| /* |
| * SBP2 driver (SCSI over IEEE1394) |
| * |
| * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| * The basic structure of this driver is based on the old storage driver, |
| * drivers/ieee1394/sbp2.c, originally written by |
| * James Goodwin <jamesg@filanet.com> |
| * with later contributions and ongoing maintenance from |
| * Ben Collins <bcollins@debian.org>, |
| * Stefan Richter <stefanr@s5r6.in-berlin.de> |
| * and many others. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/bug.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/firewire.h> |
| #include <linux/firewire-constants.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/kref.h> |
| #include <linux/list.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/stringify.h> |
| #include <linux/workqueue.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/system.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_host.h> |
| |
| /* |
| * So far only bridges from Oxford Semiconductor are known to support |
| * concurrent logins. Depending on firmware, four or two concurrent logins |
| * are possible on OXFW911 and newer Oxsemi bridges. |
| * |
| * Concurrent logins are useful together with cluster filesystems. |
| */ |
| static int sbp2_param_exclusive_login = 1; |
| module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); |
| MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " |
| "(default = Y, use N for concurrent initiators)"); |
| |
| /* |
| * Flags for firmware oddities |
| * |
| * - 128kB max transfer |
| * Limit transfer size. Necessary for some old bridges. |
| * |
| * - 36 byte inquiry |
| * When scsi_mod probes the device, let the inquiry command look like that |
| * from MS Windows. |
| * |
| * - skip mode page 8 |
| * Suppress sending of mode_sense for mode page 8 if the device pretends to |
| * support the SCSI Primary Block commands instead of Reduced Block Commands. |
| * |
| * - fix capacity |
| * Tell sd_mod to correct the last sector number reported by read_capacity. |
| * Avoids access beyond actual disk limits on devices with an off-by-one bug. |
| * Don't use this with devices which don't have this bug. |
| * |
| * - delay inquiry |
| * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. |
| * |
| * - power condition |
| * Set the power condition field in the START STOP UNIT commands sent by |
| * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). |
| * Some disks need this to spin down or to resume properly. |
| * |
| * - override internal blacklist |
| * Instead of adding to the built-in blacklist, use only the workarounds |
| * specified in the module load parameter. |
| * Useful if a blacklist entry interfered with a non-broken device. |
| */ |
| #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 |
| #define SBP2_WORKAROUND_INQUIRY_36 0x2 |
| #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 |
| #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 |
| #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 |
| #define SBP2_INQUIRY_DELAY 12 |
| #define SBP2_WORKAROUND_POWER_CONDITION 0x20 |
| #define SBP2_WORKAROUND_OVERRIDE 0x100 |
| |
| static int sbp2_param_workarounds; |
| module_param_named(workarounds, sbp2_param_workarounds, int, 0644); |
| MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" |
| ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) |
| ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) |
| ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) |
| ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) |
| ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) |
| ", set power condition in start stop unit = " |
| __stringify(SBP2_WORKAROUND_POWER_CONDITION) |
| ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) |
| ", or a combination)"); |
| |
| /* I don't know why the SCSI stack doesn't define something like this... */ |
| typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); |
| |
| static const char sbp2_driver_name[] = "sbp2"; |
| |
| /* |
| * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry |
| * and one struct scsi_device per sbp2_logical_unit. |
| */ |
| struct sbp2_logical_unit { |
| struct sbp2_target *tgt; |
| struct list_head link; |
| struct fw_address_handler address_handler; |
| struct list_head orb_list; |
| |
| u64 command_block_agent_address; |
| u16 lun; |
| int login_id; |
| |
| /* |
| * The generation is updated once we've logged in or reconnected |
| * to the logical unit. Thus, I/O to the device will automatically |
| * fail and get retried if it happens in a window where the device |
| * is not ready, e.g. after a bus reset but before we reconnect. |
| */ |
| int generation; |
| int retries; |
| struct delayed_work work; |
| bool has_sdev; |
| bool blocked; |
| }; |
| |
| /* |
| * We create one struct sbp2_target per IEEE 1212 Unit Directory |
| * and one struct Scsi_Host per sbp2_target. |
| */ |
| struct sbp2_target { |
| struct kref kref; |
| struct fw_unit *unit; |
| const char *bus_id; |
| struct list_head lu_list; |
| |
| u64 management_agent_address; |
| u64 guid; |
| int directory_id; |
| int node_id; |
| int address_high; |
| unsigned int workarounds; |
| unsigned int mgt_orb_timeout; |
| unsigned int max_payload; |
| |
| int dont_block; /* counter for each logical unit */ |
| int blocked; /* ditto */ |
| }; |
| |
| static struct fw_device *target_device(struct sbp2_target *tgt) |
| { |
| return fw_parent_device(tgt->unit); |
| } |
| |
| /* Impossible login_id, to detect logout attempt before successful login */ |
| #define INVALID_LOGIN_ID 0x10000 |
| |
| #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ |
| #define SBP2_ORB_NULL 0x80000000 |
| #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ |
| #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ |
| |
| /* |
| * There is no transport protocol limit to the CDB length, but we implement |
| * a fixed length only. 16 bytes is enough for disks larger than 2 TB. |
| */ |
| #define SBP2_MAX_CDB_SIZE 16 |
| |
| /* |
| * The default maximum s/g segment size of a FireWire controller is |
| * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to |
| * be quadlet-aligned, we set the length limit to 0xffff & ~3. |
| */ |
| #define SBP2_MAX_SEG_SIZE 0xfffc |
| |
| /* Unit directory keys */ |
| #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a |
| #define SBP2_CSR_FIRMWARE_REVISION 0x3c |
| #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 |
