blob: 05710c7c12206aa1a9fcca8bad4db2eac3be7697 [file] [log] [blame]
/*
* Node information (ConfigROM) collection and management.
*
* Copyright (C) 2000 Andreas E. Bombe
* 2001-2003 Ben Collins <bcollins@debian.net>
*
* This code is licensed under the GPL. See the file COPYING in the root
* directory of the kernel sources for details.
*/
#include <linux/bitmap.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/freezer.h>
#include <linux/semaphore.h>
#include <asm/atomic.h>
#include "csr.h"
#include "highlevel.h"
#include "hosts.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ieee1394_hotplug.h"
#include "ieee1394_types.h"
#include "ieee1394_transactions.h"
#include "nodemgr.h"
static int ignore_drivers;
module_param(ignore_drivers, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ignore_drivers, "Disable automatic probing for drivers.");
struct nodemgr_csr_info {
struct hpsb_host *host;
nodeid_t nodeid;
unsigned int generation;
unsigned int speed_unverified:1;
};
/*
* Correct the speed map entry. This is necessary
* - for nodes with link speed < phy speed,
* - for 1394b nodes with negotiated phy port speed < IEEE1394_SPEED_MAX.
* A possible speed is determined by trial and error, using quadlet reads.
*/
static int nodemgr_check_speed(struct nodemgr_csr_info *ci, u64 addr,
quadlet_t *buffer)
{
quadlet_t q;
u8 i, *speed, old_speed, good_speed;
int error;
speed = &(ci->host->speed[NODEID_TO_NODE(ci->nodeid)]);
old_speed = *speed;
good_speed = IEEE1394_SPEED_MAX + 1;
/* Try every speed from S100 to old_speed.
* If we did it the other way around, a too low speed could be caught
* if the retry succeeded for some other reason, e.g. because the link
* just finished its initialization. */
for (i = IEEE1394_SPEED_100; i <= old_speed; i++) {
*speed = i;
error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
&q, sizeof(quadlet_t));
if (error)
break;
*buffer = q;
good_speed = i;
}
if (good_speed <= IEEE1394_SPEED_MAX) {
HPSB_DEBUG("Speed probe of node " NODE_BUS_FMT " yields %s",
NODE_BUS_ARGS(ci->host, ci->nodeid),
hpsb_speedto_str[good_speed]);
*speed = good_speed;
ci->speed_unverified = 0;
return 0;
}
*speed = old_speed;
return error;
}
static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length,
void *buffer, void *__ci)
{
struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci;
int i, error;
for (i = 1; ; i++) {
error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
buffer, length);
if (!error) {
ci->speed_unverified = 0;
break;
}
/* Give up after 3rd failure. */
if (i == 3)
break;
/* The ieee1394_core guessed the node's speed capability from
* the self ID. Check whether a lower speed works. */
if (ci->speed_unverified && length == sizeof(quadlet_t)) {
error = nodemgr_check_speed(ci, addr, buffer);
if (!error)
break;
}
if (msleep_interruptible(334))
return -EINTR;
}
return error;
}
static int nodemgr_get_max_rom(quadlet_t *bus_info_data, void *__ci)
{
return (be32_to_cpu(bus_info_data[2]) >> 8) & 0x3;
}
static struct csr1212_bus_ops nodemgr_csr_ops = {
.bus_read = nodemgr_bus_read,
.get_max_rom = nodemgr_get_max_rom
};
/*
* Basically what we do here is start off retrieving the bus_info block.
* From there will fill in some info about the node, verify it is of IEEE
* 1394 type, and that the crc checks out ok. After that we start off with
* the root directory, and subdirectories. To do this, we retrieve the
* quadlet header for a directory, find out the length, and retrieve the
* complete directory entry (be it a leaf or a directory). We then process
* it and add the info to our structure for that particular node.
*
* We verify CRC's along the way for each directory/block/leaf. The entire
* node structure is generic, and simply stores the information in a way
* that's easy to parse by the protocol interface.
