| /* |
| * Copyright (C) 2004 IBM |
| * |
| * Implements the generic device dma API for powerpc. |
| * the pci and vio busses |
| */ |
| #ifndef _ASM_DMA_MAPPING_H |
| #define _ASM_DMA_MAPPING_H |
| #ifdef __KERNEL__ |
| |
| #include <linux/types.h> |
| #include <linux/cache.h> |
| /* need struct page definitions */ |
| #include <linux/mm.h> |
| #include <linux/scatterlist.h> |
| #include <asm/io.h> |
| |
| #define DMA_ERROR_CODE (~(dma_addr_t)0x0) |
| |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| /* |
| * DMA-consistent mapping functions for PowerPCs that don't support |
| * cache snooping. These allocate/free a region of uncached mapped |
| * memory space for use with DMA devices. Alternatively, you could |
| * allocate the space "normally" and use the cache management functions |
| * to ensure it is consistent. |
| */ |
| extern void *__dma_alloc_coherent(size_t size, dma_addr_t *handle, gfp_t gfp); |
| extern void __dma_free_coherent(size_t size, void *vaddr); |
| extern void __dma_sync(void *vaddr, size_t size, int direction); |
| extern void __dma_sync_page(struct page *page, unsigned long offset, |
| size_t size, int direction); |
| |
| #else /* ! CONFIG_NOT_COHERENT_CACHE */ |
| /* |
| * Cache coherent cores. |
| */ |
| |
| #define __dma_alloc_coherent(gfp, size, handle) NULL |
| #define __dma_free_coherent(size, addr) ((void)0) |
| #define __dma_sync(addr, size, rw) ((void)0) |
| #define __dma_sync_page(pg, off, sz, rw) ((void)0) |
| |
| #endif /* ! CONFIG_NOT_COHERENT_CACHE */ |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * DMA operations are abstracted for G5 vs. i/pSeries, PCI vs. VIO |
| */ |
| struct dma_mapping_ops { |
| void * (*alloc_coherent)(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flag); |
| void (*free_coherent)(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t dma_handle); |
| dma_addr_t (*map_single)(struct device *dev, void *ptr, |
| size_t size, enum dma_data_direction direction); |
| void (*unmap_single)(struct device *dev, dma_addr_t dma_addr, |
| size_t size, enum dma_data_direction direction); |
| int (*map_sg)(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction direction); |
| void (*unmap_sg)(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction direction); |
| int (*dma_supported)(struct device *dev, u64 mask); |
| int (*set_dma_mask)(struct device *dev, u64 dma_mask); |
| }; |
| |
| static inline struct dma_mapping_ops *get_dma_ops(struct device *dev) |
| { |
| /* We don't handle the NULL dev case for ISA for now. We could |
| * do it via an out of line call but it is not needed for now. The |
| * only ISA DMA device we support is the floppy and we have a hack |
| * in the floppy driver directly to get a device for us. |
| */ |
| if (unlikely(dev == NULL || dev->archdata.dma_ops == NULL)) |
| return NULL; |
| return dev->archdata.dma_ops; |
| } |
| |
| static inline void set_dma_ops(struct device *dev, struct dma_mapping_ops *ops) |
| { |
| dev->archdata.dma_ops = ops; |
| } |
| |
| static inline int dma_supported(struct device *dev, u64 mask) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| if (unlikely(dma_ops == NULL)) |
| return 0; |
| if (dma_ops->dma_supported == NULL) |
| return 1; |
| return dma_ops->dma_supported(dev, mask); |
| } |
| |
| /* We have our own implementation of pci_set_dma_mask() */ |
| #define HAVE_ARCH_PCI_SET_DMA_MASK |
| |
| static inline int dma_set_mask(struct device *dev, u64 dma_mask) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| if (unlikely(dma_ops == NULL)) |
| return -EIO; |
| if (dma_ops->set_dma_mask != NULL) |
| return dma_ops->set_dma_mask(dev, dma_mask); |
| if (!dev->dma_mask || !dma_supported(dev, dma_mask)) |
| return -EIO; |
| *dev->dma_mask = dma_mask; |
| return 0; |
| } |
| |
| static inline void *dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flag) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| return dma_ops->alloc_coherent(dev, size, dma_handle, flag); |
| } |
| |
| static inline void dma_free_coherent(struct device *dev, size_t size, |
| void *cpu_addr, dma_addr_t dma_handle) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); |
| } |
| |
| static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr, |
| size_t size, |
| enum dma_data_direction direction) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| return dma_ops->map_single(dev, cpu_addr, size, direction); |
| } |
| |
| static inline void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, |
| size_t size, |
| enum dma_data_direction direction) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| dma_ops->unmap_single(dev, dma_addr, size, direction); |
| } |
| |
| static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| return dma_ops->map_single(dev, page_address(page) + offset, size, |
| direction); |
| } |
| |
| static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address, |
| size_t size, |
| enum dma_data_direction direction) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| dma_ops->unmap_single(dev, dma_address, size, direction); |
| } |
| |
| static inline int dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction direction) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| return dma_ops->map_sg(dev, sg, nents, direction); |
| } |
| |
| static inline void dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nhwentries, |
| enum dma_data_direction direction) |