| #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 |
| |
| /* Management orb opcodes */ |
| #define SBP2_LOGIN_REQUEST 0x0 |
| #define SBP2_QUERY_LOGINS_REQUEST 0x1 |
| #define SBP2_RECONNECT_REQUEST 0x3 |
| #define SBP2_SET_PASSWORD_REQUEST 0x4 |
| #define SBP2_LOGOUT_REQUEST 0x7 |
| #define SBP2_ABORT_TASK_REQUEST 0xb |
| #define SBP2_ABORT_TASK_SET 0xc |
| #define SBP2_LOGICAL_UNIT_RESET 0xe |
| #define SBP2_TARGET_RESET_REQUEST 0xf |
| |
| /* Offsets for command block agent registers */ |
| #define SBP2_AGENT_STATE 0x00 |
| #define SBP2_AGENT_RESET 0x04 |
| #define SBP2_ORB_POINTER 0x08 |
| #define SBP2_DOORBELL 0x10 |
| #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 |
| |
| /* Status write response codes */ |
| #define SBP2_STATUS_REQUEST_COMPLETE 0x0 |
| #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 |
| #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 |
| #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 |
| |
| #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) |
| #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) |
| #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) |
| #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) |
| #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) |
| #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) |
| #define STATUS_GET_ORB_LOW(v) ((v).orb_low) |
| #define STATUS_GET_DATA(v) ((v).data) |
| |
| struct sbp2_status { |
| u32 status; |
| u32 orb_low; |
| u8 data[24]; |
| }; |
| |
| struct sbp2_pointer { |
| __be32 high; |
| __be32 low; |
| }; |
| |
| struct sbp2_orb { |
| struct fw_transaction t; |
| struct kref kref; |
| dma_addr_t request_bus; |
| int rcode; |
| struct sbp2_pointer pointer; |
| void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); |
| struct list_head link; |
| }; |
| |
| #define MANAGEMENT_ORB_LUN(v) ((v)) |
| #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) |
| #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) |
| #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) |
| #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) |
| #define MANAGEMENT_ORB_NOTIFY ((1) << 31) |
| |
| #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) |
| #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) |
| |
| struct sbp2_management_orb { |
| struct sbp2_orb base; |
| struct { |
| struct sbp2_pointer password; |
| struct sbp2_pointer response; |
| __be32 misc; |
| __be32 length; |
| struct sbp2_pointer status_fifo; |
| } request; |
| __be32 response[4]; |
| dma_addr_t response_bus; |
| struct completion done; |
| struct sbp2_status status; |
| }; |
| |
| struct sbp2_login_response { |
| __be32 misc; |
| struct sbp2_pointer command_block_agent; |
| __be32 reconnect_hold; |
| }; |
| #define COMMAND_ORB_DATA_SIZE(v) ((v)) |
| #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) |
| #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) |
| #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) |
| #define COMMAND_ORB_SPEED(v) ((v) << 24) |
| #define COMMAND_ORB_DIRECTION ((1) << 27) |
| #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) |
| #define COMMAND_ORB_NOTIFY ((1) << 31) |
| |
| struct sbp2_command_orb { |
| struct sbp2_orb base; |
| struct { |
| struct sbp2_pointer next; |
| struct sbp2_pointer data_descriptor; |
| __be32 misc; |
| u8 command_block[SBP2_MAX_CDB_SIZE]; |
| } request; |
| struct scsi_cmnd *cmd; |
| scsi_done_fn_t done; |
| struct sbp2_logical_unit *lu; |
| |
| struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); |
| dma_addr_t page_table_bus; |
| }; |
| |
| #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ |
| #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ |
| |
| /* |
| * List of devices with known bugs. |
| * |
| * The firmware_revision field, masked with 0xffff00, is the best |
| * indicator for the type of bridge chip of a device. It yields a few |
| * false positives but this did not break correctly behaving devices |
| * so far. |
| */ |
| static const struct { |
| u32 firmware_revision; |
| u32 model; |
| unsigned int workarounds; |
| } sbp2_workarounds_table[] = { |
| /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { |
| .firmware_revision = 0x002800, |
| .model = 0x001010, |
| .workarounds = SBP2_WORKAROUND_INQUIRY_36 | |
| SBP2_WORKAROUND_MODE_SENSE_8 | |
| SBP2_WORKAROUND_POWER_CONDITION, |
| }, |
| /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { |
| .firmware_revision = 0x002800, |
| .model = 0x000000, |
| .workarounds = SBP2_WORKAROUND_POWER_CONDITION, |
| }, |
| /* Initio bridges, actually only needed for some older ones */ { |
| .firmware_revision = 0x000200, |
| .model = SBP2_ROM_VALUE_WILDCARD, |
| .workarounds = SBP2_WORKAROUND_INQUIRY_36, |
| }, |
| /* PL-3507 bridge with Prolific firmware */ { |
| .firmware_revision = 0x012800, |
| .model = SBP2_ROM_VALUE_WILDCARD, |
| .workarounds = SBP2_WORKAROUND_POWER_CONDITION, |
| }, |
| /* Symbios bridge */ { |
| .firmware_revision = 0xa0b800, |
| .model = SBP2_ROM_VALUE_WILDCARD, |
| .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, |
| }, |
| /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { |
| .firmware_revision = 0x002600, |
| .model = SBP2_ROM_VALUE_WILDCARD, |
| .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, |
| }, |
| /* |
| * iPod 2nd generation: needs 128k max transfer size workaround |
| * iPod 3rd generation: needs fix capacity workaround |
| */ |
| { |
| .firmware_revision = 0x0a2700, |
| .model = 0x000000, |
| .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | |
| SBP2_WORKAROUND_FIX_CAPACITY, |
| }, |
| /* iPod 4th generation */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x000021, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| }, |
| /* iPod mini */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x000022, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| }, |
| /* iPod mini */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x000023, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| }, |
| /* iPod Photo */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x00007e, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| } |
| }; |
| |
| static void free_orb(struct kref *kref) |
| { |
| struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); |
| |
| kfree(orb); |
| } |
| |
| static void sbp2_status_write(struct fw_card *card, struct fw_request *request, |
| int tcode, int destination, int source, |
