blob: 70f4cd551064585bae4e80180ceb161503ab4ef0 [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Qualcomm PM8XXX Pulse Width Modulation (PWM) driver
*
* The HW module is also called LPG (Light Pulse Generator).
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/mfd/pm8xxx/pwm.h>
#define PM8XXX_PWM_CHANNELS 3
/*
* For the lack of better term to distinguish functional
* differences, hereby, LPG version 0 (V0, v0) denotes
* PM8058/8921, and version 1 (V1, v1) denotes
* PM8922/8038.
*/
#define PM8XXX_LPG_V0_PWM_CHANNELS 8
#define PM8XXX_LPG_V1_PWM_CHANNELS 6
#define PM8XXX_LPG_CTL_REGS 7
/* PM8XXX PWM */
#define SSBI_REG_ADDR_PWM1_CTRL1 0x88
#define SSBI_REG_ADDR_PWM1_CTRL2 0x89
#define SSBI_REG_ADDR_PWM_CTL(id, base) (id == 0 ? base : (base + (id << 1)))
#define SSBI_REG_ADDR_PWM_CTL1(id) SSBI_REG_ADDR_PWM_CTL(id, \
SSBI_REG_ADDR_PWM1_CTRL1)
#define SSBI_REG_ADDR_PWM_CTL2(id) SSBI_REG_ADDR_PWM_CTL(id, \
SSBI_REG_ADDR_PWM1_CTRL2)
#define PM8XXX_PWM_CLK_SEL_SHIFT 6
#define PM8XXX_PWM_CLK_SEL_MASK 0xC0
#define PM8XXX_PWM_PREDIVIDE_SHIFT 5
#define PM8XXX_PWM_PREDIVIDE_MASK 0x20
#define PM8XXX_PWM_M_SHIFT 2
#define PM8XXX_PWM_M_MASK 0x1C
#define PM8XXX_PWM_SIZE_SHIFT 1
#define PM8XXX_PWM_SIZE_MASK 0x02
#define PM8XXX_PWM_VALUE_BIT0 0x01
#define PM8XXX_PWM_DISABLE 0x3F
/* PM8XXX LPG PWM */
#define SSBI_REG_ADDR_LPG_CTL_BASE 0x13C
#define SSBI_REG_ADDR_LPG_CTL(n) (SSBI_REG_ADDR_LPG_CTL_BASE + (n))
#define SSBI_REG_ADDR_LPG_BANK_SEL 0x143
#define SSBI_REG_ADDR_LPG_BANK_EN 0x144
#define SSBI_REG_ADDR_LPG_LUT_CFG0 0x145
#define SSBI_REG_ADDR_LPG_LUT_CFG1 0x146
#define SSBI_REG_ADDR_LPG_TEST 0x147
/* LPG Control 0 */
#define PM8XXX_PWM_1KHZ_COUNT_MASK 0xF0
#define PM8XXX_PWM_1KHZ_COUNT_SHIFT 4
#define PM8XXX_PWM_1KHZ_COUNT_MAX 15
#define PM8XXX_PWM_OUTPUT_EN 0x08
#define PM8XXX_PWM_PWM_EN 0x04
#define PM8XXX_PWM_RAMP_GEN_EN 0x02
#define PM8XXX_PWM_RAMP_START 0x01
#define PM8XXX_PWM_PWM_START (PM8XXX_PWM_OUTPUT_EN \
| PM8XXX_PWM_PWM_EN)
#define PM8XXX_PWM_RAMP_GEN_START (PM8XXX_PWM_RAMP_GEN_EN \
| PM8XXX_PWM_RAMP_START)
/* LPG Control 1 */
#define PM8XXX_PWM_REVERSE_EN 0x80
#define PM8XXX_PWM_BYPASS_LUT 0x40
#define PM8XXX_PWM_HIGH_INDEX_MASK 0x3F
/* LPG Control 2 */
#define PM8XXX_PWM_LOOP_EN 0x80
#define PM8XXX_PWM_RAMP_UP 0x40
#define PM8XXX_PWM_LOW_INDEX_MASK 0x3F
/* LPG Control 3 */
#define PM8XXX_PWM_VALUE_BIT7_0 0xFF
#define PM8XXX_PWM_VALUE_BIT5_0 0x3F
/* LPG Control 4 */
#define PM8XXX_PWM_VALUE_BIT8 0x80
#define PM8XXX_LPG_PWM_CLK_SEL_MASK 0x60
#define PM8XXX_LPG_PWM_CLK_SEL_SHIFT 5
#define PM8XXX_PWM_CLK_SEL_NO 0
#define PM8XXX_PWM_CLK_SEL_1KHZ 1
#define PM8XXX_PWM_CLK_SEL_32KHZ 2
#define PM8XXX_PWM_CLK_SEL_19P2MHZ 3
#define PM8XXX_LPG_PWM_PREDIVIDE_MASK 0x18
#define PM8XXX_LPG_PWM_PREDIVIDE_SHIFT 3
#define PM8XXX_PWM_PREDIVIDE_2 0
#define PM8XXX_PWM_PREDIVIDE_3 1
#define PM8XXX_PWM_PREDIVIDE_5 2
#define PM8XXX_PWM_PREDIVIDE_6 3
#define PM8XXX_LPG_PWM_M_MASK 0x07
#define PM8XXX_PWM_M_MIN 0
#define PM8XXX_PWM_M_MAX 7
/* LPG Control 5 */
#define PM8XXX_PWM_PAUSE_COUNT_HI_MASK 0xFC
#define PM8XXX_PWM_PAUSE_COUNT_HI_SHIFT 2
#define PM8XXX_PWM_PAUSE_ENABLE_HIGH 0x02
#define PM8XXX_PWM_SIZE_9_BIT 0x01
/* LPG Control 6 */
#define PM8XXX_PWM_PAUSE_COUNT_LO_MASK 0xFC
#define PM8XXX_PWM_PAUSE_COUNT_LO_SHIFT 2
#define PM8XXX_PWM_PAUSE_ENABLE_LOW 0x02
#define PM8XXX_PWM_RESERVED 0x01
#define PM8XXX_PWM_PAUSE_COUNT_MAX 56 /* < 2^6 = 64 */
/* LPG LUT_CFG1 */
#define PM8XXX_PWM_LUT_READ 0x40
/* TEST */
#define PM8XXX_PWM_DTEST_MASK 0x38
#define PM8XXX_PWM_DTEST_SHIFT 3
#define PM8XXX_PWM_DTEST_BANK_MASK 0x07
/*
* PWM Frequency = Clock Frequency / (N * T)
* or
* PWM Period = Clock Period * (N * T)
* where
* N = 2^9 or 2^6 for 9-bit or 6-bit PWM size
* T = Pre-divide * 2^m, where m = 0..7 (exponent)
*
* This is the formula to figure out m for the best pre-divide and clock:
