |
| FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), |
| FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), |
| FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), |
| FIELD(CR0_READ_SHADOW, cr0_read_shadow), |
| FIELD(CR4_READ_SHADOW, cr4_read_shadow), |
| FIELD(CR3_TARGET_VALUE0, cr3_target_value0), |
| FIELD(CR3_TARGET_VALUE1, cr3_target_value1), |
| FIELD(CR3_TARGET_VALUE2, cr3_target_value2), |
| FIELD(CR3_TARGET_VALUE3, cr3_target_value3), |
| FIELD(EXIT_QUALIFICATION, exit_qualification), |
| FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), |
| FIELD(GUEST_CR0, guest_cr0), |
| FIELD(GUEST_CR3, guest_cr3), |
| FIELD(GUEST_CR4, guest_cr4), |
| FIELD(GUEST_ES_BASE, guest_es_base), |
| FIELD(GUEST_CS_BASE, guest_cs_base), |
| FIELD(GUEST_SS_BASE, guest_ss_base), |
| FIELD(GUEST_DS_BASE, guest_ds_base), |
| FIELD(GUEST_FS_BASE, guest_fs_base), |
| FIELD(GUEST_GS_BASE, guest_gs_base), |
| FIELD(GUEST_LDTR_BASE, guest_ldtr_base), |
| FIELD(GUEST_TR_BASE, guest_tr_base), |
| FIELD(GUEST_GDTR_BASE, guest_gdtr_base), |
| FIELD(GUEST_IDTR_BASE, guest_idtr_base), |
| FIELD(GUEST_DR7, guest_dr7), |
| FIELD(GUEST_RSP, guest_rsp), |
| FIELD(GUEST_RIP, guest_rip), |
| FIELD(GUEST_RFLAGS, guest_rflags), |
| FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), |
| FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), |
| FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), |
| FIELD(HOST_CR0, host_cr0), |
| FIELD(HOST_CR3, host_cr3), |
| FIELD(HOST_CR4, host_cr4), |
| FIELD(HOST_FS_BASE, host_fs_base), |
| FIELD(HOST_GS_BASE, host_gs_base), |
| FIELD(HOST_TR_BASE, host_tr_base), |
| FIELD(HOST_GDTR_BASE, host_gdtr_base), |
| FIELD(HOST_IDTR_BASE, host_idtr_base), |
| FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), |
| FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), |
| FIELD(HOST_RSP, host_rsp), |
| FIELD(HOST_RIP, host_rip), |
| }; |
| static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table); |
| |
| static inline short vmcs_field_to_offset(unsigned long field) |
| { |
| if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0) |
| return -1; |
| return vmcs_field_to_offset_table[field]; |
| } |
| |
| static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) |
| { |
| return to_vmx(vcpu)->nested.current_vmcs12; |
| } |
| |
| static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr) |
| { |
| struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT); |
| if (is_error_page(page)) { |
| kvm_release_page_clean(page); |
| return NULL; |
| } |
| return page; |
| } |
| |
| static void nested_release_page(struct page *page) |
| { |
| kvm_release_page_dirty(page); |
| } |
| |
| static void nested_release_page_clean(struct page *page) |
| { |
| kvm_release_page_clean(page); |
| } |
| |
| static u64 construct_eptp(unsigned long root_hpa); |
| static void kvm_cpu_vmxon(u64 addr); |
| static void kvm_cpu_vmxoff(void); |
| static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); |
| static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr); |
| |
| static DEFINE_PER_CPU(struct vmcs *, vmxarea); |
| static DEFINE_PER_CPU(struct vmcs *, current_vmcs); |
| /* |
| * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed |
| * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. |
| */ |
| static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); |
| static DEFINE_PER_CPU(struct desc_ptr, host_gdt); |
| |
| static unsigned long *vmx_io_bitmap_a; |
| static unsigned long *vmx_io_bitmap_b; |
| static unsigned long *vmx_msr_bitmap_legacy; |
| static unsigned long *vmx_msr_bitmap_longmode; |
| |
| static bool cpu_has_load_ia32_efer; |
| static bool cpu_has_load_perf_global_ctrl; |
| |
| static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| static DEFINE_SPINLOCK(vmx_vpid_lock); |
| |
| static struct vmcs_config { |
| int size; |
| int order; |
| u32 revision_id; |
| u32 pin_based_exec_ctrl; |
| u32 cpu_based_exec_ctrl; |
| u32 cpu_based_2nd_exec_ctrl; |
| u32 vmexit_ctrl; |
| u32 vmentry_ctrl; |
| } vmcs_config; |
| |
| static struct vmx_capability { |
| u32 ept; |
| u32 vpid; |
| } vmx_capability; |
| |
| #define VMX_SEGMENT_FIELD(seg) \ |
| [VCPU_SREG_##seg] = { \ |
| .selector = GUEST_##seg##_SELECTOR, \ |
| .base = GUEST_##seg##_BASE, \ |
| .limit = GUEST_##seg##_LIMIT, \ |
| .ar_bytes = GUEST_##seg##_AR_BYTES, \ |
| } |
| |
| static struct kvm_vmx_segment_field { |
| unsigned selector; |
| unsigned base; |
| unsigned limit; |
| unsigned ar_bytes; |
| } kvm_vmx_segment_fields[] = { |
| VMX_SEGMENT_FIELD(CS), |
| VMX_SEGMENT_FIELD(DS), |
| VMX_SEGMENT_FIELD(ES), |
| VMX_SEGMENT_FIELD(FS), |
| VMX_SEGMENT_FIELD(GS), |
| VMX_SEGMENT_FIELD(SS), |
| VMX_SEGMENT_FIELD(TR), |
| VMX_SEGMENT_FIELD(LDTR), |
| }; |
| |
| static u64 host_efer; |
| |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu); |
| |
| /* |
| * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it |
| * away by decrementing the array size. |
| */ |
| static const u32 vmx_msr_index[] = { |
| #ifdef CONFIG_X86_64 |
| MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, |
| #endif |
| MSR_EFER, MSR_TSC_AUX, MSR_STAR, |
| }; |
| #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index) |
| |
| static inline bool is_page_fault(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline bool is_no_device(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline bool is_invalid_opcode(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline bool is_external_interrupt(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline bool is_machine_check(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline bool cpu_has_vmx_msr_bitmap(void) |
| { |
| return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; |
| } |
| |
| static inline bool cpu_has_vmx_tpr_shadow(void) |
| { |
| return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; |
| } |
| |
| static inline bool vm_need_tpr_shadow(struct kvm *kvm) |
| { |
| return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)); |
| } |
| |
| static inline bool cpu_has_secondary_exec_ctrls(void) |
| { |
| return vmcs_config.cpu_based_exec_ctrl & |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| } |
| |
| static inline bool cpu_has_vmx_virtualize_apic_accesses(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| } |
| |
| static inline bool cpu_has_vmx_flexpriority(void) |
| { |
| return cpu_has_vmx_tpr_shadow() && |
| cpu_has_vmx_virtualize_apic_accesses(); |
| } |
| |
| static inline bool cpu_has_vmx_ept_execute_only(void) |
| { |
| return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_eptp_uncacheable(void) |
| { |
| return vmx_capability.ept & VMX_EPTP_UC_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_eptp_writeback(void) |
| { |
| return vmx_capability.ept & VMX_EPTP_WB_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_ept_2m_page(void) |
| { |
| return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_ept_1g_page(void) |
| { |
| return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_ept_4levels(void) |
| { |
| return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_invept_individual_addr(void) |
| { |
| return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_invept_context(void) |
| { |
| return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_invept_global(void) |
| { |
| return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_invvpid_single(void) |
| { |
| return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_invvpid_global(void) |
| { |
| return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; |
| } |
| |
| static inline bool cpu_has_vmx_ept(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_ENABLE_EPT; |
| } |
| |
| static inline bool cpu_has_vmx_unrestricted_guest(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| } |
| |
| static inline bool cpu_has_vmx_ple(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_PAUSE_LOOP_EXITING; |
| } |
| |
| static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm) |
| { |
| return flexpriority_enabled && irqchip_in_kernel(kvm); |
| } |
| |
| static inline bool cpu_has_vmx_vpid(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_ENABLE_VPID; |
| } |
| |
| static inline bool cpu_has_vmx_rdtscp(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_RDTSCP; |
| } |
| |
| static inline bool cpu_has_virtual_nmis(void) |
| { |
| return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; |
| } |
| |
| static inline bool cpu_has_vmx_wbinvd_exit(void) |
| { |
| return vmcs_config.cpu_based_2nd_exec_ctrl & |
| SECONDARY_EXEC_WBINVD_EXITING; |
| } |
| |
| static inline bool report_flexpriority(void) |
| { |
| return flexpriority_enabled; |
| } |
| |
| static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) |
| { |
| return vmcs12->cpu_based_vm_exec_control & bit; |
| } |
| |
| static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) |
| { |
| return (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && |
| (vmcs12->secondary_vm_exec_control & bit); |
| } |
| |
| static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12, |
| struct kvm_vcpu *vcpu) |
| { |
| return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; |
| } |
| |
| static inline bool is_exception(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK); |
| } |
| |
| static void nested_vmx_vmexit(struct kvm_vcpu *vcpu); |
| static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| u32 reason, unsigned long qualification); |
| |
| static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| for (i = 0; i < vmx->nmsrs; ++i) |
| if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) |
| return i; |
| return -1; |
| } |
| |
| static inline void __invvpid(int ext, u16 vpid, gva_t gva) |
| { |
| struct { |
| u64 vpid : 16; |
| u64 rsvd : 48; |
| u64 gva; |
| } operand = { vpid, 0, gva }; |
| |
| asm volatile (__ex(ASM_VMX_INVVPID) |
| /* CF==1 or ZF==1 --> rc = -1 */ |
| "; ja 1f ; ud2 ; 1:" |
| : : "a"(&operand), "c"(ext) : "cc", "memory"); |
| } |
| |
| static inline void __invept(int ext, u64 eptp, gpa_t gpa) |
| { |
| struct { |
| u64 eptp, gpa; |
| } operand = {eptp, gpa}; |
| |
| asm volatile (__ex(ASM_VMX_INVEPT) |
| /* CF==1 or ZF==1 --> rc = -1 */ |
| "; ja 1f ; ud2 ; 1:\n" |
| : : "a" (&operand), "c" (ext) : "cc", "memory"); |
| } |
| |
| static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| i = __find_msr_index(vmx, msr); |
| if (i >= 0) |
| return &vmx->guest_msrs[i]; |
| return NULL; |
| } |
| |
| static void vmcs_clear(struct vmcs *vmcs) |
| { |
| u64 phys_addr = __pa(vmcs); |
| u8 error; |
| |
| asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" |
| : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) |
| : "cc", "memory"); |
| if (error) |
| printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", |
| vmcs, phys_addr); |
| } |
| |
| static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) |
| { |
| vmcs_clear(loaded_vmcs->vmcs); |
| loaded_vmcs->cpu = -1; |
| loaded_vmcs->launched = 0; |
| } |
| |
| static void vmcs_load(struct vmcs *vmcs) |
| { |
| u64 phys_addr = __pa(vmcs); |
| u8 error; |
| |
| asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" |
| : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) |
| : "cc", "memory"); |
| if (error) |
| printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", |
| vmcs, phys_addr); |
| } |
| |
| static void __loaded_vmcs_clear(void *arg) |
| { |
| struct loaded_vmcs *loaded_vmcs = arg; |
| int cpu = raw_smp_processor_id(); |
| |
| if (loaded_vmcs->cpu != cpu) |
| return; /* vcpu migration can race with cpu offline */ |
| if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) |
| per_cpu(current_vmcs, cpu) = NULL; |
| list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); |
| loaded_vmcs_init(loaded_vmcs); |
| } |
| |
| static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) |
| { |
| if (loaded_vmcs->cpu != -1) |
| smp_call_function_single( |
| loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1); |
| } |
| |
| static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx) |
| { |
| if (vmx->vpid == 0) |
| return; |
| |
| if (cpu_has_vmx_invvpid_single()) |
| __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0); |
| } |
| |
| static inline void vpid_sync_vcpu_global(void) |
| { |
| if (cpu_has_vmx_invvpid_global()) |
| __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); |
| } |
| |
| static inline void vpid_sync_context(struct vcpu_vmx *vmx) |
| { |
| if (cpu_has_vmx_invvpid_single()) |
| vpid_sync_vcpu_single(vmx); |
| else |
| vpid_sync_vcpu_global(); |
| } |
| |
| static inline void ept_sync_global(void) |
| { |
| if (cpu_has_vmx_invept_global()) |
| __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); |
| } |
| |
| static inline void ept_sync_context(u64 eptp) |
| { |
| if (enable_ept) { |
| if (cpu_has_vmx_invept_context()) |
| __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); |
| else |
| ept_sync_global(); |
| } |
| } |
| |
| static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa) |
| { |
| if (enable_ept) { |
| if (cpu_has_vmx_invept_individual_addr()) |
| __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR, |
| eptp, gpa); |
| else |
| ept_sync_context(eptp); |
| } |
| } |
| |
| static __always_inline unsigned long vmcs_readl(unsigned long field) |
| { |
| unsigned long value; |
| |
| asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") |
| : "=a"(value) : "d"(field) : "cc"); |
| return value; |
| } |
| |
| static __always_inline u16 vmcs_read16(unsigned long field) |
| { |
| return vmcs_readl(field); |
| } |
| |
| static __always_inline u32 vmcs_read32(unsigned long field) |
| { |
| return vmcs_readl(field); |
| } |
| |
| static __always_inline u64 vmcs_read64(unsigned long field) |
| { |
| #ifdef CONFIG_X86_64 |
| return vmcs_readl(field); |
| #else |
| return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); |
| #endif |
| } |
| |
| static noinline void vmwrite_error(unsigned long field, unsigned long value) |
| { |
| printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", |
| field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| dump_stack(); |
| } |
| |
| static void vmcs_writel(unsigned long field, unsigned long value) |
| { |
| u8 error; |
| |
| asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" |
| : "=q"(error) : "a"(value), "d"(field) : "cc"); |
| if (unlikely(error)) |
| vmwrite_error(field, value); |
| } |
| |
| static void vmcs_write16(unsigned long field, u16 value) |
| { |
| vmcs_writel(field, value); |
| } |
| |
| static void vmcs_write32(unsigned long field, u32 value) |
| { |
| vmcs_writel(field, value); |
| } |
| |
| static void vmcs_write64(unsigned long field, u64 value) |
| { |
| vmcs_writel(field, value); |
| #ifndef CONFIG_X86_64 |
| asm volatile (""); |
| vmcs_writel(field+1, value >> 32); |
| #endif |
| } |
| |
| static void vmcs_clear_bits(unsigned long field, u32 mask) |
| { |
| vmcs_writel(field, vmcs_readl(field) & ~mask); |
| } |
| |
| static void vmcs_set_bits(unsigned long field, u32 mask) |
| { |
| vmcs_writel(field, vmcs_readl(field) | mask); |
| } |
| |
| static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) |
| { |
| vmx->segment_cache.bitmask = 0; |
| } |
| |
| static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, |
| unsigned field) |
| { |
| bool ret; |
| u32 mask = 1 << (seg * SEG_FIELD_NR + field); |
| |
| if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { |
| vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); |
| vmx->segment_cache.bitmask = 0; |
| } |
| ret = vmx->segment_cache.bitmask & mask; |
| vmx->segment_cache.bitmask |= mask; |
| return ret; |
| } |
| |
| static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| u16 *p = &vmx->segment_cache.seg[seg].selector; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) |
| *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); |
| return *p; |
| } |
| |
| static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| ulong *p = &vmx->segment_cache.seg[seg].base; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) |
| *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); |
| return *p; |
| } |
| |
| static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| u32 *p = &vmx->segment_cache.seg[seg].limit; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) |
| *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); |
| return *p; |
| } |
| |
| static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| u32 *p = &vmx->segment_cache.seg[seg].ar; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) |
| *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); |
| return *p; |
| } |
| |
| static void update_exception_bitmap(struct kvm_vcpu *vcpu) |
| { |
| u32 eb; |
| |
| eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | |
| (1u << NM_VECTOR) | (1u << DB_VECTOR); |
| if ((vcpu->guest_debug & |
| (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == |
| (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) |
| eb |= 1u << BP_VECTOR; |
| if (to_vmx(vcpu)->rmode.vm86_active) |
| eb = ~0; |
| if (enable_ept) |
| eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ |
| if (vcpu->fpu_active) |
| eb &= ~(1u << NM_VECTOR); |
| |
| /* When we are running a nested L2 guest and L1 specified for it a |
| * certain exception bitmap, we must trap the same exceptions and pass |
| * them to L1. When running L2, we will only handle the exceptions |
| * specified above if L1 did not want them. |
| */ |
| if (is_guest_mode(vcpu)) |
| eb |= get_vmcs12(vcpu)->exception_bitmap; |
| |
| vmcs_write32(EXCEPTION_BITMAP, eb); |
| } |
| |
| static void clear_atomic_switch_msr_special(unsigned long entry, |
| unsigned long exit) |
| { |
| vmcs_clear_bits(VM_ENTRY_CONTROLS, entry); |
| vmcs_clear_bits(VM_EXIT_CONTROLS, exit); |
| } |
| |
| static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) |
| { |
| unsigned i; |
| struct msr_autoload *m = &vmx->msr_autoload; |
| |
| switch (msr) { |
| case MSR_EFER: |
| if (cpu_has_load_ia32_efer) { |
| clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER, |
| VM_EXIT_LOAD_IA32_EFER); |
| return; |
| } |
| break; |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| if (cpu_has_load_perf_global_ctrl) { |
| clear_atomic_switch_msr_special( |
| VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, |
| VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); |
| return; |
| } |
| break; |
| } |
| |
| for (i = 0; i < m->nr; ++i) |
| if (m->guest[i].index == msr) |
| break; |
| |
| if (i == m->nr) |
| return; |
| --m->nr; |
| m->guest[i] = m->guest[m->nr]; |
| m->host[i] = m->host[m->nr]; |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); |
| } |
| |
| static void add_atomic_switch_msr_special(unsigned long entry, |
| unsigned long exit, unsigned long guest_val_vmcs, |
| unsigned long host_val_vmcs, u64 guest_val, u64 host_val) |
| { |
| vmcs_write64(guest_val_vmcs, guest_val); |
| vmcs_write64(host_val_vmcs, host_val); |
| vmcs_set_bits(VM_ENTRY_CONTROLS, entry); |
| vmcs_set_bits(VM_EXIT_CONTROLS, exit); |
| } |
| |
| static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, |
| u64 guest_val, u64 host_val) |
| { |
| unsigned i; |
| struct msr_autoload *m = &vmx->msr_autoload; |
| |
| switch (msr) { |
| case MSR_EFER: |
| if (cpu_has_load_ia32_efer) { |
| add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER, |
| VM_EXIT_LOAD_IA32_EFER, |
| GUEST_IA32_EFER, |
| HOST_IA32_EFER, |
| guest_val, host_val); |
| return; |
| } |
| break; |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| if (cpu_has_load_perf_global_ctrl) { |
| add_atomic_switch_msr_special( |
| VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, |
| VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, |
| GUEST_IA32_PERF_GLOBAL_CTRL, |
| HOST_IA32_PERF_GLOBAL_CTRL, |
| guest_val, host_val); |
| return; |
| } |
| break; |
| } |
| |
| for (i = 0; i < m->nr; ++i) |
| if (m->guest[i].index == msr) |
| break; |
| |
| if (i == NR_AUTOLOAD_MSRS) { |
| printk_once(KERN_WARNING"Not enough mst switch entries. " |
| "Can't add msr %x\n", msr); |
| return; |
| } else if (i == m->nr) { |
| ++m->nr; |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); |
| } |
| |
| m->guest[i].index = msr; |
| m->guest[i].value = guest_val; |
| m->host[i].index = msr; |
| m->host[i].value = host_val; |
| } |
| |
| static void reload_tss(void) |
| { |
| /* |
| * VT restores TR but not its size. Useless. |
| */ |
| struct desc_ptr *gdt = &__get_cpu_var(host_gdt); |
| struct desc_struct *descs; |
| |
| descs = (void *)gdt->address; |
| descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ |
| load_TR_desc(); |
| } |
| |
| static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) |
| { |
| u64 guest_efer; |
| u64 ignore_bits; |
| |
| guest_efer = vmx->vcpu.arch.efer; |
| |
| /* |
| * NX is emulated; LMA and LME handled by hardware; SCE meaninless |
| * outside long mode |
| */ |
| ignore_bits = EFER_NX | EFER_SCE; |
| #ifdef CONFIG_X86_64 |
| ignore_bits |= EFER_LMA | EFER_LME; |
| /* SCE is meaningful only in long mode on Intel */ |
| if (guest_efer & EFER_LMA) |
| ignore_bits &= ~(u64)EFER_SCE; |
| #endif |
| guest_efer &= ~ignore_bits; |
| guest_efer |= host_efer & ignore_bits; |
| vmx->guest_msrs[efer_offset].data = guest_efer; |
| vmx->guest_msrs[efer_offset].mask = ~ignore_bits; |
| |
| clear_atomic_switch_msr(vmx, MSR_EFER); |
| /* On ept, can't emulate nx, and must switch nx atomically */ |
| if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) { |
| guest_efer = vmx->vcpu.arch.efer; |
| if (!(guest_efer & EFER_LMA)) |
| guest_efer &= ~EFER_LME; |
| add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static unsigned long segment_base(u16 selector) |
| { |
| struct desc_ptr *gdt = &__get_cpu_var(host_gdt); |
| struct desc_struct *d; |
| unsigned long table_base; |
| unsigned long v; |
| |
| if (!(selector & ~3)) |
| return 0; |
| |
| table_base = gdt->address; |
| |
| if (selector & 4) { /* from ldt */ |
| u16 ldt_selector = kvm_read_ldt(); |
| |
| if (!(ldt_selector & ~3)) |
| return 0; |
| |
| table_base = segment_base(ldt_selector); |
| } |
| d = (struct desc_struct *)(table_base + (selector & ~7)); |
| v = get_desc_base(d); |
| #ifdef CONFIG_X86_64 |
| if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) |
| v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; |
| #endif |
| return v; |
| } |
| |
| static inline unsigned long kvm_read_tr_base(void) |
| { |
| u16 tr; |
| asm("str %0" : "=g"(tr)); |
| return segment_base(tr); |
| } |
| |
| static void vmx_save_host_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int i; |
| |
| if (vmx->host_state.loaded) |
| return; |
| |
| vmx->host_state.loaded = 1; |
| /* |
| * Set host fs and gs selectors. Unfortunately, 22.2.3 does not |
| * allow segment selectors with cpl > 0 or ti == 1. |
| */ |
| vmx->host_state.ldt_sel = kvm_read_ldt(); |
| vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; |
| savesegment(fs, vmx->host_state.fs_sel); |
| if (!(vmx->host_state.fs_sel & 7)) { |
| vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); |
| vmx->host_state.fs_reload_needed = 0; |
| } else { |
| vmcs_write16(HOST_FS_SELECTOR, 0); |
| vmx->host_state.fs_reload_needed = 1; |
| } |
| savesegment(gs, vmx->host_state.gs_sel); |
| if (!(vmx->host_state.gs_sel & 7)) |
| vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); |
| else { |
| vmcs_write16(HOST_GS_SELECTOR, 0); |
| vmx->host_state.gs_ldt_reload_needed = 1; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); |
| vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); |
| #else |
| vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); |
| vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); |
| if (is_long_mode(&vmx->vcpu)) |
| wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| #endif |
| for (i = 0; i < vmx->save_nmsrs; ++i) |
| kvm_set_shared_msr(vmx->guest_msrs[i].index, |
| vmx->guest_msrs[i].data, |
| vmx->guest_msrs[i].mask); |
| } |
| |
| static void __vmx_load_host_state(struct vcpu_vmx *vmx) |
| { |
| if (!vmx->host_state.loaded) |
| return; |
| |
| ++vmx->vcpu.stat.host_state_reload; |
| vmx->host_state.loaded = 0; |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(&vmx->vcpu)) |
| rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| #endif |
| if (vmx->host_state.gs_ldt_reload_needed) { |
| kvm_load_ldt(vmx->host_state.ldt_sel); |
| #ifdef CONFIG_X86_64 |
| load_gs_index(vmx->host_state.gs_sel); |
| #else |