| int generation, unsigned long long offset, |
| void *payload, size_t length, void *callback_data) |
| { |
| struct sbp2_logical_unit *lu = callback_data; |
| struct sbp2_orb *orb; |
| struct sbp2_status status; |
| unsigned long flags; |
| |
| if (tcode != TCODE_WRITE_BLOCK_REQUEST || |
| length < 8 || length > sizeof(status)) { |
| fw_send_response(card, request, RCODE_TYPE_ERROR); |
| return; |
| } |
| |
| status.status = be32_to_cpup(payload); |
| status.orb_low = be32_to_cpup(payload + 4); |
| memset(status.data, 0, sizeof(status.data)); |
| if (length > 8) |
| memcpy(status.data, payload + 8, length - 8); |
| |
| if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { |
| fw_notify("non-orb related status write, not handled\n"); |
| fw_send_response(card, request, RCODE_COMPLETE); |
| return; |
| } |
| |
| /* Lookup the orb corresponding to this status write. */ |
| spin_lock_irqsave(&card->lock, flags); |
| list_for_each_entry(orb, &lu->orb_list, link) { |
| if (STATUS_GET_ORB_HIGH(status) == 0 && |
| STATUS_GET_ORB_LOW(status) == orb->request_bus) { |
| orb->rcode = RCODE_COMPLETE; |
| list_del(&orb->link); |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| if (&orb->link != &lu->orb_list) { |
| orb->callback(orb, &status); |
| kref_put(&orb->kref, free_orb); /* orb callback reference */ |
| } else { |
| fw_error("status write for unknown orb\n"); |
| } |
| |
| fw_send_response(card, request, RCODE_COMPLETE); |
| } |
| |
| static void complete_transaction(struct fw_card *card, int rcode, |
| void *payload, size_t length, void *data) |
| { |
| struct sbp2_orb *orb = data; |
| unsigned long flags; |
| |
| /* |
| * This is a little tricky. We can get the status write for |
| * the orb before we get this callback. The status write |
| * handler above will assume the orb pointer transaction was |
| * successful and set the rcode to RCODE_COMPLETE for the orb. |
| * So this callback only sets the rcode if it hasn't already |
| * been set and only does the cleanup if the transaction |
| * failed and we didn't already get a status write. |
| */ |
| spin_lock_irqsave(&card->lock, flags); |
| |
| if (orb->rcode == -1) |
| orb->rcode = rcode; |
| if (orb->rcode != RCODE_COMPLETE) { |
| list_del(&orb->link); |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| orb->callback(orb, NULL); |
| kref_put(&orb->kref, free_orb); /* orb callback reference */ |
| } else { |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| kref_put(&orb->kref, free_orb); /* transaction callback reference */ |
| } |
| |
| static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, |
| int node_id, int generation, u64 offset) |
| { |
| struct fw_device *device = target_device(lu->tgt); |
| unsigned long flags; |
| |
| orb->pointer.high = 0; |
| orb->pointer.low = cpu_to_be32(orb->request_bus); |
| |
| spin_lock_irqsave(&device->card->lock, flags); |
| list_add_tail(&orb->link, &lu->orb_list); |
| spin_unlock_irqrestore(&device->card->lock, flags); |
| |
| kref_get(&orb->kref); /* transaction callback reference */ |
| kref_get(&orb->kref); /* orb callback reference */ |
| |
| fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, |
| node_id, generation, device->max_speed, offset, |
| &orb->pointer, 8, complete_transaction, orb); |
| } |
| |
| static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) |
| { |
| struct fw_device *device = target_device(lu->tgt); |
| struct sbp2_orb *orb, *next; |
| struct list_head list; |
| unsigned long flags; |
| int retval = -ENOENT; |
| |
| INIT_LIST_HEAD(&list); |
| spin_lock_irqsave(&device->card->lock, flags); |
| list_splice_init(&lu->orb_list, &list); |
| spin_unlock_irqrestore(&device->card->lock, flags); |
| |
| list_for_each_entry_safe(orb, next, &list, link) { |
| retval = 0; |
| if (fw_cancel_transaction(device->card, &orb->t) == 0) |
| continue; |
| |
| orb->rcode = RCODE_CANCELLED; |
| orb->callback(orb, NULL); |
| kref_put(&orb->kref, free_orb); /* orb callback reference */ |
| } |
| |
| return retval; |
| } |
| |
| static void complete_management_orb(struct sbp2_orb *base_orb, |
| struct sbp2_status *status) |
| { |
| struct sbp2_management_orb *orb = |
| container_of(base_orb, struct sbp2_management_orb, base); |
| |
| if (status) |
| memcpy(&orb->status, status, sizeof(*status)); |
| complete(&orb->done); |
| } |
| |
| static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, |
| int generation, int function, |
| int lun_or_login_id, void *response) |
| { |
| struct fw_device *device = target_device(lu->tgt); |
| struct sbp2_management_orb *orb; |
| unsigned int timeout; |
| int retval = -ENOMEM; |
| |
| if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) |
| return 0; |
| |
| orb = kzalloc(sizeof(*orb), GFP_ATOMIC); |
| if (orb == NULL) |
| return -ENOMEM; |
| |
| kref_init(&orb->base.kref); |
| orb->response_bus = |
| dma_map_single(device->card->device, &orb->response, |
| sizeof(orb->response), DMA_FROM_DEVICE); |
| if (dma_mapping_error(device->card->device, orb->response_bus)) |
| goto fail_mapping_response; |
| |
| orb->request.response.high = 0; |
| orb->request.response.low = cpu_to_be32(orb->response_bus); |
| |
| orb->request.misc = cpu_to_be32( |
| MANAGEMENT_ORB_NOTIFY | |
| MANAGEMENT_ORB_FUNCTION(function) | |
| MANAGEMENT_ORB_LUN(lun_or_login_id)); |
| orb->request.length = cpu_to_be32( |
| MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); |
| |
| orb->request.status_fifo.high = |
| cpu_to_be32(lu->address_handler.offset >> 32); |
| orb->request.status_fifo.low = |
| cpu_to_be32(lu->address_handler.offset); |
| |
| if (function == SBP2_LOGIN_REQUEST) { |
| /* Ask for 2^2 == 4 seconds reconnect grace period */ |
| orb->request.misc |= cpu_to_be32( |
| MANAGEMENT_ORB_RECONNECT(2) | |
| MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); |
| timeout = lu->tgt->mgt_orb_timeout; |
| } else { |
| timeout = SBP2_ORB_TIMEOUT; |
| } |
| |
| init_completion(&orb->done); |
| orb->base.callback = complete_management_orb; |
| |
| orb->base.request_bus = |
| dma_map_single(device->card->device, &orb->request, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| if (dma_mapping_error(device->card->device, orb->base.request_bus)) |
| goto fail_mapping_request; |
| |
| sbp2_send_orb(&orb->base, lu, node_id, generation, |
| lu->tgt->management_agent_address); |
| |
| wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); |
| |
| retval = -EIO; |
