| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ |
| * |
| * Authors: Ross Biro, <bir7@leland.Stanford.Edu> |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| * Florian La Roche, <flla@stud.uni-sb.de> |
| * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| * Matthew Dillon, <dillon@apollo.west.oic.com> |
| * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| * Jorge Cwik, <jorge@laser.satlink.net> |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/sysctl.h> |
| #include <linux/workqueue.h> |
| #include <net/tcp.h> |
| #include <net/inet_common.h> |
| #include <net/xfrm.h> |
| |
| #ifdef CONFIG_SYSCTL |
| #define SYNC_INIT 0 /* let the user enable it */ |
| #else |
| #define SYNC_INIT 1 |
| #endif |
| |
| int sysctl_tcp_tw_recycle; |
| int sysctl_tcp_max_tw_buckets = NR_FILE*2; |
| |
| int sysctl_tcp_syncookies = SYNC_INIT; |
| int sysctl_tcp_abort_on_overflow; |
| |
| static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo); |
| |
| static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) |
| { |
| if (seq == s_win) |
| return 1; |
| if (after(end_seq, s_win) && before(seq, e_win)) |
| return 1; |
| return (seq == e_win && seq == end_seq); |
| } |
| |
| /* New-style handling of TIME_WAIT sockets. */ |
| |
| int tcp_tw_count; |
| |
| |
| /* Must be called with locally disabled BHs. */ |
| static void tcp_timewait_kill(struct tcp_tw_bucket *tw) |
| { |
| struct tcp_ehash_bucket *ehead; |
| struct tcp_bind_hashbucket *bhead; |
| struct tcp_bind_bucket *tb; |
| |
| /* Unlink from established hashes. */ |
| ehead = &tcp_ehash[tw->tw_hashent]; |
| write_lock(&ehead->lock); |
| if (hlist_unhashed(&tw->tw_node)) { |
| write_unlock(&ehead->lock); |
| return; |
| } |
| __hlist_del(&tw->tw_node); |
| sk_node_init(&tw->tw_node); |
| write_unlock(&ehead->lock); |
| |
| /* Disassociate with bind bucket. */ |
| bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)]; |
| spin_lock(&bhead->lock); |
| tb = tw->tw_tb; |
| __hlist_del(&tw->tw_bind_node); |
| tw->tw_tb = NULL; |
| tcp_bucket_destroy(tb); |
| spin_unlock(&bhead->lock); |
| |
| #ifdef INET_REFCNT_DEBUG |
| if (atomic_read(&tw->tw_refcnt) != 1) { |
| printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, |
| atomic_read(&tw->tw_refcnt)); |
| } |
| #endif |
| tcp_tw_put(tw); |
| } |
| |
| /* |
| * * Main purpose of TIME-WAIT state is to close connection gracefully, |
| * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN |
| * (and, probably, tail of data) and one or more our ACKs are lost. |
| * * What is TIME-WAIT timeout? It is associated with maximal packet |
| * lifetime in the internet, which results in wrong conclusion, that |
| * it is set to catch "old duplicate segments" wandering out of their path. |
| * It is not quite correct. This timeout is calculated so that it exceeds |
| * maximal retransmission timeout enough to allow to lose one (or more) |
| * segments sent by peer and our ACKs. This time may be calculated from RTO. |
| * * When TIME-WAIT socket receives RST, it means that another end |
| * finally closed and we are allowed to kill TIME-WAIT too. |
| * * Second purpose of TIME-WAIT is catching old duplicate segments. |
| * Well, certainly it is pure paranoia, but if we load TIME-WAIT |
| * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. |
| * * If we invented some more clever way to catch duplicates |
| * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. |
| * |
| * The algorithm below is based on FORMAL INTERPRETATION of RFCs. |
| * When you compare it to RFCs, please, read section SEGMENT ARRIVES |
| * from the very beginning. |
| * |
| * NOTE. With recycling (and later with fin-wait-2) TW bucket |
| * is _not_ stateless. It means, that strictly speaking we must |
| * spinlock it. I do not want! Well, probability of misbehaviour |
| * is ridiculously low and, seems, we could use some mb() tricks |
| * to avoid misread sequence numbers, states etc. --ANK |
| */ |
| enum tcp_tw_status |
| tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb, |
| struct tcphdr *th, unsigned len) |
| { |
| struct tcp_options_received tmp_opt; |
| int paws_reject = 0; |
| |
| tmp_opt.saw_tstamp = 0; |
| if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) { |