| loadsegment(gs, vmx->host_state.gs_sel); |
| #endif |
| } |
| if (vmx->host_state.fs_reload_needed) |
| loadsegment(fs, vmx->host_state.fs_sel); |
| reload_tss(); |
| #ifdef CONFIG_X86_64 |
| wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); |
| #endif |
| if (__thread_has_fpu(current)) |
| clts(); |
| load_gdt(&__get_cpu_var(host_gdt)); |
| } |
| |
| static void vmx_load_host_state(struct vcpu_vmx *vmx) |
| { |
| preempt_disable(); |
| __vmx_load_host_state(vmx); |
| preempt_enable(); |
| } |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put(), but assumes |
| * vcpu mutex is already taken. |
| */ |
| static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
| |
| if (!vmm_exclusive) |
| kvm_cpu_vmxon(phys_addr); |
| else if (vmx->loaded_vmcs->cpu != cpu) |
| loaded_vmcs_clear(vmx->loaded_vmcs); |
| |
| if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { |
| per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| } |
| |
| if (vmx->loaded_vmcs->cpu != cpu) { |
| struct desc_ptr *gdt = &__get_cpu_var(host_gdt); |
| unsigned long sysenter_esp; |
| |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| local_irq_disable(); |
| list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, |
| &per_cpu(loaded_vmcss_on_cpu, cpu)); |
| local_irq_enable(); |
| |
| /* |
| * Linux uses per-cpu TSS and GDT, so set these when switching |
| * processors. |
| */ |
| vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ |
| vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */ |
| |
| rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ |
| vmx->loaded_vmcs->cpu = cpu; |
| } |
| } |
| |
| static void vmx_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| __vmx_load_host_state(to_vmx(vcpu)); |
| if (!vmm_exclusive) { |
| __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs); |
| vcpu->cpu = -1; |
| kvm_cpu_vmxoff(); |
| } |
| } |
| |
| static void vmx_fpu_activate(struct kvm_vcpu *vcpu) |
| { |
| ulong cr0; |
| |
| if (vcpu->fpu_active) |
| return; |
| vcpu->fpu_active = 1; |
| cr0 = vmcs_readl(GUEST_CR0); |
| cr0 &= ~(X86_CR0_TS | X86_CR0_MP); |
| cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP); |
| vmcs_writel(GUEST_CR0, cr0); |
| update_exception_bitmap(vcpu); |
| vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; |
| if (is_guest_mode(vcpu)) |
| vcpu->arch.cr0_guest_owned_bits &= |
| ~get_vmcs12(vcpu)->cr0_guest_host_mask; |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| } |
| |
| static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); |
| |
| /* |
| * Return the cr0 value that a nested guest would read. This is a combination |
| * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by |
| * its hypervisor (cr0_read_shadow). |
| */ |
| static inline unsigned long nested_read_cr0(struct vmcs12 *fields) |
| { |
| return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | |
| (fields->cr0_read_shadow & fields->cr0_guest_host_mask); |
| } |
| static inline unsigned long nested_read_cr4(struct vmcs12 *fields) |
| { |
| return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | |
| (fields->cr4_read_shadow & fields->cr4_guest_host_mask); |
| } |
| |
| static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) |
| { |
| /* Note that there is no vcpu->fpu_active = 0 here. The caller must |
| * set this *before* calling this function. |
| */ |
| vmx_decache_cr0_guest_bits(vcpu); |
| vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP); |
| update_exception_bitmap(vcpu); |
| vcpu->arch.cr0_guest_owned_bits = 0; |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| if (is_guest_mode(vcpu)) { |
| /* |
| * L1's specified read shadow might not contain the TS bit, |
| * so now that we turned on shadowing of this bit, we need to |
| * set this bit of the shadow. Like in nested_vmx_run we need |
| * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet |
| * up-to-date here because we just decached cr0.TS (and we'll |
| * only update vmcs12->guest_cr0 on nested exit). |
| */ |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) | |
| (vcpu->arch.cr0 & X86_CR0_TS); |
| vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); |
| } else |
| vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); |
| } |
| |
| static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags, save_rflags; |
| |
| if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { |
| __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); |
| rflags = vmcs_readl(GUEST_RFLAGS); |
| if (to_vmx(vcpu)->rmode.vm86_active) { |
| rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; |
| save_rflags = to_vmx(vcpu)->rmode.save_rflags; |
| rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; |
| } |
| to_vmx(vcpu)->rflags = rflags; |
| } |
| return to_vmx(vcpu)->rflags; |
| } |
| |
| static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); |
| __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); |
| to_vmx(vcpu)->rflags = rflags; |
| if (to_vmx(vcpu)->rmode.vm86_active) { |
| to_vmx(vcpu)->rmode.save_rflags = rflags; |
| rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| } |
| vmcs_writel(GUEST_RFLAGS, rflags); |
| } |
| |
| static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| int ret = 0; |
| |
| if (interruptibility & GUEST_INTR_STATE_STI) |
| ret |= KVM_X86_SHADOW_INT_STI; |
| if (interruptibility & GUEST_INTR_STATE_MOV_SS) |
| ret |= KVM_X86_SHADOW_INT_MOV_SS; |
| |
| return ret & mask; |
| } |
| |
| static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| u32 interruptibility = interruptibility_old; |
| |
| interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); |
| |
| if (mask & KVM_X86_SHADOW_INT_MOV_SS) |
| interruptibility |= GUEST_INTR_STATE_MOV_SS; |
| else if (mask & KVM_X86_SHADOW_INT_STI) |
| interruptibility |= GUEST_INTR_STATE_STI; |
| |
| if ((interruptibility != interruptibility_old)) |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); |
| } |
| |
| static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rip; |
| |
| rip = kvm_rip_read(vcpu); |
| rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| kvm_rip_write(vcpu, rip); |
| |
| /* skipping an emulated instruction also counts */ |
| vmx_set_interrupt_shadow(vcpu, 0); |
| } |
| |
| static void vmx_clear_hlt(struct kvm_vcpu *vcpu) |
| { |
| /* Ensure that we clear the HLT state in the VMCS. We don't need to |
| * explicitly skip the instruction because if the HLT state is set, then |
| * the instruction is already executing and RIP has already been |
| * advanced. */ |
| if (!yield_on_hlt && |
| vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) |
| vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); |
| } |
| |
| /* |
| * KVM wants to inject page-faults which it got to the guest. This function |
| * checks whether in a nested guest, we need to inject them to L1 or L2. |
| * This function assumes it is called with the exit reason in vmcs02 being |
| * a #PF exception (this is the only case in which KVM injects a #PF when L2 |
| * is running). |
| */ |
| static int nested_pf_handled(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */ |
| if (!(vmcs12->exception_bitmap & PF_VECTOR)) |
| return 0; |
| |
| nested_vmx_vmexit(vcpu); |
| return 1; |
| } |
| |
| static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, |
| bool has_error_code, u32 error_code, |
| bool reinject) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 intr_info = nr | INTR_INFO_VALID_MASK; |
| |
| if (nr == PF_VECTOR && is_guest_mode(vcpu) && |
| nested_pf_handled(vcpu)) |
| return; |
| |
| if (has_error_code) { |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); |
| intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| } |
| |
| if (vmx->rmode.vm86_active) { |
| int inc_eip = 0; |
| if (kvm_exception_is_soft(nr)) |
| inc_eip = vcpu->arch.event_exit_inst_len; |
| if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return; |
| } |
| |
| if (kvm_exception_is_soft(nr)) { |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmx->vcpu.arch.event_exit_inst_len); |
| intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| } else |
| intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); |
| vmx_clear_hlt(vcpu); |
| } |
| |
| static bool vmx_rdtscp_supported(void) |
| { |
| return cpu_has_vmx_rdtscp(); |
| } |
| |
| /* |
| * Swap MSR entry in host/guest MSR entry array. |
| */ |
| static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) |
| { |
| struct shared_msr_entry tmp; |
| |
| tmp = vmx->guest_msrs[to]; |
| vmx->guest_msrs[to] = vmx->guest_msrs[from]; |
| vmx->guest_msrs[from] = tmp; |
| } |
| |
| /* |
| * Set up the vmcs to automatically save and restore system |
| * msrs. Don't touch the 64-bit msrs if the guest is in legacy |
| * mode, as fiddling with msrs is very expensive. |
| */ |
| static void setup_msrs(struct vcpu_vmx *vmx) |
| { |
| int save_nmsrs, index; |
| unsigned long *msr_bitmap; |
| |
| save_nmsrs = 0; |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(&vmx->vcpu)) { |
| index = __find_msr_index(vmx, MSR_SYSCALL_MASK); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_LSTAR); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_CSTAR); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_TSC_AUX); |
| if (index >= 0 && vmx->rdtscp_enabled) |
| move_msr_up(vmx, index, save_nmsrs++); |
| /* |
| * MSR_STAR is only needed on long mode guests, and only |
| * if efer.sce is enabled. |
| */ |
| index = __find_msr_index(vmx, MSR_STAR); |
| if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) |
| move_msr_up(vmx, index, save_nmsrs++); |
| } |
| #endif |
| index = __find_msr_index(vmx, MSR_EFER); |
| if (index >= 0 && update_transition_efer(vmx, index)) |
| move_msr_up(vmx, index, save_nmsrs++); |
| |
| vmx->save_nmsrs = save_nmsrs; |
| |
| if (cpu_has_vmx_msr_bitmap()) { |
| if (is_long_mode(&vmx->vcpu)) |
| msr_bitmap = vmx_msr_bitmap_longmode; |
| else |
| msr_bitmap = vmx_msr_bitmap_legacy; |
| |
| vmcs_write64(MSR_BITMAP, __pa(msr_bitmap)); |
| } |
| } |
| |
| /* |
| * reads and returns guest's timestamp counter "register" |
| * guest_tsc = host_tsc + tsc_offset -- 21.3 |
| */ |
| static u64 guest_read_tsc(void) |
| { |
| u64 host_tsc, tsc_offset; |
| |
| rdtscll(host_tsc); |
| tsc_offset = vmcs_read64(TSC_OFFSET); |
| return host_tsc + tsc_offset; |
| } |
| |
| /* |
| * Like guest_read_tsc, but always returns L1's notion of the timestamp |
| * counter, even if a nested guest (L2) is currently running. |
| */ |
| u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu) |
| { |
| u64 host_tsc, tsc_offset; |
| |
| rdtscll(host_tsc); |
| tsc_offset = is_guest_mode(vcpu) ? |
| to_vmx(vcpu)->nested.vmcs01_tsc_offset : |
| vmcs_read64(TSC_OFFSET); |
| return host_tsc + tsc_offset; |
| } |
| |
| /* |
| * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ |
| * ioctl. In this case the call-back should update internal vmx state to make |
| * the changes effective. |
| */ |
| static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
| { |
| /* Nothing to do here */ |
| } |
| |
| /* |
| * writes 'offset' into guest's timestamp counter offset register |
| */ |
| static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
| { |
| if (is_guest_mode(vcpu)) { |
| /* |
| * We're here if L1 chose not to trap WRMSR to TSC. According |
| * to the spec, this should set L1's TSC; The offset that L1 |
| * set for L2 remains unchanged, and still needs to be added |
| * to the newly set TSC to get L2's TSC. |
| */ |
| struct vmcs12 *vmcs12; |
| to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset; |
| /* recalculate vmcs02.TSC_OFFSET: */ |
| vmcs12 = get_vmcs12(vcpu); |
| vmcs_write64(TSC_OFFSET, offset + |
| (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? |
| vmcs12->tsc_offset : 0)); |
| } else { |
| vmcs_write64(TSC_OFFSET, offset); |
| } |
| } |
| |
| static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment) |
| { |
| u64 offset = vmcs_read64(TSC_OFFSET); |
| vmcs_write64(TSC_OFFSET, offset + adjustment); |
| if (is_guest_mode(vcpu)) { |
| /* Even when running L2, the adjustment needs to apply to L1 */ |
| to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment; |
| } |
| } |
| |
| static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
| { |
| return target_tsc - native_read_tsc(); |
| } |
| |
| static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0); |
| return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31))); |
| } |
| |
| /* |
| * nested_vmx_allowed() checks whether a guest should be allowed to use VMX |
| * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for |
| * all guests if the "nested" module option is off, and can also be disabled |
| * for a single guest by disabling its VMX cpuid bit. |
| */ |
| static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) |
| { |
| return nested && guest_cpuid_has_vmx(vcpu); |
| } |
| |
| /* |
| * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be |
| * returned for the various VMX controls MSRs when nested VMX is enabled. |
| * The same values should also be used to verify that vmcs12 control fields are |
| * valid during nested entry from L1 to L2. |
| * Each of these control msrs has a low and high 32-bit half: A low bit is on |
| * if the corresponding bit in the (32-bit) control field *must* be on, and a |
| * bit in the high half is on if the corresponding bit in the control field |
| * may be on. See also vmx_control_verify(). |
| * TODO: allow these variables to be modified (downgraded) by module options |
| * or other means. |
| */ |
| static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high; |
| static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high; |
| static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high; |
| static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high; |
| static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high; |
| static __init void nested_vmx_setup_ctls_msrs(void) |
| { |
| /* |
| * Note that as a general rule, the high half of the MSRs (bits in |
| * the control fields which may be 1) should be initialized by the |
| * intersection of the underlying hardware's MSR (i.e., features which |
| * can be supported) and the list of features we want to expose - |
| * because they are known to be properly supported in our code. |
| * Also, usually, the low half of the MSRs (bits which must be 1) can |
| * be set to 0, meaning that L1 may turn off any of these bits. The |
| * reason is that if one of these bits is necessary, it will appear |
| * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control |
| * fields of vmcs01 and vmcs02, will turn these bits off - and |
| * nested_vmx_exit_handled() will not pass related exits to L1. |
| * These rules have exceptions below. |
| */ |
| |
| /* pin-based controls */ |
| /* |
| * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is |
| * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR. |
| */ |
| nested_vmx_pinbased_ctls_low = 0x16 ; |
| nested_vmx_pinbased_ctls_high = 0x16 | |
| PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING | |
| PIN_BASED_VIRTUAL_NMIS; |
| |
| /* exit controls */ |
| nested_vmx_exit_ctls_low = 0; |
| /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */ |
| #ifdef CONFIG_X86_64 |
| nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE; |
| #else |
| nested_vmx_exit_ctls_high = 0; |
| #endif |
| |
| /* entry controls */ |
| rdmsr(MSR_IA32_VMX_ENTRY_CTLS, |
| nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high); |
| nested_vmx_entry_ctls_low = 0; |
| nested_vmx_entry_ctls_high &= |
| VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE; |
| |
| /* cpu-based controls */ |
| rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, |
| nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high); |
| nested_vmx_procbased_ctls_low = 0; |
| nested_vmx_procbased_ctls_high &= |
| CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING | |
| CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | |
| CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| #ifdef CONFIG_X86_64 |
| CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | |
| #endif |
| CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | |
| CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING | |
| CPU_BASED_RDPMC_EXITING | |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| /* |
| * We can allow some features even when not supported by the |
| * hardware. For example, L1 can specify an MSR bitmap - and we |
| * can use it to avoid exits to L1 - even when L0 runs L2 |
| * without MSR bitmaps. |
| */ |
| nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS; |
| |
| /* secondary cpu-based controls */ |
| rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, |
| nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high); |
| nested_vmx_secondary_ctls_low = 0; |
| nested_vmx_secondary_ctls_high &= |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| } |
| |
| static inline bool vmx_control_verify(u32 control, u32 low, u32 high) |
| { |
| /* |
| * Bits 0 in high must be 0, and bits 1 in low must be 1. |
| */ |
| return ((control & high) | low) == control; |
| } |
| |
| static inline u64 vmx_control_msr(u32 low, u32 high) |
| { |
| return low | ((u64)high << 32); |
| } |
| |
| /* |
| * If we allow our guest to use VMX instructions (i.e., nested VMX), we should |
| * also let it use VMX-specific MSRs. |
| * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a |
| * VMX-specific MSR, or 0 when we haven't (and the caller should handle it |
| * like all other MSRs). |
| */ |
| static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC && |
| msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) { |
| /* |
| * According to the spec, processors which do not support VMX |
| * should throw a #GP(0) when VMX capability MSRs are read. |
| */ |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return 1; |
| } |
| |
| switch (msr_index) { |
| case MSR_IA32_FEATURE_CONTROL: |
| *pdata = 0; |
| break; |
| case MSR_IA32_VMX_BASIC: |
| /* |
| * This MSR reports some information about VMX support. We |
| * should return information about the VMX we emulate for the |
| * guest, and the VMCS structure we give it - not about the |
| * VMX support of the underlying hardware. |
| */ |
| *pdata = VMCS12_REVISION | |
| ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | |
| (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); |
| break; |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| case MSR_IA32_VMX_PINBASED_CTLS: |
| *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low, |
| nested_vmx_pinbased_ctls_high); |
| break; |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS: |
| *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low, |
| nested_vmx_procbased_ctls_high); |
| break; |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| case MSR_IA32_VMX_EXIT_CTLS: |
| *pdata = vmx_control_msr(nested_vmx_exit_ctls_low, |
| nested_vmx_exit_ctls_high); |
| break; |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| case MSR_IA32_VMX_ENTRY_CTLS: |
| *pdata = vmx_control_msr(nested_vmx_entry_ctls_low, |
| nested_vmx_entry_ctls_high); |
| break; |
| case MSR_IA32_VMX_MISC: |
| *pdata = 0; |
| break; |
| /* |
| * These MSRs specify bits which the guest must keep fixed (on or off) |
| * while L1 is in VMXON mode (in L1's root mode, or running an L2). |
| * We picked the standard core2 setting. |
| */ |
| #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) |
| #define VMXON_CR4_ALWAYSON X86_CR4_VMXE |
| case MSR_IA32_VMX_CR0_FIXED0: |
| *pdata = VMXON_CR0_ALWAYSON; |
| break; |
| case MSR_IA32_VMX_CR0_FIXED1: |
| *pdata = -1ULL; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED0: |
| *pdata = VMXON_CR4_ALWAYSON; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED1: |
| *pdata = -1ULL; |
| break; |
| case MSR_IA32_VMX_VMCS_ENUM: |
| *pdata = 0x1f; |
| break; |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low, |
| nested_vmx_secondary_ctls_high); |
| break; |
| case MSR_IA32_VMX_EPT_VPID_CAP: |
| /* Currently, no nested ept or nested vpid */ |
| *pdata = 0; |
| break; |
| default: |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| if (!nested_vmx_allowed(vcpu)) |
| return 0; |
| |
| if (msr_index == MSR_IA32_FEATURE_CONTROL) |
| /* TODO: the right thing. */ |
| return 1; |
| /* |
| * No need to treat VMX capability MSRs specially: If we don't handle |
| * them, handle_wrmsr will #GP(0), which is correct (they are readonly) |
| */ |
| return 0; |
| } |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| u64 data; |
| struct shared_msr_entry *msr; |
| |
| if (!pdata) { |
| printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); |
| return -EINVAL; |
| } |
| |
| switch (msr_index) { |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| data = vmcs_readl(GUEST_FS_BASE); |
| break; |
| case MSR_GS_BASE: |
| data = vmcs_readl(GUEST_GS_BASE); |
| break; |
| case MSR_KERNEL_GS_BASE: |
| vmx_load_host_state(to_vmx(vcpu)); |
| data = to_vmx(vcpu)->msr_guest_kernel_gs_base; |
| break; |
| #endif |
| case MSR_EFER: |
| return kvm_get_msr_common(vcpu, msr_index, pdata); |
| case MSR_IA32_TSC: |
| data = guest_read_tsc(); |
| break; |
| case MSR_IA32_SYSENTER_CS: |
| data = vmcs_read32(GUEST_SYSENTER_CS); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| data = vmcs_readl(GUEST_SYSENTER_EIP); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| data = vmcs_readl(GUEST_SYSENTER_ESP); |
| break; |
| case MSR_TSC_AUX: |
| if (!to_vmx(vcpu)->rdtscp_enabled) |
| return 1; |
| /* Otherwise falls through */ |
| default: |
| if (vmx_get_vmx_msr(vcpu, msr_index, pdata)) |
| return 0; |
| msr = find_msr_entry(to_vmx(vcpu), msr_index); |
| if (msr) { |
| data = msr->data; |
| break; |
| } |
| return kvm_get_msr_common(vcpu, msr_index, pdata); |
| } |
| |
| *pdata = data; |
| return 0; |
| } |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct shared_msr_entry *msr; |
| int ret = 0; |
| |
| switch (msr_index) { |
| case MSR_EFER: |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| vmx_segment_cache_clear(vmx); |
| vmcs_writel(GUEST_FS_BASE, data); |
| break; |
| case MSR_GS_BASE: |
| vmx_segment_cache_clear(vmx); |
| vmcs_writel(GUEST_GS_BASE, data); |
| break; |
| case MSR_KERNEL_GS_BASE: |
| vmx_load_host_state(vmx); |
| vmx->msr_guest_kernel_gs_base = data; |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| vmcs_write32(GUEST_SYSENTER_CS, data); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| vmcs_writel(GUEST_SYSENTER_EIP, data); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| vmcs_writel(GUEST_SYSENTER_ESP, data); |
| break; |
| case MSR_IA32_TSC: |
| kvm_write_tsc(vcpu, data); |
| break; |
| case MSR_IA32_CR_PAT: |
| if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| vmcs_write64(GUEST_IA32_PAT, data); |
| vcpu->arch.pat = data; |
| break; |
| } |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| break; |
| case MSR_TSC_AUX: |
| if (!vmx->rdtscp_enabled) |
| return 1; |
| /* Check reserved bit, higher 32 bits should be zero */ |
| if ((data >> 32) != 0) |
| return 1; |
| /* Otherwise falls through */ |
| default: |
| if (vmx_set_vmx_msr(vcpu, msr_index, data)) |
| break; |
| msr = find_msr_entry(vmx, msr_index); |
| if (msr) { |
| msr->data = data; |
| break; |
| } |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| } |
| |
| return ret; |
| } |
| |
| static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| { |
| __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); |
| switch (reg) { |
| case VCPU_REGS_RSP: |
| vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); |
| break; |
| case VCPU_REGS_RIP: |
| vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); |
| break; |
| case VCPU_EXREG_PDPTR: |
| if (enable_ept) |
| ept_save_pdptrs(vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]); |
| else |
| vmcs_writel(GUEST_DR7, vcpu->arch.dr7); |
| |
| update_exception_bitmap(vcpu); |
| } |
| |
| static __init int cpu_has_kvm_support(void) |
| { |
| return cpu_has_vmx(); |
| } |
| |
| static __init int vmx_disabled_by_bios(void) |
| { |
| u64 msr; |
| |
| rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); |
| if (msr & FEATURE_CONTROL_LOCKED) { |
| /* launched w/ TXT and VMX disabled */ |
| if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) |
| && tboot_enabled()) |
| return 1; |
| /* launched w/o TXT and VMX only enabled w/ TXT */ |
| if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) |
| && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) |
| && !tboot_enabled()) { |
| printk(KERN_WARNING "kvm: disable TXT in the BIOS or " |
| "activate TXT before enabling KVM\n"); |
| return 1; |
| } |
| /* launched w/o TXT and VMX disabled */ |
| if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) |
| && !tboot_enabled()) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_cpu_vmxon(u64 addr) |
| { |
| asm volatile (ASM_VMX_VMXON_RAX |
| : : "a"(&addr), "m"(addr) |
| : "memory", "cc"); |
| } |
| |
| static int hardware_enable(void *garbage) |
| { |
| int cpu = raw_smp_processor_id(); |
| u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
| u64 old, test_bits; |
| |
| if (read_cr4() & X86_CR4_VMXE) |
| return -EBUSY; |
| |
| INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); |
| rdmsrl(MSR_IA32_FEATURE_CONTROL, old); |
| |
| test_bits = FEATURE_CONTROL_LOCKED; |
| test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| if (tboot_enabled()) |
| test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; |
| |
| if ((old & test_bits) != test_bits) { |
| /* enable and lock */ |
| wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); |
| } |
| write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */ |
| |
| if (vmm_exclusive) { |
| kvm_cpu_vmxon(phys_addr); |
| ept_sync_global(); |
| } |
| |
| store_gdt(&__get_cpu_var(host_gdt)); |
| |
| return 0; |
| } |
| |
| static void vmclear_local_loaded_vmcss(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| struct loaded_vmcs *v, *n; |
| |
| list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), |
| loaded_vmcss_on_cpu_link) |
| __loaded_vmcs_clear(v); |
| } |
| |
| |
| /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() |
| * tricks. |
| */ |
| static void kvm_cpu_vmxoff(void) |
| { |
| asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); |
| } |
| |
| static void hardware_disable(void *garbage) |
| { |
| if (vmm_exclusive) { |
| vmclear_local_loaded_vmcss(); |
| kvm_cpu_vmxoff(); |
| } |
| write_cr4(read_cr4() & ~X86_CR4_VMXE); |
| } |
| |
| static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, |
| u32 msr, u32 *result) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 ctl = ctl_min | ctl_opt; |
| |
| rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| |
| ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ |
| ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ |
| |
| /* Ensure minimum (required) set of control bits are supported. */ |
| if (ctl_min & ~ctl) |
| return -EIO; |
| |
| *result = ctl; |
| return 0; |
| } |
| |
| static __init bool allow_1_setting(u32 msr, u32 ctl) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| |
| rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| return vmx_msr_high & ctl; |
| } |
| |
| static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 min, opt, min2, opt2; |
| u32 _pin_based_exec_control = 0; |
| u32 _cpu_based_exec_control = 0; |
| u32 _cpu_based_2nd_exec_control = 0; |
| u32 _vmexit_control = 0; |
| u32 _vmentry_control = 0; |
| |
| min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; |
| opt = PIN_BASED_VIRTUAL_NMIS; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, |
| &_pin_based_exec_control) < 0) |
| return -EIO; |
| |
| min = |
| #ifdef CONFIG_X86_64 |
| CPU_BASED_CR8_LOAD_EXITING | |
| CPU_BASED_CR8_STORE_EXITING | |
| #endif |
| CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_USE_IO_BITMAPS | |
| CPU_BASED_MOV_DR_EXITING | |
| CPU_BASED_USE_TSC_OFFSETING | |
| CPU_BASED_MWAIT_EXITING | |
| CPU_BASED_MONITOR_EXITING | |
| CPU_BASED_INVLPG_EXITING | |
| CPU_BASED_RDPMC_EXITING; |
| |
| if (yield_on_hlt) |
| min |= CPU_BASED_HLT_EXITING; |
| |
| opt = CPU_BASED_TPR_SHADOW | |
| CPU_BASED_USE_MSR_BITMAPS | |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, |
| &_cpu_based_exec_control) < 0) |
| return -EIO; |
| #ifdef CONFIG_X86_64 |
| if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) |
| _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & |
| ~CPU_BASED_CR8_STORE_EXITING; |
| #endif |
| if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { |
| min2 = 0; |
| opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| SECONDARY_EXEC_WBINVD_EXITING | |
| SECONDARY_EXEC_ENABLE_VPID | |
| SECONDARY_EXEC_ENABLE_EPT | |
| SECONDARY_EXEC_UNRESTRICTED_GUEST | |
| SECONDARY_EXEC_PAUSE_LOOP_EXITING | |
| SECONDARY_EXEC_RDTSCP; |
| if (adjust_vmx_controls(min2, opt2, |
| MSR_IA32_VMX_PROCBASED_CTLS2, |
| &_cpu_based_2nd_exec_control) < 0) |
| return -EIO; |
| } |
| #ifndef CONFIG_X86_64 |
| if (!(_cpu_based_2nd_exec_control & |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; |
| #endif |
| if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { |
| /* CR3 accesses and invlpg don't need to cause VM Exits when EPT |
| enabled */ |
| _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_INVLPG_EXITING); |
| rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, |
| vmx_capability.ept, vmx_capability.vpid); |
| } |
| |
| min = 0; |
| #ifdef CONFIG_X86_64 |
| min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; |
| #endif |
| opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, |
| &_vmexit_control) < 0) |
| return -EIO; |
| |
| min = 0; |
| opt = VM_ENTRY_LOAD_IA32_PAT; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, |
| &_vmentry_control) < 0) |
| return -EIO; |
| |
| rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); |
| |
| /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ |
| if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) |
| return -EIO; |
| |
| #ifdef CONFIG_X86_64 |
| /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ |
| if (vmx_msr_high & (1u<<16)) |
| return -EIO; |
| #endif |
| |
| /* Require Write-Back (WB) memory type for VMCS accesses. */ |
| if (((vmx_msr_high >> 18) & 15) != 6) |
| return -EIO; |
| |
| vmcs_conf->size = vmx_msr_high & 0x1fff; |
| vmcs_conf->order = get_order(vmcs_config.size); |
| vmcs_conf->revision_id = vmx_msr_low; |
| |
| vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; |
| vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; |
| vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; |
| vmcs_conf->vmexit_ctrl = _vmexit_control; |
| vmcs_conf->vmentry_ctrl = _vmentry_control; |
| |
| cpu_has_load_ia32_efer = |
| allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, |
| VM_ENTRY_LOAD_IA32_EFER) |
| && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, |
| VM_EXIT_LOAD_IA32_EFER); |
| |
| cpu_has_load_perf_global_ctrl = |
| allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, |
| VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) |
| && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, |
| VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); |
| |
| /* |
| * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL |
| * but due to arrata below it can't be used. Workaround is to use |
| * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. |
| * |
| * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] |
| * |
| * AAK155 (model 26) |
| * AAP115 (model 30) |
| * AAT100 (model 37) |
| * BC86,AAY89,BD102 (model 44) |
| * BA97 (model 46) |
| * |
| */ |
| if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { |
| switch (boot_cpu_data.x86_model) { |
| case 26: |
| case 30: |
| case 37: |
| case 44: |
| case 46: |
| cpu_has_load_perf_global_ctrl = false; |
| printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " |
| "does not work properly. Using workaround\n"); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct vmcs *alloc_vmcs_cpu(int cpu) |
| { |
| int node = cpu_to_node(cpu); |
| struct page *pages; |
| struct vmcs *vmcs; |
| |
| pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order); |
| if (!pages) |
| return NULL; |
| vmcs = page_address(pages); |
| memset(vmcs, 0, vmcs_config.size); |
| vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ |
| return vmcs; |
| } |
| |
| static struct vmcs *alloc_vmcs(void) |
| { |
| return alloc_vmcs_cpu(raw_smp_processor_id()); |
| } |
| |
| static void free_vmcs(struct vmcs *vmcs) |
| { |
| free_pages((unsigned long)vmcs, vmcs_config.order); |
| } |
| |
| /* |
| * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded |
| */ |
| static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) |
| { |
| if (!loaded_vmcs->vmcs) |
| return; |
| loaded_vmcs_clear(loaded_vmcs); |
| free_vmcs(loaded_vmcs->vmcs); |
| loaded_vmcs->vmcs = NULL; |
| } |
| |
| static void free_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| free_vmcs(per_cpu(vmxarea, cpu)); |
| per_cpu(vmxarea, cpu) = NULL; |
| } |
| } |
| |
| static __init int alloc_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct vmcs *vmcs; |
| |
| vmcs = alloc_vmcs_cpu(cpu); |
| if (!vmcs) { |
| free_kvm_area(); |
| return -ENOMEM; |
| } |
| |
| per_cpu(vmxarea, cpu) = vmcs; |
| } |
| return 0; |
| } |
| |
| static __init int hardware_setup(void) |
| { |
| if (setup_vmcs_config(&vmcs_config) < 0) |
| return -EIO; |
| |
| if (boot_cpu_has(X86_FEATURE_NX)) |
| kvm_enable_efer_bits(EFER_NX); |
| |
| if (!cpu_has_vmx_vpid()) |
| enable_vpid = 0; |
| |
| if (!cpu_has_vmx_ept() || |
| !cpu_has_vmx_ept_4levels()) { |
| enable_ept = 0; |
| enable_unrestricted_guest = 0; |
| } |
| |
| if (!cpu_has_vmx_unrestricted_guest()) |
| enable_unrestricted_guest = 0; |
| |
| if (!cpu_has_vmx_flexpriority()) |
| flexpriority_enabled = 0; |
| |
| if (!cpu_has_vmx_tpr_shadow()) |
| kvm_x86_ops->update_cr8_intercept = NULL; |
| |
| if (enable_ept && !cpu_has_vmx_ept_2m_page()) |
| kvm_disable_largepages(); |
| |
| if (!cpu_has_vmx_ple()) |
| ple_gap = 0; |
| |
| if (nested) |
| nested_vmx_setup_ctls_msrs(); |
| |
| return alloc_kvm_area(); |
| } |
| |
| static __exit void hardware_unsetup(void) |
| { |
| free_kvm_area(); |
| } |
| |
| static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) { |
| vmcs_write16(sf->selector, save->selector); |
| vmcs_writel(sf->base, save->base); |
| vmcs_write32(sf->limit, save->limit); |
| vmcs_write32(sf->ar_bytes, save->ar); |
| } else { |
| u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) |
| << AR_DPL_SHIFT; |
| vmcs_write32(sf->ar_bytes, 0x93 | dpl); |
| } |
| } |
| |
| static void enter_pmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| vmx->emulation_required = 1; |
| vmx->rmode.vm86_active = 0; |
| |
| vmx_segment_cache_clear(vmx); |
| |
| vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector); |
| vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base); |
| vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit); |
| vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; |
| flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; |
| vmcs_writel(GUEST_RFLAGS, flags); |
| |
| vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | |
| (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); |
| |
| update_exception_bitmap(vcpu); |
| |
| if (emulate_invalid_guest_state) |
| return; |
| |
| fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es); |
| fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds); |
| fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs); |
| fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs); |
| |
| vmx_segment_cache_clear(vmx); |
| |
| vmcs_write16(GUEST_SS_SELECTOR, 0); |
| vmcs_write32(GUEST_SS_AR_BYTES, 0x93); |
| |
| vmcs_write16(GUEST_CS_SELECTOR, |
| vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); |
| vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); |
| } |
| |
| static gva_t rmode_tss_base(struct kvm *kvm) |
| { |
| if (!kvm->arch.tss_addr) { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| gfn_t base_gfn; |
| |
| slots = kvm_memslots(kvm); |
| slot = id_to_memslot(slots, 0); |
| base_gfn = slot->base_gfn + slot->npages - 3; |
| |
| return base_gfn << PAGE_SHIFT; |
| } |
| return kvm->arch.tss_addr; |
| } |
| |
| static void fix_rmode_seg(int seg, struct kvm_save_segment *save) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| save->selector = vmcs_read16(sf->selector); |
| save->base = vmcs_readl(sf->base); |
| save->limit = vmcs_read32(sf->limit); |
| save->ar = vmcs_read32(sf->ar_bytes); |
| vmcs_write16(sf->selector, save->base >> 4); |
| vmcs_write32(sf->base, save->base & 0xffff0); |
| vmcs_write32(sf->limit, 0xffff); |
| vmcs_write32(sf->ar_bytes, 0xf3); |
| if (save->base & 0xf) |
| printk_once(KERN_WARNING "kvm: segment base is not paragraph" |
| " aligned when entering protected mode (seg=%d)", |
| seg); |
| } |
| |
| static void enter_rmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (enable_unrestricted_guest) |
| return; |
| |
| vmx->emulation_required = 1; |
| vmx->rmode.vm86_active = 1; |
| |
| /* |
| * Very old userspace does not call KVM_SET_TSS_ADDR before entering |
| * vcpu. Call it here with phys address pointing 16M below 4G. |
| */ |
| if (!vcpu->kvm->arch.tss_addr) { |
| printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " |
| "called before entering vcpu\n"); |
| srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| vmx_set_tss_addr(vcpu->kvm, 0xfeffd000); |
| vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| } |
| |
| vmx_segment_cache_clear(vmx); |
| |
| vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR); |
| vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE); |
| vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); |
| |
| vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); |
| vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); |
| |
| vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| vmx->rmode.save_rflags = flags; |
| |
| flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| |
| vmcs_writel(GUEST_RFLAGS, flags); |
| vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); |
| update_exception_bitmap(vcpu); |
| |
| if (emulate_invalid_guest_state) |
| goto continue_rmode; |
| |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); |
| vmcs_write32(GUEST_SS_LIMIT, 0xffff); |
| vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); |
| |
| vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); |
| vmcs_write32(GUEST_CS_LIMIT, 0xffff); |
| if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000) |
| vmcs_writel(GUEST_CS_BASE, 0xf0000); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); |
| |
| fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es); |
| fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds); |
| fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs); |
| fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs); |
| |
| continue_rmode: |
| kvm_mmu_reset_context(vcpu); |
| } |
| |
| static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); |
| |
| if (!msr) |
| return; |
| |
| /* |
| * Force kernel_gs_base reloading before EFER changes, as control |
| * of this msr depends on is_long_mode(). |
| */ |
| vmx_load_host_state(to_vmx(vcpu)); |
| vcpu->arch.efer = efer; |
| if (efer & EFER_LMA) { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) | |
| VM_ENTRY_IA32E_MODE); |
| msr->data = efer; |
| } else { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) & |
| ~VM_ENTRY_IA32E_MODE); |
| |
| msr->data = efer & ~EFER_LME; |
| } |
| setup_msrs(vmx); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void enter_lmode(struct kvm_vcpu *vcpu) |
| { |
| u32 guest_tr_ar; |
| |
| vmx_segment_cache_clear(to_vmx(vcpu)); |
| |
| guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { |
| pr_debug_ratelimited("%s: tss fixup for long mode. \n", |
| __func__); |
| vmcs_write32(GUEST_TR_AR_BYTES, |
| (guest_tr_ar & ~AR_TYPE_MASK) |
| | AR_TYPE_BUSY_64_TSS); |
| } |
| vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); |
| } |
| |
| static void exit_lmode(struct kvm_vcpu *vcpu) |
| { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) |
| & ~VM_ENTRY_IA32E_MODE); |
| vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); |
| } |
| |
| #endif |
| |
| static void vmx_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| vpid_sync_context(to_vmx(vcpu)); |
| if (enable_ept) { |
| if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| return; |
| ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa)); |
| } |
| } |
| |
| static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) |
| { |
| ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; |
| |
| vcpu->arch.cr0 &= ~cr0_guest_owned_bits; |
| vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; |
| } |
| |
| static void vmx_decache_cr3(struct kvm_vcpu *vcpu) |
| { |
| if (enable_ept && is_paging(vcpu)) |
| vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| } |
| |
| static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
| { |
| ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; |
| |
| vcpu->arch.cr4 &= ~cr4_guest_owned_bits; |
| vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; |
| } |
| |
| static void ept_load_pdptrs(struct kvm_vcpu *vcpu) |
| { |
| if (!test_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty)) |
| return; |
| |
| if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { |
| vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]); |
| vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]); |
| vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]); |
| vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]); |
| } |
| } |
| |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu) |
| { |
| if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { |
| vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0); |
| vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1); |
| vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2); |
| vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3); |
| } |
| |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty); |
| } |
| |
| static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); |
| |
| static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, |
| unsigned long cr0, |
| struct kvm_vcpu *vcpu) |
| { |
| if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) |
| vmx_decache_cr3(vcpu); |
| if (!(cr0 & X86_CR0_PG)) { |
| /* From paging/starting to nonpaging */ |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, |
| vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | |
| (CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING)); |
| vcpu->arch.cr0 = cr0; |
| vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); |
| } else if (!is_paging(vcpu)) { |
| /* From nonpaging to paging */ |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, |
| vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & |
| ~(CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING)); |
| vcpu->arch.cr0 = cr0; |
| vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); |
| } |
| |
| if (!(cr0 & X86_CR0_WP)) |
| *hw_cr0 &= ~X86_CR0_WP; |
| } |
| |
| static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long hw_cr0; |
| |
| if (enable_unrestricted_guest) |
| hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST) |
| | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; |
| else |
| hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON; |
| |
| if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) |
| enter_pmode(vcpu); |
| |
| if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) |
| enter_rmode(vcpu); |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->arch.efer & EFER_LME) { |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) |
| enter_lmode(vcpu); |
| if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) |
| exit_lmode(vcpu); |
| } |
| #endif |
| |
| if (enable_ept) |
| ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); |
| |
| if (!vcpu->fpu_active) |
| hw_cr0 |= X86_CR0_TS | X86_CR0_MP; |
| |
| vmcs_writel(CR0_READ_SHADOW, cr0); |
| vmcs_writel(GUEST_CR0, hw_cr0); |
| vcpu->arch.cr0 = cr0; |
| __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); |
| } |
| |
| static u64 construct_eptp(unsigned long root_hpa) |
| { |
| u64 eptp; |
| |
| /* TODO write the value reading from MSR */ |
| eptp = VMX_EPT_DEFAULT_MT | |
| VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT; |
| eptp |= (root_hpa & PAGE_MASK); |
| |
| return eptp; |
| } |
| |
| static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| unsigned long guest_cr3; |
| u64 eptp; |
| |
| guest_cr3 = cr3; |
| if (enable_ept) { |
| eptp = construct_eptp(cr3); |
| vmcs_write64(EPT_POINTER, eptp); |
| guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) : |
| vcpu->kvm->arch.ept_identity_map_addr; |
| ept_load_pdptrs(vcpu); |
| } |
| |
| vmx_flush_tlb(vcpu); |
| vmcs_writel(GUEST_CR3, guest_cr3); |
| } |
| |
| static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ? |
| KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); |
| |
| if (cr4 & X86_CR4_VMXE) { |
| /* |
| * To use VMXON (and later other VMX instructions), a guest |
| * must first be able to turn on cr4.VMXE (see handle_vmon()). |
| * So basically the check on whether to allow nested VMX |
| * is here. |
| */ |
| if (!nested_vmx_allowed(vcpu)) |
| return 1; |
| } else if (to_vmx(vcpu)->nested.vmxon) |
| return 1; |
| |
| vcpu->arch.cr4 = cr4; |
| if (enable_ept) { |
| if (!is_paging(vcpu)) { |
| hw_cr4 &= ~X86_CR4_PAE; |
| hw_cr4 |= X86_CR4_PSE; |
| } else if (!(cr4 & X86_CR4_PAE)) { |
| hw_cr4 &= ~X86_CR4_PAE; |
| } |
| } |
| |
| vmcs_writel(CR4_READ_SHADOW, cr4); |
| vmcs_writel(GUEST_CR4, hw_cr4); |
| return 0; |
| } |
| |
| static void vmx_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_save_segment *save; |
| u32 ar; |
| |
| if (vmx->rmode.vm86_active |
| && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES |
| || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS |
| || seg == VCPU_SREG_GS) |
| && !emulate_invalid_guest_state) { |
| switch (seg) { |
| case VCPU_SREG_TR: save = &vmx->rmode.tr; break; |
| case VCPU_SREG_ES: save = &vmx->rmode.es; break; |
| case VCPU_SREG_DS: save = &vmx->rmode.ds; break; |
| case VCPU_SREG_FS: save = &vmx->rmode.fs; break; |
| case VCPU_SREG_GS: save = &vmx->rmode.gs; break; |
| default: BUG(); |
| } |
| var->selector = save->selector; |
| var->base = save->base; |
| var->limit = save->limit; |
| ar = save->ar; |
| if (seg == VCPU_SREG_TR |
| || var->selector == vmx_read_guest_seg_selector(vmx, seg)) |
| goto use_saved_rmode_seg; |
| } |
| var->base = vmx_read_guest_seg_base(vmx, seg); |
| var->limit = vmx_read_guest_seg_limit(vmx, seg); |
| var->selector = vmx_read_guest_seg_selector(vmx, seg); |
| ar = vmx_read_guest_seg_ar(vmx, seg); |
| use_saved_rmode_seg: |
| if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state) |
| ar = 0; |
| var->type = ar & 15; |
| var->s = (ar >> 4) & 1; |
| var->dpl = (ar >> 5) & 3; |
| var->present = (ar >> 7) & 1; |
| var->avl = (ar >> 12) & 1; |
| var->l = (ar >> 13) & 1; |
| var->db = (ar >> 14) & 1; |
| var->g = (ar >> 15) & 1; |
| var->unusable = (ar >> 16) & 1; |
| } |
| |
| static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment s; |
| |
| if (to_vmx(vcpu)->rmode.vm86_active) { |
| vmx_get_segment(vcpu, &s, seg); |
| return s.base; |
| } |
| return vmx_read_guest_seg_base(to_vmx(vcpu), seg); |
| } |
| |
| static int __vmx_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| if (!is_protmode(vcpu)) |
| return 0; |
| |
| if (!is_long_mode(vcpu) |
| && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */ |
| return 3; |
| |
| return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3; |
| } |
| |
| static int vmx_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) { |
| __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); |
| to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu); |
| } |
| return to_vmx(vcpu)->cpl; |
| } |
| |
| |
| static u32 vmx_segment_access_rights(struct kvm_segment *var) |
| { |
| u32 ar; |
| |
| if (var->unusable) |
| ar = 1 << 16; |
| else { |
| ar = var->type & 15; |
| ar |= (var->s & 1) << 4; |
| ar |= (var->dpl & 3) << 5; |
| ar |= (var->present & 1) << 7; |
| ar |= (var->avl & 1) << 12; |
| ar |= (var->l & 1) << 13; |
| ar |= (var->db & 1) << 14; |
| ar |= (var->g & 1) << 15; |
| } |
| if (ar == 0) /* a 0 value means unusable */ |
| ar = AR_UNUSABLE_MASK; |
| |
| return ar; |
| } |
| |
| static void vmx_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| u32 ar; |
| |
| vmx_segment_cache_clear(vmx); |
| |
| if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) { |
| vmcs_write16(sf->selector, var->selector); |
| vmx->rmode.tr.selector = var->selector; |
| vmx->rmode.tr.base = var->base; |
| vmx->rmode.tr.limit = var->limit; |
| vmx->rmode.tr.ar = vmx_segment_access_rights(var); |