* (PWM Period / N) = (Pre-divide * Clock Period) * 2^m
*/
#define NUM_CLOCKS 3
#define NSEC_1024HZ (NSEC_PER_SEC / 1024)
#define NSEC_32768HZ (NSEC_PER_SEC / 32768)
#define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000)
#define NUM_LPG_PRE_DIVIDE 4
#define NUM_PWM_PRE_DIVIDE 2
#define PRE_DIVIDE_1 1 /* v1 */
#define PRE_DIVIDE_2 2
#define PRE_DIVIDE_3 3
#define PRE_DIVIDE_5 5
#define PRE_DIVIDE_6 6
static unsigned int pt_t[NUM_LPG_PRE_DIVIDE][NUM_CLOCKS] = {
{ PRE_DIVIDE_2 * NSEC_1024HZ,
PRE_DIVIDE_2 * NSEC_32768HZ,
PRE_DIVIDE_2 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_3 * NSEC_1024HZ,
PRE_DIVIDE_3 * NSEC_32768HZ,
PRE_DIVIDE_3 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_5 * NSEC_1024HZ,
PRE_DIVIDE_5 * NSEC_32768HZ,
PRE_DIVIDE_5 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_6 * NSEC_1024HZ,
PRE_DIVIDE_6 * NSEC_32768HZ,
PRE_DIVIDE_6 * NSEC_19P2MHZ,
},
};
/* Private data */
struct pm8xxx_pwm_chip;
struct pwm_device {
int pwm_id; /* = bank/channel id */
int in_use;
const char *label;
struct pm8xxx_pwm_period period;
int pwm_value;
int pwm_period;
int pwm_duty;
u8 pwm_lpg_ctl[PM8XXX_LPG_CTL_REGS];
u8 pwm_ctl1;
u8 pwm_ctl2;
int irq;
struct pm8xxx_pwm_chip *chip;
int bypass_lut;
int dtest_mode_supported;
};
struct pm8xxx_pwm_chip {
struct pwm_device *pwm_dev;
u8 pwm_channels;
u8 pwm_total_pre_divs;
u8 bank_mask;
struct mutex pwm_mutex;
struct device *dev;
bool is_lpg_supported;
};
static struct pm8xxx_pwm_chip *pwm_chip;
struct pm8xxx_pwm_lut {
/* LUT parameters */
int lut_duty_ms;
int lut_lo_index;
int lut_hi_index;
int lut_pause_hi;
int lut_pause_lo;
int flags;
};
static const u16 duty_msec[PM8XXX_PWM_1KHZ_COUNT_MAX + 1] = {
0, 1, 2, 3, 4, 6, 8, 16, 18, 24, 32, 36, 64, 128, 256, 512
};
static const u16 pause_count[PM8XXX_PWM_PAUSE_COUNT_MAX + 1] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
23, 28, 31, 42, 47, 56, 63, 83, 94, 111, 125, 167, 188, 222, 250, 333,
375, 500, 667, 750, 800, 900, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1800, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500,
7000
};
/* Internal functions */
static void pm8xxx_pwm_save(u8 *u8p, u8 mask, u8 val)
{
*u8p &= ~mask;
*u8p |= val & mask;
}
static int pm8xxx_pwm_bank_enable(struct pwm_device *pwm, int enable)
{
int rc;
u8 reg;
struct pm8xxx_pwm_chip *chip;
chip = pwm->chip;
if (enable)
reg = chip->bank_mask | (1 << pwm->pwm_id);
else
reg = chip->bank_mask & ~(1 << pwm->pwm_id);
rc = pm8xxx_writeb(chip->dev->parent, SSBI_REG_ADDR_LPG_BANK_EN, reg);
if (rc) {
pr_err("pm8xxx_writeb(): rc=%d (Enable LPG Bank)\n", rc);
return rc;
}
chip->bank_mask = reg;
return 0;
}
static int pm8xxx_pwm_bank_sel(struct pwm_device *pwm)
{
int rc;
rc = pm8xxx_writeb(pwm->chip->dev->parent, SSBI_REG_ADDR_LPG_BANK_SEL,
pwm->pwm_id);
if (rc)
pr_err("pm8xxx_writeb(): rc=%d (Select PWM Bank)\n", rc);
return rc;
}
static int pm8xxx_pwm_start(struct pwm_device *pwm, int start, int ramp_start)
{
int rc;
u8 reg;
if (start) {
reg = pwm->pwm_lpg_ctl[0] | PM8XXX_PWM_PWM_START;
if (ramp_start)
reg |= PM8XXX_PWM_RAMP_GEN_START;
else
reg &= ~PM8XXX_PWM_RAMP_GEN_START;
} else {
reg = pwm->pwm_lpg_ctl[0] & ~PM8XXX_PWM_PWM_START;
reg &= ~PM8XXX_PWM_RAMP_GEN_START;
}
rc = pm8xxx_writeb(pwm->chip->dev->parent, SSBI_REG_ADDR_LPG_CTL(0),
reg);
if (rc)
pr_err("pm8xxx_writeb(): rc=%d (Enable PWM Ctl 0)\n", rc);
else
pwm->pwm_lpg_ctl[0] = reg;
return rc;
}
static int pm8xxx_pwm_disable(struct pwm_device *pwm)
{
int rc;
u8 reg;
reg = pwm->pwm_ctl1 & PM8XXX_PWM_DISABLE;
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_PWM_CTL1(pwm->pwm_id), reg);
if (rc)
pr_err("pm8xxx_writeb(): rc=%d (Disable PWM Ctl %d)\n", rc,
pwm->pwm_id);
return rc;
}
static int pm8xxx_pwm_enable(struct pwm_device *pwm)
{
/**
* A kind of best Effort: Just write the clock information that
* we have in the register.