| if (sbp2_cancel_orbs(lu) == 0) { |
| fw_error("%s: orb reply timed out, rcode=0x%02x\n", |
| lu->tgt->bus_id, orb->base.rcode); |
| goto out; |
| } |
| |
| if (orb->base.rcode != RCODE_COMPLETE) { |
| fw_error("%s: management write failed, rcode 0x%02x\n", |
| lu->tgt->bus_id, orb->base.rcode); |
| goto out; |
| } |
| |
| if (STATUS_GET_RESPONSE(orb->status) != 0 || |
| STATUS_GET_SBP_STATUS(orb->status) != 0) { |
| fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, |
| STATUS_GET_RESPONSE(orb->status), |
| STATUS_GET_SBP_STATUS(orb->status)); |
| goto out; |
| } |
| |
| retval = 0; |
| out: |
| dma_unmap_single(device->card->device, orb->base.request_bus, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| fail_mapping_request: |
| dma_unmap_single(device->card->device, orb->response_bus, |
| sizeof(orb->response), DMA_FROM_DEVICE); |
| fail_mapping_response: |
| if (response) |
| memcpy(response, orb->response, sizeof(orb->response)); |
| kref_put(&orb->base.kref, free_orb); |
| |
| return retval; |
| } |
| |
| static void sbp2_agent_reset(struct sbp2_logical_unit *lu) |
| { |
| struct fw_device *device = target_device(lu->tgt); |
| __be32 d = 0; |
| |
| fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, |
| lu->tgt->node_id, lu->generation, device->max_speed, |
| lu->command_block_agent_address + SBP2_AGENT_RESET, |
| &d, 4); |
| } |
| |
| static void complete_agent_reset_write_no_wait(struct fw_card *card, |
| int rcode, void *payload, size_t length, void *data) |
| { |
| kfree(data); |
| } |
| |
| static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) |
| { |
| struct fw_device *device = target_device(lu->tgt); |
| struct fw_transaction *t; |
| static __be32 d; |
| |
| t = kmalloc(sizeof(*t), GFP_ATOMIC); |
| if (t == NULL) |
| return; |
| |
| fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, |
| lu->tgt->node_id, lu->generation, device->max_speed, |
| lu->command_block_agent_address + SBP2_AGENT_RESET, |
| &d, 4, complete_agent_reset_write_no_wait, t); |
| } |
| |
| static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) |
| { |
| /* |
| * We may access dont_block without taking card->lock here: |
| * All callers of sbp2_allow_block() and all callers of sbp2_unblock() |
| * are currently serialized against each other. |
| * And a wrong result in sbp2_conditionally_block()'s access of |
| * dont_block is rather harmless, it simply misses its first chance. |
| */ |
| --lu->tgt->dont_block; |
| } |
| |
| /* |
| * Blocks lu->tgt if all of the following conditions are met: |
| * - Login, INQUIRY, and high-level SCSI setup of all of the target's |
| * logical units have been finished (indicated by dont_block == 0). |
| * - lu->generation is stale. |
| * |
| * Note, scsi_block_requests() must be called while holding card->lock, |
| * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to |
| * unblock the target. |
| */ |
| static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) |
| { |
| struct sbp2_target *tgt = lu->tgt; |
| struct fw_card *card = target_device(tgt)->card; |
| struct Scsi_Host *shost = |
| container_of((void *)tgt, struct Scsi_Host, hostdata[0]); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| if (!tgt->dont_block && !lu->blocked && |
| lu->generation != card->generation) { |
| lu->blocked = true; |
| if (++tgt->blocked == 1) |
| scsi_block_requests(shost); |
| } |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| /* |
| * Unblocks lu->tgt as soon as all its logical units can be unblocked. |
| * Note, it is harmless to run scsi_unblock_requests() outside the |
| * card->lock protected section. On the other hand, running it inside |
| * the section might clash with shost->host_lock. |
| */ |
| static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) |
| { |
| struct sbp2_target *tgt = lu->tgt; |
| struct fw_card *card = target_device(tgt)->card; |
| struct Scsi_Host *shost = |
| container_of((void *)tgt, struct Scsi_Host, hostdata[0]); |
| unsigned long flags; |
| bool unblock = false; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| if (lu->blocked && lu->generation == card->generation) { |
| lu->blocked = false; |
| unblock = --tgt->blocked == 0; |
| } |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| if (unblock) |
| scsi_unblock_requests(shost); |
| } |
| |
| /* |
| * Prevents future blocking of tgt and unblocks it. |
| * Note, it is harmless to run scsi_unblock_requests() outside the |
| * card->lock protected section. On the other hand, running it inside |
| * the section might clash with shost->host_lock. |
| */ |
| static void sbp2_unblock(struct sbp2_target *tgt) |
| { |
| struct fw_card *card = target_device(tgt)->card; |
| struct Scsi_Host *shost = |
| container_of((void *)tgt, struct Scsi_Host, hostdata[0]); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| ++tgt->dont_block; |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| scsi_unblock_requests(shost); |
| } |
| |
| static int sbp2_lun2int(u16 lun) |
| { |
| struct scsi_lun eight_bytes_lun; |
| |
| memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); |
| eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; |
| eight_bytes_lun.scsi_lun[1] = lun & 0xff; |
| |
| return scsilun_to_int(&eight_bytes_lun); |
| } |
| |
| static void sbp2_release_target(struct kref *kref) |
| { |
| struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); |
| struct sbp2_logical_unit *lu, *next; |
| struct Scsi_Host *shost = |
| container_of((void *)tgt, struct Scsi_Host, hostdata[0]); |
| struct scsi_device *sdev; |
| struct fw_device *device = target_device(tgt); |
| |
| /* prevent deadlocks */ |
| sbp2_unblock(tgt); |
| |
| list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { |
| sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); |
| if (sdev) { |
| scsi_remove_device(sdev); |
| scsi_device_put(sdev); |
| } |
| if (lu->login_id != INVALID_LOGIN_ID) { |
| int generation, node_id; |
| /* |
| * tgt->node_id may be obsolete here if we failed |
| * during initial login or after a bus reset where |
| * the topology changed. |
| */ |
| generation = device->generation; |
| smp_rmb(); /* node_id vs. generation */ |
| node_id = device->node_id; |
| sbp2_send_management_orb(lu, node_id, generation, |
| SBP2_LOGOUT_REQUEST, |
| lu->login_id, NULL); |
| } |
| fw_core_remove_address_handler(&lu->address_handler); |
| list_del(&lu->link); |
| kfree(lu); |
| } |