| return; |
| } |
| vmcs_writel(sf->base, var->base); |
| vmcs_write32(sf->limit, var->limit); |
| vmcs_write16(sf->selector, var->selector); |
| if (vmx->rmode.vm86_active && var->s) { |
| /* |
| * Hack real-mode segments into vm86 compatibility. |
| */ |
| if (var->base == 0xffff0000 && var->selector == 0xf000) |
| vmcs_writel(sf->base, 0xf0000); |
| ar = 0xf3; |
| } else |
| ar = vmx_segment_access_rights(var); |
| |
| /* |
| * Fix the "Accessed" bit in AR field of segment registers for older |
| * qemu binaries. |
| * IA32 arch specifies that at the time of processor reset the |
| * "Accessed" bit in the AR field of segment registers is 1. And qemu |
| * is setting it to 0 in the usedland code. This causes invalid guest |
| * state vmexit when "unrestricted guest" mode is turned on. |
| * Fix for this setup issue in cpu_reset is being pushed in the qemu |
| * tree. Newer qemu binaries with that qemu fix would not need this |
| * kvm hack. |
| */ |
| if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) |
| ar |= 0x1; /* Accessed */ |
| |
| vmcs_write32(sf->ar_bytes, ar); |
| __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); |
| } |
| |
| static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); |
| |
| *db = (ar >> 14) & 1; |
| *l = (ar >> 13) & 1; |
| } |
| |
| static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| dt->size = vmcs_read32(GUEST_IDTR_LIMIT); |
| dt->address = vmcs_readl(GUEST_IDTR_BASE); |
| } |
| |
| static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| vmcs_write32(GUEST_IDTR_LIMIT, dt->size); |
| vmcs_writel(GUEST_IDTR_BASE, dt->address); |
| } |
| |
| static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| dt->size = vmcs_read32(GUEST_GDTR_LIMIT); |
| dt->address = vmcs_readl(GUEST_GDTR_BASE); |
| } |
| |
| static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| vmcs_write32(GUEST_GDTR_LIMIT, dt->size); |
| vmcs_writel(GUEST_GDTR_BASE, dt->address); |
| } |
| |
| static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment var; |
| u32 ar; |
| |
| vmx_get_segment(vcpu, &var, seg); |
| ar = vmx_segment_access_rights(&var); |
| |
| if (var.base != (var.selector << 4)) |
| return false; |
| if (var.limit != 0xffff) |
| return false; |
| if (ar != 0xf3) |
| return false; |
| |
| return true; |
| } |
| |
| static bool code_segment_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs; |
| unsigned int cs_rpl; |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| cs_rpl = cs.selector & SELECTOR_RPL_MASK; |
| |
| if (cs.unusable) |
| return false; |
| if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK)) |
| return false; |
| if (!cs.s) |
| return false; |
| if (cs.type & AR_TYPE_WRITEABLE_MASK) { |
| if (cs.dpl > cs_rpl) |
| return false; |
| } else { |
| if (cs.dpl != cs_rpl) |
| return false; |
| } |
| if (!cs.present) |
| return false; |
| |
| /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ |
| return true; |
| } |
| |
| static bool stack_segment_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment ss; |
| unsigned int ss_rpl; |
| |
| vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| ss_rpl = ss.selector & SELECTOR_RPL_MASK; |
| |
| if (ss.unusable) |
| return true; |
| if (ss.type != 3 && ss.type != 7) |
| return false; |
| if (!ss.s) |
| return false; |
| if (ss.dpl != ss_rpl) /* DPL != RPL */ |
| return false; |
| if (!ss.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment var; |
| unsigned int rpl; |
| |
| vmx_get_segment(vcpu, &var, seg); |
| rpl = var.selector & SELECTOR_RPL_MASK; |
| |
| if (var.unusable) |
| return true; |
| if (!var.s) |
| return false; |
| if (!var.present) |
| return false; |
| if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) { |
| if (var.dpl < rpl) /* DPL < RPL */ |
| return false; |
| } |
| |
| /* TODO: Add other members to kvm_segment_field to allow checking for other access |
| * rights flags |
| */ |
| return true; |
| } |
| |
| static bool tr_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment tr; |
| |
| vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); |
| |
| if (tr.unusable) |
| return false; |
| if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */ |
| return false; |
| if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ |
| return false; |
| if (!tr.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool ldtr_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment ldtr; |
| |
| vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); |
| |
| if (ldtr.unusable) |
| return true; |
| if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */ |
| return false; |
| if (ldtr.type != 2) |
| return false; |
| if (!ldtr.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs, ss; |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| |
| return ((cs.selector & SELECTOR_RPL_MASK) == |
| (ss.selector & SELECTOR_RPL_MASK)); |
| } |
| |
| /* |
| * Check if guest state is valid. Returns true if valid, false if |
| * not. |
| * We assume that registers are always usable |
| */ |
| static bool guest_state_valid(struct kvm_vcpu *vcpu) |
| { |
| /* real mode guest state checks */ |
| if (!is_protmode(vcpu)) { |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) |
| return false; |
| } else { |
| /* protected mode guest state checks */ |
| if (!cs_ss_rpl_check(vcpu)) |
| return false; |
| if (!code_segment_valid(vcpu)) |
| return false; |
| if (!stack_segment_valid(vcpu)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_DS)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_ES)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_FS)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_GS)) |
| return false; |
| if (!tr_valid(vcpu)) |
| return false; |
| if (!ldtr_valid(vcpu)) |
| return false; |
| } |
| /* TODO: |
| * - Add checks on RIP |
| * - Add checks on RFLAGS |
| */ |
| |
| return true; |
| } |
| |
| static int init_rmode_tss(struct kvm *kvm) |
| { |
| gfn_t fn; |
| u16 data = 0; |
| int r, idx, ret = 0; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| fn = rmode_tss_base(kvm) >> PAGE_SHIFT; |
| r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; |
| r = kvm_write_guest_page(kvm, fn++, &data, |
| TSS_IOPB_BASE_OFFSET, sizeof(u16)); |
| if (r < 0) |
| goto out; |
| r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| data = ~0; |
| r = kvm_write_guest_page(kvm, fn, &data, |
| RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, |
| sizeof(u8)); |
| if (r < 0) |
| goto out; |
| |
| ret = 1; |
| out: |
| srcu_read_unlock(&kvm->srcu, idx); |
| return ret; |
| } |
| |
| static int init_rmode_identity_map(struct kvm *kvm) |
| { |
| int i, idx, r, ret; |
| pfn_t identity_map_pfn; |
| u32 tmp; |
| |
| if (!enable_ept) |
| return 1; |
| if (unlikely(!kvm->arch.ept_identity_pagetable)) { |
| printk(KERN_ERR "EPT: identity-mapping pagetable " |
| "haven't been allocated!\n"); |
| return 0; |
| } |
| if (likely(kvm->arch.ept_identity_pagetable_done)) |
| return 1; |
| ret = 0; |
| identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; |
| idx = srcu_read_lock(&kvm->srcu); |
| r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); |
| if (r < 0) |
| goto out; |
| /* Set up identity-mapping pagetable for EPT in real mode */ |
| for (i = 0; i < PT32_ENT_PER_PAGE; i++) { |
| tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | |
| _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); |
| r = kvm_write_guest_page(kvm, identity_map_pfn, |
| &tmp, i * sizeof(tmp), sizeof(tmp)); |
| if (r < 0) |
| goto out; |
| } |
| kvm->arch.ept_identity_pagetable_done = true; |
| ret = 1; |
| out: |
| srcu_read_unlock(&kvm->srcu, idx); |
| return ret; |
| } |
| |
| static void seg_setup(int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| unsigned int ar; |
| |
| vmcs_write16(sf->selector, 0); |
| vmcs_writel(sf->base, 0); |
| vmcs_write32(sf->limit, 0xffff); |
| if (enable_unrestricted_guest) { |
| ar = 0x93; |
| if (seg == VCPU_SREG_CS) |
| ar |= 0x08; /* code segment */ |
| } else |
| ar = 0xf3; |
| |
| vmcs_write32(sf->ar_bytes, ar); |
| } |
| |
| static int alloc_apic_access_page(struct kvm *kvm) |
| { |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| int r = 0; |
| |
| mutex_lock(&kvm->slots_lock); |
| if (kvm->arch.apic_access_page) |
| goto out; |
| kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; |
| kvm_userspace_mem.flags = 0; |
| kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL; |
| kvm_userspace_mem.memory_size = PAGE_SIZE; |
| r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); |
| if (r) |
| goto out; |
| |
| kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00); |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static int alloc_identity_pagetable(struct kvm *kvm) |
| { |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| int r = 0; |
| |
| mutex_lock(&kvm->slots_lock); |
| if (kvm->arch.ept_identity_pagetable) |
| goto out; |
| kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; |
| kvm_userspace_mem.flags = 0; |
| kvm_userspace_mem.guest_phys_addr = |
| kvm->arch.ept_identity_map_addr; |
| kvm_userspace_mem.memory_size = PAGE_SIZE; |
| r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); |
| if (r) |
| goto out; |
| |
| kvm->arch.ept_identity_pagetable = gfn_to_page(kvm, |
| kvm->arch.ept_identity_map_addr >> PAGE_SHIFT); |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static void allocate_vpid(struct vcpu_vmx *vmx) |
| { |
| int vpid; |
| |
| vmx->vpid = 0; |
| if (!enable_vpid) |
| return; |
| spin_lock(&vmx_vpid_lock); |
| vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| if (vpid < VMX_NR_VPIDS) { |
| vmx->vpid = vpid; |
| __set_bit(vpid, vmx_vpid_bitmap); |
| } |
| spin_unlock(&vmx_vpid_lock); |
| } |
| |
| static void free_vpid(struct vcpu_vmx *vmx) |
| { |
| if (!enable_vpid) |
| return; |
| spin_lock(&vmx_vpid_lock); |
| if (vmx->vpid != 0) |
| __clear_bit(vmx->vpid, vmx_vpid_bitmap); |
| spin_unlock(&vmx_vpid_lock); |
| } |
| |
| static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr) |
| { |
| int f = sizeof(unsigned long); |
| |
| if (!cpu_has_vmx_msr_bitmap()) |
| return; |
| |
| /* |
| * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals |
| * have the write-low and read-high bitmap offsets the wrong way round. |
| * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. |
| */ |
| if (msr <= 0x1fff) { |
| __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */ |
| __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */ |
| } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| msr &= 0x1fff; |
| __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */ |
| __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */ |
| } |
| } |
| |
| static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only) |
| { |
| if (!longmode_only) |
| __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr); |
| __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr); |
| } |
| |
| /* |
| * Set up the vmcs's constant host-state fields, i.e., host-state fields that |
| * will not change in the lifetime of the guest. |
| * Note that host-state that does change is set elsewhere. E.g., host-state |
| * that is set differently for each CPU is set in vmx_vcpu_load(), not here. |
| */ |
| static void vmx_set_constant_host_state(void) |
| { |
| u32 low32, high32; |
| unsigned long tmpl; |
| struct desc_ptr dt; |
| |
| vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */ |
| vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */ |
| vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */ |
| |
| vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ |
| vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ |
| |
| native_store_idt(&dt); |
| vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ |
| |
| asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl)); |
| vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */ |
| |
| rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); |
| vmcs_write32(HOST_IA32_SYSENTER_CS, low32); |
| rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); |
| vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ |
| |
| if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { |
| rdmsr(MSR_IA32_CR_PAT, low32, high32); |
| vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); |
| } |
| } |
| |
| static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) |
| { |
| vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; |
| if (enable_ept) |
| vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; |
| if (is_guest_mode(&vmx->vcpu)) |
| vmx->vcpu.arch.cr4_guest_owned_bits &= |
| ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; |
| vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); |
| } |
| |
| static u32 vmx_exec_control(struct vcpu_vmx *vmx) |
| { |
| u32 exec_control = vmcs_config.cpu_based_exec_ctrl; |
| if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| #ifdef CONFIG_X86_64 |
| exec_control |= CPU_BASED_CR8_STORE_EXITING | |
| CPU_BASED_CR8_LOAD_EXITING; |
| #endif |
| } |
| if (!enable_ept) |
| exec_control |= CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_INVLPG_EXITING; |
| return exec_control; |
| } |
| |
| static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) |
| { |
| u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; |
| if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) |
| exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| if (vmx->vpid == 0) |
| exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; |
| if (!enable_ept) { |
| exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; |
| enable_unrestricted_guest = 0; |
| } |
| if (!enable_unrestricted_guest) |
| exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| if (!ple_gap) |
| exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; |
| return exec_control; |
| } |
| |
| static void ept_set_mmio_spte_mask(void) |
| { |
| /* |
| * EPT Misconfigurations can be generated if the value of bits 2:0 |
| * of an EPT paging-structure entry is 110b (write/execute). |
| * Also, magic bits (0xffull << 49) is set to quickly identify mmio |
| * spte. |
| */ |
| kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull); |
| } |
| |
| /* |
| * Sets up the vmcs for emulated real mode. |
| */ |
| static int vmx_vcpu_setup(struct vcpu_vmx *vmx) |
| { |
| #ifdef CONFIG_X86_64 |
| unsigned long a; |
| #endif |
| int i; |
| |
| /* I/O */ |
| vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); |
| vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy)); |
| |
| vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ |
| |
| /* Control */ |
| vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, |
| vmcs_config.pin_based_exec_ctrl); |
| |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); |
| |
| if (cpu_has_secondary_exec_ctrls()) { |
| vmcs_write32(SECONDARY_VM_EXEC_CONTROL, |
| vmx_secondary_exec_control(vmx)); |
| } |
| |
| if (ple_gap) { |
| vmcs_write32(PLE_GAP, ple_gap); |
| vmcs_write32(PLE_WINDOW, ple_window); |
| } |
| |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); |
| vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ |
| |
| vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ |
| vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ |
| vmx_set_constant_host_state(); |
| #ifdef CONFIG_X86_64 |
| rdmsrl(MSR_FS_BASE, a); |
| vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ |
| rdmsrl(MSR_GS_BASE, a); |
| vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ |
| #else |
| vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ |
| vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ |
| #endif |
| |
| vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host)); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest)); |
| |
| if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| u32 msr_low, msr_high; |
| u64 host_pat; |
| rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high); |
| host_pat = msr_low | ((u64) msr_high << 32); |
| /* Write the default value follow host pat */ |
| vmcs_write64(GUEST_IA32_PAT, host_pat); |
| /* Keep arch.pat sync with GUEST_IA32_PAT */ |
| vmx->vcpu.arch.pat = host_pat; |
| } |
| |
| for (i = 0; i < NR_VMX_MSR; ++i) { |
| u32 index = vmx_msr_index[i]; |
| u32 data_low, data_high; |
| int j = vmx->nmsrs; |
| |
| if (rdmsr_safe(index, &data_low, &data_high) < 0) |
| continue; |
| if (wrmsr_safe(index, data_low, data_high) < 0) |
| continue; |
| vmx->guest_msrs[j].index = i; |
| vmx->guest_msrs[j].data = 0; |
| vmx->guest_msrs[j].mask = -1ull; |
| ++vmx->nmsrs; |
| } |
| |
| vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); |
| |
| /* 22.2.1, 20.8.1 */ |
| vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl); |
| |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); |
| set_cr4_guest_host_mask(vmx); |
| |
| kvm_write_tsc(&vmx->vcpu, 0); |
| |
| return 0; |
| } |
| |
| static int vmx_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 msr; |
| int ret; |
| |
| vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)); |
| |
| vmx->rmode.vm86_active = 0; |
| |
| vmx->soft_vnmi_blocked = 0; |
| |
| vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); |
| kvm_set_cr8(&vmx->vcpu, 0); |
| msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; |
| if (kvm_vcpu_is_bsp(&vmx->vcpu)) |
| msr |= MSR_IA32_APICBASE_BSP; |
| kvm_set_apic_base(&vmx->vcpu, msr); |
| |
| ret = fx_init(&vmx->vcpu); |
| if (ret != 0) |
| goto out; |
| |
| vmx_segment_cache_clear(vmx); |
| |
| seg_setup(VCPU_SREG_CS); |
| /* |
| * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode |
| * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh. |
| */ |
| if (kvm_vcpu_is_bsp(&vmx->vcpu)) { |
| vmcs_write16(GUEST_CS_SELECTOR, 0xf000); |
| vmcs_writel(GUEST_CS_BASE, 0x000f0000); |
| } else { |
| vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8); |
| vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12); |
| } |
| |
| seg_setup(VCPU_SREG_DS); |
| seg_setup(VCPU_SREG_ES); |
| seg_setup(VCPU_SREG_FS); |
| seg_setup(VCPU_SREG_GS); |
| seg_setup(VCPU_SREG_SS); |
| |
| vmcs_write16(GUEST_TR_SELECTOR, 0); |
| vmcs_writel(GUEST_TR_BASE, 0); |
| vmcs_write32(GUEST_TR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| vmcs_write16(GUEST_LDTR_SELECTOR, 0); |
| vmcs_writel(GUEST_LDTR_BASE, 0); |
| vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); |
| |
| vmcs_write32(GUEST_SYSENTER_CS, 0); |
| vmcs_writel(GUEST_SYSENTER_ESP, 0); |
| vmcs_writel(GUEST_SYSENTER_EIP, 0); |
| |
| vmcs_writel(GUEST_RFLAGS, 0x02); |
| if (kvm_vcpu_is_bsp(&vmx->vcpu)) |
| kvm_rip_write(vcpu, 0xfff0); |
| else |
| kvm_rip_write(vcpu, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, 0); |
| |
| vmcs_writel(GUEST_DR7, 0x400); |
| |
| vmcs_writel(GUEST_GDTR_BASE, 0); |
| vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); |
| |
| vmcs_writel(GUEST_IDTR_BASE, 0); |
| vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); |
| |
| vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); |
| vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); |
| |
| /* Special registers */ |
| vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| |
| setup_msrs(vmx); |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ |
| |
| if (cpu_has_vmx_tpr_shadow()) { |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); |
| if (vm_need_tpr_shadow(vmx->vcpu.kvm)) |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, |
| __pa(vmx->vcpu.arch.apic->regs)); |
| vmcs_write32(TPR_THRESHOLD, 0); |
| } |
| |
| if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) |
| vmcs_write64(APIC_ACCESS_ADDR, |
| page_to_phys(vmx->vcpu.kvm->arch.apic_access_page)); |
| |
| if (vmx->vpid != 0) |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| |
| vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; |
| vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */ |
| vmx_set_cr4(&vmx->vcpu, 0); |
| vmx_set_efer(&vmx->vcpu, 0); |
| vmx_fpu_activate(&vmx->vcpu); |
| update_exception_bitmap(&vmx->vcpu); |
| |
| vpid_sync_context(vmx); |
| |
| ret = 0; |
| |
| /* HACK: Don't enable emulation on guest boot/reset */ |
| vmx->emulation_required = 0; |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * In nested virtualization, check if L1 asked to exit on external interrupts. |
| * For most existing hypervisors, this will always return true. |
| */ |
| static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) |
| { |
| return get_vmcs12(vcpu)->pin_based_vm_exec_control & |
| PIN_BASED_EXT_INTR_MASK; |
| } |
| |
| static void enable_irq_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) { |
| /* |
| * We get here if vmx_interrupt_allowed() said we can't |
| * inject to L1 now because L2 must run. Ask L2 to exit |
| * right after entry, so we can inject to L1 more promptly. |
| */ |
| kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); |
| return; |
| } |
| |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| } |
| |
| static void enable_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| if (!cpu_has_virtual_nmis()) { |
| enable_irq_window(vcpu); |
| return; |
| } |
| |
| if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { |
| enable_irq_window(vcpu); |
| return; |
| } |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| } |
| |
| static void vmx_inject_irq(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| uint32_t intr; |
| int irq = vcpu->arch.interrupt.nr; |
| |
| trace_kvm_inj_virq(irq); |
| |
| ++vcpu->stat.irq_injections; |
| if (vmx->rmode.vm86_active) { |
| int inc_eip = 0; |
| if (vcpu->arch.interrupt.soft) |
| inc_eip = vcpu->arch.event_exit_inst_len; |
| if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return; |
| } |
| intr = irq | INTR_INFO_VALID_MASK; |
| if (vcpu->arch.interrupt.soft) { |
| intr |= INTR_TYPE_SOFT_INTR; |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmx->vcpu.arch.event_exit_inst_len); |
| } else |
| intr |= INTR_TYPE_EXT_INTR; |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); |
| vmx_clear_hlt(vcpu); |
| } |
| |
| static void vmx_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (is_guest_mode(vcpu)) |
| return; |
| |
| if (!cpu_has_virtual_nmis()) { |
| /* |
| * Tracking the NMI-blocked state in software is built upon |
| * finding the next open IRQ window. This, in turn, depends on |
| * well-behaving guests: They have to keep IRQs disabled at |
| * least as long as the NMI handler runs. Otherwise we may |
| * cause NMI nesting, maybe breaking the guest. But as this is |
| * highly unlikely, we can live with the residual risk. |
| */ |
| vmx->soft_vnmi_blocked = 1; |
| vmx->vnmi_blocked_time = 0; |
| } |
| |
| ++vcpu->stat.nmi_injections; |
| vmx->nmi_known_unmasked = false; |
| if (vmx->rmode.vm86_active) { |
| if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return; |
| } |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); |
| vmx_clear_hlt(vcpu); |
| } |
| |
| static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) |
| { |
| if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked) |
| return 0; |
| |
| return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
| | GUEST_INTR_STATE_NMI)); |
| } |
| |
| static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) |
| { |
| if (!cpu_has_virtual_nmis()) |
| return to_vmx(vcpu)->soft_vnmi_blocked; |
| if (to_vmx(vcpu)->nmi_known_unmasked) |
| return false; |
| return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; |
| } |
| |
| static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!cpu_has_virtual_nmis()) { |
| if (vmx->soft_vnmi_blocked != masked) { |
| vmx->soft_vnmi_blocked = masked; |
| vmx->vnmi_blocked_time = 0; |
| } |
| } else { |
| vmx->nmi_known_unmasked = !masked; |
| if (masked) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| else |
| vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| } |
| } |
| |
| static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| if (to_vmx(vcpu)->nested.nested_run_pending || |
| (vmcs12->idt_vectoring_info_field & |
| VECTORING_INFO_VALID_MASK)) |
| return 0; |
| nested_vmx_vmexit(vcpu); |
| vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT; |
| vmcs12->vm_exit_intr_info = 0; |
| /* fall through to normal code, but now in L1, not L2 */ |
| } |
| |
| return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && |
| !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); |
| } |
| |
| static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| { |
| int ret; |
| struct kvm_userspace_memory_region tss_mem = { |