| tcp_parse_options(skb, &tmp_opt, 0); |
| |
| if (tmp_opt.saw_tstamp) { |
| tmp_opt.ts_recent = tw->tw_ts_recent; |
| tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; |
| paws_reject = tcp_paws_check(&tmp_opt, th->rst); |
| } |
| } |
| |
| if (tw->tw_substate == TCP_FIN_WAIT2) { |
| /* Just repeat all the checks of tcp_rcv_state_process() */ |
| |
| /* Out of window, send ACK */ |
| if (paws_reject || |
| !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
| tw->tw_rcv_nxt, |
| tw->tw_rcv_nxt + tw->tw_rcv_wnd)) |
| return TCP_TW_ACK; |
| |
| if (th->rst) |
| goto kill; |
| |
| if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt)) |
| goto kill_with_rst; |
| |
| /* Dup ACK? */ |
| if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) || |
| TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { |
| tcp_tw_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| |
| /* New data or FIN. If new data arrive after half-duplex close, |
| * reset. |
| */ |
| if (!th->fin || |
| TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) { |
| kill_with_rst: |
| tcp_tw_deschedule(tw); |
| tcp_tw_put(tw); |
| return TCP_TW_RST; |
| } |
| |
| /* FIN arrived, enter true time-wait state. */ |
| tw->tw_substate = TCP_TIME_WAIT; |
| tw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| if (tmp_opt.saw_tstamp) { |
| tw->tw_ts_recent_stamp = xtime.tv_sec; |
| tw->tw_ts_recent = tmp_opt.rcv_tsval; |
| } |
| |
| /* I am shamed, but failed to make it more elegant. |
| * Yes, it is direct reference to IP, which is impossible |
| * to generalize to IPv6. Taking into account that IPv6 |
| * do not undertsnad recycling in any case, it not |
| * a big problem in practice. --ANK */ |
| if (tw->tw_family == AF_INET && |
| sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp && |
| tcp_v4_tw_remember_stamp(tw)) |
| tcp_tw_schedule(tw, tw->tw_timeout); |
| else |
| tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); |
| return TCP_TW_ACK; |
| } |
| |
| /* |
| * Now real TIME-WAIT state. |
| * |
| * RFC 1122: |
| * "When a connection is [...] on TIME-WAIT state [...] |
| * [a TCP] MAY accept a new SYN from the remote TCP to |
| * reopen the connection directly, if it: |
| * |
| * (1) assigns its initial sequence number for the new |
| * connection to be larger than the largest sequence |
| * number it used on the previous connection incarnation, |
| * and |
| * |
| * (2) returns to TIME-WAIT state if the SYN turns out |
| * to be an old duplicate". |
| */ |
| |
| if (!paws_reject && |
| (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt && |
| (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { |
| /* In window segment, it may be only reset or bare ack. */ |
| |
| if (th->rst) { |
| /* This is TIME_WAIT assasination, in two flavors. |
| * Oh well... nobody has a sufficient solution to this |
| * protocol bug yet. |
| */ |
| if (sysctl_tcp_rfc1337 == 0) { |
| kill: |
| tcp_tw_deschedule(tw); |
| tcp_tw_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| } |
| tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); |
| |
| if (tmp_opt.saw_tstamp) { |
| tw->tw_ts_recent = tmp_opt.rcv_tsval; |
| tw->tw_ts_recent_stamp = xtime.tv_sec; |
| } |
| |
| tcp_tw_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| |
| /* Out of window segment. |
| |
| All the segments are ACKed immediately. |
| |
| The only exception is new SYN. We accept it, if it is |
| not old duplicate and we are not in danger to be killed |
| by delayed old duplicates. RFC check is that it has |
| newer sequence number works at rates <40Mbit/sec. |
| However, if paws works, it is reliable AND even more, |
| we even may relax silly seq space cutoff. |
| |
| RED-PEN: we violate main RFC requirement, if this SYN will appear |
| old duplicate (i.e. we receive RST in reply to SYN-ACK), |
| we must return socket to time-wait state. It is not good, |
| but not fatal yet. |
| */ |
| |
| if (th->syn && !th->rst && !th->ack && !paws_reject && |
| (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) || |
| (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { |
| u32 isn = tw->tw_snd_nxt + 65535 + 2; |
| if (isn == 0) |
| isn++; |
| TCP_SKB_CB(skb)->when = isn; |