*/
int rc;
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_PWM_CTL1(pwm->pwm_id), pwm->pwm_ctl1);
if (rc)
pr_err("pm8xxx_writeb(): rc=%d (Enable PWM Ctl %d)\n", rc,
pwm->pwm_id);
return rc;
}
static void pm8xxx_pwm_calc_period(unsigned int period_us,
struct pm8xxx_pwm_period *period)
{
int n, m, clk, div;
int best_m, best_div, best_clk;
unsigned int last_err, cur_err, min_err;
unsigned int tmp_p, period_n;
/* PWM Period / N */
if (period_us < ((unsigned)(-1) / NSEC_PER_USEC)) {
period_n = (period_us * NSEC_PER_USEC) >> 6;
n = 6;
} else {
period_n = (period_us >> 9) * NSEC_PER_USEC;
n = 9;
}
min_err = last_err = (unsigned)(-1);
best_m = 0;
best_clk = 0;
best_div = 0;
for (clk = 0; clk < NUM_CLOCKS; clk++) {
for (div = 0; div < pwm_chip->pwm_total_pre_divs; div++) {
/* period_n = (PWM Period / N) */
/* tmp_p = (Pre-divide * Clock Period) * 2^m */
tmp_p = pt_t[div][clk];
for (m = 0; m <= PM8XXX_PWM_M_MAX; m++) {
if (period_n > tmp_p)
cur_err = period_n - tmp_p;
else
cur_err = tmp_p - period_n;
if (cur_err < min_err) {
min_err = cur_err;
best_m = m;
best_clk = clk;
best_div = div;
}
if (m && cur_err > last_err)
/* Break for bigger cur_err */
break;
last_err = cur_err;
tmp_p <<= 1;
}
}
}
/* Use higher resolution */
if (best_m >= 3 && n == 6) {
n += 3;
best_m -= 3;
}
period->pwm_size = n;
period->clk = best_clk;
period->pre_div = best_div;
period->pre_div_exp = best_m;
}
static void pm8xxx_pwm_calc_pwm_value(struct pwm_device *pwm,
unsigned int period_us,
unsigned int duty_us)
{
unsigned int max_pwm_value, tmp;
/* Figure out pwm_value with overflow handling */
tmp = 1 << (sizeof(tmp) * 8 - pwm->period.pwm_size);
if (duty_us < tmp) {
tmp = duty_us << pwm->period.pwm_size;
pwm->pwm_value = tmp / period_us;
} else {
tmp = period_us >> pwm->period.pwm_size;
pwm->pwm_value = duty_us / tmp;
}
max_pwm_value = (1 << pwm->period.pwm_size) - 1;
if (pwm->pwm_value > max_pwm_value)
pwm->pwm_value = max_pwm_value;
}
static int pm8xxx_pwm_change_table(struct pwm_device *pwm, int duty_pct[],
int start_idx, int len, int raw_value)
{
unsigned int pwm_value, max_pwm_value;
u8 cfg0, cfg1;
int i, pwm_size;
int rc = 0;
pwm_size = (pwm->pwm_lpg_ctl[5] & PM8XXX_PWM_SIZE_9_BIT) ? 9 : 6;
max_pwm_value = (1 << pwm_size) - 1;
for (i = 0; i < len; i++) {
if (raw_value)
pwm_value = duty_pct[i];
else
pwm_value = (duty_pct[i] << pwm_size) / 100;
if (pwm_value > max_pwm_value)
pwm_value = max_pwm_value;
cfg0 = pwm_value;
cfg1 = (pwm_value >> 1) & 0x80;
cfg1 |= start_idx + i;
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_LPG_LUT_CFG0, cfg0);
if (rc)
break;
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_LPG_LUT_CFG1, cfg1);
if (rc)
break;
}
return rc;
}
static void pm8xxx_pwm_save_index(struct pwm_device *pwm,
int low_idx, int high_idx, int flags)
{
pwm->pwm_lpg_ctl[1] = high_idx & PM8XXX_PWM_HIGH_INDEX_MASK;
pwm->pwm_lpg_ctl[2] = low_idx & PM8XXX_PWM_LOW_INDEX_MASK;
if (flags & PM_PWM_LUT_REVERSE)
pwm->pwm_lpg_ctl[1] |= PM8XXX_PWM_REVERSE_EN;
if (flags & PM_PWM_LUT_RAMP_UP)
pwm->pwm_lpg_ctl[2] |= PM8XXX_PWM_RAMP_UP;
if (flags & PM_PWM_LUT_LOOP)
pwm->pwm_lpg_ctl[2] |= PM8XXX_PWM_LOOP_EN;
}
static void pm8xxx_pwm_save_period(struct pwm_device *pwm)
{
u8 mask, val;
if (pwm_chip->is_lpg_supported) {
val = ((pwm->period.clk + 1) << PM8XXX_LPG_PWM_CLK_SEL_SHIFT)
& PM8XXX_LPG_PWM_CLK_SEL_MASK;
val |= (pwm->period.pre_div << PM8XXX_LPG_PWM_PREDIVIDE_SHIFT)
& PM8XXX_LPG_PWM_PREDIVIDE_MASK;
val |= pwm->period.pre_div_exp & PM8XXX_LPG_PWM_M_MASK;
mask = PM8XXX_LPG_PWM_CLK_SEL_MASK |
PM8XXX_LPG_PWM_PREDIVIDE_MASK | PM8XXX_LPG_PWM_M_MASK;
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[4], mask, val);
val = (pwm->period.pwm_size > 6) ? PM8XXX_PWM_SIZE_9_BIT : 0;
mask = PM8XXX_PWM_SIZE_9_BIT;
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[5], mask, val);
} else {
val = ((pwm->period.clk + 1) << PM8XXX_PWM_CLK_SEL_SHIFT)
& PM8XXX_PWM_CLK_SEL_MASK;
val |= (pwm->period.pre_div << PM8XXX_PWM_PREDIVIDE_SHIFT)
& PM8XXX_PWM_PREDIVIDE_MASK;
val |= (pwm->period.pre_div_exp << PM8XXX_PWM_M_SHIFT)
& PM8XXX_PWM_M_MASK;
val |= (((pwm->period.pwm_size > 6) ? PM8XXX_PWM_SIZE_9_BIT : 0)
<< PM8XXX_PWM_SIZE_SHIFT) & PM8XXX_PWM_SIZE_MASK;