| { |
| struct dma_mapping_ops *dma_ops = get_dma_ops(dev); |
| |
| BUG_ON(!dma_ops); |
| dma_ops->unmap_sg(dev, sg, nhwentries, direction); |
| } |
| |
| |
| /* |
| * Available generic sets of operations |
| */ |
| extern struct dma_mapping_ops dma_iommu_ops; |
| extern struct dma_mapping_ops dma_direct_ops; |
| |
| #else /* CONFIG_PPC64 */ |
| |
| #define dma_supported(dev, mask) (1) |
| |
| static inline int dma_set_mask(struct device *dev, u64 dma_mask) |
| { |
| if (!dev->dma_mask || !dma_supported(dev, mask)) |
| return -EIO; |
| |
| *dev->dma_mask = dma_mask; |
| |
| return 0; |
| } |
| |
| static inline void *dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t * dma_handle, |
| gfp_t gfp) |
| { |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| return __dma_alloc_coherent(size, dma_handle, gfp); |
| #else |
| void *ret; |
| /* ignore region specifiers */ |
| gfp &= ~(__GFP_DMA | __GFP_HIGHMEM); |
| |
| if (dev == NULL || dev->coherent_dma_mask < 0xffffffff) |
| gfp |= GFP_DMA; |
| |
| ret = (void *)__get_free_pages(gfp, get_order(size)); |
| |
| if (ret != NULL) { |
| memset(ret, 0, size); |
| *dma_handle = virt_to_bus(ret); |
| } |
| |
| return ret; |
| #endif |
| } |
| |
| static inline void |
| dma_free_coherent(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle) |
| { |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| __dma_free_coherent(size, vaddr); |
| #else |
| free_pages((unsigned long)vaddr, get_order(size)); |
| #endif |
| } |
| |
| static inline dma_addr_t |
| dma_map_single(struct device *dev, void *ptr, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| |
| __dma_sync(ptr, size, direction); |
| |
| return virt_to_bus(ptr); |
| } |
| |
| static inline void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, |
| size_t size, |
| enum dma_data_direction direction) |
| { |
| /* We do nothing. */ |
| } |
| |
| static inline dma_addr_t |
| dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| |
| __dma_sync_page(page, offset, size, direction); |
| |
| return page_to_bus(page) + offset; |
| } |
| |
| static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address, |
| size_t size, |
| enum dma_data_direction direction) |
| { |
| /* We do nothing. */ |
| } |
| |
| static inline int |
| dma_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
| enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(direction == DMA_NONE); |
| |
| for_each_sg(sgl, sg, nents, i) { |
| BUG_ON(!sg_page(sg)); |
| __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction); |
| sg->dma_address = page_to_bus(sg_page(sg)) + sg->offset; |
| } |
| |
| return nents; |
| } |
| |
| static inline void dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nhwentries, |
| enum dma_data_direction direction) |
| { |
| /* We don't do anything here. */ |
| } |
| |
| #endif /* CONFIG_PPC64 */ |
| |
| static inline void dma_sync_single_for_cpu(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| __dma_sync(bus_to_virt(dma_handle), size, direction); |
| } |
| |
| static inline void dma_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| __dma_sync(bus_to_virt(dma_handle), size, direction); |
| } |
| |
| static inline void dma_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sgl, int nents, |
| enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(direction == DMA_NONE); |
| |
| for_each_sg(sgl, sg, nents, i) |
| __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction); |
| } |
| |
| static inline void dma_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sgl, int nents, |
| enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(direction == DMA_NONE); |
| |
| for_each_sg(sgl, sg, nents, i) |
| __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction); |
| } |
| |
| static inline int dma_mapping_error(dma_addr_t dma_addr) |
| { |
| #ifdef CONFIG_PPC64 |
| return (dma_addr == DMA_ERROR_CODE); |
| #else |
| return 0; |
| #endif |
| } |
| |
| #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f) |
| #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h) |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| #define dma_is_consistent(d, h) (0) |
| #else |
| #define dma_is_consistent(d, h) (1) |
| #endif |
| |
| static inline int dma_get_cache_alignment(void) |
| { |
| #ifdef CONFIG_PPC64 |
| /* no easy way to get cache size on all processors, so return |
| * the maximum possible, to be safe */ |
| return (1 << INTERNODE_CACHE_SHIFT); |
| #else |
| /* |
| * Each processor family will define its own L1_CACHE_SHIFT, |
| * L1_CACHE_BYTES wraps to this, so this is always safe. |
| */ |
| return L1_CACHE_BYTES; |
| #endif |
| } |
| |
| static inline void dma_sync_single_range_for_cpu(struct device *dev, |
| dma_addr_t dma_handle, unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| /* just sync everything for now */ |
| dma_sync_single_for_cpu(dev, dma_handle, offset + size, direction); |
| } |
| |
| static inline void dma_sync_single_range_for_device(struct device *dev, |
| dma_addr_t dma_handle, unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| /* just sync everything for now */ |
| dma_sync_single_for_device(dev, dma_handle, offset + size, direction); |
| } |
| |
| static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| __dma_sync(vaddr, size, (int)direction); |
| } |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _ASM_DMA_MAPPING_H */ |