| return TCP_TW_SYN; |
| } |
| |
| if (paws_reject) |
| NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); |
| |
| if(!th->rst) { |
| /* In this case we must reset the TIMEWAIT timer. |
| * |
| * If it is ACKless SYN it may be both old duplicate |
| * and new good SYN with random sequence number <rcv_nxt. |
| * Do not reschedule in the last case. |
| */ |
| if (paws_reject || th->ack) |
| tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); |
| |
| /* Send ACK. Note, we do not put the bucket, |
| * it will be released by caller. |
| */ |
| return TCP_TW_ACK; |
| } |
| tcp_tw_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| |
| /* Enter the time wait state. This is called with locally disabled BH. |
| * Essentially we whip up a timewait bucket, copy the |
| * relevant info into it from the SK, and mess with hash chains |
| * and list linkage. |
| */ |
| static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw) |
| { |
| struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent]; |
| struct tcp_bind_hashbucket *bhead; |
| |
| /* Step 1: Put TW into bind hash. Original socket stays there too. |
| Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in |
| binding cache, even if it is closed. |
| */ |
| bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)]; |
| spin_lock(&bhead->lock); |
| tw->tw_tb = tcp_sk(sk)->bind_hash; |
| BUG_TRAP(tcp_sk(sk)->bind_hash); |
| tw_add_bind_node(tw, &tw->tw_tb->owners); |
| spin_unlock(&bhead->lock); |
| |
| write_lock(&ehead->lock); |
| |
| /* Step 2: Remove SK from established hash. */ |
| if (__sk_del_node_init(sk)) |
| sock_prot_dec_use(sk->sk_prot); |
| |
| /* Step 3: Hash TW into TIMEWAIT half of established hash table. */ |
| tw_add_node(tw, &(ehead + tcp_ehash_size)->chain); |
| atomic_inc(&tw->tw_refcnt); |
| |
| write_unlock(&ehead->lock); |
| } |
| |
| /* |
| * Move a socket to time-wait or dead fin-wait-2 state. |
| */ |
| void tcp_time_wait(struct sock *sk, int state, int timeo) |
| { |
| struct tcp_tw_bucket *tw = NULL; |
| struct tcp_sock *tp = tcp_sk(sk); |
| int recycle_ok = 0; |
| |
| if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) |
| recycle_ok = tp->af_specific->remember_stamp(sk); |
| |
| if (tcp_tw_count < sysctl_tcp_max_tw_buckets) |
| tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC); |
| |
| if(tw != NULL) { |
| struct inet_sock *inet = inet_sk(sk); |
| int rto = (tp->rto<<2) - (tp->rto>>1); |
| |
| /* Give us an identity. */ |
| tw->tw_daddr = inet->daddr; |
| tw->tw_rcv_saddr = inet->rcv_saddr; |
| tw->tw_bound_dev_if = sk->sk_bound_dev_if; |
| tw->tw_num = inet->num; |
| tw->tw_state = TCP_TIME_WAIT; |
| tw->tw_substate = state; |
| tw->tw_sport = inet->sport; |
| tw->tw_dport = inet->dport; |
| tw->tw_family = sk->sk_family; |
| tw->tw_reuse = sk->sk_reuse; |
| tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; |
| atomic_set(&tw->tw_refcnt, 1); |
| |
| tw->tw_hashent = sk->sk_hashent; |
| tw->tw_rcv_nxt = tp->rcv_nxt; |
| tw->tw_snd_nxt = tp->snd_nxt; |
| tw->tw_rcv_wnd = tcp_receive_window(tp); |
| tw->tw_ts_recent = tp->rx_opt.ts_recent; |
| tw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; |
| tw_dead_node_init(tw); |
| |
| #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) |
| if (tw->tw_family == PF_INET6) { |
| struct ipv6_pinfo *np = inet6_sk(sk); |
| |
| ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr); |
| ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr); |
| tw->tw_v6_ipv6only = np->ipv6only; |
| } else { |
| memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr)); |
| memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr)); |
| tw->tw_v6_ipv6only = 0; |
| } |
| #endif |
| /* Linkage updates. */ |
| __tcp_tw_hashdance(sk, tw); |
| |
| /* Get the TIME_WAIT timeout firing. */ |
| if (timeo < rto) |
| timeo = rto; |
| |
| if (recycle_ok) { |
| tw->tw_timeout = rto; |
| } else { |
| tw->tw_timeout = TCP_TIMEWAIT_LEN; |
| if (state == TCP_TIME_WAIT) |
| timeo = TCP_TIMEWAIT_LEN; |
| } |
| |
| tcp_tw_schedule(tw, timeo); |
| tcp_tw_put(tw); |
| } else { |
| /* Sorry, if we're out of memory, just CLOSE this |
| * socket up. We've got bigger problems than |
| * non-graceful socket closings. |