| scsi_remove_host(shost); |
| fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); |
| |
| fw_unit_put(tgt->unit); |
| scsi_host_put(shost); |
| fw_device_put(device); |
| } |
| |
| static void sbp2_target_get(struct sbp2_target *tgt) |
| { |
| kref_get(&tgt->kref); |
| } |
| |
| static void sbp2_target_put(struct sbp2_target *tgt) |
| { |
| kref_put(&tgt->kref, sbp2_release_target); |
| } |
| |
| static struct workqueue_struct *sbp2_wq; |
| |
| /* |
| * Always get the target's kref when scheduling work on one its units. |
| * Each workqueue job is responsible to call sbp2_target_put() upon return. |
| */ |
| static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) |
| { |
| sbp2_target_get(lu->tgt); |
| if (!queue_delayed_work(sbp2_wq, &lu->work, delay)) |
| sbp2_target_put(lu->tgt); |
| } |
| |
| /* |
| * Write retransmit retry values into the BUSY_TIMEOUT register. |
| * - The single-phase retry protocol is supported by all SBP-2 devices, but the |
| * default retry_limit value is 0 (i.e. never retry transmission). We write a |
| * saner value after logging into the device. |
| * - The dual-phase retry protocol is optional to implement, and if not |
| * supported, writes to the dual-phase portion of the register will be |
| * ignored. We try to write the original 1394-1995 default here. |
| * - In the case of devices that are also SBP-3-compliant, all writes are |
| * ignored, as the register is read-only, but contains single-phase retry of |
| * 15, which is what we're trying to set for all SBP-2 device anyway, so this |
| * write attempt is safe and yields more consistent behavior for all devices. |
| * |
| * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, |
| * and section 6.4 of the SBP-3 spec for further details. |
| */ |
| static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) |
| { |
| struct fw_device *device = target_device(lu->tgt); |
| __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); |
| |
| fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, |
| lu->tgt->node_id, lu->generation, device->max_speed, |
| CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); |
| } |
| |
| static void sbp2_reconnect(struct work_struct *work); |
| |
| static void sbp2_login(struct work_struct *work) |
| { |
| struct sbp2_logical_unit *lu = |
| container_of(work, struct sbp2_logical_unit, work.work); |
| struct sbp2_target *tgt = lu->tgt; |
| struct fw_device *device = target_device(tgt); |
| struct Scsi_Host *shost; |
| struct scsi_device *sdev; |
| struct sbp2_login_response response; |
| int generation, node_id, local_node_id; |
| |
| if (fw_device_is_shutdown(device)) |
| goto out; |
| |
| generation = device->generation; |
| smp_rmb(); /* node IDs must not be older than generation */ |
| node_id = device->node_id; |
| local_node_id = device->card->node_id; |
| |
| /* If this is a re-login attempt, log out, or we might be rejected. */ |
| if (lu->has_sdev) |
| sbp2_send_management_orb(lu, device->node_id, generation, |
| SBP2_LOGOUT_REQUEST, lu->login_id, NULL); |
| |
| if (sbp2_send_management_orb(lu, node_id, generation, |
| SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { |
| if (lu->retries++ < 5) { |
| sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); |
| } else { |
| fw_error("%s: failed to login to LUN %04x\n", |
| tgt->bus_id, lu->lun); |
| /* Let any waiting I/O fail from now on. */ |
| sbp2_unblock(lu->tgt); |
| } |
| goto out; |
| } |
| |
| tgt->node_id = node_id; |
| tgt->address_high = local_node_id << 16; |
| smp_wmb(); /* node IDs must not be older than generation */ |
| lu->generation = generation; |
| |
| lu->command_block_agent_address = |
| ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) |
| << 32) | be32_to_cpu(response.command_block_agent.low); |
| lu->login_id = be32_to_cpu(response.misc) & 0xffff; |
| |
| fw_notify("%s: logged in to LUN %04x (%d retries)\n", |
| tgt->bus_id, lu->lun, lu->retries); |
| |
| /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ |
| sbp2_set_busy_timeout(lu); |
| |
| PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); |
| sbp2_agent_reset(lu); |
| |
| /* This was a re-login. */ |
| if (lu->has_sdev) { |
| sbp2_cancel_orbs(lu); |
| sbp2_conditionally_unblock(lu); |
| goto out; |
| } |
| |
| if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) |
| ssleep(SBP2_INQUIRY_DELAY); |
| |
| shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); |
| sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); |
| /* |
| * FIXME: We are unable to perform reconnects while in sbp2_login(). |
| * Therefore __scsi_add_device() will get into trouble if a bus reset |
| * happens in parallel. It will either fail or leave us with an |
| * unusable sdev. As a workaround we check for this and retry the |
| * whole login and SCSI probing. |
| */ |
| |
| /* Reported error during __scsi_add_device() */ |
| if (IS_ERR(sdev)) |
| goto out_logout_login; |
| |
| /* Unreported error during __scsi_add_device() */ |
| smp_rmb(); /* get current card generation */ |
| if (generation != device->card->generation) { |
| scsi_remove_device(sdev); |
| scsi_device_put(sdev); |
| goto out_logout_login; |
| } |
| |
| /* No error during __scsi_add_device() */ |
| lu->has_sdev = true; |
| scsi_device_put(sdev); |
| sbp2_allow_block(lu); |
| goto out; |
| |
| out_logout_login: |
| smp_rmb(); /* generation may have changed */ |
| generation = device->generation; |
| smp_rmb(); /* node_id must not be older than generation */ |
| |
| sbp2_send_management_orb(lu, device->node_id, generation, |
| SBP2_LOGOUT_REQUEST, lu->login_id, NULL); |
| /* |
| * If a bus reset happened, sbp2_update will have requeued |
| * lu->work already. Reset the work from reconnect to login. |
| */ |
| PREPARE_DELAYED_WORK(&lu->work, sbp2_login); |
| out: |
| sbp2_target_put(tgt); |
| } |
| |
| static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) |
| { |
| struct sbp2_logical_unit *lu; |
| |
| lu = kmalloc(sizeof(*lu), GFP_KERNEL); |
| if (!lu) |
| return -ENOMEM; |
| |
| lu->address_handler.length = 0x100; |
| lu->address_handler.address_callback = sbp2_status_write; |
| lu->address_handler.callback_data = lu; |
| |
| if (fw_core_add_address_handler(&lu->address_handler, |
| &fw_high_memory_region) < 0) { |
| kfree(lu); |
| return -ENOMEM; |
| } |
| |
| lu->tgt = tgt; |
| lu->lun = lun_entry & 0xffff; |
| lu->login_id = INVALID_LOGIN_ID; |
| lu->retries = 0; |
| lu->has_sdev = false; |