mask = PM8XXX_PWM_CLK_SEL_MASK | PM8XXX_PWM_PREDIVIDE_MASK |
PM8XXX_PWM_M_MASK | PM8XXX_PWM_SIZE_MASK;
pm8xxx_pwm_save(&pwm->pwm_ctl1, mask, val);
}
}
static void pm8xxx_pwm_save_pwm_value(struct pwm_device *pwm)
{
u8 mask, val;
if (pwm_chip->is_lpg_supported) {
val = (pwm->period.pwm_size > 6) ? (pwm->pwm_value >> 1) : 0;
pwm->pwm_lpg_ctl[3] = pwm->pwm_value;
mask = PM8XXX_PWM_VALUE_BIT8;
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[4], mask, val);
} else {
val = (pwm->period.pwm_size > 6) ? (pwm->pwm_value >> 8) : 0;
pwm->pwm_ctl2 = pwm->pwm_value;
mask = PM8XXX_PWM_VALUE_BIT0;
pm8xxx_pwm_save(&pwm->pwm_ctl1, mask, val);
}
}
static void pm8xxx_pwm_save_duty_time(struct pwm_device *pwm,
struct pm8xxx_pwm_lut *lut)
{
int i;
u8 mask, val;
/* Linear search for duty time */
for (i = 0; i < PM8XXX_PWM_1KHZ_COUNT_MAX; i++) {
if (duty_msec[i] >= lut->lut_duty_ms)
break;
}
val = i << PM8XXX_PWM_1KHZ_COUNT_SHIFT;
mask = PM8XXX_PWM_1KHZ_COUNT_MASK;
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[0], mask, val);
}
static void pm8xxx_pwm_save_pause(struct pwm_device *pwm,
struct pm8xxx_pwm_lut *lut)
{
int i, pause_cnt, time_cnt;
u8 mask, val;
time_cnt = (pwm->pwm_lpg_ctl[0] & PM8XXX_PWM_1KHZ_COUNT_MASK)
>> PM8XXX_PWM_1KHZ_COUNT_SHIFT;
if (lut->flags & PM_PWM_LUT_PAUSE_HI_EN) {
pause_cnt = (lut->lut_pause_hi + duty_msec[time_cnt] / 2)
/ duty_msec[time_cnt];
/* Linear search for pause time */
for (i = 0; i < PM8XXX_PWM_PAUSE_COUNT_MAX; i++) {
if (pause_count[i] >= pause_cnt)
break;
}
val = (i << PM8XXX_PWM_PAUSE_COUNT_HI_SHIFT) &
PM8XXX_PWM_PAUSE_COUNT_HI_MASK;
val |= PM8XXX_PWM_PAUSE_ENABLE_HIGH;
} else {
val = 0;
}
mask = PM8XXX_PWM_PAUSE_COUNT_HI_MASK | PM8XXX_PWM_PAUSE_ENABLE_HIGH;
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[5], mask, val);
if (lut->flags & PM_PWM_LUT_PAUSE_LO_EN) {
/* Linear search for pause time */
pause_cnt = (lut->lut_pause_lo + duty_msec[time_cnt] / 2)
/ duty_msec[time_cnt];
for (i = 0; i < PM8XXX_PWM_PAUSE_COUNT_MAX; i++) {
if (pause_count[i] >= pause_cnt)
break;
}
val = (i << PM8XXX_PWM_PAUSE_COUNT_LO_SHIFT) &
PM8XXX_PWM_PAUSE_COUNT_LO_MASK;
val |= PM8XXX_PWM_PAUSE_ENABLE_LOW;
} else {
val = 0;
}
mask = PM8XXX_PWM_PAUSE_COUNT_LO_MASK | PM8XXX_PWM_PAUSE_ENABLE_LOW;
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[6], mask, val);
}
static int pm8xxx_pwm_write(struct pwm_device *pwm)
{
int rc = 0;
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_PWM_CTL1(pwm->pwm_id),
pwm->pwm_ctl1);
if (rc) {
pr_err("pm8xxx_writeb() failed: rc=%d (PWM Ctl1[%d])\n",
rc, pwm->pwm_id);
return rc;
}
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_PWM_CTL2(pwm->pwm_id),
pwm->pwm_ctl2);
if (rc) {
pr_err("pm8xxx_writeb() failed: rc=%d (PWM Ctl2[%d])\n",
rc, pwm->pwm_id);
return rc;
}
return rc;
}
static int pm8xxx_lpg_pwm_write(struct pwm_device *pwm, int start, int end)
{
int i, rc;
/* Write in reverse way so 0 would be the last */
for (i = end - 1; i >= start; i--) {
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_LPG_CTL(i),
pwm->pwm_lpg_ctl[i]);
if (rc) {
pr_err("pm8xxx_writeb(): rc=%d (PWM Ctl[%d])\n", rc, i);
return rc;
}
}
return 0;
}
static int pm8xxx_pwm_change_lut(struct pwm_device *pwm,
struct pm8xxx_pwm_lut *lut)
{
int rc;
pm8xxx_pwm_save_index(pwm, lut->lut_lo_index,
lut->lut_hi_index, lut->flags);
pm8xxx_pwm_save_duty_time(pwm, lut);
pm8xxx_pwm_save_pause(pwm, lut);
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[1], PM8XXX_PWM_BYPASS_LUT, 0);
pm8xxx_pwm_bank_sel(pwm);
rc = pm8xxx_lpg_pwm_write(pwm, 0, 7);
return rc;
}
static int pm8xxx_pwm_set_dtest(struct pwm_device *pwm, int enable)
{
int rc;
u8 reg;
reg = pwm->pwm_id & PM8XXX_PWM_DTEST_BANK_MASK;
if (enable) {
/* Observe LPG_OUT on DTEST1*/
reg |= (1 << PM8XXX_PWM_DTEST_SHIFT) &
PM8XXX_PWM_DTEST_MASK;
}
rc = pm8xxx_writeb(pwm->chip->dev->parent,
SSBI_REG_ADDR_LPG_TEST, reg);
if (rc)
pr_err("pm8xxx_write(DTEST=0x%x) failed: rc=%d\n",
reg, rc);
return rc;
}
/* APIs */
/**
* pwm_request - request a PWM device
* @pwm_id: PWM id or channel
* @label: the label to identify the user
*/
struct pwm_device *pwm_request(int pwm_id, const char *label)
{
struct pwm_device *pwm;