| */ |
| if (net_ratelimit()) |
| printk(KERN_INFO "TCP: time wait bucket table overflow\n"); |
| } |
| |
| tcp_update_metrics(sk); |
| tcp_done(sk); |
| } |
| |
| /* Kill off TIME_WAIT sockets once their lifetime has expired. */ |
| static int tcp_tw_death_row_slot; |
| |
| static void tcp_twkill(unsigned long); |
| |
| /* TIME_WAIT reaping mechanism. */ |
| #define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */ |
| #define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) |
| |
| #define TCP_TWKILL_QUOTA 100 |
| |
| static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; |
| static DEFINE_SPINLOCK(tw_death_lock); |
| static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); |
| static void twkill_work(void *); |
| static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); |
| static u32 twkill_thread_slots; |
| |
| /* Returns non-zero if quota exceeded. */ |
| static int tcp_do_twkill_work(int slot, unsigned int quota) |
| { |
| struct tcp_tw_bucket *tw; |
| struct hlist_node *node; |
| unsigned int killed; |
| int ret; |
| |
| /* NOTE: compare this to previous version where lock |
| * was released after detaching chain. It was racy, |
| * because tw buckets are scheduled in not serialized context |
| * in 2.3 (with netfilter), and with softnet it is common, because |
| * soft irqs are not sequenced. |
| */ |
| killed = 0; |
| ret = 0; |
| rescan: |
| tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { |
| __tw_del_dead_node(tw); |
| spin_unlock(&tw_death_lock); |
| tcp_timewait_kill(tw); |
| tcp_tw_put(tw); |
| killed++; |
| spin_lock(&tw_death_lock); |
| if (killed > quota) { |
| ret = 1; |
| break; |
| } |
| |
| /* While we dropped tw_death_lock, another cpu may have |
| * killed off the next TW bucket in the list, therefore |
| * do a fresh re-read of the hlist head node with the |
| * lock reacquired. We still use the hlist traversal |
| * macro in order to get the prefetches. |
| */ |
| goto rescan; |
| } |
| |
| tcp_tw_count -= killed; |
| NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); |
| |
| return ret; |
| } |
| |
| static void tcp_twkill(unsigned long dummy) |
| { |
| int need_timer, ret; |
| |
| spin_lock(&tw_death_lock); |
| |
| if (tcp_tw_count == 0) |
| goto out; |
| |
| need_timer = 0; |
| ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); |
| if (ret) { |
| twkill_thread_slots |= (1 << tcp_tw_death_row_slot); |
| mb(); |
| schedule_work(&tcp_twkill_work); |
| need_timer = 1; |
| } else { |
| /* We purged the entire slot, anything left? */ |
| if (tcp_tw_count) |
| need_timer = 1; |
| } |
| tcp_tw_death_row_slot = |
| ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); |
| if (need_timer) |
| mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); |
| out: |
| spin_unlock(&tw_death_lock); |
| } |
| |
| extern void twkill_slots_invalid(void); |
| |
| static void twkill_work(void *dummy) |
| { |
| int i; |
| |
| if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) |
| twkill_slots_invalid(); |
| |
| while (twkill_thread_slots) { |
| spin_lock_bh(&tw_death_lock); |
| for (i = 0; i < TCP_TWKILL_SLOTS; i++) { |
| if (!(twkill_thread_slots & (1 << i))) |
| continue; |
| |
| while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { |
| if (need_resched()) { |
| spin_unlock_bh(&tw_death_lock); |
| schedule(); |
| spin_lock_bh(&tw_death_lock); |
| } |
| } |
| |
| twkill_thread_slots &= ~(1 << i); |
| } |
| spin_unlock_bh(&tw_death_lock); |
| } |
| } |
| |
| /* These are always called from BH context. See callers in |
| * tcp_input.c to verify this. |
| */ |
| |
| /* This is for handling early-kills of TIME_WAIT sockets. */ |
| void tcp_tw_deschedule(struct tcp_tw_bucket *tw) |
| { |
| spin_lock(&tw_death_lock); |
| if (tw_del_dead_node(tw)) { |
| tcp_tw_put(tw); |
| if (--tcp_tw_count == 0) |
| del_timer(&tcp_tw_timer); |
| } |
| spin_unlock(&tw_death_lock); |
| tcp_timewait_kill(tw); |
| } |
| |
| /* Short-time timewait calendar */ |
| |
| static int tcp_twcal_hand = -1; |
| static int tcp_twcal_jiffie; |
| static void tcp_twcal_tick(unsigned long); |
| static struct timer_list tcp_twcal_timer = |
| TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); |