| lu->blocked = false; |
| ++tgt->dont_block; |
| INIT_LIST_HEAD(&lu->orb_list); |
| INIT_DELAYED_WORK(&lu->work, sbp2_login); |
| |
| list_add_tail(&lu->link, &tgt->lu_list); |
| return 0; |
| } |
| |
| static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, |
| const u32 *directory) |
| { |
| struct fw_csr_iterator ci; |
| int key, value; |
| |
| fw_csr_iterator_init(&ci, directory); |
| while (fw_csr_iterator_next(&ci, &key, &value)) |
| if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && |
| sbp2_add_logical_unit(tgt, value) < 0) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, |
| u32 *model, u32 *firmware_revision) |
| { |
| struct fw_csr_iterator ci; |
| int key, value; |
| |
| fw_csr_iterator_init(&ci, directory); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| switch (key) { |
| |
| case CSR_DEPENDENT_INFO | CSR_OFFSET: |
| tgt->management_agent_address = |
| CSR_REGISTER_BASE + 4 * value; |
| break; |
| |
| case CSR_DIRECTORY_ID: |
| tgt->directory_id = value; |
| break; |
| |
| case CSR_MODEL: |
| *model = value; |
| break; |
| |
| case SBP2_CSR_FIRMWARE_REVISION: |
| *firmware_revision = value; |
| break; |
| |
| case SBP2_CSR_UNIT_CHARACTERISTICS: |
| /* the timeout value is stored in 500ms units */ |
| tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; |
| break; |
| |
| case SBP2_CSR_LOGICAL_UNIT_NUMBER: |
| if (sbp2_add_logical_unit(tgt, value) < 0) |
| return -ENOMEM; |
| break; |
| |
| case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: |
| /* Adjust for the increment in the iterator */ |
| if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) |
| return -ENOMEM; |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be |
| * provided in the config rom. Most devices do provide a value, which |
| * we'll use for login management orbs, but with some sane limits. |
| */ |
| static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) |
| { |
| unsigned int timeout = tgt->mgt_orb_timeout; |
| |
| if (timeout > 40000) |
| fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n", |
| tgt->bus_id, timeout / 1000); |
| |
| tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); |
| } |
| |
| static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, |
| u32 firmware_revision) |
| { |
| int i; |
| unsigned int w = sbp2_param_workarounds; |
| |
| if (w) |
| fw_notify("Please notify linux1394-devel@lists.sourceforge.net " |
| "if you need the workarounds parameter for %s\n", |
| tgt->bus_id); |
| |
| if (w & SBP2_WORKAROUND_OVERRIDE) |
| goto out; |
| |
| for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { |
| |
| if (sbp2_workarounds_table[i].firmware_revision != |
| (firmware_revision & 0xffffff00)) |
| continue; |
| |
| if (sbp2_workarounds_table[i].model != model && |
| sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) |
| continue; |
| |
| w |= sbp2_workarounds_table[i].workarounds; |
| break; |
| } |
| out: |
| if (w) |
| fw_notify("Workarounds for %s: 0x%x " |
| "(firmware_revision 0x%06x, model_id 0x%06x)\n", |
| tgt->bus_id, w, firmware_revision, model); |
| tgt->workarounds = w; |
| } |
| |
| static struct scsi_host_template scsi_driver_template; |
| |
| static int sbp2_probe(struct device *dev) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| struct fw_device *device = fw_parent_device(unit); |
| struct sbp2_target *tgt; |
| struct sbp2_logical_unit *lu; |
| struct Scsi_Host *shost; |
| u32 model, firmware_revision; |
| |
| if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) |
| BUG_ON(dma_set_max_seg_size(device->card->device, |
| SBP2_MAX_SEG_SIZE)); |
| |
| shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); |
| if (shost == NULL) |
| return -ENOMEM; |
| |
| tgt = (struct sbp2_target *)shost->hostdata; |
| dev_set_drvdata(&unit->device, tgt); |
| tgt->unit = unit; |
| kref_init(&tgt->kref); |
| INIT_LIST_HEAD(&tgt->lu_list); |
| tgt->bus_id = dev_name(&unit->device); |
| tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; |
| |
| if (fw_device_enable_phys_dma(device) < 0) |
| goto fail_shost_put; |
| |
| shost->max_cmd_len = SBP2_MAX_CDB_SIZE; |
| |
| if (scsi_add_host(shost, &unit->device) < 0) |
| goto fail_shost_put; |
| |
| fw_device_get(device); |
| fw_unit_get(unit); |
| |
| /* implicit directory ID */ |
| tgt->directory_id = ((unit->directory - device->config_rom) * 4 |
| + CSR_CONFIG_ROM) & 0xffffff; |
| |
| firmware_revision = SBP2_ROM_VALUE_MISSING; |
| model = SBP2_ROM_VALUE_MISSING; |
| |
| if (sbp2_scan_unit_dir(tgt, unit->directory, &model, |
| &firmware_revision) < 0) |
| goto fail_tgt_put; |
| |
| sbp2_clamp_management_orb_timeout(tgt); |
| sbp2_init_workarounds(tgt, model, firmware_revision); |
| |
| /* |
| * At S100 we can do 512 bytes per packet, at S200 1024 bytes, |
| * and so on up to 4096 bytes. The SBP-2 max_payload field |
| * specifies the max payload size as 2 ^ (max_payload + 2), so |
| * if we set this to max_speed + 7, we get the right value. |
| */ |
| tgt->max_payload = min(device->max_speed + 7, 10U); |
| tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1); |
| |
| /* Do the login in a workqueue so we can easily reschedule retries. */ |
| list_for_each_entry(lu, &tgt->lu_list, link) |
| sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); |
| return 0; |
| |
| fail_tgt_put: |
| sbp2_target_put(tgt); |
| return -ENOMEM; |
| |
| fail_shost_put: |
| scsi_host_put(shost); |
| return -ENOMEM; |
| } |
| |
| static int sbp2_remove(struct device *dev) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| struct sbp2_target *tgt = dev_get_drvdata(&unit->device); |
| |
| sbp2_target_put(tgt); |
| return 0; |
| } |
| |
| static void sbp2_reconnect(struct work_struct *work) |
| { |
| struct sbp2_logical_unit *lu = |
| container_of(work, struct sbp2_logical_unit, work.work); |
| struct sbp2_target *tgt = lu->tgt; |
| struct fw_device *device = target_device(tgt); |
| int generation, node_id, local_node_id; |
| |
| if (fw_device_is_shutdown(device)) |
| goto out; |
| |
| generation = device->generation; |
| smp_rmb(); /* node IDs must not be older than generation */ |
| node_id = device->node_id; |
| local_node_id = device->card->node_id; |
| |
| if (sbp2_send_management_orb(lu, node_id, generation, |
| SBP2_RECONNECT_REQUEST, |
| lu->login_id, NULL) < 0) { |
| /* |
| * If reconnect was impossible even though we are in the |
| * current generation, fall back and try to log in again. |
| * |