| .slot = TSS_PRIVATE_MEMSLOT, |
| .guest_phys_addr = addr, |
| .memory_size = PAGE_SIZE * 3, |
| .flags = 0, |
| }; |
| |
| ret = kvm_set_memory_region(kvm, &tss_mem, 0); |
| if (ret) |
| return ret; |
| kvm->arch.tss_addr = addr; |
| if (!init_rmode_tss(kvm)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int handle_rmode_exception(struct kvm_vcpu *vcpu, |
| int vec, u32 err_code) |
| { |
| /* |
| * Instruction with address size override prefix opcode 0x67 |
| * Cause the #SS fault with 0 error code in VM86 mode. |
| */ |
| if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) |
| if (emulate_instruction(vcpu, 0) == EMULATE_DONE) |
| return 1; |
| /* |
| * Forward all other exceptions that are valid in real mode. |
| * FIXME: Breaks guest debugging in real mode, needs to be fixed with |
| * the required debugging infrastructure rework. |
| */ |
| switch (vec) { |
| case DB_VECTOR: |
| if (vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| return 0; |
| kvm_queue_exception(vcpu, vec); |
| return 1; |
| case BP_VECTOR: |
| /* |
| * Update instruction length as we may reinject the exception |
| * from user space while in guest debugging mode. |
| */ |
| to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| return 0; |
| /* fall through */ |
| case DE_VECTOR: |
| case OF_VECTOR: |
| case BR_VECTOR: |
| case UD_VECTOR: |
| case DF_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| case MF_VECTOR: |
| kvm_queue_exception(vcpu, vec); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Trigger machine check on the host. We assume all the MSRs are already set up |
| * by the CPU and that we still run on the same CPU as the MCE occurred on. |
| * We pass a fake environment to the machine check handler because we want |
| * the guest to be always treated like user space, no matter what context |
| * it used internally. |
| */ |
| static void kvm_machine_check(void) |
| { |
| #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) |
| struct pt_regs regs = { |
| .cs = 3, /* Fake ring 3 no matter what the guest ran on */ |
| .flags = X86_EFLAGS_IF, |
| }; |
| |
| do_machine_check(®s, 0); |
| #endif |
| } |
| |
| static int handle_machine_check(struct kvm_vcpu *vcpu) |
| { |
| /* already handled by vcpu_run */ |
| return 1; |
| } |
| |
| static int handle_exception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_run *kvm_run = vcpu->run; |
| u32 intr_info, ex_no, error_code; |
| unsigned long cr2, rip, dr6; |
| u32 vect_info; |
| enum emulation_result er; |
| |
| vect_info = vmx->idt_vectoring_info; |
| intr_info = vmx->exit_intr_info; |
| |
| if (is_machine_check(intr_info)) |
| return handle_machine_check(vcpu); |
| |
| if ((vect_info & VECTORING_INFO_VALID_MASK) && |
| !is_page_fault(intr_info)) { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; |
| vcpu->run->internal.ndata = 2; |
| vcpu->run->internal.data[0] = vect_info; |
| vcpu->run->internal.data[1] = intr_info; |
| return 0; |
| } |
| |
| if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) |
| return 1; /* already handled by vmx_vcpu_run() */ |
| |
| if (is_no_device(intr_info)) { |
| vmx_fpu_activate(vcpu); |
| return 1; |
| } |
| |
| if (is_invalid_opcode(intr_info)) { |
| er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD); |
| if (er != EMULATE_DONE) |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| error_code = 0; |
| if (intr_info & INTR_INFO_DELIVER_CODE_MASK) |
| error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| if (is_page_fault(intr_info)) { |
| /* EPT won't cause page fault directly */ |
| BUG_ON(enable_ept); |
| cr2 = vmcs_readl(EXIT_QUALIFICATION); |
| trace_kvm_page_fault(cr2, error_code); |
| |
| if (kvm_event_needs_reinjection(vcpu)) |
| kvm_mmu_unprotect_page_virt(vcpu, cr2); |
| return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0); |
| } |
| |
| if (vmx->rmode.vm86_active && |
| handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, |
| error_code)) { |
| if (vcpu->arch.halt_request) { |
| vcpu->arch.halt_request = 0; |
| return kvm_emulate_halt(vcpu); |
| } |
| return 1; |
| } |
| |
| ex_no = intr_info & INTR_INFO_VECTOR_MASK; |
| switch (ex_no) { |
| case DB_VECTOR: |
| dr6 = vmcs_readl(EXIT_QUALIFICATION); |
| if (!(vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { |
| vcpu->arch.dr6 = dr6 | DR6_FIXED_1; |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| return 1; |
| } |
| kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; |
| kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); |
| /* fall through */ |
| case BP_VECTOR: |
| /* |
| * Update instruction length as we may reinject #BP from |
| * user space while in guest debugging mode. Reading it for |
| * #DB as well causes no harm, it is not used in that case. |
| */ |
| vmx->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| rip = kvm_rip_read(vcpu); |
| kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; |
| kvm_run->debug.arch.exception = ex_no; |
| break; |
| default: |
| kvm_run->exit_reason = KVM_EXIT_EXCEPTION; |
| kvm_run->ex.exception = ex_no; |
| kvm_run->ex.error_code = error_code; |
| break; |
| } |
| return 0; |
| } |
| |
| static int handle_external_interrupt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.irq_exits; |
| return 1; |
| } |
| |
| static int handle_triple_fault(struct kvm_vcpu *vcpu) |
| { |
| vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| return 0; |
| } |
| |
| static int handle_io(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| int size, in, string; |
| unsigned port; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| string = (exit_qualification & 16) != 0; |
| in = (exit_qualification & 8) != 0; |
| |
| ++vcpu->stat.io_exits; |
| |
| if (string || in) |
| return emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| |
| port = exit_qualification >> 16; |
| size = (exit_qualification & 7) + 1; |
| skip_emulated_instruction(vcpu); |
| |
| return kvm_fast_pio_out(vcpu, size, port); |
| } |
| |
| static void |
| vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| { |
| /* |
| * Patch in the VMCALL instruction: |
| */ |
| hypercall[0] = 0x0f; |
| hypercall[1] = 0x01; |
| hypercall[2] = 0xc1; |
| } |
| |
| /* called to set cr0 as approriate for a mov-to-cr0 exit. */ |
| static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| if (to_vmx(vcpu)->nested.vmxon && |
| ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)) |
| return 1; |
| |
| if (is_guest_mode(vcpu)) { |
| /* |
| * We get here when L2 changed cr0 in a way that did not change |
| * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), |
| * but did change L0 shadowed bits. This can currently happen |
| * with the TS bit: L0 may want to leave TS on (for lazy fpu |
| * loading) while pretending to allow the guest to change it. |
| */ |
| if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) | |
| (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits))) |
| return 1; |
| vmcs_writel(CR0_READ_SHADOW, val); |
| return 0; |
| } else |
| return kvm_set_cr0(vcpu, val); |
| } |
| |
| static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| if (is_guest_mode(vcpu)) { |
| if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) | |
| (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits))) |
| return 1; |
| vmcs_writel(CR4_READ_SHADOW, val); |
| return 0; |
| } else |
| return kvm_set_cr4(vcpu, val); |
| } |
| |
| /* called to set cr0 as approriate for clts instruction exit. */ |
| static void handle_clts(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) { |
| /* |
| * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS |
| * but we did (!fpu_active). We need to keep GUEST_CR0.TS on, |
| * just pretend it's off (also in arch.cr0 for fpu_activate). |
| */ |
| vmcs_writel(CR0_READ_SHADOW, |
| vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS); |
| vcpu->arch.cr0 &= ~X86_CR0_TS; |
| } else |
| vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); |
| } |
| |
| static int handle_cr(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification, val; |
| int cr; |
| int reg; |
| int err; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| cr = exit_qualification & 15; |
| reg = (exit_qualification >> 8) & 15; |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| val = kvm_register_read(vcpu, reg); |
| trace_kvm_cr_write(cr, val); |
| switch (cr) { |
| case 0: |
| err = handle_set_cr0(vcpu, val); |
| kvm_complete_insn_gp(vcpu, err); |
| return 1; |
| case 3: |
| err = kvm_set_cr3(vcpu, val); |
| kvm_complete_insn_gp(vcpu, err); |
| return 1; |
| case 4: |
| err = handle_set_cr4(vcpu, val); |
| kvm_complete_insn_gp(vcpu, err); |
| return 1; |
| case 8: { |
| u8 cr8_prev = kvm_get_cr8(vcpu); |
| u8 cr8 = kvm_register_read(vcpu, reg); |
| err = kvm_set_cr8(vcpu, cr8); |
| kvm_complete_insn_gp(vcpu, err); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return 1; |
| if (cr8_prev <= cr8) |
| return 1; |
| vcpu->run->exit_reason = KVM_EXIT_SET_TPR; |
| return 0; |
| } |
| }; |
| break; |
| case 2: /* clts */ |
| handle_clts(vcpu); |
| trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); |
| skip_emulated_instruction(vcpu); |
| vmx_fpu_activate(vcpu); |
| return 1; |
| case 1: /*mov from cr*/ |
| switch (cr) { |
| case 3: |
| val = kvm_read_cr3(vcpu); |
| kvm_register_write(vcpu, reg, val); |
| trace_kvm_cr_read(cr, val); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 8: |
| val = kvm_get_cr8(vcpu); |
| kvm_register_write(vcpu, reg, val); |
| trace_kvm_cr_read(cr, val); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| break; |
| case 3: /* lmsw */ |
| val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; |
| trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); |
| kvm_lmsw(vcpu, val); |
| |
| skip_emulated_instruction(vcpu); |
| return 1; |
| default: |
| break; |
| } |
| vcpu->run->exit_reason = 0; |
| pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n", |
| (int)(exit_qualification >> 4) & 3, cr); |
| return 0; |
| } |
| |
| static int handle_dr(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| int dr, reg; |
| |
| /* Do not handle if the CPL > 0, will trigger GP on re-entry */ |
| if (!kvm_require_cpl(vcpu, 0)) |
| return 1; |
| dr = vmcs_readl(GUEST_DR7); |
| if (dr & DR7_GD) { |
| /* |
| * As the vm-exit takes precedence over the debug trap, we |
| * need to emulate the latter, either for the host or the |
| * guest debugging itself. |
| */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; |
| vcpu->run->debug.arch.dr7 = dr; |
| vcpu->run->debug.arch.pc = |
| vmcs_readl(GUEST_CS_BASE) + |
| vmcs_readl(GUEST_RIP); |
| vcpu->run->debug.arch.exception = DB_VECTOR; |
| vcpu->run->exit_reason = KVM_EXIT_DEBUG; |
| return 0; |
| } else { |
| vcpu->arch.dr7 &= ~DR7_GD; |
| vcpu->arch.dr6 |= DR6_BD; |
| vmcs_writel(GUEST_DR7, vcpu->arch.dr7); |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| return 1; |
| } |
| } |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| dr = exit_qualification & DEBUG_REG_ACCESS_NUM; |
| reg = DEBUG_REG_ACCESS_REG(exit_qualification); |
| if (exit_qualification & TYPE_MOV_FROM_DR) { |
| unsigned long val; |
| if (!kvm_get_dr(vcpu, dr, &val)) |
| kvm_register_write(vcpu, reg, val); |
| } else |
| kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| vmcs_writel(GUEST_DR7, val); |
| } |
| |
| static int handle_cpuid(struct kvm_vcpu *vcpu) |
| { |
| kvm_emulate_cpuid(vcpu); |
| return 1; |
| } |
| |
| static int handle_rdmsr(struct kvm_vcpu *vcpu) |
| { |
| u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; |
| u64 data; |
| |
| if (vmx_get_msr(vcpu, ecx, &data)) { |
| trace_kvm_msr_read_ex(ecx); |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| trace_kvm_msr_read(ecx, data); |
| |
| /* FIXME: handling of bits 32:63 of rax, rdx */ |
| vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u; |
| vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u; |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_wrmsr(struct kvm_vcpu *vcpu) |
| { |
| u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; |
| u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) |
| | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); |
| |
| if (vmx_set_msr(vcpu, ecx, data) != 0) { |
| trace_kvm_msr_write_ex(ecx, data); |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| trace_kvm_msr_write(ecx, data); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) |
| { |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 1; |
| } |
| |
| static int handle_interrupt_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| /* clear pending irq */ |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| ++vcpu->stat.irq_window_exits; |
| |
| /* |
| * If the user space waits to inject interrupts, exit as soon as |
| * possible |
| */ |
| if (!irqchip_in_kernel(vcpu->kvm) && |
| vcpu->run->request_interrupt_window && |
| !kvm_cpu_has_interrupt(vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int handle_halt(struct kvm_vcpu *vcpu) |
| { |
| skip_emulated_instruction(vcpu); |
| return kvm_emulate_halt(vcpu); |
| } |
| |
| static int handle_vmcall(struct kvm_vcpu *vcpu) |
| { |
| skip_emulated_instruction(vcpu); |
| kvm_emulate_hypercall(vcpu); |
| return 1; |
| } |
| |
| static int handle_invd(struct kvm_vcpu *vcpu) |
| { |
| return emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| } |
| |
| static int handle_invlpg(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| kvm_mmu_invlpg(vcpu, exit_qualification); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_rdpmc(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| |
| err = kvm_rdpmc(vcpu); |
| kvm_complete_insn_gp(vcpu, err); |
| |
| return 1; |
| } |
| |
| static int handle_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| skip_emulated_instruction(vcpu); |
| kvm_emulate_wbinvd(vcpu); |
| return 1; |
| } |
| |
| static int handle_xsetbv(struct kvm_vcpu *vcpu) |
| { |
| u64 new_bv = kvm_read_edx_eax(vcpu); |
| u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| |
| if (kvm_set_xcr(vcpu, index, new_bv) == 0) |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_apic_access(struct kvm_vcpu *vcpu) |
| { |
| if (likely(fasteoi)) { |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| int access_type, offset; |
| |
| access_type = exit_qualification & APIC_ACCESS_TYPE; |
| offset = exit_qualification & APIC_ACCESS_OFFSET; |
| /* |
| * Sane guest uses MOV to write EOI, with written value |
| * not cared. So make a short-circuit here by avoiding |
| * heavy instruction emulation. |
| */ |
| if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && |
| (offset == APIC_EOI)) { |
| kvm_lapic_set_eoi(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| } |
| return emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| } |
| |
| static int handle_task_switch(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long exit_qualification; |
| bool has_error_code = false; |
| u32 error_code = 0; |
| u16 tss_selector; |
| int reason, type, idt_v; |
| |
| idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); |
| type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| reason = (u32)exit_qualification >> 30; |
| if (reason == TASK_SWITCH_GATE && idt_v) { |
| switch (type) { |
| case INTR_TYPE_NMI_INTR: |
| vcpu->arch.nmi_injected = false; |
| vmx_set_nmi_mask(vcpu, true); |
| break; |
| case INTR_TYPE_EXT_INTR: |
| case INTR_TYPE_SOFT_INTR: |
| kvm_clear_interrupt_queue(vcpu); |
| break; |
| case INTR_TYPE_HARD_EXCEPTION: |
| if (vmx->idt_vectoring_info & |
| VECTORING_INFO_DELIVER_CODE_MASK) { |
| has_error_code = true; |
| error_code = |
| vmcs_read32(IDT_VECTORING_ERROR_CODE); |
| } |
| /* fall through */ |
| case INTR_TYPE_SOFT_EXCEPTION: |
| kvm_clear_exception_queue(vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| tss_selector = exit_qualification; |
| |
| if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && |
| type != INTR_TYPE_EXT_INTR && |
| type != INTR_TYPE_NMI_INTR)) |
| skip_emulated_instruction(vcpu); |
| |
| if (kvm_task_switch(vcpu, tss_selector, reason, |
| has_error_code, error_code) == EMULATE_FAIL) { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| return 0; |
| } |
| |
| /* clear all local breakpoint enable flags */ |
| vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55); |
| |
| /* |
| * TODO: What about debug traps on tss switch? |
| * Are we supposed to inject them and update dr6? |
| */ |
| |
| return 1; |
| } |
| |
| static int handle_ept_violation(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| gpa_t gpa; |
| int gla_validity; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| if (exit_qualification & (1 << 6)) { |
| printk(KERN_ERR "EPT: GPA exceeds GAW!\n"); |
| return -EINVAL; |
| } |
| |
| gla_validity = (exit_qualification >> 7) & 0x3; |
| if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) { |
| printk(KERN_ERR "EPT: Handling EPT violation failed!\n"); |
| printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n", |
| (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS), |
| vmcs_readl(GUEST_LINEAR_ADDRESS)); |
| printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n", |
| (long unsigned int)exit_qualification); |
| vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
| vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION; |
| return 0; |
| } |
| |
| gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| trace_kvm_page_fault(gpa, exit_qualification); |
| return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0); |
| } |
| |
| static u64 ept_rsvd_mask(u64 spte, int level) |
| { |
| int i; |
| u64 mask = 0; |
| |
| for (i = 51; i > boot_cpu_data.x86_phys_bits; i--) |
| mask |= (1ULL << i); |
| |
| if (level > 2) |
| /* bits 7:3 reserved */ |
| mask |= 0xf8; |
| else if (level == 2) { |
| if (spte & (1ULL << 7)) |
| /* 2MB ref, bits 20:12 reserved */ |
| mask |= 0x1ff000; |
| else |
| /* bits 6:3 reserved */ |
| mask |= 0x78; |
| } |
| |
| return mask; |
| } |
| |
| static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte, |
| int level) |
| { |
| printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level); |
| |
| /* 010b (write-only) */ |
| WARN_ON((spte & 0x7) == 0x2); |
| |
| /* 110b (write/execute) */ |
| WARN_ON((spte & 0x7) == 0x6); |
| |
| /* 100b (execute-only) and value not supported by logical processor */ |
| if (!cpu_has_vmx_ept_execute_only()) |
| WARN_ON((spte & 0x7) == 0x4); |
| |
| /* not 000b */ |
| if ((spte & 0x7)) { |
| u64 rsvd_bits = spte & ept_rsvd_mask(spte, level); |
| |
| if (rsvd_bits != 0) { |
| printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n", |
| __func__, rsvd_bits); |
| WARN_ON(1); |
| } |
| |
| if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) { |
| u64 ept_mem_type = (spte & 0x38) >> 3; |
| |
| if (ept_mem_type == 2 || ept_mem_type == 3 || |
| ept_mem_type == 7) { |
| printk(KERN_ERR "%s: ept_mem_type=0x%llx\n", |
| __func__, ept_mem_type); |
| WARN_ON(1); |
| } |
| } |
| } |
| } |
| |
| static int handle_ept_misconfig(struct kvm_vcpu *vcpu) |
| { |
| u64 sptes[4]; |
| int nr_sptes, i, ret; |
| gpa_t gpa; |
| |
| gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| |
| ret = handle_mmio_page_fault_common(vcpu, gpa, true); |
| if (likely(ret == 1)) |
| return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) == |
| EMULATE_DONE; |
| if (unlikely(!ret)) |
| return 1; |
| |
| /* It is the real ept misconfig */ |
| printk(KERN_ERR "EPT: Misconfiguration.\n"); |
| printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa); |
| |
| nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes); |
| |
| for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i) |
| ept_misconfig_inspect_spte(vcpu, sptes[i-1], i); |
| |
| vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
| vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; |
| |
| return 0; |
| } |
| |
| static int handle_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| /* clear pending NMI */ |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| ++vcpu->stat.nmi_window_exits; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 1; |
| } |
| |
| static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| enum emulation_result err = EMULATE_DONE; |
| int ret = 1; |
| u32 cpu_exec_ctrl; |
| bool intr_window_requested; |
| |
| cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; |
| |
| while (!guest_state_valid(vcpu)) { |
| if (intr_window_requested |
| && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF)) |
| return handle_interrupt_window(&vmx->vcpu); |
| |
| err = emulate_instruction(vcpu, 0); |
| |
| if (err == EMULATE_DO_MMIO) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (err != EMULATE_DONE) |
| return 0; |
| |
| if (signal_pending(current)) |
| goto out; |
| if (need_resched()) |
| schedule(); |
| } |
| |
| vmx->emulation_required = 0; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE |
| * exiting, so only get here on cpu with PAUSE-Loop-Exiting. |
| */ |
| static int handle_pause(struct kvm_vcpu *vcpu) |
| { |
| skip_emulated_instruction(vcpu); |
| kvm_vcpu_on_spin(vcpu); |
| |
| return 1; |
| } |
| |
| static int handle_invalid_op(struct kvm_vcpu *vcpu) |
| { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* |
| * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12. |
| * We could reuse a single VMCS for all the L2 guests, but we also want the |
| * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this |
| * allows keeping them loaded on the processor, and in the future will allow |
| * optimizations where prepare_vmcs02 doesn't need to set all the fields on |
| * every entry if they never change. |
| * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE |
| * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first. |
| * |
| * The following functions allocate and free a vmcs02 in this pool. |
| */ |
| |
| /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */ |
| static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx) |
| { |
| struct vmcs02_list *item; |
| list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) |
| if (item->vmptr == vmx->nested.current_vmptr) { |
| list_move(&item->list, &vmx->nested.vmcs02_pool); |
| return &item->vmcs02; |
| } |
| |
| if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) { |
| /* Recycle the least recently used VMCS. */ |
| item = list_entry(vmx->nested.vmcs02_pool.prev, |
| struct vmcs02_list, list); |
| item->vmptr = vmx->nested.current_vmptr; |
| list_move(&item->list, &vmx->nested.vmcs02_pool); |
| return &item->vmcs02; |
| } |
| |
| /* Create a new VMCS */ |
| item = (struct vmcs02_list *) |
| kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL); |
| if (!item) |
| return NULL; |
| item->vmcs02.vmcs = alloc_vmcs(); |
| if (!item->vmcs02.vmcs) { |
| kfree(item); |
| return NULL; |
| } |
| loaded_vmcs_init(&item->vmcs02); |
| item->vmptr = vmx->nested.current_vmptr; |
| list_add(&(item->list), &(vmx->nested.vmcs02_pool)); |
| vmx->nested.vmcs02_num++; |
| return &item->vmcs02; |
| } |
| |
| /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */ |
| static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr) |
| { |
| struct vmcs02_list *item; |
| list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) |
| if (item->vmptr == vmptr) { |
| free_loaded_vmcs(&item->vmcs02); |
| list_del(&item->list); |
| kfree(item); |
| vmx->nested.vmcs02_num--; |
| return; |
| } |
| } |
| |
| /* |
| * Free all VMCSs saved for this vcpu, except the one pointed by |
| * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one |
| * currently used, if running L2), and vmcs01 when running L2. |
| */ |
| static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx) |
| { |
| struct vmcs02_list *item, *n; |
| list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) { |
| if (vmx->loaded_vmcs != &item->vmcs02) |
| free_loaded_vmcs(&item->vmcs02); |
| list_del(&item->list); |
| kfree(item); |
| } |
| vmx->nested.vmcs02_num = 0; |
| |
| if (vmx->loaded_vmcs != &vmx->vmcs01) |
| free_loaded_vmcs(&vmx->vmcs01); |
| } |
| |
| /* |
| * Emulate the VMXON instruction. |
| * Currently, we just remember that VMX is active, and do not save or even |
| * inspect the argument to VMXON (the so-called "VMXON pointer") because we |
| * do not currently need to store anything in that guest-allocated memory |
| * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their |
| * argument is different from the VMXON pointer (which the spec says they do). |
| */ |