| static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; |
| |
| static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo) |
| { |
| struct hlist_head *list; |
| int slot; |
| |
| /* timeout := RTO * 3.5 |
| * |
| * 3.5 = 1+2+0.5 to wait for two retransmits. |
| * |
| * RATIONALE: if FIN arrived and we entered TIME-WAIT state, |
| * our ACK acking that FIN can be lost. If N subsequent retransmitted |
| * FINs (or previous seqments) are lost (probability of such event |
| * is p^(N+1), where p is probability to lose single packet and |
| * time to detect the loss is about RTO*(2^N - 1) with exponential |
| * backoff). Normal timewait length is calculated so, that we |
| * waited at least for one retransmitted FIN (maximal RTO is 120sec). |
| * [ BTW Linux. following BSD, violates this requirement waiting |
| * only for 60sec, we should wait at least for 240 secs. |
| * Well, 240 consumes too much of resources 8) |
| * ] |
| * This interval is not reduced to catch old duplicate and |
| * responces to our wandering segments living for two MSLs. |
| * However, if we use PAWS to detect |
| * old duplicates, we can reduce the interval to bounds required |
| * by RTO, rather than MSL. So, if peer understands PAWS, we |
| * kill tw bucket after 3.5*RTO (it is important that this number |
| * is greater than TS tick!) and detect old duplicates with help |
| * of PAWS. |
| */ |
| slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; |
| |
| spin_lock(&tw_death_lock); |
| |
| /* Unlink it, if it was scheduled */ |
| if (tw_del_dead_node(tw)) |
| tcp_tw_count--; |
| else |
| atomic_inc(&tw->tw_refcnt); |
| |
| if (slot >= TCP_TW_RECYCLE_SLOTS) { |
| /* Schedule to slow timer */ |
| if (timeo >= TCP_TIMEWAIT_LEN) { |
| slot = TCP_TWKILL_SLOTS-1; |
| } else { |
| slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; |
| if (slot >= TCP_TWKILL_SLOTS) |
| slot = TCP_TWKILL_SLOTS-1; |
| } |
| tw->tw_ttd = jiffies + timeo; |
| slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); |
| list = &tcp_tw_death_row[slot]; |
| } else { |
| tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); |
| |
| if (tcp_twcal_hand < 0) { |
| tcp_twcal_hand = 0; |
| tcp_twcal_jiffie = jiffies; |
| tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); |
| add_timer(&tcp_twcal_timer); |
| } else { |
| if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) |
| mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); |
| slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); |
| } |
| list = &tcp_twcal_row[slot]; |
| } |
| |
| hlist_add_head(&tw->tw_death_node, list); |
| |
| if (tcp_tw_count++ == 0) |
| mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); |
| spin_unlock(&tw_death_lock); |
| } |
| |
| void tcp_twcal_tick(unsigned long dummy) |
| { |
| int n, slot; |
| unsigned long j; |
| unsigned long now = jiffies; |
| int killed = 0; |
| int adv = 0; |
| |
| spin_lock(&tw_death_lock); |
| if (tcp_twcal_hand < 0) |
| goto out; |
| |
| slot = tcp_twcal_hand; |
| j = tcp_twcal_jiffie; |
| |
| for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { |
| if (time_before_eq(j, now)) { |
| struct hlist_node *node, *safe; |
| struct tcp_tw_bucket *tw; |
| |
| tw_for_each_inmate_safe(tw, node, safe, |
| &tcp_twcal_row[slot]) { |
| __tw_del_dead_node(tw); |
| tcp_timewait_kill(tw); |
| tcp_tw_put(tw); |
| killed++; |
| } |
| } else { |
| if (!adv) { |
| adv = 1; |
| tcp_twcal_jiffie = j; |
| tcp_twcal_hand = slot; |
| } |
| |
| if (!hlist_empty(&tcp_twcal_row[slot])) { |
| mod_timer(&tcp_twcal_timer, j); |
| goto out; |
| } |
| } |
| j += (1<<TCP_TW_RECYCLE_TICK); |
| slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); |
| } |
| tcp_twcal_hand = -1; |
| |
| out: |
| if ((tcp_tw_count -= killed) == 0) |
| del_timer(&tcp_tw_timer); |
| NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); |
| spin_unlock(&tw_death_lock); |
| } |
| |
| /* This is not only more efficient than what we used to do, it eliminates |
| * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM |
| * |
| * Actually, we could lots of memory writes here. tp of listening |
| * socket contains all necessary default parameters. |
| */ |
| struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb) |