*/
/*
* The nodemgr relies heavily on the Driver Model for device callbacks and
* driver/device mappings. The old nodemgr used to handle all this itself,
* but now we are much simpler because of the LDM.
*/
struct host_info {
struct hpsb_host *host;
struct list_head list;
struct task_struct *thread;
};
static int nodemgr_bus_match(struct device * dev, struct device_driver * drv);
static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env);
static void nodemgr_resume_ne(struct node_entry *ne);
static void nodemgr_remove_ne(struct node_entry *ne);
static struct node_entry *find_entry_by_guid(u64 guid);
struct bus_type ieee1394_bus_type = {
.name = "ieee1394",
.match = nodemgr_bus_match,
};
static void host_cls_release(struct device *dev)
{
put_device(&container_of((dev), struct hpsb_host, host_dev)->device);
}
struct class hpsb_host_class = {
.name = "ieee1394_host",
.dev_release = host_cls_release,
};
static void ne_cls_release(struct device *dev)
{
put_device(&container_of((dev), struct node_entry, node_dev)->device);
}
static struct class nodemgr_ne_class = {
.name = "ieee1394_node",
.dev_release = ne_cls_release,
};
static void ud_cls_release(struct device *dev)
{
put_device(&container_of((dev), struct unit_directory, unit_dev)->device);
}
/* The name here is only so that unit directory hotplug works with old
* style hotplug, which only ever did unit directories anyway.
*/
static struct class nodemgr_ud_class = {
.name = "ieee1394",
.dev_release = ud_cls_release,
.dev_uevent = nodemgr_uevent,
};
static struct hpsb_highlevel nodemgr_highlevel;
static void nodemgr_release_ud(struct device *dev)
{
struct unit_directory *ud = container_of(dev, struct unit_directory, device);
if (ud->vendor_name_kv)
csr1212_release_keyval(ud->vendor_name_kv);
if (ud->model_name_kv)
csr1212_release_keyval(ud->model_name_kv);
kfree(ud);
}
static void nodemgr_release_ne(struct device *dev)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
if (ne->vendor_name_kv)
csr1212_release_keyval(ne->vendor_name_kv);
kfree(ne);
}
static void nodemgr_release_host(struct device *dev)
{
struct hpsb_host *host = container_of(dev, struct hpsb_host, device);
csr1212_destroy_csr(host->csr.rom);
kfree(host);
}
static int nodemgr_ud_platform_data;
static struct device nodemgr_dev_template_ud = {
.bus = &ieee1394_bus_type,
.release = nodemgr_release_ud,
.platform_data = &nodemgr_ud_platform_data,
};
static struct device nodemgr_dev_template_ne = {
.bus = &ieee1394_bus_type,
.release = nodemgr_release_ne,
};
/* This dummy driver prevents the host devices from being scanned. We have no
* useful drivers for them yet, and there would be a deadlock possible if the
* driver core scans the host device while the host's low-level driver (i.e.