| static int handle_vmon(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* The Intel VMX Instruction Reference lists a bunch of bits that |
| * are prerequisite to running VMXON, most notably cr4.VMXE must be |
| * set to 1 (see vmx_set_cr4() for when we allow the guest to set this). |
| * Otherwise, we should fail with #UD. We test these now: |
| */ |
| if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) || |
| !kvm_read_cr0_bits(vcpu, X86_CR0_PE) || |
| (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| if (is_long_mode(vcpu) && !cs.l) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (vmx_get_cpl(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); |
| vmx->nested.vmcs02_num = 0; |
| |
| vmx->nested.vmxon = true; |
| |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| /* |
| * Intel's VMX Instruction Reference specifies a common set of prerequisites |
| * for running VMX instructions (except VMXON, whose prerequisites are |
| * slightly different). It also specifies what exception to inject otherwise. |
| */ |
| static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!vmx->nested.vmxon) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 0; |
| } |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) || |
| (is_long_mode(vcpu) && !cs.l)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 0; |
| } |
| |
| if (vmx_get_cpl(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Free whatever needs to be freed from vmx->nested when L1 goes down, or |
| * just stops using VMX. |
| */ |
| static void free_nested(struct vcpu_vmx *vmx) |
| { |
| if (!vmx->nested.vmxon) |
| return; |
| vmx->nested.vmxon = false; |
| if (vmx->nested.current_vmptr != -1ull) { |
| kunmap(vmx->nested.current_vmcs12_page); |
| nested_release_page(vmx->nested.current_vmcs12_page); |
| vmx->nested.current_vmptr = -1ull; |
| vmx->nested.current_vmcs12 = NULL; |
| } |
| /* Unpin physical memory we referred to in current vmcs02 */ |
| if (vmx->nested.apic_access_page) { |
| nested_release_page(vmx->nested.apic_access_page); |
| vmx->nested.apic_access_page = 0; |
| } |
| |
| nested_free_all_saved_vmcss(vmx); |
| } |
| |
| /* Emulate the VMXOFF instruction */ |
| static int handle_vmoff(struct kvm_vcpu *vcpu) |
| { |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| free_nested(to_vmx(vcpu)); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| /* |
| * Decode the memory-address operand of a vmx instruction, as recorded on an |
| * exit caused by such an instruction (run by a guest hypervisor). |
| * On success, returns 0. When the operand is invalid, returns 1 and throws |
| * #UD or #GP. |
| */ |
| static int get_vmx_mem_address(struct kvm_vcpu *vcpu, |
| unsigned long exit_qualification, |
| u32 vmx_instruction_info, gva_t *ret) |
| { |
| /* |
| * According to Vol. 3B, "Information for VM Exits Due to Instruction |
| * Execution", on an exit, vmx_instruction_info holds most of the |
| * addressing components of the operand. Only the displacement part |
| * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). |
| * For how an actual address is calculated from all these components, |
| * refer to Vol. 1, "Operand Addressing". |
| */ |
| int scaling = vmx_instruction_info & 3; |
| int addr_size = (vmx_instruction_info >> 7) & 7; |
| bool is_reg = vmx_instruction_info & (1u << 10); |
| int seg_reg = (vmx_instruction_info >> 15) & 7; |
| int index_reg = (vmx_instruction_info >> 18) & 0xf; |
| bool index_is_valid = !(vmx_instruction_info & (1u << 22)); |
| int base_reg = (vmx_instruction_info >> 23) & 0xf; |
| bool base_is_valid = !(vmx_instruction_info & (1u << 27)); |
| |
| if (is_reg) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* Addr = segment_base + offset */ |
| /* offset = base + [index * scale] + displacement */ |
| *ret = vmx_get_segment_base(vcpu, seg_reg); |
| if (base_is_valid) |
| *ret += kvm_register_read(vcpu, base_reg); |
| if (index_is_valid) |
| *ret += kvm_register_read(vcpu, index_reg)<<scaling; |
| *ret += exit_qualification; /* holds the displacement */ |
| |
| if (addr_size == 1) /* 32 bit */ |
| *ret &= 0xffffffff; |
| |
| /* |
| * TODO: throw #GP (and return 1) in various cases that the VM* |
| * instructions require it - e.g., offset beyond segment limit, |
| * unusable or unreadable/unwritable segment, non-canonical 64-bit |
| * address, and so on. Currently these are not checked. |
| */ |
| return 0; |
| } |
| |
| /* |
| * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), |
| * set the success or error code of an emulated VMX instruction, as specified |
| * by Vol 2B, VMX Instruction Reference, "Conventions". |
| */ |
| static void nested_vmx_succeed(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); |
| } |
| |
| static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | |
| X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| | X86_EFLAGS_CF); |
| } |
| |
| static void nested_vmx_failValid(struct kvm_vcpu *vcpu, |
| u32 vm_instruction_error) |
| { |
| if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { |
| /* |
| * failValid writes the error number to the current VMCS, which |
| * can't be done there isn't a current VMCS. |
| */ |
| nested_vmx_failInvalid(vcpu); |
| return; |
| } |
| vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| | X86_EFLAGS_ZF); |
| get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; |
| } |
| |
| /* Emulate the VMCLEAR instruction */ |
| static int handle_vmclear(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| gva_t gva; |
| gpa_t vmptr; |
| struct vmcs12 *vmcs12; |
| struct page *page; |
| struct x86_exception e; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) |
| return 1; |
| |
| if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, |
| sizeof(vmptr), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| |
| if (!IS_ALIGNED(vmptr, PAGE_SIZE)) { |
| nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| if (vmptr == vmx->nested.current_vmptr) { |
| kunmap(vmx->nested.current_vmcs12_page); |
| nested_release_page(vmx->nested.current_vmcs12_page); |
| vmx->nested.current_vmptr = -1ull; |
| vmx->nested.current_vmcs12 = NULL; |
| } |
| |
| page = nested_get_page(vcpu, vmptr); |
| if (page == NULL) { |
| /* |
| * For accurate processor emulation, VMCLEAR beyond available |
| * physical memory should do nothing at all. However, it is |
| * possible that a nested vmx bug, not a guest hypervisor bug, |
| * resulted in this case, so let's shut down before doing any |
| * more damage: |
| */ |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return 1; |
| } |
| vmcs12 = kmap(page); |
| vmcs12->launch_state = 0; |
| kunmap(page); |
| nested_release_page(page); |
| |
| nested_free_vmcs02(vmx, vmptr); |
| |
| skip_emulated_instruction(vcpu); |
| nested_vmx_succeed(vcpu); |
| return 1; |
| } |
| |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); |
| |
| /* Emulate the VMLAUNCH instruction */ |
| static int handle_vmlaunch(struct kvm_vcpu *vcpu) |
| { |
| return nested_vmx_run(vcpu, true); |
| } |
| |
| /* Emulate the VMRESUME instruction */ |
| static int handle_vmresume(struct kvm_vcpu *vcpu) |
| { |
| |
| return nested_vmx_run(vcpu, false); |
| } |
| |
| enum vmcs_field_type { |
| VMCS_FIELD_TYPE_U16 = 0, |
| VMCS_FIELD_TYPE_U64 = 1, |
| VMCS_FIELD_TYPE_U32 = 2, |
| VMCS_FIELD_TYPE_NATURAL_WIDTH = 3 |
| }; |
| |
| static inline int vmcs_field_type(unsigned long field) |
| { |
| if (0x1 & field) /* the *_HIGH fields are all 32 bit */ |
| return VMCS_FIELD_TYPE_U32; |
| return (field >> 13) & 0x3 ; |
| } |
| |
| static inline int vmcs_field_readonly(unsigned long field) |
| { |
| return (((field >> 10) & 0x3) == 1); |
| } |
| |
| /* |
| * Read a vmcs12 field. Since these can have varying lengths and we return |
| * one type, we chose the biggest type (u64) and zero-extend the return value |
| * to that size. Note that the caller, handle_vmread, might need to use only |
| * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of |
| * 64-bit fields are to be returned). |
| */ |
| static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu, |
| unsigned long field, u64 *ret) |
| { |
| short offset = vmcs_field_to_offset(field); |
| char *p; |
| |
| if (offset < 0) |
| return 0; |
| |
| p = ((char *)(get_vmcs12(vcpu))) + offset; |
| |
| switch (vmcs_field_type(field)) { |
| case VMCS_FIELD_TYPE_NATURAL_WIDTH: |
| *ret = *((natural_width *)p); |
| return 1; |
| case VMCS_FIELD_TYPE_U16: |
| *ret = *((u16 *)p); |
| return 1; |
| case VMCS_FIELD_TYPE_U32: |
| *ret = *((u32 *)p); |
| return 1; |
| case VMCS_FIELD_TYPE_U64: |
| *ret = *((u64 *)p); |
| return 1; |
| default: |
| return 0; /* can never happen. */ |
| } |
| } |
| |
| /* |
| * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was |
| * used before) all generate the same failure when it is missing. |
| */ |
| static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| if (vmx->nested.current_vmptr == -1ull) { |
| nested_vmx_failInvalid(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int handle_vmread(struct kvm_vcpu *vcpu) |
| { |
| unsigned long field; |
| u64 field_value; |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gva_t gva = 0; |
| |
| if (!nested_vmx_check_permission(vcpu) || |
| !nested_vmx_check_vmcs12(vcpu)) |
| return 1; |
| |
| /* Decode instruction info and find the field to read */ |
| field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| /* Read the field, zero-extended to a u64 field_value */ |
| if (!vmcs12_read_any(vcpu, field, &field_value)) { |
| nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| /* |
| * Now copy part of this value to register or memory, as requested. |
| * Note that the number of bits actually copied is 32 or 64 depending |
| * on the guest's mode (32 or 64 bit), not on the given field's length. |
| */ |
| if (vmx_instruction_info & (1u << 10)) { |
| kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf), |
| field_value); |
| } else { |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| vmx_instruction_info, &gva)) |
| return 1; |
| /* _system ok, as nested_vmx_check_permission verified cpl=0 */ |
| kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva, |
| &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL); |
| } |
| |
| nested_vmx_succeed(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| |
| static int handle_vmwrite(struct kvm_vcpu *vcpu) |
| { |
| unsigned long field; |
| gva_t gva; |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| char *p; |
| short offset; |
| /* The value to write might be 32 or 64 bits, depending on L1's long |
| * mode, and eventually we need to write that into a field of several |
| * possible lengths. The code below first zero-extends the value to 64 |
| * bit (field_value), and then copies only the approriate number of |
| * bits into the vmcs12 field. |
| */ |
| u64 field_value = 0; |
| struct x86_exception e; |
| |
| if (!nested_vmx_check_permission(vcpu) || |
| !nested_vmx_check_vmcs12(vcpu)) |
| return 1; |
| |
| if (vmx_instruction_info & (1u << 10)) |
| field_value = kvm_register_read(vcpu, |
| (((vmx_instruction_info) >> 3) & 0xf)); |
| else { |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| vmx_instruction_info, &gva)) |
| return 1; |
| if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, |
| &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| } |
| |
| |
| field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| if (vmcs_field_readonly(field)) { |
| nested_vmx_failValid(vcpu, |
| VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| offset = vmcs_field_to_offset(field); |
| if (offset < 0) { |
| nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| p = ((char *) get_vmcs12(vcpu)) + offset; |
| |
| switch (vmcs_field_type(field)) { |
| case VMCS_FIELD_TYPE_U16: |
| *(u16 *)p = field_value; |
| break; |
| case VMCS_FIELD_TYPE_U32: |
| *(u32 *)p = field_value; |
| break; |
| case VMCS_FIELD_TYPE_U64: |
| *(u64 *)p = field_value; |
| break; |
| case VMCS_FIELD_TYPE_NATURAL_WIDTH: |
| *(natural_width *)p = field_value; |
| break; |
| default: |
| nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| nested_vmx_succeed(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| /* Emulate the VMPTRLD instruction */ |
| static int handle_vmptrld(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| gva_t gva; |
| gpa_t vmptr; |
| struct x86_exception e; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) |
| return 1; |
| |
| if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, |
| sizeof(vmptr), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| |
| if (!IS_ALIGNED(vmptr, PAGE_SIZE)) { |
| nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| if (vmx->nested.current_vmptr != vmptr) { |
| struct vmcs12 *new_vmcs12; |
| struct page *page; |
| page = nested_get_page(vcpu, vmptr); |
| if (page == NULL) { |
| nested_vmx_failInvalid(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| new_vmcs12 = kmap(page); |
| if (new_vmcs12->revision_id != VMCS12_REVISION) { |
| kunmap(page); |
| nested_release_page_clean(page); |
| nested_vmx_failValid(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| if (vmx->nested.current_vmptr != -1ull) { |
| kunmap(vmx->nested.current_vmcs12_page); |
| nested_release_page(vmx->nested.current_vmcs12_page); |
| } |
| |
| vmx->nested.current_vmptr = vmptr; |
| vmx->nested.current_vmcs12 = new_vmcs12; |
| vmx->nested.current_vmcs12_page = page; |
| } |
| |
| nested_vmx_succeed(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| /* Emulate the VMPTRST instruction */ |
| static int handle_vmptrst(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gva_t vmcs_gva; |
| struct x86_exception e; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| vmx_instruction_info, &vmcs_gva)) |
| return 1; |
| /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */ |
| if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva, |
| (void *)&to_vmx(vcpu)->nested.current_vmptr, |
| sizeof(u64), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| nested_vmx_succeed(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| /* |
| * The exit handlers return 1 if the exit was handled fully and guest execution |
| * may resume. Otherwise they set the kvm_run parameter to indicate what needs |
| * to be done to userspace and return 0. |
| */ |
| static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { |
| [EXIT_REASON_EXCEPTION_NMI] = handle_exception, |
| [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, |
| [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, |
| [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, |
| [EXIT_REASON_IO_INSTRUCTION] = handle_io, |
| [EXIT_REASON_CR_ACCESS] = handle_cr, |
| [EXIT_REASON_DR_ACCESS] = handle_dr, |
| [EXIT_REASON_CPUID] = handle_cpuid, |
| [EXIT_REASON_MSR_READ] = handle_rdmsr, |
| [EXIT_REASON_MSR_WRITE] = handle_wrmsr, |
| [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, |
| [EXIT_REASON_HLT] = handle_halt, |
| [EXIT_REASON_INVD] = handle_invd, |
| [EXIT_REASON_INVLPG] = handle_invlpg, |
| [EXIT_REASON_RDPMC] = handle_rdpmc, |
| [EXIT_REASON_VMCALL] = handle_vmcall, |
| [EXIT_REASON_VMCLEAR] = handle_vmclear, |
| [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, |
| [EXIT_REASON_VMPTRLD] = handle_vmptrld, |
| [EXIT_REASON_VMPTRST] = handle_vmptrst, |
| [EXIT_REASON_VMREAD] = handle_vmread, |
| [EXIT_REASON_VMRESUME] = handle_vmresume, |
| [EXIT_REASON_VMWRITE] = handle_vmwrite, |
| [EXIT_REASON_VMOFF] = handle_vmoff, |
| [EXIT_REASON_VMON] = handle_vmon, |
| [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, |
| [EXIT_REASON_APIC_ACCESS] = handle_apic_access, |
| [EXIT_REASON_WBINVD] = handle_wbinvd, |
| [EXIT_REASON_XSETBV] = handle_xsetbv, |
| [EXIT_REASON_TASK_SWITCH] = handle_task_switch, |
| [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, |
| [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, |
| [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, |
| [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, |
| [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op, |
| [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op, |
| }; |
| |
| static const int kvm_vmx_max_exit_handlers = |
| ARRAY_SIZE(kvm_vmx_exit_handlers); |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle an MSR access access, |
| * rather than handle it ourselves in L0. I.e., check whether L1 expressed |
| * disinterest in the current event (read or write a specific MSR) by using an |
| * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. |
| */ |
| static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, u32 exit_reason) |
| { |
| u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; |
| gpa_t bitmap; |
| |
| if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS)) |
| return 1; |
| |
| /* |
| * The MSR_BITMAP page is divided into four 1024-byte bitmaps, |
| * for the four combinations of read/write and low/high MSR numbers. |
| * First we need to figure out which of the four to use: |
| */ |
| bitmap = vmcs12->msr_bitmap; |
| if (exit_reason == EXIT_REASON_MSR_WRITE) |
| bitmap += 2048; |
| if (msr_index >= 0xc0000000) { |
| msr_index -= 0xc0000000; |
| bitmap += 1024; |
| } |
| |
| /* Then read the msr_index'th bit from this bitmap: */ |
| if (msr_index < 1024*8) { |
| unsigned char b; |
| kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1); |
| return 1 & (b >> (msr_index & 7)); |
| } else |
| return 1; /* let L1 handle the wrong parameter */ |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle a CR access exit, |
| * rather than handle it ourselves in L0. I.e., check if L1 wanted to |
| * intercept (via guest_host_mask etc.) the current event. |
| */ |
| static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| int cr = exit_qualification & 15; |
| int reg = (exit_qualification >> 8) & 15; |
| unsigned long val = kvm_register_read(vcpu, reg); |
| |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| switch (cr) { |
| case 0: |
| if (vmcs12->cr0_guest_host_mask & |
| (val ^ vmcs12->cr0_read_shadow)) |
| return 1; |
| break; |
| case 3: |
| if ((vmcs12->cr3_target_count >= 1 && |
| vmcs12->cr3_target_value0 == val) || |
| (vmcs12->cr3_target_count >= 2 && |
| vmcs12->cr3_target_value1 == val) || |
| (vmcs12->cr3_target_count >= 3 && |
| vmcs12->cr3_target_value2 == val) || |
| (vmcs12->cr3_target_count >= 4 && |
| vmcs12->cr3_target_value3 == val)) |
| return 0; |
| if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) |
| return 1; |
| break; |
| case 4: |
| if (vmcs12->cr4_guest_host_mask & |
| (vmcs12->cr4_read_shadow ^ val)) |
| return 1; |
| break; |
| case 8: |
| if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) |
| return 1; |
| break; |
| } |
| break; |
| case 2: /* clts */ |
| if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && |
| (vmcs12->cr0_read_shadow & X86_CR0_TS)) |
| return 1; |
| break; |
| case 1: /* mov from cr */ |
| switch (cr) { |
| case 3: |
| if (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_CR3_STORE_EXITING) |
| return 1; |
| break; |
| case 8: |
| if (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_CR8_STORE_EXITING) |
| return 1; |
| break; |
| } |
| break; |
| case 3: /* lmsw */ |
| /* |
| * lmsw can change bits 1..3 of cr0, and only set bit 0 of |
| * cr0. Other attempted changes are ignored, with no exit. |
| */ |
| if (vmcs12->cr0_guest_host_mask & 0xe & |
| (val ^ vmcs12->cr0_read_shadow)) |
| return 1; |
| if ((vmcs12->cr0_guest_host_mask & 0x1) && |
| !(vmcs12->cr0_read_shadow & 0x1) && |
| (val & 0x1)) |
| return 1; |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we |
| * should handle it ourselves in L0 (and then continue L2). Only call this |
| * when in is_guest_mode (L2). |
| */ |
| static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) |
| { |
| u32 exit_reason = vmcs_read32(VM_EXIT_REASON); |
| u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| if (vmx->nested.nested_run_pending) |
| return 0; |
| |
| if (unlikely(vmx->fail)) { |
| pr_info_ratelimited("%s failed vm entry %x\n", __func__, |
| vmcs_read32(VM_INSTRUCTION_ERROR)); |
| return 1; |
| } |
| |
| switch (exit_reason) { |
| case EXIT_REASON_EXCEPTION_NMI: |
| if (!is_exception(intr_info)) |
| return 0; |
| else if (is_page_fault(intr_info)) |
| return enable_ept; |
| return vmcs12->exception_bitmap & |
| (1u << (intr_info & INTR_INFO_VECTOR_MASK)); |
| case EXIT_REASON_EXTERNAL_INTERRUPT: |
| return 0; |
| case EXIT_REASON_TRIPLE_FAULT: |
| return 1; |
| case EXIT_REASON_PENDING_INTERRUPT: |
| case EXIT_REASON_NMI_WINDOW: |
| /* |
| * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit |
| * (aka Interrupt Window Exiting) only when L1 turned it on, |
| * so if we got a PENDING_INTERRUPT exit, this must be for L1. |
| * Same for NMI Window Exiting. |
| */ |
| return 1; |
| case EXIT_REASON_TASK_SWITCH: |
| return 1; |
| case EXIT_REASON_CPUID: |
| return 1; |
| case EXIT_REASON_HLT: |
| return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); |
| case EXIT_REASON_INVD: |
| return 1; |
| case EXIT_REASON_INVLPG: |
| return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| case EXIT_REASON_RDPMC: |
| return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); |
| case EXIT_REASON_RDTSC: |
| return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); |
| case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: |
| case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: |
| case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: |
| case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: |
| case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: |
| /* |
| * VMX instructions trap unconditionally. This allows L1 to |
| * emulate them for its L2 guest, i.e., allows 3-level nesting! |
| */ |
| return 1; |
| case EXIT_REASON_CR_ACCESS: |
| return nested_vmx_exit_handled_cr(vcpu, vmcs12); |
| case EXIT_REASON_DR_ACCESS: |
| return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); |
| case EXIT_REASON_IO_INSTRUCTION: |
| /* TODO: support IO bitmaps */ |
| return 1; |
| case EXIT_REASON_MSR_READ: |
| case EXIT_REASON_MSR_WRITE: |
| return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); |
| case EXIT_REASON_INVALID_STATE: |
| return 1; |
| case EXIT_REASON_MWAIT_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); |
| case EXIT_REASON_MONITOR_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); |
| case EXIT_REASON_PAUSE_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || |
| nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_PAUSE_LOOP_EXITING); |
| case EXIT_REASON_MCE_DURING_VMENTRY: |
| return 0; |
| case EXIT_REASON_TPR_BELOW_THRESHOLD: |
| return 1; |
| case EXIT_REASON_APIC_ACCESS: |
| return nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); |
| case EXIT_REASON_EPT_VIOLATION: |
| case EXIT_REASON_EPT_MISCONFIG: |
| return 0; |
| case EXIT_REASON_WBINVD: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); |
| case EXIT_REASON_XSETBV: |
| return 1; |
| default: |
| return 1; |
| } |
| } |
| |
| static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) |
| { |
| *info1 = vmcs_readl(EXIT_QUALIFICATION); |
| *info2 = vmcs_read32(VM_EXIT_INTR_INFO); |
| } |
| |
| /* |
| * The guest has exited. See if we can fix it or if we need userspace |
| * assistance. |
| */ |
| static int vmx_handle_exit(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 exit_reason = vmx->exit_reason; |
| u32 vectoring_info = vmx->idt_vectoring_info; |
| |
| /* If guest state is invalid, start emulating */ |
| if (vmx->emulation_required && emulate_invalid_guest_state) |
| return handle_invalid_guest_state(vcpu); |
| |
| /* |
| * the KVM_REQ_EVENT optimization bit is only on for one entry, and if |
| * we did not inject a still-pending event to L1 now because of |
| * nested_run_pending, we need to re-enable this bit. |
| */ |
| if (vmx->nested.nested_run_pending) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH || |
| exit_reason == EXIT_REASON_VMRESUME)) |
| vmx->nested.nested_run_pending = 1; |
| else |
| vmx->nested.nested_run_pending = 0; |
| |
| if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) { |
| nested_vmx_vmexit(vcpu); |
| return 1; |
| } |
| |
| if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { |
| vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| vcpu->run->fail_entry.hardware_entry_failure_reason |
| = exit_reason; |
| return 0; |
| } |
| |
| if (unlikely(vmx->fail)) { |
| vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| vcpu->run->fail_entry.hardware_entry_failure_reason |
| = vmcs_read32(VM_INSTRUCTION_ERROR); |
| return 0; |
| } |
| |
| if ((vectoring_info & VECTORING_INFO_VALID_MASK) && |
| (exit_reason != EXIT_REASON_EXCEPTION_NMI && |
| exit_reason != EXIT_REASON_EPT_VIOLATION && |
| exit_reason != EXIT_REASON_TASK_SWITCH)) |
| printk(KERN_WARNING "%s: unexpected, valid vectoring info " |
| "(0x%x) and exit reason is 0x%x\n", |
| __func__, vectoring_info, exit_reason); |
| |
| if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked && |
| !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis( |
| get_vmcs12(vcpu), vcpu)))) { |
| if (vmx_interrupt_allowed(vcpu)) { |
| vmx->soft_vnmi_blocked = 0; |
| } else if (vmx->vnmi_blocked_time > 1000000000LL && |
| vcpu->arch.nmi_pending) { |
| /* |
| * This CPU don't support us in finding the end of an |
| * NMI-blocked window if the guest runs with IRQs |
| * disabled. So we pull the trigger after 1 s of |
| * futile waiting, but inform the user about this. |
| */ |
| printk(KERN_WARNING "%s: Breaking out of NMI-blocked " |
| "state on VCPU %d after 1 s timeout\n", |
| __func__, vcpu->vcpu_id); |
| vmx->soft_vnmi_blocked = 0; |
| } |
| } |
| |
| if (exit_reason < kvm_vmx_max_exit_handlers |
| && kvm_vmx_exit_handlers[exit_reason]) |
| return kvm_vmx_exit_handlers[exit_reason](vcpu); |
| else { |
| vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
| vcpu->run->hw.hardware_exit_reason = exit_reason; |
| } |
| return 0; |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| { |
| if (irr == -1 || tpr < irr) { |
| vmcs_write32(TPR_THRESHOLD, 0); |
| return; |
| } |
| |
| vmcs_write32(TPR_THRESHOLD, irr); |
| } |
| |
| static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) |
| { |
| u32 exit_intr_info; |
| |
| if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY |
| || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)) |
| return; |
| |
| vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| exit_intr_info = vmx->exit_intr_info; |
| |
| /* Handle machine checks before interrupts are enabled */ |
| if (is_machine_check(exit_intr_info)) |
| kvm_machine_check(); |
| |
| /* We need to handle NMIs before interrupts are enabled */ |
| if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR && |
| (exit_intr_info & INTR_INFO_VALID_MASK)) { |
| kvm_before_handle_nmi(&vmx->vcpu); |
| asm("int $2"); |
| kvm_after_handle_nmi(&vmx->vcpu); |
| } |
| } |
| |
| static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) |
| { |
| u32 exit_intr_info; |
| bool unblock_nmi; |
| u8 vector; |
| bool idtv_info_valid; |
| |
| idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| |
| if (cpu_has_virtual_nmis()) { |
| if (vmx->nmi_known_unmasked) |
| return; |
| /* |
| * Can't use vmx->exit_intr_info since we're not sure what |
| * the exit reason is. |
| */ |
| exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; |
| vector = exit_intr_info & INTR_INFO_VECTOR_MASK; |
| /* |
| * SDM 3: 27.7.1.2 (September 2008) |
| * Re-set bit "block by NMI" before VM entry if vmexit caused by |
| * a guest IRET fault. |
| * SDM 3: 23.2.2 (September 2008) |
| * Bit 12 is undefined in any of the following cases: |
| * If the VM exit sets the valid bit in the IDT-vectoring |
| * information field. |
| * If the VM exit is due to a double fault. |
| */ |
| if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && |
| vector != DF_VECTOR && !idtv_info_valid) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| else |
| vmx->nmi_known_unmasked = |
| !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
| & GUEST_INTR_STATE_NMI); |
| } else if (unlikely(vmx->soft_vnmi_blocked)) |
| vmx->vnmi_blocked_time += |
| ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); |
| } |
| |
| static void __vmx_complete_interrupts(struct vcpu_vmx *vmx, |
| u32 idt_vectoring_info, |
| int instr_len_field, |
| int error_code_field) |
| { |
| u8 vector; |
| int type; |
| bool idtv_info_valid; |
| |
| idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| |
| vmx->vcpu.arch.nmi_injected = false; |
| kvm_clear_exception_queue(&vmx->vcpu); |
| kvm_clear_interrupt_queue(&vmx->vcpu); |
| |
| if (!idtv_info_valid) |
| return; |
| |
| kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); |
| |
| vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; |
| type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; |
| |
| switch (type) { |
| case INTR_TYPE_NMI_INTR: |
| vmx->vcpu.arch.nmi_injected = true; |
| /* |
| * SDM 3: 27.7.1.2 (September 2008) |
| * Clear bit "block by NMI" before VM entry if a NMI |
| * delivery faulted. |
| */ |
| vmx_set_nmi_mask(&vmx->vcpu, false); |
| break; |
| case INTR_TYPE_SOFT_EXCEPTION: |
| vmx->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(instr_len_field); |
| /* fall through */ |
| case INTR_TYPE_HARD_EXCEPTION: |
| if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { |
| u32 err = vmcs_read32(error_code_field); |
| kvm_queue_exception_e(&vmx->vcpu, vector, err); |
| } else |
| kvm_queue_exception(&vmx->vcpu, vector); |
| break; |
| case INTR_TYPE_SOFT_INTR: |
| vmx->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(instr_len_field); |
| /* fall through */ |
| case INTR_TYPE_EXT_INTR: |
| kvm_queue_interrupt(&vmx->vcpu, vector, |
| type == INTR_TYPE_SOFT_INTR); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void vmx_complete_interrupts(struct vcpu_vmx *vmx) |
| { |
| if (is_guest_mode(&vmx->vcpu)) |
| return; |
| __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info, |
| VM_EXIT_INSTRUCTION_LEN, |
| IDT_VECTORING_ERROR_CODE); |
| } |
| |
| static void vmx_cancel_injection(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) |
| return; |
| __vmx_complete_interrupts(to_vmx(vcpu), |
| vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), |
| VM_ENTRY_INSTRUCTION_LEN, |
| VM_ENTRY_EXCEPTION_ERROR_CODE); |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
| } |
| |
| static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) |
| { |
| int i, nr_msrs; |
| struct perf_guest_switch_msr *msrs; |
| |
| msrs = perf_guest_get_msrs(&nr_msrs); |
| |
| if (!msrs) |
| return; |
| |
| for (i = 0; i < nr_msrs; i++) |
| if (msrs[i].host == msrs[i].guest) |
| clear_atomic_switch_msr(vmx, msrs[i].msr); |
| else |
| add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, |
| msrs[i].host); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| #define R "r" |
| #define Q "q" |
| #else |
| #define R "e" |
| #define Q "l" |
| #endif |
| |
| static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| if (vmcs12->idt_vectoring_info_field & |
| VECTORING_INFO_VALID_MASK) { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| vmcs12->idt_vectoring_info_field); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmcs12->vm_exit_instruction_len); |
| if (vmcs12->idt_vectoring_info_field & |
| VECTORING_INFO_DELIVER_CODE_MASK) |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, |
| vmcs12->idt_vectoring_error_code); |
| } |
| } |
| |
| /* Record the guest's net vcpu time for enforced NMI injections. */ |
| if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) |
| vmx->entry_time = ktime_get(); |
| |
| /* Don't enter VMX if guest state is invalid, let the exit handler |
| start emulation until we arrive back to a valid state */ |
| if (vmx->emulation_required && emulate_invalid_guest_state) |
| return; |
| |
| if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) |
| vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); |
| if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) |
| vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); |
| |
| /* When single-stepping over STI and MOV SS, we must clear the |
| * corresponding interruptibility bits in the guest state. Otherwise |
| * vmentry fails as it then expects bit 14 (BS) in pending debug |
| * exceptions being set, but that's not correct for the guest debugging |
| * case. */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| vmx_set_interrupt_shadow(vcpu, 0); |
| |
| atomic_switch_perf_msrs(vmx); |
| |
| vmx->__launched = vmx->loaded_vmcs->launched; |
| asm( |
| /* Store host registers */ |
| "push %%"R"dx; push %%"R"bp;" |
| "push %%"R"cx \n\t" /* placeholder for guest rcx */ |
| "push %%"R"cx \n\t" |
| "cmp %%"R"sp, %c[host_rsp](%0) \n\t" |
| "je 1f \n\t" |
| "mov %%"R"sp, %c[host_rsp](%0) \n\t" |
| __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" |
| "1: \n\t" |
| /* Reload cr2 if changed */ |
| "mov %c[cr2](%0), %%"R"ax \n\t" |
| "mov %%cr2, %%"R"dx \n\t" |
| "cmp %%"R"ax, %%"R"dx \n\t" |
| "je 2f \n\t" |
| "mov %%"R"ax, %%cr2 \n\t" |
| "2: \n\t" |
| /* Check if vmlaunch of vmresume is needed */ |
| "cmpl $0, %c[launched](%0) \n\t" |
| /* Load guest registers. Don't clobber flags. */ |
| "mov %c[rax](%0), %%"R"ax \n\t" |
| "mov %c[rbx](%0), %%"R"bx \n\t" |
| "mov %c[rdx](%0), %%"R"dx \n\t" |
| "mov %c[rsi](%0), %%"R"si \n\t" |
| "mov %c[rdi](%0), %%"R"di \n\t" |
| "mov %c[rbp](%0), %%"R"bp \n\t" |
| #ifdef CONFIG_X86_64 |
| "mov %c[r8](%0), %%r8 \n\t" |
| "mov %c[r9](%0), %%r9 \n\t" |
| "mov %c[r10](%0), %%r10 \n\t" |
| "mov %c[r11](%0), %%r11 \n\t" |
| "mov %c[r12](%0), %%r12 \n\t" |
| "mov %c[r13](%0), %%r13 \n\t" |
| "mov %c[r14](%0), %%r14 \n\t" |
| "mov %c[r15](%0), %%r15 \n\t" |
| #endif |
| "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */ |
| |
| /* Enter guest mode */ |
| "jne .Llaunched \n\t" |
| __ex(ASM_VMX_VMLAUNCH) "\n\t" |
| "jmp .Lkvm_vmx_return \n\t" |
| ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t" |
| ".Lkvm_vmx_return: " |
| /* Save guest registers, load host registers, keep flags */ |
| "mov %0, %c[wordsize](%%"R"sp) \n\t" |
| "pop %0 \n\t" |
| "mov %%"R"ax, %c[rax](%0) \n\t" |
| "mov %%"R"bx, %c[rbx](%0) \n\t" |
| "pop"Q" %c[rcx](%0) \n\t" |
| "mov %%"R"dx, %c[rdx](%0) \n\t" |
| "mov %%"R"si, %c[rsi](%0) \n\t" |
| "mov %%"R"di, %c[rdi](%0) \n\t" |
| "mov %%"R"bp, %c[rbp](%0) \n\t" |
| #ifdef CONFIG_X86_64 |
| "mov %%r8, %c[r8](%0) \n\t" |
| "mov %%r9, %c[r9](%0) \n\t" |
| "mov %%r10, %c[r10](%0) \n\t" |
| "mov %%r11, %c[r11](%0) \n\t" |
| "mov %%r12, %c[r12](%0) \n\t" |
| "mov %%r13, %c[r13](%0) \n\t" |
| "mov %%r14, %c[r14](%0) \n\t" |
| "mov %%r15, %c[r15](%0) \n\t" |
| #endif |
| "mov %%cr2, %%"R"ax \n\t" |
| "mov %%"R"ax, %c[cr2](%0) \n\t" |
| |
| "pop %%"R"bp; pop %%"R"dx \n\t" |
| "setbe %c[fail](%0) \n\t" |
| : : "c"(vmx), "d"((unsigned long)HOST_RSP), |
| [launched]"i"(offsetof(struct vcpu_vmx, __launched)), |
| [fail]"i"(offsetof(struct vcpu_vmx, fail)), |
| [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), |
| [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), |
| [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), |
| [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), |
| [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), |
| [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), |
| [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), |
| [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), |
| #ifdef CONFIG_X86_64 |
| [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), |
| [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), |
| [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), |
| [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), |
| [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), |
| [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), |
| [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), |
| [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), |
| #endif |
| [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), |
| [wordsize]"i"(sizeof(ulong)) |
| : "cc", "memory" |
| , R"ax", R"bx", R"di", R"si" |
| #ifdef CONFIG_X86_64 |
| , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| #endif |
| ); |
| |
| vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) |
| | (1 << VCPU_EXREG_RFLAGS) |
| | (1 << VCPU_EXREG_CPL) |
| | (1 << VCPU_EXREG_PDPTR) |
| | (1 << VCPU_EXREG_SEGMENTS) |
| | (1 << VCPU_EXREG_CR3)); |
| vcpu->arch.regs_dirty = 0; |
| |
| vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| |
| if (is_guest_mode(vcpu)) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info; |
| if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) { |
| vmcs12->idt_vectoring_error_code = |
| vmcs_read32(IDT_VECTORING_ERROR_CODE); |
| vmcs12->vm_exit_instruction_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| } |
| } |
| |
| asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); |
| vmx->loaded_vmcs->launched = 1; |
| |
| vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); |
| trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX); |
| |
| vmx_complete_atomic_exit(vmx); |
| vmx_recover_nmi_blocking(vmx); |
| vmx_complete_interrupts(vmx); |
| } |
| |
| #undef R |
| #undef Q |
| |
| static void vmx_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| free_vpid(vmx); |
| free_nested(vmx); |
| free_loaded_vmcs(vmx->loaded_vmcs); |
| kfree(vmx->guest_msrs); |
| kvm_vcpu_uninit(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, vmx); |
| } |
| |
| static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) |
| { |
| int err; |
| struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| int cpu; |
| |
| if (!vmx) |
| return ERR_PTR(-ENOMEM); |
| |
| allocate_vpid(vmx); |
| |
| err = kvm_vcpu_init(&vmx->vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| err = -ENOMEM; |
| if (!vmx->guest_msrs) { |
| goto uninit_vcpu; |
| } |
| |
| vmx->loaded_vmcs = &vmx->vmcs01; |
| vmx->loaded_vmcs->vmcs = alloc_vmcs(); |
| if (!vmx->loaded_vmcs->vmcs) |
| goto free_msrs; |
| if (!vmm_exclusive) |
| kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id()))); |
| loaded_vmcs_init(vmx->loaded_vmcs); |
| if (!vmm_exclusive) |
| kvm_cpu_vmxoff(); |
| |
| cpu = get_cpu(); |
| vmx_vcpu_load(&vmx->vcpu, cpu); |
| vmx->vcpu.cpu = cpu; |
| err = vmx_vcpu_setup(vmx); |
| vmx_vcpu_put(&vmx->vcpu); |
| put_cpu(); |
| if (err) |
| goto free_vmcs; |
| if (vm_need_virtualize_apic_accesses(kvm)) |
| err = alloc_apic_access_page(kvm); |
| if (err) |
| goto free_vmcs; |
| |
| if (enable_ept) { |
| if (!kvm->arch.ept_identity_map_addr) |
| kvm->arch.ept_identity_map_addr = |
| VMX_EPT_IDENTITY_PAGETABLE_ADDR; |
| err = -ENOMEM; |
| if (alloc_identity_pagetable(kvm) != 0) |
| goto free_vmcs; |
| if (!init_rmode_identity_map(kvm)) |
| goto free_vmcs; |
| } |
| |
| vmx->nested.current_vmptr = -1ull; |
| vmx->nested.current_vmcs12 = NULL; |
| |
| return &vmx->vcpu; |
| |
| free_vmcs: |
| free_vmcs(vmx->loaded_vmcs->vmcs); |
| free_msrs: |
| kfree(vmx->guest_msrs); |
| uninit_vcpu: |
| kvm_vcpu_uninit(&vmx->vcpu); |
| free_vcpu: |
| free_vpid(vmx); |
| kmem_cache_free(kvm_vcpu_cache, vmx); |
| return ERR_PTR(err); |
| } |
| |
| static void __init vmx_check_processor_compat(void *rtn) |
| { |
| struct vmcs_config vmcs_conf; |
| |
| *(int *)rtn = 0; |
| if (setup_vmcs_config(&vmcs_conf) < 0) |
| *(int *)rtn = -EIO; |
| if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { |
| printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", |
| smp_processor_id()); |
| *(int *)rtn = -EIO; |
| } |
| } |
| |
| static int get_ept_level(void) |
| { |
| return VMX_EPT_DEFAULT_GAW + 1; |
| } |
| |
| static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| { |
| u64 ret; |
| |
| /* For VT-d and EPT combination |
| * 1. MMIO: always map as UC |
| * 2. EPT with VT-d: |
| * a. VT-d without snooping control feature: can't guarantee the |
| * result, try to trust guest. |
| * b. VT-d with snooping control feature: snooping control feature of |
| * VT-d engine can guarantee the cache correctness. Just set it |
| * to WB to keep consistent with host. So the same as item 3. |
| * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep |
| * consistent with host MTRR |
| */ |
| if (is_mmio) |
| ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; |
| else if (vcpu->kvm->arch.iommu_domain && |
| !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY)) |
| ret = kvm_get_guest_memory_type(vcpu, gfn) << |
| VMX_EPT_MT_EPTE_SHIFT; |
| else |
| ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) |
| | VMX_EPT_IPAT_BIT; |
| |
| return ret; |
| } |
| |
| static int vmx_get_lpage_level(void) |
| { |
| if (enable_ept && !cpu_has_vmx_ept_1g_page()) |
| return PT_DIRECTORY_LEVEL; |
| else |
| /* For shadow and EPT supported 1GB page */ |
| return PT_PDPE_LEVEL; |
| } |
| |
| static void vmx_cpuid_update(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 exec_control; |
| |
| vmx->rdtscp_enabled = false; |
| if (vmx_rdtscp_supported()) { |
| exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); |
| if (exec_control & SECONDARY_EXEC_RDTSCP) { |
| best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
| if (best && (best->edx & bit(X86_FEATURE_RDTSCP))) |
| vmx->rdtscp_enabled = true; |
| else { |
| exec_control &= ~SECONDARY_EXEC_RDTSCP; |
| vmcs_write32(SECONDARY_VM_EXEC_CONTROL, |
| exec_control); |
| } |
| } |
| } |
| } |
| |
| static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) |
| { |
| if (func == 1 && nested) |
| entry->ecx |= bit(X86_FEATURE_VMX); |
| } |
| |
| /* |
| * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested |
| * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it |
| * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2 |
| * guest in a way that will both be appropriate to L1's requests, and our |
| * needs. In addition to modifying the active vmcs (which is vmcs02), this |
| * function also has additional necessary side-effects, like setting various |
| * vcpu->arch fields. |
| */ |
| static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 exec_control; |
| |
| vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); |
| vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); |
| vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); |
| vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); |
| vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); |
| vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); |
| vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); |
| vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); |
| vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); |
| vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); |
| vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); |
| vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); |
| vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); |
| vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); |
| vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); |
| vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); |
| vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); |
| vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); |
| vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); |
| vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); |
| vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); |
| vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); |
| vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); |
| vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); |
| vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); |
| vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); |
| vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); |
| vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); |
| vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); |
| vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); |
| vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); |
| vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); |
| vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); |
| |
| vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| vmcs12->vm_entry_intr_info_field); |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, |
| vmcs12->vm_entry_exception_error_code); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmcs12->vm_entry_instruction_len); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, |
| vmcs12->guest_interruptibility_info); |
| vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state); |
| vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); |
| vmcs_writel(GUEST_DR7, vmcs12->guest_dr7); |
| vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags); |
| vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, |
| vmcs12->guest_pending_dbg_exceptions); |
| vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); |
| vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); |
| |
| vmcs_write64(VMCS_LINK_POINTER, -1ull); |
| |
| vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, |
| (vmcs_config.pin_based_exec_ctrl | |
| vmcs12->pin_based_vm_exec_control)); |
| |
| /* |
| * Whether page-faults are trapped is determined by a combination of |
| * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. |
| * If enable_ept, L0 doesn't care about page faults and we should |
| * set all of these to L1's desires. However, if !enable_ept, L0 does |
| * care about (at least some) page faults, and because it is not easy |
| * (if at all possible?) to merge L0 and L1's desires, we simply ask |
| * to exit on each and every L2 page fault. This is done by setting |
| * MASK=MATCH=0 and (see below) EB.PF=1. |
| * Note that below we don't need special code to set EB.PF beyond the |
| * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, |
| * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when |
| * !enable_ept, EB.PF is 1, so the "or" will always be 1. |
| * |
| * A problem with this approach (when !enable_ept) is that L1 may be |
| * injected with more page faults than it asked for. This could have |
| * caused problems, but in practice existing hypervisors don't care. |
| * To fix this, we will need to emulate the PFEC checking (on the L1 |
| * page tables), using walk_addr(), when injecting PFs to L1. |
| */ |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, |
| enable_ept ? vmcs12->page_fault_error_code_mask : 0); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, |
| enable_ept ? vmcs12->page_fault_error_code_match : 0); |
| |
| if (cpu_has_secondary_exec_ctrls()) { |
| u32 exec_control = vmx_secondary_exec_control(vmx); |
| if (!vmx->rdtscp_enabled) |
| exec_control &= ~SECONDARY_EXEC_RDTSCP; |
| /* Take the following fields only from vmcs12 */ |
| exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| if (nested_cpu_has(vmcs12, |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) |
| exec_control |= vmcs12->secondary_vm_exec_control; |
| |
| if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) { |
| /* |
| * Translate L1 physical address to host physical |
| * address for vmcs02. Keep the page pinned, so this |
| * physical address remains valid. We keep a reference |
| * to it so we can release it later. |
| */ |
| if (vmx->nested.apic_access_page) /* shouldn't happen */ |
| nested_release_page(vmx->nested.apic_access_page); |
| vmx->nested.apic_access_page = |
| nested_get_page(vcpu, vmcs12->apic_access_addr); |
| /* |
| * If translation failed, no matter: This feature asks |
| * to exit when accessing the given address, and if it |
| * can never be accessed, this feature won't do |
| * anything anyway. |
| */ |
| if (!vmx->nested.apic_access_page) |
| exec_control &= |
| ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| else |
| vmcs_write64(APIC_ACCESS_ADDR, |
| page_to_phys(vmx->nested.apic_access_page)); |
| } |
| |
| vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); |
| } |
| |
| |
| /* |
| * Set host-state according to L0's settings (vmcs12 is irrelevant here) |
| * Some constant fields are set here by vmx_set_constant_host_state(). |
| * Other fields are different per CPU, and will be set later when |
| * vmx_vcpu_load() is called, and when vmx_save_host_state() is called. |
| */ |
| vmx_set_constant_host_state(); |
| |
| /* |
| * HOST_RSP is normally set correctly in vmx_vcpu_run() just before |
| * entry, but only if the current (host) sp changed from the value |
| * we wrote last (vmx->host_rsp). This cache is no longer relevant |
| * if we switch vmcs, and rather than hold a separate cache per vmcs, |
| * here we just force the write to happen on entry. |
| */ |
| vmx->host_rsp = 0; |
| |
| exec_control = vmx_exec_control(vmx); /* L0's desires */ |
| exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| exec_control |= vmcs12->cpu_based_vm_exec_control; |
| /* |
| * Merging of IO and MSR bitmaps not currently supported. |