| { |
| /* allocate the newsk from the same slab of the master sock, |
| * if not, at sk_free time we'll try to free it from the wrong |
| * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */ |
| struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0); |
| |
| if(newsk != NULL) { |
| struct tcp_sock *newtp; |
| struct sk_filter *filter; |
| |
| memcpy(newsk, sk, sizeof(struct tcp_sock)); |
| newsk->sk_state = TCP_SYN_RECV; |
| |
| /* SANITY */ |
| sk_node_init(&newsk->sk_node); |
| tcp_sk(newsk)->bind_hash = NULL; |
| |
| /* Clone the TCP header template */ |
| inet_sk(newsk)->dport = req->rmt_port; |
| |
| sock_lock_init(newsk); |
| bh_lock_sock(newsk); |
| |
| rwlock_init(&newsk->sk_dst_lock); |
| atomic_set(&newsk->sk_rmem_alloc, 0); |
| skb_queue_head_init(&newsk->sk_receive_queue); |
| atomic_set(&newsk->sk_wmem_alloc, 0); |
| skb_queue_head_init(&newsk->sk_write_queue); |
| atomic_set(&newsk->sk_omem_alloc, 0); |
| newsk->sk_wmem_queued = 0; |
| newsk->sk_forward_alloc = 0; |
| |
| sock_reset_flag(newsk, SOCK_DONE); |
| newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; |
| newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; |
| newsk->sk_send_head = NULL; |
| rwlock_init(&newsk->sk_callback_lock); |
| skb_queue_head_init(&newsk->sk_error_queue); |
| newsk->sk_write_space = sk_stream_write_space; |
| |
| if ((filter = newsk->sk_filter) != NULL) |
| sk_filter_charge(newsk, filter); |
| |
| if (unlikely(xfrm_sk_clone_policy(newsk))) { |
| /* It is still raw copy of parent, so invalidate |
| * destructor and make plain sk_free() */ |
| newsk->sk_destruct = NULL; |
| sk_free(newsk); |
| return NULL; |
| } |
| |
| /* Now setup tcp_sock */ |
| newtp = tcp_sk(newsk); |
| newtp->pred_flags = 0; |
| newtp->rcv_nxt = req->rcv_isn + 1; |
| newtp->snd_nxt = req->snt_isn + 1; |
| newtp->snd_una = req->snt_isn + 1; |
| newtp->snd_sml = req->snt_isn + 1; |
| |
| tcp_prequeue_init(newtp); |
| |
| tcp_init_wl(newtp, req->snt_isn, req->rcv_isn); |
| |
| newtp->retransmits = 0; |
| newtp->backoff = 0; |
| newtp->srtt = 0; |
| newtp->mdev = TCP_TIMEOUT_INIT; |
| newtp->rto = TCP_TIMEOUT_INIT; |
| |
| newtp->packets_out = 0; |
| newtp->left_out = 0; |
| newtp->retrans_out = 0; |
| newtp->sacked_out = 0; |
| newtp->fackets_out = 0; |
| newtp->snd_ssthresh = 0x7fffffff; |
| |
| /* So many TCP implementations out there (incorrectly) count the |
| * initial SYN frame in their delayed-ACK and congestion control |
| * algorithms that we must have the following bandaid to talk |
| * efficiently to them. -DaveM |
| */ |
| newtp->snd_cwnd = 2; |
| newtp->snd_cwnd_cnt = 0; |
| |
| newtp->frto_counter = 0; |
| newtp->frto_highmark = 0; |
| |
| tcp_set_ca_state(newtp, TCP_CA_Open); |
| tcp_init_xmit_timers(newsk); |
| skb_queue_head_init(&newtp->out_of_order_queue); |
| newtp->rcv_wup = req->rcv_isn + 1; |
| newtp->write_seq = req->snt_isn + 1; |
| newtp->pushed_seq = newtp->write_seq; |
| newtp->copied_seq = req->rcv_isn + 1; |
| |
| newtp->rx_opt.saw_tstamp = 0; |
| |
| newtp->rx_opt.dsack = 0; |
| newtp->rx_opt.eff_sacks = 0; |
| |
| newtp->probes_out = 0; |
| newtp->rx_opt.num_sacks = 0; |
| newtp->urg_data = 0; |
| newtp->listen_opt = NULL; |
| newtp->accept_queue = newtp->accept_queue_tail = NULL; |
| /* Deinitialize syn_wait_lock to trap illegal accesses. */ |
| memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock)); |
| |
| /* Back to base struct sock members. */ |
| newsk->sk_err = 0; |
| newsk->sk_priority = 0; |
| atomic_set(&newsk->sk_refcnt, 2); |
| #ifdef INET_REFCNT_DEBUG |
| atomic_inc(&inet_sock_nr); |
| #endif |
| atomic_inc(&tcp_sockets_allocated); |
| |
| if (sock_flag(newsk, SOCK_KEEPOPEN)) |
| tcp_reset_keepalive_timer(newsk, |
| keepalive_time_when(newtp)); |
| newsk->sk_socket = NULL; |
| newsk->sk_sleep = NULL; |
| |
| newtp->rx_opt.tstamp_ok = req->tstamp_ok; |
| if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) { |
| if (sysctl_tcp_fack) |
| newtp->rx_opt.sack_ok |= 2; |
| } |
| newtp->window_clamp = req->window_clamp; |
| newtp->rcv_ssthresh = req->rcv_wnd; |
| newtp->rcv_wnd = req->rcv_wnd; |
| newtp->rx_opt.wscale_ok = req->wscale_ok; |
| if (newtp->rx_opt.wscale_ok) { |