| * We could check for "Function rejected" status, but |
| * looking at the bus generation as simpler and more general. |
| */ |
| smp_rmb(); /* get current card generation */ |
| if (generation == device->card->generation || |
| lu->retries++ >= 5) { |
| fw_error("%s: failed to reconnect\n", tgt->bus_id); |
| lu->retries = 0; |
| PREPARE_DELAYED_WORK(&lu->work, sbp2_login); |
| } |
| sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); |
| goto out; |
| } |
| |
| tgt->node_id = node_id; |
| tgt->address_high = local_node_id << 16; |
| smp_wmb(); /* node IDs must not be older than generation */ |
| lu->generation = generation; |
| |
| fw_notify("%s: reconnected to LUN %04x (%d retries)\n", |
| tgt->bus_id, lu->lun, lu->retries); |
| |
| sbp2_agent_reset(lu); |
| sbp2_cancel_orbs(lu); |
| sbp2_conditionally_unblock(lu); |
| out: |
| sbp2_target_put(tgt); |
| } |
| |
| static void sbp2_update(struct fw_unit *unit) |
| { |
| struct sbp2_target *tgt = dev_get_drvdata(&unit->device); |
| struct sbp2_logical_unit *lu; |
| |
| fw_device_enable_phys_dma(fw_parent_device(unit)); |
| |
| /* |
| * Fw-core serializes sbp2_update() against sbp2_remove(). |
| * Iteration over tgt->lu_list is therefore safe here. |
| */ |
| list_for_each_entry(lu, &tgt->lu_list, link) { |
| sbp2_conditionally_block(lu); |
| lu->retries = 0; |
| sbp2_queue_work(lu, 0); |
| } |
| } |
| |
| #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e |
| #define SBP2_SW_VERSION_ENTRY 0x00010483 |
| |
| static const struct ieee1394_device_id sbp2_id_table[] = { |
| { |
| .match_flags = IEEE1394_MATCH_SPECIFIER_ID | |
| IEEE1394_MATCH_VERSION, |
| .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, |
| .version = SBP2_SW_VERSION_ENTRY, |
| }, |
| { } |
| }; |
| |
| static struct fw_driver sbp2_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = sbp2_driver_name, |
| .bus = &fw_bus_type, |
| .probe = sbp2_probe, |
| .remove = sbp2_remove, |
| }, |
| .update = sbp2_update, |
| .id_table = sbp2_id_table, |
| }; |
| |
| static void sbp2_unmap_scatterlist(struct device *card_device, |
| struct sbp2_command_orb *orb) |
| { |
| if (scsi_sg_count(orb->cmd)) |
| dma_unmap_sg(card_device, scsi_sglist(orb->cmd), |
| scsi_sg_count(orb->cmd), |
| orb->cmd->sc_data_direction); |
| |
| if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) |
| dma_unmap_single(card_device, orb->page_table_bus, |
| sizeof(orb->page_table), DMA_TO_DEVICE); |
| } |
| |
| static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) |
| { |
| int sam_status; |
| |
| sense_data[0] = 0x70; |
| sense_data[1] = 0x0; |
| sense_data[2] = sbp2_status[1]; |
| sense_data[3] = sbp2_status[4]; |
| sense_data[4] = sbp2_status[5]; |
| sense_data[5] = sbp2_status[6]; |
| sense_data[6] = sbp2_status[7]; |
| sense_data[7] = 10; |
| sense_data[8] = sbp2_status[8]; |
| sense_data[9] = sbp2_status[9]; |
| sense_data[10] = sbp2_status[10]; |
| sense_data[11] = sbp2_status[11]; |
| sense_data[12] = sbp2_status[2]; |
| sense_data[13] = sbp2_status[3]; |
| sense_data[14] = sbp2_status[12]; |
| sense_data[15] = sbp2_status[13]; |
| |
| sam_status = sbp2_status[0] & 0x3f; |
| |
| switch (sam_status) { |
| case SAM_STAT_GOOD: |
| case SAM_STAT_CHECK_CONDITION: |
| case SAM_STAT_CONDITION_MET: |
| case SAM_STAT_BUSY: |
| case SAM_STAT_RESERVATION_CONFLICT: |
| case SAM_STAT_COMMAND_TERMINATED: |
| return DID_OK << 16 | sam_status; |
| |
| default: |
| return DID_ERROR << 16; |
| } |
| } |
| |
| static void complete_command_orb(struct sbp2_orb *base_orb, |
| struct sbp2_status *status) |
| { |
| struct sbp2_command_orb *orb = |
| container_of(base_orb, struct sbp2_command_orb, base); |
| struct fw_device *device = target_device(orb->lu->tgt); |
| int result; |
| |
| if (status != NULL) { |
| if (STATUS_GET_DEAD(*status)) |
| sbp2_agent_reset_no_wait(orb->lu); |
| |
| switch (STATUS_GET_RESPONSE(*status)) { |
| case SBP2_STATUS_REQUEST_COMPLETE: |
| result = DID_OK << 16; |
| break; |
| case SBP2_STATUS_TRANSPORT_FAILURE: |
| result = DID_BUS_BUSY << 16; |
| break; |
| case SBP2_STATUS_ILLEGAL_REQUEST: |
| case SBP2_STATUS_VENDOR_DEPENDENT: |
| default: |
| result = DID_ERROR << 16; |
| break; |
| } |
| |
| if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) |
| result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), |
| orb->cmd->sense_buffer); |
| } else { |
| /* |
| * If the orb completes with status == NULL, something |
| * went wrong, typically a bus reset happened mid-orb |
| * or when sending the write (less likely). |
| */ |
| result = DID_BUS_BUSY << 16; |
| sbp2_conditionally_block(orb->lu); |
| } |
| |
| dma_unmap_single(device->card->device, orb->base.request_bus, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| sbp2_unmap_scatterlist(device->card->device, orb); |
| |
| orb->cmd->result = result; |
| orb->done(orb->cmd); |
| } |
| |
| static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, |
| struct fw_device *device, struct sbp2_logical_unit *lu) |
| { |
| struct scatterlist *sg = scsi_sglist(orb->cmd); |
| int i, n; |
| |
| n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), |
| orb->cmd->sc_data_direction); |
| if (n == 0) |
| goto fail; |
| |
| /* |
| * Handle the special case where there is only one element in |
| * the scatter list by converting it to an immediate block |
| * request. This is also a workaround for broken devices such |
| * as the second generation iPod which doesn't support page |
| * tables. |
| */ |
| if (n == 1) { |
| orb->request.data_descriptor.high = |
| cpu_to_be32(lu->tgt->address_high); |
| orb->request.data_descriptor.low = |
| cpu_to_be32(sg_dma_address(sg)); |
| orb->request.misc |= |
| cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); |
| return 0; |
| } |
| |
| for_each_sg(sg, sg, n, i) { |
| orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); |
| orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); |
| } |
| |
| orb->page_table_bus = |
| dma_map_single(device->card->device, orb->page_table, |
| sizeof(orb->page_table), DMA_TO_DEVICE); |
| if (dma_mapping_error(device->card->device, orb->page_table_bus)) |
| goto fail_page_table; |
| |
| /* |
| * The data_descriptor pointer is the one case where we need |
| * to fill in the node ID part of the address. All other |
| * pointers assume that the data referenced reside on the |
| * initiator (i.e. us), but data_descriptor can refer to data |