if (pwm_chip == NULL) {
pr_err("No pwm_chip\n");
return ERR_PTR(-ENODEV);
}
if (pwm_id >= pwm_chip->pwm_channels || pwm_id < 0) {
pr_err("Invalid pwm_id: %d with %s\n",
pwm_id, label ? label : ".");
return ERR_PTR(-EINVAL);
}
mutex_lock(&pwm_chip->pwm_mutex);
pwm = &pwm_chip->pwm_dev[pwm_id];
if (!pwm->in_use) {
pwm->in_use = 1;
pwm->label = label;
} else {
pwm = ERR_PTR(-EBUSY);
}
mutex_unlock(&pwm_chip->pwm_mutex);
return pwm;
}
EXPORT_SYMBOL_GPL(pwm_request);
/**
* pwm_free - free a PWM device
* @pwm: the PWM device
*/
void pwm_free(struct pwm_device *pwm)
{
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) {
pr_err("Invalid pwm handle\n");
return;
}
mutex_lock(&pwm->chip->pwm_mutex);
if (pwm->in_use) {
if (pwm_chip->is_lpg_supported) {
pm8xxx_pwm_bank_sel(pwm);
pm8xxx_pwm_start(pwm, 0, 0);
} else {
pm8xxx_pwm_disable(pwm);
}
pwm->in_use = 0;
pwm->label = NULL;
}
if (pwm_chip->is_lpg_supported)
pm8xxx_pwm_bank_enable(pwm, 0);
mutex_unlock(&pwm->chip->pwm_mutex);
}
EXPORT_SYMBOL_GPL(pwm_free);
/**
* pwm_config - change a PWM device configuration
* @pwm: the PWM device
* @period_us: period in microseconds
* @duty_us: duty cycle in microseconds
*/
int pwm_config(struct pwm_device *pwm, int duty_us, int period_us)
{
struct pm8xxx_pwm_period *period;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm) ||
duty_us > period_us ||
(unsigned)period_us > PM8XXX_PWM_PERIOD_MAX ||
(unsigned)period_us < PM8XXX_PWM_PERIOD_MIN) {
pr_err("Invalid pwm handle or parameters\n");
return -EINVAL;
}
if (pwm->chip == NULL) {
pr_err("No pwm_chip\n");
return -ENODEV;
}
period = &pwm->period;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
if (pwm->pwm_period != period_us) {
pm8xxx_pwm_calc_period(period_us, period);
pm8xxx_pwm_save_period(pwm);
pwm->pwm_period = period_us;
}
pm8xxx_pwm_calc_pwm_value(pwm, period_us, duty_us);
pm8xxx_pwm_save_pwm_value(pwm);
if (pwm_chip->is_lpg_supported) {
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[1],
PM8XXX_PWM_BYPASS_LUT, PM8XXX_PWM_BYPASS_LUT);
pm8xxx_pwm_bank_sel(pwm);
rc = pm8xxx_lpg_pwm_write(pwm, 1, 6);
} else {
rc = pm8xxx_pwm_write(pwm);
}
pr_debug("duty/period=%u/%u usec: pwm_value=%d (of %d)\n",
(unsigned)duty_us, (unsigned)period_us,
pwm->pwm_value, 1 << period->pwm_size);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_config);
/**
* pwm_enable - start a PWM output toggling
* @pwm: the PWM device
*/
int pwm_enable(struct pwm_device *pwm)
{
int rc = 0;
if (pwm == NULL || IS_ERR(pwm)) {
pr_err("Invalid pwm handle\n");
return -EINVAL;
}
if (pwm->chip == NULL) {
pr_err("No pwm_chip\n");
return -ENODEV;
}
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
pr_err("pwm_id: %d: stale handle?\n", pwm->pwm_id);
rc = -EINVAL;
} else {
if (pwm_chip->is_lpg_supported) {
if (pwm->dtest_mode_supported)
pm8xxx_pwm_set_dtest(pwm, 1);
pm8xxx_pwm_bank_sel(pwm);
rc = pm8xxx_pwm_bank_enable(pwm, 1);
pm8xxx_pwm_start(pwm, 1, 0);
} else {
pm8xxx_pwm_enable(pwm);
}
}
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_enable);
/**
* pwm_disable - stop a PWM output toggling
* @pwm: the PWM device
*/
void pwm_disable(struct pwm_device *pwm)
{
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) {
pr_err("Invalid pwm handle or no pwm_chip\n");
return;
}
mutex_lock(&pwm->chip->pwm_mutex);
if (pwm->in_use) {
if (pwm_chip->is_lpg_supported) {
if (pwm->dtest_mode_supported)
pm8xxx_pwm_set_dtest(pwm, 0);
pm8xxx_pwm_bank_sel(pwm);
pm8xxx_pwm_start(pwm, 0, 0);
pm8xxx_pwm_bank_enable(pwm, 0);
} else {
pm8xxx_pwm_disable(pwm);
}
}
mutex_unlock(&pwm->chip->pwm_mutex);
}
EXPORT_SYMBOL_GPL(pwm_disable);
/**
* pm8xxx_pwm_config_period - change PWM period
*
* @pwm: the PWM device
* @pwm_p: period in struct pm8xxx_pwm_period
*/
int pm8xxx_pwm_config_period(struct pwm_device *pwm,
struct pm8xxx_pwm_period *period)
{
int rc;
if (pwm == NULL || IS_ERR(pwm) || period == NULL)
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
pwm->period.pwm_size = period->pwm_size;
pwm->period.clk = period->clk;
pwm->period.pre_div = period->pre_div;
pwm->period.pre_div_exp = period->pre_div_exp;
pm8xxx_pwm_save_period(pwm);
if (pwm_chip->is_lpg_supported) {