| newtp->rx_opt.snd_wscale = req->snd_wscale; |
| newtp->rx_opt.rcv_wscale = req->rcv_wscale; |
| } else { |
| newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; |
| newtp->window_clamp = min(newtp->window_clamp, 65535U); |
| } |
| newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; |
| newtp->max_window = newtp->snd_wnd; |
| |
| if (newtp->rx_opt.tstamp_ok) { |
| newtp->rx_opt.ts_recent = req->ts_recent; |
| newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; |
| newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| } else { |
| newtp->rx_opt.ts_recent_stamp = 0; |
| newtp->tcp_header_len = sizeof(struct tcphdr); |
| } |
| if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) |
| newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; |
| newtp->rx_opt.mss_clamp = req->mss; |
| TCP_ECN_openreq_child(newtp, req); |
| if (newtp->ecn_flags&TCP_ECN_OK) |
| sock_set_flag(newsk, SOCK_NO_LARGESEND); |
| |
| tcp_ca_init(newtp); |
| |
| TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); |
| } |
| return newsk; |
| } |
| |
| /* |
| * Process an incoming packet for SYN_RECV sockets represented |
| * as an open_request. |
| */ |
| |
| struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, |
| struct open_request *req, |
| struct open_request **prev) |
| { |
| struct tcphdr *th = skb->h.th; |
| struct tcp_sock *tp = tcp_sk(sk); |
| u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); |
| int paws_reject = 0; |
| struct tcp_options_received tmp_opt; |
| struct sock *child; |
| |
| tmp_opt.saw_tstamp = 0; |
| if (th->doff > (sizeof(struct tcphdr)>>2)) { |
| tcp_parse_options(skb, &tmp_opt, 0); |
| |
| if (tmp_opt.saw_tstamp) { |
| tmp_opt.ts_recent = req->ts_recent; |
| /* We do not store true stamp, but it is not required, |
| * it can be estimated (approximately) |
| * from another data. |
| */ |
| tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); |
| paws_reject = tcp_paws_check(&tmp_opt, th->rst); |
| } |
| } |
| |
| /* Check for pure retransmitted SYN. */ |
| if (TCP_SKB_CB(skb)->seq == req->rcv_isn && |
| flg == TCP_FLAG_SYN && |
| !paws_reject) { |
| /* |
| * RFC793 draws (Incorrectly! It was fixed in RFC1122) |
| * this case on figure 6 and figure 8, but formal |
| * protocol description says NOTHING. |
| * To be more exact, it says that we should send ACK, |
| * because this segment (at least, if it has no data) |
| * is out of window. |
| * |
| * CONCLUSION: RFC793 (even with RFC1122) DOES NOT |
| * describe SYN-RECV state. All the description |
| * is wrong, we cannot believe to it and should |
| * rely only on common sense and implementation |
| * experience. |
| * |
| * Enforce "SYN-ACK" according to figure 8, figure 6 |
| * of RFC793, fixed by RFC1122. |
| */ |
| req->class->rtx_syn_ack(sk, req, NULL); |
| return NULL; |
| } |
| |
| /* Further reproduces section "SEGMENT ARRIVES" |
| for state SYN-RECEIVED of RFC793. |
| It is broken, however, it does not work only |
| when SYNs are crossed. |
| |
| You would think that SYN crossing is impossible here, since |
| we should have a SYN_SENT socket (from connect()) on our end, |
| but this is not true if the crossed SYNs were sent to both |
| ends by a malicious third party. We must defend against this, |
| and to do that we first verify the ACK (as per RFC793, page |
| 36) and reset if it is invalid. Is this a true full defense? |
| To convince ourselves, let us consider a way in which the ACK |
| test can still pass in this 'malicious crossed SYNs' case. |
| Malicious sender sends identical SYNs (and thus identical sequence |
| numbers) to both A and B: |
| |
| A: gets SYN, seq=7 |
| B: gets SYN, seq=7 |
| |
| By our good fortune, both A and B select the same initial |
| send sequence number of seven :-) |
| |
| A: sends SYN|ACK, seq=7, ack_seq=8 |
| B: sends SYN|ACK, seq=7, ack_seq=8 |
| |
| So we are now A eating this SYN|ACK, ACK test passes. So |
| does sequence test, SYN is truncated, and thus we consider |
| it a bare ACK. |
| |
| If tp->defer_accept, we silently drop this bare ACK. Otherwise, |
| we create an established connection. Both ends (listening sockets) |
| accept the new incoming connection and try to talk to each other. 8-) |
| |