| * on other nodes so we need to put our ID in descriptor.high. |
| */ |
| orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); |
| orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); |
| orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | |
| COMMAND_ORB_DATA_SIZE(n)); |
| |
| return 0; |
| |
| fail_page_table: |
| dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), |
| scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); |
| fail: |
| return -ENOMEM; |
| } |
| |
| /* SCSI stack integration */ |
| |
| static int sbp2_scsi_queuecommand_lck(struct scsi_cmnd *cmd, scsi_done_fn_t done) |
| { |
| struct sbp2_logical_unit *lu = cmd->device->hostdata; |
| struct fw_device *device = target_device(lu->tgt); |
| struct sbp2_command_orb *orb; |
| int generation, retval = SCSI_MLQUEUE_HOST_BUSY; |
| |
| /* |
| * Bidirectional commands are not yet implemented, and unknown |
| * transfer direction not handled. |
| */ |
| if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { |
| fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); |
| cmd->result = DID_ERROR << 16; |
| done(cmd); |
| return 0; |
| } |
| |
| orb = kzalloc(sizeof(*orb), GFP_ATOMIC); |
| if (orb == NULL) { |
| fw_notify("failed to alloc orb\n"); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| |
| /* Initialize rcode to something not RCODE_COMPLETE. */ |
| orb->base.rcode = -1; |
| kref_init(&orb->base.kref); |
| |
| orb->lu = lu; |
| orb->done = done; |
| orb->cmd = cmd; |
| |
| orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); |
| orb->request.misc = cpu_to_be32( |
| COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | |
| COMMAND_ORB_SPEED(device->max_speed) | |
| COMMAND_ORB_NOTIFY); |
| |
| if (cmd->sc_data_direction == DMA_FROM_DEVICE) |
| orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); |
| |
| generation = device->generation; |
| smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ |
| |
| if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) |
| goto out; |
| |
| memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); |
| |
| orb->base.callback = complete_command_orb; |
| orb->base.request_bus = |
| dma_map_single(device->card->device, &orb->request, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| if (dma_mapping_error(device->card->device, orb->base.request_bus)) { |
| sbp2_unmap_scatterlist(device->card->device, orb); |
| goto out; |
| } |
| |
| sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, |
| lu->command_block_agent_address + SBP2_ORB_POINTER); |
| retval = 0; |
| out: |
| kref_put(&orb->base.kref, free_orb); |
| return retval; |
| } |
| |
| static DEF_SCSI_QCMD(sbp2_scsi_queuecommand) |
| |
| static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) |
| { |
| struct sbp2_logical_unit *lu = sdev->hostdata; |
| |
| /* (Re-)Adding logical units via the SCSI stack is not supported. */ |
| if (!lu) |
| return -ENOSYS; |
| |
| sdev->allow_restart = 1; |
| |
| /* SBP-2 requires quadlet alignment of the data buffers. */ |
| blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); |
| |
| if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) |
| sdev->inquiry_len = 36; |
| |
| return 0; |
| } |
| |
| static int sbp2_scsi_slave_configure(struct scsi_device *sdev) |
| { |
| struct sbp2_logical_unit *lu = sdev->hostdata; |
| |
| sdev->use_10_for_rw = 1; |
| |
| if (sbp2_param_exclusive_login) |
| sdev->manage_start_stop = 1; |
| |
| if (sdev->type == TYPE_ROM) |
| sdev->use_10_for_ms = 1; |
| |
| if (sdev->type == TYPE_DISK && |
| lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) |
| sdev->skip_ms_page_8 = 1; |
| |
| if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) |
| sdev->fix_capacity = 1; |
| |
| if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) |
| sdev->start_stop_pwr_cond = 1; |
| |
| if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) |
| blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); |
| |
| blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); |
| |
| return 0; |
| } |
| |
| /* |
| * Called by scsi stack when something has really gone wrong. Usually |
| * called when a command has timed-out for some reason. |
| */ |
| static int sbp2_scsi_abort(struct scsi_cmnd *cmd) |
| { |
| struct sbp2_logical_unit *lu = cmd->device->hostdata; |
| |
| fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); |
| sbp2_agent_reset(lu); |
| sbp2_cancel_orbs(lu); |
| |
| return SUCCESS; |
| } |
| |
| /* |
| * Format of /sys/bus/scsi/devices/.../ieee1394_id: |
| * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) |
| * |
| * This is the concatenation of target port identifier and logical unit |
| * identifier as per SAM-2...SAM-4 annex A. |
| */ |
| static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct scsi_device *sdev = to_scsi_device(dev); |
| struct sbp2_logical_unit *lu; |
| |
| if (!sdev) |
| return 0; |
| |
| lu = sdev->hostdata; |
| |
| return sprintf(buf, "%016llx:%06x:%04x\n", |
| (unsigned long long)lu->tgt->guid, |
| lu->tgt->directory_id, lu->lun); |
| } |
| |
| static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); |
| |
| static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { |
| &dev_attr_ieee1394_id, |
| NULL |
| }; |
| |
| static struct scsi_host_template scsi_driver_template = { |
| .module = THIS_MODULE, |
| .name = "SBP-2 IEEE-1394", |
| .proc_name = sbp2_driver_name, |
| .queuecommand = sbp2_scsi_queuecommand, |
| .slave_alloc = sbp2_scsi_slave_alloc, |
| .slave_configure = sbp2_scsi_slave_configure, |
| .eh_abort_handler = sbp2_scsi_abort, |
| .this_id = -1, |
| .sg_tablesize = SG_ALL, |
| .use_clustering = ENABLE_CLUSTERING, |
| .cmd_per_lun = 1, |
| .can_queue = 1, |
| .sdev_attrs = sbp2_scsi_sysfs_attrs, |
| }; |
| |
| MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); |
| MODULE_DESCRIPTION("SCSI over IEEE1394"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); |
| |
| /* Provide a module alias so root-on-sbp2 initrds don't break. */ |
| #ifndef CONFIG_IEEE1394_SBP2_MODULE |
| MODULE_ALIAS("sbp2"); |
| #endif |
| |
| static int __init sbp2_init(void) |
| { |
| sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); |
| if (!sbp2_wq) |
| return -ENOMEM; |
| |
| return driver_register(&sbp2_driver.driver); |
| } |
| |
| static void __exit sbp2_cleanup(void) |
| { |
| driver_unregister(&sbp2_driver.driver); |
| destroy_workqueue(sbp2_wq); |
| } |
| |
| module_init(sbp2_init); |
| module_exit(sbp2_cleanup); |