* the host's parent device) is being removed. */
static struct device_driver nodemgr_mid_layer_driver = {
.bus = &ieee1394_bus_type,
.name = "nodemgr",
.owner = THIS_MODULE,
};
struct device nodemgr_dev_template_host = {
.bus = &ieee1394_bus_type,
.release = nodemgr_release_host,
};
#define fw_attr(class, class_type, field, type, format_string) \
static ssize_t fw_show_##class##_##field (struct device *dev, struct device_attribute *attr, char *buf)\
{ \
class_type *class; \
class = container_of(dev, class_type, device); \
return sprintf(buf, format_string, (type)class->field); \
} \
static struct device_attribute dev_attr_##class##_##field = { \
.attr = {.name = __stringify(field), .mode = S_IRUGO }, \
.show = fw_show_##class##_##field, \
};
#define fw_attr_td(class, class_type, td_kv) \
static ssize_t fw_show_##class##_##td_kv (struct device *dev, struct device_attribute *attr, char *buf)\
{ \
int len; \
class_type *class = container_of(dev, class_type, device); \
len = (class->td_kv->value.leaf.len - 2) * sizeof(quadlet_t); \
memcpy(buf, \
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(class->td_kv), \
len); \
while (buf[len - 1] == '\0') \
len--; \
buf[len++] = '\n'; \
buf[len] = '\0'; \
return len; \
} \
static struct device_attribute dev_attr_##class##_##td_kv = { \
.attr = {.name = __stringify(td_kv), .mode = S_IRUGO }, \
.show = fw_show_##class##_##td_kv, \
};
#define fw_drv_attr(field, type, format_string) \
static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \
{ \
struct hpsb_protocol_driver *driver; \
driver = container_of(drv, struct hpsb_protocol_driver, driver); \
return sprintf(buf, format_string, (type)driver->field);\
} \
static struct driver_attribute driver_attr_drv_##field = { \
.attr = {.name = __stringify(field), .mode = S_IRUGO }, \
.show = fw_drv_show_##field, \
};
static ssize_t fw_show_ne_bus_options(struct device *dev, struct device_attribute *attr, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) "
"LSPD(%d) MAX_REC(%d) MAX_ROM(%d) CYC_CLK_ACC(%d)\n",
ne->busopt.irmc,
ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc,
ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd,
ne->busopt.max_rec,
ne->busopt.max_rom,
ne->busopt.cyc_clk_acc);
}
static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL);
#ifdef HPSB_DEBUG_TLABELS
static ssize_t fw_show_ne_tlabels_free(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
unsigned long flags;
unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
int tf;
spin_lock_irqsave(&hpsb_tlabel_lock, flags);
tf = 64 - bitmap_weight(tp, 64);
spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
return sprintf(buf, "%d\n", tf);
}
static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL);
static ssize_t fw_show_ne_tlabels_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
unsigned long flags;
unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
u64 tm;
spin_lock_irqsave(&hpsb_tlabel_lock, flags);
#if (BITS_PER_LONG <= 32)
tm = ((u64)tp[0] << 32) + tp[1];
#else
tm = tp[0];
#endif
spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
return sprintf(buf, "0x%016llx\n", (unsigned long long)tm);
}
static DEVICE_ATTR(tlabels_mask, S_IRUGO, fw_show_ne_tlabels_mask, NULL);
#endif /* HPSB_DEBUG_TLABELS */
static ssize_t fw_set_ignore_driver(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct unit_directory *ud = container_of(dev, struct unit_directory, device);
int state = simple_strtoul(buf, NULL, 10);
if (state == 1) {
ud->ignore_driver = 1;
device_release_driver(dev);
} else if (state == 0)
ud->ignore_driver = 0;
return count;
}
static ssize_t fw_get_ignore_driver(struct device *dev, struct device_attribute *attr, char *buf)
{
struct unit_directory *ud = container_of(dev, struct unit_directory, device);
return sprintf(buf, "%d\n", ud->ignore_driver);
}
static DEVICE_ATTR(ignore_driver, S_IWUSR | S_IRUGO, fw_get_ignore_driver, fw_set_ignore_driver);
static ssize_t fw_set_destroy_node(struct bus_type *bus, const char *buf, size_t count)
{
struct node_entry *ne;
u64 guid = (u64)simple_strtoull(buf, NULL, 16);
ne = find_entry_by_guid(guid);
if (ne == NULL || !ne->in_limbo)
return -EINVAL;
nodemgr_remove_ne(ne);
return count;
}
static ssize_t fw_get_destroy_node(struct bus_type *bus, char *buf)
{