pm8xxx_pwm_bank_sel(pwm);
rc = pm8xxx_lpg_pwm_write(pwm, 4, 6);
} else {
rc = pm8xxx_pwm_write(pwm);
}
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pm8xxx_pwm_config_period);
/**
* pm8xxx_pwm_config_pwm_value - change a PWM device configuration
* @pwm: the PWM device
* @pwm_value: the duty cycle in raw PWM value (< 2^pwm_size)
*/
int pm8xxx_pwm_config_pwm_value(struct pwm_device *pwm, int pwm_value)
{
int rc = 0;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use || !pwm->pwm_period) {
rc = -EINVAL;
goto out_unlock;
}
if (pwm->pwm_value == pwm_value)
goto out_unlock;
pwm->pwm_value = pwm_value;
pm8xxx_pwm_save_pwm_value(pwm);
if (pwm_chip->is_lpg_supported) {
pm8xxx_pwm_save(&pwm->pwm_lpg_ctl[1],
PM8XXX_PWM_BYPASS_LUT, PM8XXX_PWM_BYPASS_LUT);
pm8xxx_pwm_bank_sel(pwm);
rc = pm8xxx_lpg_pwm_write(pwm, 1, 6);
} else {
rc = pm8xxx_pwm_write(pwm);
}
if (rc)
pr_err("[%d]: pm8xxx_pwm_write: rc=%d\n", pwm->pwm_id, rc);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pm8xxx_pwm_config_pwm_value);
/**
* pm8xxx_pwm_lut_config - change a PWM device configuration to use LUT
* @pwm: the PWM device
* @period_us: period in microseconds
* @duty_pct: arrary of duty cycles in percent, like 20, 50.
* @duty_time_ms: time for each duty cycle in milliseconds
* @start_idx: start index in lookup table from 0 to MAX-1
* @idx_len: number of index
* @pause_lo: pause time in milliseconds at low index
* @pause_hi: pause time in milliseconds at high index
* @flags: control flags
*/
int pm8xxx_pwm_lut_config(struct pwm_device *pwm, int period_us,
int duty_pct[], int duty_time_ms, int start_idx,
int idx_len, int pause_lo, int pause_hi, int flags)
{
struct pm8xxx_pwm_lut lut;
struct pm8xxx_pwm_period *period;
int len;
int rc;
if (pwm == NULL || IS_ERR(pwm) || !idx_len) {
pr_err("Invalid pwm handle or idx_len=0\n");
return -EINVAL;
}
if (duty_pct == NULL && !(flags & PM_PWM_LUT_NO_TABLE)) {
pr_err("Invalid duty_pct with flag\n");
return -EINVAL;
}
if (pwm->chip == NULL) {
pr_err("No pwm_chip\n");
return -ENODEV;
}
if (pwm->chip->is_lpg_supported == 0) {
pr_err("LPG module isn't supported\n");
return -EINVAL;
}
if (idx_len >= PM_PWM_LUT_SIZE && start_idx) {
pr_err("Wrong LUT size or index\n");
return -EINVAL;
}
if ((start_idx + idx_len) > PM_PWM_LUT_SIZE) {
pr_err("Exceed LUT limit\n");
return -EINVAL;
}
if ((unsigned)period_us > PM8XXX_PWM_PERIOD_MAX ||
(unsigned)period_us < PM8XXX_PWM_PERIOD_MIN) {
pr_err("Period out of range\n");
return -EINVAL;
}
period = &pwm->period;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
pr_err("pwm_id: %d: stale handle?\n", pwm->pwm_id);
rc = -EINVAL;
goto out_unlock;
}
if (pwm->pwm_period != period_us) {
pm8xxx_pwm_calc_period(period_us, period);
pm8xxx_pwm_save_period(pwm);
pwm->pwm_period = period_us;
}
len = (idx_len > PM_PWM_LUT_SIZE) ? PM_PWM_LUT_SIZE : idx_len;
if (flags & PM_PWM_LUT_NO_TABLE)
goto after_table_write;
rc = pm8xxx_pwm_change_table(pwm, duty_pct, start_idx, len, 0);
if (rc) {
pr_err("pm8xxx_pwm_change_table: rc=%d\n", rc);
goto out_unlock;
}
after_table_write:
lut.lut_duty_ms = duty_time_ms;
lut.lut_lo_index = start_idx;
lut.lut_hi_index = start_idx + len - 1;
lut.lut_pause_lo = pause_lo;
lut.lut_pause_hi = pause_hi;
lut.flags = flags;
pwm->bypass_lut = 0;
rc = pm8xxx_pwm_change_lut(pwm, &lut);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pm8xxx_pwm_lut_config);
/**
* pm8xxx_pwm_lut_enable - control a PWM device to start/stop LUT ramp
* @pwm: the PWM device
* @start: to start (1), or stop (0)
*/
int pm8xxx_pwm_lut_enable(struct pwm_device *pwm, int start)
{
if (pwm == NULL || IS_ERR(pwm)) {
pr_err("Invalid pwm handle\n");
return -EINVAL;
}
if (pwm->chip == NULL) {
pr_err("No pwm_chip\n");
return -ENODEV;
}
if (pwm->chip->is_lpg_supported == 0) {
pr_err("LPG module isn't supported\n");
return -EINVAL;
}
mutex_lock(&pwm->chip->pwm_mutex);
if (start) {
if (pwm->dtest_mode_supported)
pm8xxx_pwm_set_dtest(pwm, 1);
pm8xxx_pwm_bank_sel(pwm);
pm8xxx_pwm_bank_enable(pwm, 1);
pm8xxx_pwm_start(pwm, 1, 1);
} else {
if (pwm->dtest_mode_supported)
pm8xxx_pwm_set_dtest(pwm, 0);
pm8xxx_pwm_bank_sel(pwm);
pm8xxx_pwm_start(pwm, 0, 0);