| Note: This case is both harmless, and rare. Possibility is about the |
| same as us discovering intelligent life on another plant tomorrow. |
| |
| But generally, we should (RFC lies!) to accept ACK |
| from SYNACK both here and in tcp_rcv_state_process(). |
| tcp_rcv_state_process() does not, hence, we do not too. |
| |
| Note that the case is absolutely generic: |
| we cannot optimize anything here without |
| violating protocol. All the checks must be made |
| before attempt to create socket. |
| */ |
| |
| /* RFC793 page 36: "If the connection is in any non-synchronized state ... |
| * and the incoming segment acknowledges something not yet |
| * sent (the segment carries an unaccaptable ACK) ... |
| * a reset is sent." |
| * |
| * Invalid ACK: reset will be sent by listening socket |
| */ |
| if ((flg & TCP_FLAG_ACK) && |
| (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)) |
| return sk; |
| |
| /* Also, it would be not so bad idea to check rcv_tsecr, which |
| * is essentially ACK extension and too early or too late values |
| * should cause reset in unsynchronized states. |
| */ |
| |
| /* RFC793: "first check sequence number". */ |
| |
| if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
| req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) { |
| /* Out of window: send ACK and drop. */ |
| if (!(flg & TCP_FLAG_RST)) |
| req->class->send_ack(skb, req); |
| if (paws_reject) |
| NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); |
| return NULL; |
| } |
| |
| /* In sequence, PAWS is OK. */ |
| |
| if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1)) |
| req->ts_recent = tmp_opt.rcv_tsval; |
| |
| if (TCP_SKB_CB(skb)->seq == req->rcv_isn) { |
| /* Truncate SYN, it is out of window starting |
| at req->rcv_isn+1. */ |
| flg &= ~TCP_FLAG_SYN; |
| } |
| |
| /* RFC793: "second check the RST bit" and |
| * "fourth, check the SYN bit" |
| */ |
| if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) |
| goto embryonic_reset; |
| |
| /* ACK sequence verified above, just make sure ACK is |
| * set. If ACK not set, just silently drop the packet. |
| */ |
| if (!(flg & TCP_FLAG_ACK)) |
| return NULL; |
| |
| /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ |
| if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) { |
| req->acked = 1; |
| return NULL; |
| } |
| |
| /* OK, ACK is valid, create big socket and |
| * feed this segment to it. It will repeat all |
| * the tests. THIS SEGMENT MUST MOVE SOCKET TO |
| * ESTABLISHED STATE. If it will be dropped after |
| * socket is created, wait for troubles. |
| */ |
| child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); |
| if (child == NULL) |
| goto listen_overflow; |
| |
| tcp_synq_unlink(tp, req, prev); |
| tcp_synq_removed(sk, req); |
| |
| tcp_acceptq_queue(sk, req, child); |
| return child; |
| |
| listen_overflow: |
| if (!sysctl_tcp_abort_on_overflow) { |
| req->acked = 1; |
| return NULL; |
| } |
| |
| embryonic_reset: |
| NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); |
| if (!(flg & TCP_FLAG_RST)) |
| req->class->send_reset(skb); |
| |
| tcp_synq_drop(sk, req, prev); |
| return NULL; |
| } |
| |
| /* |
| * Queue segment on the new socket if the new socket is active, |
| * otherwise we just shortcircuit this and continue with |
| * the new socket. |
| */ |
| |
| int tcp_child_process(struct sock *parent, struct sock *child, |
| struct sk_buff *skb) |
| { |
| int ret = 0; |
| int state = child->sk_state; |
| |
| if (!sock_owned_by_user(child)) { |
| ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); |
| |
| /* Wakeup parent, send SIGIO */ |
| if (state == TCP_SYN_RECV && child->sk_state != state) |
| parent->sk_data_ready(parent, 0); |
| } else { |
| /* Alas, it is possible again, because we do lookup |
| * in main socket hash table and lock on listening |
| * socket does not protect us more. |
| */ |
| sk_add_backlog(child, skb); |
| } |
| |
| bh_unlock_sock(child); |
| sock_put(child); |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(tcp_check_req); |
| EXPORT_SYMBOL(tcp_child_process); |
| EXPORT_SYMBOL(tcp_create_openreq_child); |
| EXPORT_SYMBOL(tcp_timewait_state_process); |
| EXPORT_SYMBOL(tcp_tw_deschedule); |