| * Rather, exit every time. |
| */ |
| exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; |
| exec_control &= ~CPU_BASED_USE_IO_BITMAPS; |
| exec_control |= CPU_BASED_UNCOND_IO_EXITING; |
| |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); |
| |
| /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the |
| * bitwise-or of what L1 wants to trap for L2, and what we want to |
| * trap. Note that CR0.TS also needs updating - we do this later. |
| */ |
| update_exception_bitmap(vcpu); |
| vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| |
| /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */ |
| vmcs_write32(VM_EXIT_CONTROLS, |
| vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl); |
| vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls | |
| (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); |
| |
| if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) |
| vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); |
| else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) |
| vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); |
| |
| |
| set_cr4_guest_host_mask(vmx); |
| |
| if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) |
| vmcs_write64(TSC_OFFSET, |
| vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset); |
| else |
| vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); |
| |
| if (enable_vpid) { |
| /* |
| * Trivially support vpid by letting L2s share their parent |
| * L1's vpid. TODO: move to a more elaborate solution, giving |
| * each L2 its own vpid and exposing the vpid feature to L1. |
| */ |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| vmx_flush_tlb(vcpu); |
| } |
| |
| if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) |
| vcpu->arch.efer = vmcs12->guest_ia32_efer; |
| if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) |
| vcpu->arch.efer |= (EFER_LMA | EFER_LME); |
| else |
| vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); |
| /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ |
| vmx_set_efer(vcpu, vcpu->arch.efer); |
| |
| /* |
| * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified |
| * TS bit (for lazy fpu) and bits which we consider mandatory enabled. |
| * The CR0_READ_SHADOW is what L2 should have expected to read given |
| * the specifications by L1; It's not enough to take |
| * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we |
| * have more bits than L1 expected. |
| */ |
| vmx_set_cr0(vcpu, vmcs12->guest_cr0); |
| vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); |
| |
| vmx_set_cr4(vcpu, vmcs12->guest_cr4); |
| vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); |
| |
| /* shadow page tables on either EPT or shadow page tables */ |
| kvm_set_cr3(vcpu, vmcs12->guest_cr3); |
| kvm_mmu_reset_context(vcpu); |
| |
| kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); |
| } |
| |
| /* |
| * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 |
| * for running an L2 nested guest. |
| */ |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) |
| { |
| struct vmcs12 *vmcs12; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int cpu; |
| struct loaded_vmcs *vmcs02; |
| |
| if (!nested_vmx_check_permission(vcpu) || |
| !nested_vmx_check_vmcs12(vcpu)) |
| return 1; |
| |
| skip_emulated_instruction(vcpu); |
| vmcs12 = get_vmcs12(vcpu); |
| |
| /* |
| * The nested entry process starts with enforcing various prerequisites |
| * on vmcs12 as required by the Intel SDM, and act appropriately when |
| * they fail: As the SDM explains, some conditions should cause the |
| * instruction to fail, while others will cause the instruction to seem |
| * to succeed, but return an EXIT_REASON_INVALID_STATE. |
| * To speed up the normal (success) code path, we should avoid checking |
| * for misconfigurations which will anyway be caught by the processor |
| * when using the merged vmcs02. |
| */ |
| if (vmcs12->launch_state == launch) { |
| nested_vmx_failValid(vcpu, |
| launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS |
| : VMXERR_VMRESUME_NONLAUNCHED_VMCS); |
| return 1; |
| } |
| |
| if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) && |
| !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) { |
| /*TODO: Also verify bits beyond physical address width are 0*/ |
| nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| return 1; |
| } |
| |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && |
| !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) { |
| /*TODO: Also verify bits beyond physical address width are 0*/ |
| nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| return 1; |
| } |
| |
| if (vmcs12->vm_entry_msr_load_count > 0 || |
| vmcs12->vm_exit_msr_load_count > 0 || |
| vmcs12->vm_exit_msr_store_count > 0) { |
| pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n", |
| __func__); |
| nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| return 1; |
| } |
| |
| if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, |
| nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) || |
| !vmx_control_verify(vmcs12->secondary_vm_exec_control, |
| nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) || |
| !vmx_control_verify(vmcs12->pin_based_vm_exec_control, |
| nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) || |
| !vmx_control_verify(vmcs12->vm_exit_controls, |
| nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) || |
| !vmx_control_verify(vmcs12->vm_entry_controls, |
| nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high)) |
| { |
| nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| return 1; |
| } |
| |
| if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || |
| ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { |
| nested_vmx_failValid(vcpu, |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| return 1; |
| } |
| |
| if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || |
| ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { |
| nested_vmx_entry_failure(vcpu, vmcs12, |
| EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); |
| return 1; |
| } |
| if (vmcs12->vmcs_link_pointer != -1ull) { |
| nested_vmx_entry_failure(vcpu, vmcs12, |
| EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR); |
| return 1; |
| } |
| |
| /* |
| * We're finally done with prerequisite checking, and can start with |
| * the nested entry. |
| */ |
| |
| vmcs02 = nested_get_current_vmcs02(vmx); |
| if (!vmcs02) |
| return -ENOMEM; |
| |
| enter_guest_mode(vcpu); |
| |
| vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET); |
| |
| cpu = get_cpu(); |
| vmx->loaded_vmcs = vmcs02; |
| vmx_vcpu_put(vcpu); |
| vmx_vcpu_load(vcpu, cpu); |
| vcpu->cpu = cpu; |
| put_cpu(); |
| |
| vmcs12->launch_state = 1; |
| |
| prepare_vmcs02(vcpu, vmcs12); |
| |
| /* |
| * Note no nested_vmx_succeed or nested_vmx_fail here. At this point |
| * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet |
| * returned as far as L1 is concerned. It will only return (and set |
| * the success flag) when L2 exits (see nested_vmx_vmexit()). |
| */ |
| return 1; |
| } |
| |
| /* |
| * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date |
| * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). |
| * This function returns the new value we should put in vmcs12.guest_cr0. |
| * It's not enough to just return the vmcs02 GUEST_CR0. Rather, |
| * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now |
| * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 |
| * didn't trap the bit, because if L1 did, so would L0). |
| * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have |
| * been modified by L2, and L1 knows it. So just leave the old value of |
| * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 |
| * isn't relevant, because if L0 traps this bit it can set it to anything. |
| * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have |
| * changed these bits, and therefore they need to be updated, but L0 |
| * didn't necessarily allow them to be changed in GUEST_CR0 - and rather |
| * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. |
| */ |
| static inline unsigned long |
| vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| return |
| /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | |
| /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | |
| /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | |
| vcpu->arch.cr0_guest_owned_bits)); |
| } |
| |
| static inline unsigned long |
| vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| return |
| /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | |
| /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | |
| /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | |
| vcpu->arch.cr4_guest_owned_bits)); |
| } |
| |
| /* |
| * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits |
| * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), |
| * and this function updates it to reflect the changes to the guest state while |
| * L2 was running (and perhaps made some exits which were handled directly by L0 |
| * without going back to L1), and to reflect the exit reason. |
| * Note that we do not have to copy here all VMCS fields, just those that |
| * could have changed by the L2 guest or the exit - i.e., the guest-state and |
| * exit-information fields only. Other fields are modified by L1 with VMWRITE, |
| * which already writes to vmcs12 directly. |
| */ |
| void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| /* update guest state fields: */ |
| vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); |
| vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); |
| |
| kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); |
| vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); |
| vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); |
| |
| vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); |
| vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); |
| vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); |
| vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); |
| vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); |
| vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); |
| vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); |
| vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); |
| vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); |
| vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); |
| vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); |
| vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); |
| vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); |
| vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); |
| vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); |
| vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); |
| vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); |
| vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); |
| vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); |
| vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); |
| vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); |
| vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); |
| vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); |
| vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); |
| vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); |
| vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); |
| vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); |
| vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); |
| vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); |
| vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); |
| vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); |
| vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); |
| vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); |
| vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); |
| vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); |
| vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); |
| |
| vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE); |
| vmcs12->guest_interruptibility_info = |
| vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| vmcs12->guest_pending_dbg_exceptions = |
| vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); |
| |
| /* TODO: These cannot have changed unless we have MSR bitmaps and |
| * the relevant bit asks not to trap the change */ |
| vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT) |
| vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); |
| vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); |
| vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); |
| vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); |
| |
| /* update exit information fields: */ |
| |
| vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON); |
| vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| vmcs12->idt_vectoring_info_field = |
| vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| vmcs12->idt_vectoring_error_code = |
| vmcs_read32(IDT_VECTORING_ERROR_CODE); |
| vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| |
| /* clear vm-entry fields which are to be cleared on exit */ |
| if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) |
| vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; |
| } |
| |
| /* |
| * A part of what we need to when the nested L2 guest exits and we want to |
| * run its L1 parent, is to reset L1's guest state to the host state specified |
| * in vmcs12. |
| * This function is to be called not only on normal nested exit, but also on |
| * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry |
| * Failures During or After Loading Guest State"). |
| * This function should be called when the active VMCS is L1's (vmcs01). |
| */ |
| void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) |
| vcpu->arch.efer = vmcs12->host_ia32_efer; |
| if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| vcpu->arch.efer |= (EFER_LMA | EFER_LME); |
| else |
| vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); |
| vmx_set_efer(vcpu, vcpu->arch.efer); |
| |
| kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); |
| /* |
| * Note that calling vmx_set_cr0 is important, even if cr0 hasn't |
| * actually changed, because it depends on the current state of |
| * fpu_active (which may have changed). |
| * Note that vmx_set_cr0 refers to efer set above. |
| */ |
| kvm_set_cr0(vcpu, vmcs12->host_cr0); |
| /* |
| * If we did fpu_activate()/fpu_deactivate() during L2's run, we need |
| * to apply the same changes to L1's vmcs. We just set cr0 correctly, |
| * but we also need to update cr0_guest_host_mask and exception_bitmap. |
| */ |
| update_exception_bitmap(vcpu); |
| vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0); |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| |
| /* |
| * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01 |
| * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask(); |
| */ |
| vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| kvm_set_cr4(vcpu, vmcs12->host_cr4); |
| |
| /* shadow page tables on either EPT or shadow page tables */ |
| kvm_set_cr3(vcpu, vmcs12->host_cr3); |
| kvm_mmu_reset_context(vcpu); |
| |
| if (enable_vpid) { |
| /* |
| * Trivially support vpid by letting L2s share their parent |
| * L1's vpid. TODO: move to a more elaborate solution, giving |
| * each L2 its own vpid and exposing the vpid feature to L1. |
| */ |
| vmx_flush_tlb(vcpu); |
| } |
| |
| |
| vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); |
| vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); |
| vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); |
| vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); |
| vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); |
| vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base); |
| vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base); |
| vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base); |
| vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector); |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector); |
| vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector); |
| vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector); |
| vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector); |
| vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector); |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) |
| vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) |
| vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, |
| vmcs12->host_ia32_perf_global_ctrl); |
| } |
| |
| /* |
| * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 |
| * and modify vmcs12 to make it see what it would expect to see there if |
| * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) |
| */ |
| static void nested_vmx_vmexit(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int cpu; |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| leave_guest_mode(vcpu); |
| prepare_vmcs12(vcpu, vmcs12); |
| |
| cpu = get_cpu(); |
| vmx->loaded_vmcs = &vmx->vmcs01; |
| vmx_vcpu_put(vcpu); |
| vmx_vcpu_load(vcpu, cpu); |
| vcpu->cpu = cpu; |
| put_cpu(); |
| |
| /* if no vmcs02 cache requested, remove the one we used */ |
| if (VMCS02_POOL_SIZE == 0) |
| nested_free_vmcs02(vmx, vmx->nested.current_vmptr); |
| |
| load_vmcs12_host_state(vcpu, vmcs12); |
| |
| /* Update TSC_OFFSET if TSC was changed while L2 ran */ |
| vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); |
| |
| /* This is needed for same reason as it was needed in prepare_vmcs02 */ |
| vmx->host_rsp = 0; |
| |
| /* Unpin physical memory we referred to in vmcs02 */ |
| if (vmx->nested.apic_access_page) { |
| nested_release_page(vmx->nested.apic_access_page); |
| vmx->nested.apic_access_page = 0; |
| } |
| |
| /* |
| * Exiting from L2 to L1, we're now back to L1 which thinks it just |
| * finished a VMLAUNCH or VMRESUME instruction, so we need to set the |
| * success or failure flag accordingly. |
| */ |
| if (unlikely(vmx->fail)) { |
| vmx->fail = 0; |
| nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| } else |
| nested_vmx_succeed(vcpu); |
| } |
| |
| /* |
| * L1's failure to enter L2 is a subset of a normal exit, as explained in |
| * 23.7 "VM-entry failures during or after loading guest state" (this also |
| * lists the acceptable exit-reason and exit-qualification parameters). |
| * It should only be called before L2 actually succeeded to run, and when |
| * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). |
| */ |
| static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| u32 reason, unsigned long qualification) |
| { |
| load_vmcs12_host_state(vcpu, vmcs12); |
| vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; |
| vmcs12->exit_qualification = qualification; |
| nested_vmx_succeed(vcpu); |
| } |
| |
| static int vmx_check_intercept(struct kvm_vcpu *vcpu, |
| struct x86_instruction_info *info, |
| enum x86_intercept_stage stage) |
| { |
| return X86EMUL_CONTINUE; |
| } |
| |
| static struct kvm_x86_ops vmx_x86_ops = { |
| .cpu_has_kvm_support = cpu_has_kvm_support, |
| .disabled_by_bios = vmx_disabled_by_bios, |
| .hardware_setup = hardware_setup, |
| .hardware_unsetup = hardware_unsetup, |
| .check_processor_compatibility = vmx_check_processor_compat, |
| .hardware_enable = hardware_enable, |
| .hardware_disable = hardware_disable, |
| .cpu_has_accelerated_tpr = report_flexpriority, |
| |
| .vcpu_create = vmx_create_vcpu, |
| .vcpu_free = vmx_free_vcpu, |
| .vcpu_reset = vmx_vcpu_reset, |
| |
| .prepare_guest_switch = vmx_save_host_state, |
| .vcpu_load = vmx_vcpu_load, |
| .vcpu_put = vmx_vcpu_put, |
| |
| .set_guest_debug = set_guest_debug, |
| .get_msr = vmx_get_msr, |
| .set_msr = vmx_set_msr, |
| .get_segment_base = vmx_get_segment_base, |
| .get_segment = vmx_get_segment, |
| .set_segment = vmx_set_segment, |
| .get_cpl = vmx_get_cpl, |
| .get_cs_db_l_bits = vmx_get_cs_db_l_bits, |
| .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, |
| .decache_cr3 = vmx_decache_cr3, |
| .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, |
| .set_cr0 = vmx_set_cr0, |
| .set_cr3 = vmx_set_cr3, |
| .set_cr4 = vmx_set_cr4, |
| .set_efer = vmx_set_efer, |
| .get_idt = vmx_get_idt, |
| .set_idt = vmx_set_idt, |
| .get_gdt = vmx_get_gdt, |
| .set_gdt = vmx_set_gdt, |
| .set_dr7 = vmx_set_dr7, |
| .cache_reg = vmx_cache_reg, |
| .get_rflags = vmx_get_rflags, |
| .set_rflags = vmx_set_rflags, |
| .fpu_activate = vmx_fpu_activate, |
| .fpu_deactivate = vmx_fpu_deactivate, |
| |
| .tlb_flush = vmx_flush_tlb, |
| |
| .run = vmx_vcpu_run, |
| .handle_exit = vmx_handle_exit, |
| .skip_emulated_instruction = skip_emulated_instruction, |
| .set_interrupt_shadow = vmx_set_interrupt_shadow, |
| .get_interrupt_shadow = vmx_get_interrupt_shadow, |
| .patch_hypercall = vmx_patch_hypercall, |
| .set_irq = vmx_inject_irq, |
| .set_nmi = vmx_inject_nmi, |
| .queue_exception = vmx_queue_exception, |
| .cancel_injection = vmx_cancel_injection, |
| .interrupt_allowed = vmx_interrupt_allowed, |
| .nmi_allowed = vmx_nmi_allowed, |
| .get_nmi_mask = vmx_get_nmi_mask, |
| .set_nmi_mask = vmx_set_nmi_mask, |
| .enable_nmi_window = enable_nmi_window, |
| .enable_irq_window = enable_irq_window, |
| .update_cr8_intercept = update_cr8_intercept, |
| |
| .set_tss_addr = vmx_set_tss_addr, |
| .get_tdp_level = get_ept_level, |
| .get_mt_mask = vmx_get_mt_mask, |
| |
| .get_exit_info = vmx_get_exit_info, |
| |
| .get_lpage_level = vmx_get_lpage_level, |
| |
| .cpuid_update = vmx_cpuid_update, |
| |
| .rdtscp_supported = vmx_rdtscp_supported, |
| |
| .set_supported_cpuid = vmx_set_supported_cpuid, |
| |
| .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, |
| |
| .set_tsc_khz = vmx_set_tsc_khz, |
| .write_tsc_offset = vmx_write_tsc_offset, |
| .adjust_tsc_offset = vmx_adjust_tsc_offset, |
| .compute_tsc_offset = vmx_compute_tsc_offset, |
| .read_l1_tsc = vmx_read_l1_tsc, |
| |
| .set_tdp_cr3 = vmx_set_cr3, |
| |
| .check_intercept = vmx_check_intercept, |
| }; |
| |
| static int __init vmx_init(void) |
| { |
| int r, i; |
| |
| rdmsrl_safe(MSR_EFER, &host_efer); |
| |
| for (i = 0; i < NR_VMX_MSR; ++i) |
| kvm_define_shared_msr(i, vmx_msr_index[i]); |
| |
| vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_io_bitmap_a) |
| return -ENOMEM; |
| |
| vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_io_bitmap_b) { |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_msr_bitmap_legacy) { |
| r = -ENOMEM; |
| goto out1; |
| } |
| |
| vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL); |
| if (!vmx_msr_bitmap_longmode) { |
| r = -ENOMEM; |
| goto out2; |
| } |
| |
| /* |
| * Allow direct access to the PC debug port (it is often used for I/O |
| * delays, but the vmexits simply slow things down). |
| */ |
| memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); |
| clear_bit(0x80, vmx_io_bitmap_a); |
| |
| memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); |
| |
| memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE); |
| memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE); |
| |
| set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ |
| |
| r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), |
| __alignof__(struct vcpu_vmx), THIS_MODULE); |
| if (r) |
| goto out3; |
| |
| vmx_disable_intercept_for_msr(MSR_FS_BASE, false); |
| vmx_disable_intercept_for_msr(MSR_GS_BASE, false); |
| vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true); |
| vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false); |
| vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false); |
| vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false); |
| |
| if (enable_ept) { |
| kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull, |
| VMX_EPT_EXECUTABLE_MASK); |
| ept_set_mmio_spte_mask(); |
| kvm_enable_tdp(); |
| } else |
| kvm_disable_tdp(); |
| |
| return 0; |
| |
| out3: |
| free_page((unsigned long)vmx_msr_bitmap_longmode); |
| out2: |
| free_page((unsigned long)vmx_msr_bitmap_legacy); |
| out1: |
| free_page((unsigned long)vmx_io_bitmap_b); |
| out: |
| free_page((unsigned long)vmx_io_bitmap_a); |
| return r; |
| } |
| |
| static void __exit vmx_exit(void) |
| { |
| free_page((unsigned long)vmx_msr_bitmap_legacy); |
| free_page((unsigned long)vmx_msr_bitmap_longmode); |
| free_page((unsigned long)vmx_io_bitmap_b); |
| free_page((unsigned long)vmx_io_bitmap_a); |
| |
| kvm_exit(); |
| } |
| |
| module_init(vmx_init) |
| module_exit(vmx_exit) |