pm8xxx_pwm_bank_enable(pwm, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(pm8xxx_pwm_lut_enable);
#if defined(CONFIG_DEBUG_FS)
struct pm8xxx_pwm_dbg_device;
struct pm8xxx_pwm_user {
int pwm_id;
struct pwm_device *pwm;
int period;
int duty_cycle;
int enable;
struct pm8xxx_pwm_dbg_device *dbgdev;
};
struct pm8xxx_pwm_dbg_device {
struct mutex dbg_mutex;
struct device *dev;
struct dentry *dent;
struct pm8xxx_pwm_user *user;
};
static struct pm8xxx_pwm_dbg_device *pmic_dbg_device;
static int dbg_pwm_check_period(int period)
{
if (period < PM8XXX_PWM_PERIOD_MIN || period > PM8XXX_PWM_PERIOD_MAX) {
pr_err("period is invalid: %d\n", period);
return -EINVAL;
}
return 0;
}
static int dbg_pwm_check_duty_cycle(int duty_cycle, const char *func_name)
{
if (duty_cycle <= 0 || duty_cycle > 100) {
pr_err("%s: duty_cycle is invalid: %d\n",
func_name, duty_cycle);
return -EINVAL;
}
return 0;
}
static void dbg_pwm_check_handle(struct pm8xxx_pwm_user *puser)
{
struct pwm_device *tmp;
if (puser->pwm == NULL) {
tmp = pwm_request(puser->pwm_id, "pwm-dbg");
if (PTR_ERR(puser->pwm)) {
pr_err("pwm_request: err=%ld\n", PTR_ERR(puser->pwm));
puser->pwm = NULL;
} else {
pr_debug("[id=%d] pwm_request ok\n", puser->pwm_id);
puser->pwm = tmp;
}
}
}
static int dbg_pwm_enable_set(void *data, u64 val)
{
struct pm8xxx_pwm_user *puser = data;
struct pm8xxx_pwm_dbg_device *dbgdev = puser->dbgdev;
int rc;
mutex_lock(&dbgdev->dbg_mutex);
rc = dbg_pwm_check_duty_cycle(puser->duty_cycle, __func__);
if (!rc) {
puser->enable = val;
dbg_pwm_check_handle(puser);
if (puser->pwm) {
if (puser->enable)
pwm_enable(puser->pwm);
else
pwm_disable(puser->pwm);
}
}
mutex_unlock(&dbgdev->dbg_mutex);
return 0;
}
static int dbg_pwm_enable_get(void *data, u64 *val)
{
struct pm8xxx_pwm_user *puser = data;
struct pm8xxx_pwm_dbg_device *dbgdev = puser->dbgdev;
mutex_lock(&dbgdev->dbg_mutex);
*val = puser->enable;
mutex_unlock(&dbgdev->dbg_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(dbg_pwm_enable_fops,
dbg_pwm_enable_get, dbg_pwm_enable_set,
"%lld\n");
static int dbg_pwm_duty_cycle_set(void *data, u64 val)
{
struct pm8xxx_pwm_user *puser = data;
struct pm8xxx_pwm_dbg_device *dbgdev = puser->dbgdev;
int rc;
mutex_lock(&dbgdev->dbg_mutex);
rc = dbg_pwm_check_duty_cycle(val, __func__);
if (!rc) {
puser->duty_cycle = val;
dbg_pwm_check_handle(puser);
if (puser->pwm) {
int duty_us;
duty_us = puser->duty_cycle * puser->period / 100;
pwm_config(puser->pwm, duty_us, puser->period);
}
}
mutex_unlock(&dbgdev->dbg_mutex);
return 0;
}
static int dbg_pwm_duty_cycle_get(void *data, u64 *val)
{
struct pm8xxx_pwm_user *puser = data;
struct pm8xxx_pwm_dbg_device *dbgdev = puser->dbgdev;
mutex_lock(&dbgdev->dbg_mutex);
*val = puser->duty_cycle;
mutex_unlock(&dbgdev->dbg_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(dbg_pwm_duty_cycle_fops,
dbg_pwm_duty_cycle_get, dbg_pwm_duty_cycle_set,
"%lld\n");
static int dbg_pwm_period_set(void *data, u64 val)
{
struct pm8xxx_pwm_user *puser = data;
struct pm8xxx_pwm_dbg_device *dbgdev = puser->dbgdev;
int rc;
mutex_lock(&dbgdev->dbg_mutex);
rc = dbg_pwm_check_period(val);
if (!rc)
puser->period = val;
mutex_unlock(&dbgdev->dbg_mutex);
return 0;
}
static int dbg_pwm_period_get(void *data, u64 *val)
{
struct pm8xxx_pwm_user *puser = data;
struct pm8xxx_pwm_dbg_device *dbgdev = puser->dbgdev;
mutex_lock(&dbgdev->dbg_mutex);
*val = puser->period;
mutex_unlock(&dbgdev->dbg_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(dbg_pwm_period_fops,
dbg_pwm_period_get, dbg_pwm_period_set, "%lld\n");
static int __devinit pm8xxx_pwm_dbg_probe(struct device *dev)
{
struct pm8xxx_pwm_dbg_device *dbgdev;
struct dentry *dent;
struct dentry *temp;
struct pm8xxx_pwm_user *puser;
int i;
int rc = 0;
if (dev == NULL) {
pr_err("no parent data passed in.\n");
return -EINVAL;
}
dbgdev = kzalloc(sizeof *dbgdev, GFP_KERNEL);
if (dbgdev == NULL) {
pr_err("kzalloc() failed.\n");
return -ENOMEM;
}
dbgdev->user = kcalloc(pwm_chip->pwm_channels,
sizeof(struct pm8xxx_pwm_user), GFP_KERNEL);
if (dbgdev->user == NULL) {
pr_err("kcalloc() failed.\n");
rc = -ENOMEM;
goto user_error;
}
mutex_init(&dbgdev->dbg_mutex);
dbgdev->dev = dev;
dent = debugfs_create_dir("pm8xxx-pwm-dbg", NULL);
if (dent == NULL || IS_ERR(dent)) {
pr_err("ERR debugfs_create_dir: dent=%p\n", dent);
rc = -ENOMEM;
goto dir_error;
}
dbgdev->dent = dent;
for (i = 0; i < pwm_chip->pwm_channels; i++) {
char pwm_ch[] = "0";
pwm_ch[0] = '0' + i;
dent = debugfs_create_dir(pwm_ch, dbgdev->dent);
if (dent == NULL || IS_ERR(dent)) {
pr_err("ERR: pwm=%d: dir: dent=%p\n", i, dent);
rc = -ENOMEM;
goto debug_error;
}
puser = &dbgdev->user[i];
puser->dbgdev = dbgdev;
puser->pwm_id = i;
temp = debugfs_create_file("period", S_IRUGO | S_IWUSR,
dent, puser, &dbg_pwm_period_fops);
if (temp == NULL || IS_ERR(temp)) {
pr_err("ERR: pwm=%d: period: dent=%p\n", i, dent);
rc = -ENOMEM;
goto debug_error;
}
temp = debugfs_create_file("duty-cycle", S_IRUGO | S_IWUSR,
dent, puser, &dbg_pwm_duty_cycle_fops);
if (temp == NULL || IS_ERR(temp)) {
pr_err("ERR: pwm=%d: duty-cycle: dent=%p\n", i, dent);
rc = -ENOMEM;
goto debug_error;
}
temp = debugfs_create_file("enable", S_IRUGO | S_IWUSR,
dent, puser, &dbg_pwm_enable_fops);
if (temp == NULL || IS_ERR(temp)) {
pr_err("ERR: pwm=%d: enable: dent=%p\n", i, dent);
rc = -ENOMEM;
goto debug_error;
}
}
pmic_dbg_device = dbgdev;
return 0;
debug_error:
debugfs_remove_recursive(dbgdev->dent);
dir_error:
kfree(dbgdev->user);
user_error:
kfree(dbgdev);
return rc;
}
static int __devexit pm8xxx_pwm_dbg_remove(void)
{
if (pmic_dbg_device) {
kfree(pmic_dbg_device->user);
debugfs_remove_recursive(pmic_dbg_device->dent);
kfree(pmic_dbg_device);
}
return 0;
}
#else
static int __devinit pm8xxx_pwm_dbg_probe(struct device *dev)
{
return 0;
}
static int __devexit pm8xxx_pwm_dbg_remove(void)
{
return 0;
}
#endif
static int __devinit pm8xxx_pwm_probe(struct platform_device *pdev)
{
const struct pm8xxx_pwm_platform_data *pdata = pdev->dev.platform_data;
struct pm8xxx_pwm_chip *chip;
int i, dtest_channel;
enum pm8xxx_version version;
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (chip == NULL) {
pr_err("kzalloc() failed.\n");
return -ENOMEM;
}
if (pdata != NULL)
dtest_channel = pdata->dtest_channel;
else
dtest_channel = -1;
mutex_init(&chip->pwm_mutex);
chip->dev = &pdev->dev;
pwm_chip = chip;
version = pm8xxx_get_version(chip->dev->parent);
if (version == PM8XXX_VERSION_8921 ||
version == PM8XXX_VERSION_8058 ||
version == PM8XXX_VERSION_8922 ||
version == PM8XXX_VERSION_8038) {
chip->is_lpg_supported = 1;
}
if (chip->is_lpg_supported) {
if (version == PM8XXX_VERSION_8922 ||
version == PM8XXX_VERSION_8038) {
for (i = 0; i < NUM_CLOCKS; i++)
pt_t[0][i] /= PRE_DIVIDE_2;
chip->pwm_channels = PM8XXX_LPG_V1_PWM_CHANNELS;
} else {
chip->pwm_channels = PM8XXX_LPG_V0_PWM_CHANNELS;
}
chip->pwm_total_pre_divs = NUM_LPG_PRE_DIVIDE;
} else {
chip->pwm_channels = PM8XXX_PWM_CHANNELS;
chip->pwm_total_pre_divs = NUM_PWM_PRE_DIVIDE;
}
chip->pwm_dev = kcalloc(chip->pwm_channels, sizeof(struct pwm_device),
GFP_KERNEL);
if (chip->pwm_dev == NULL) {
pr_err("kcalloc() failed.\n");
mutex_destroy(&chip->pwm_mutex);
kfree(chip);
return -ENOMEM;
}
for (i = 0; i < chip->pwm_channels; i++) {
chip->pwm_dev[i].pwm_id = i;
chip->pwm_dev[i].chip = chip;
if (i == dtest_channel)
chip->pwm_dev[i].dtest_mode_supported = 1;
}
platform_set_drvdata(pdev, chip);
if (pm8xxx_pwm_dbg_probe(&pdev->dev) < 0)
pr_err("could not set up debugfs\n");
pr_notice("OK\n");
return 0;
}
static int __devexit pm8xxx_pwm_remove(struct platform_device *pdev)
{
struct pm8xxx_pwm_chip *chip = dev_get_drvdata(pdev->dev.parent);
pm8xxx_pwm_dbg_remove();
kfree(chip->pwm_dev);
mutex_destroy(&chip->pwm_mutex);
platform_set_drvdata(pdev, NULL);
kfree(chip);
return 0;
}
static struct platform_driver pm8xxx_pwm_driver = {
.probe = pm8xxx_pwm_probe,
.remove = __devexit_p(pm8xxx_pwm_remove),
.driver = {
.name = PM8XXX_PWM_DEV_NAME,
.owner = THIS_MODULE,
},
};
static int __init pm8xxx_pwm_init(void)
{
return platform_driver_register(&pm8xxx_pwm_driver);
}
static void __exit pm8xxx_pwm_exit(void)
{
platform_driver_unregister(&pm8xxx_pwm_driver);
}
subsys_initcall(pm8xxx_pwm_init);
module_exit(pm8xxx_pwm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PM8XXX PWM driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" PM8XXX_PWM_DEV_NAME);