return sprintf(buf, "You can destroy in_limbo nodes by writing their GUID to this file\n");
}
static BUS_ATTR(destroy_node, S_IWUSR | S_IRUGO, fw_get_destroy_node, fw_set_destroy_node);
static ssize_t fw_set_rescan(struct bus_type *bus, const char *buf,
size_t count)
{
int error = 0;
if (simple_strtoul(buf, NULL, 10) == 1)
error = bus_rescan_devices(&ieee1394_bus_type);
return error ? error : count;
}
static ssize_t fw_get_rescan(struct bus_type *bus, char *buf)
{
return sprintf(buf, "You can force a rescan of the bus for "
"drivers by writing a 1 to this file\n");
}
static BUS_ATTR(rescan, S_IWUSR | S_IRUGO, fw_get_rescan, fw_set_rescan);
static ssize_t fw_set_ignore_drivers(struct bus_type *bus, const char *buf, size_t count)
{
int state = simple_strtoul(buf, NULL, 10);
if (state == 1)
ignore_drivers = 1;
else if (state == 0)
ignore_drivers = 0;
return count;
}
static ssize_t fw_get_ignore_drivers(struct bus_type *bus, char *buf)
{
return sprintf(buf, "%d\n", ignore_drivers);
}
static BUS_ATTR(ignore_drivers, S_IWUSR | S_IRUGO, fw_get_ignore_drivers, fw_set_ignore_drivers);
struct bus_attribute *const fw_bus_attrs[] = {
&bus_attr_destroy_node,
&bus_attr_rescan,
&bus_attr_ignore_drivers,
NULL
};
fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n")
fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n")
fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n")
fw_attr_td(ne, struct node_entry, vendor_name_kv)
fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n")
fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n")
fw_attr(ne, struct node_entry, in_limbo, int, "%d\n");
static struct device_attribute *const fw_ne_attrs[] = {
&dev_attr_ne_guid,
&dev_attr_ne_guid_vendor_id,
&dev_attr_ne_capabilities,
&dev_attr_ne_vendor_id,
&dev_attr_ne_nodeid,
&dev_attr_bus_options,
#ifdef HPSB_DEBUG_TLABELS
&dev_attr_tlabels_free,
&dev_attr_tlabels_mask,
#endif
};
fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n")
fw_attr(ud, struct unit_directory, length, int, "%d\n")
/* These are all dependent on the value being provided */
fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n")
fw_attr_td(ud, struct unit_directory, vendor_name_kv)
fw_attr_td(ud, struct unit_directory, model_name_kv)
static struct device_attribute *const fw_ud_attrs[] = {
&dev_attr_ud_address,
&dev_attr_ud_length,
&dev_attr_ignore_driver,
};
fw_attr(host, struct hpsb_host, node_count, int, "%d\n")
fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n")
fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n")
fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n")
fw_attr(host, struct hpsb_host, is_root, int, "%d\n")
fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n")
fw_attr(host, struct hpsb_host, is_irm, int, "%d\n")
fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n")
static struct device_attribute *const fw_host_attrs[] = {
&dev_attr_host_node_count,
&dev_attr_host_selfid_count,
&dev_attr_host_nodes_active,
&dev_attr_host_in_bus_reset,
&dev_attr_host_is_root,
&dev_attr_host_is_cycmst,
&dev_attr_host_is_irm,
&dev_attr_host_is_busmgr,
};
static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf)
{
struct hpsb_protocol_driver *driver;
struct ieee1394_device_id *id;
int length = 0;
char *scratch = buf;
driver = container_of(drv, struct hpsb_protocol_driver, driver);
id = driver->id_table;
if (!id)
return 0;
for (; id->match_flags != 0; id++) {
int need_coma = 0;
if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) {
length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id);
scratch = buf + length;
need_coma++;
}
if (id->match_flags & IEEE1394_MATCH_MODEL_ID) {
length += sprintf(scratch, "%smodel_id=0x%06x",
need_coma++ ? "," : "",
id->model_id);
scratch = buf + length;
}
if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) {
length += sprintf(scratch, "%sspecifier_id=0x%06x",
need_coma++ ? "," : "",
id->specifier_id);
scratch = buf + length;
}
if (id->match_flags & IEEE1394_MATCH_VERSION) {
length += sprintf(scratch, "%sversion=0x%06x",
need_coma++ ? "," : "",
id->version);
scratch = buf + length;
}
if (need_coma) {
*scratch++ = '\n';
length++;
}
}
return length;
}
static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL);
fw_drv_attr(name, const char *, "%s\n")
static struct driver_attribute *const fw_drv_attrs[] = {
&driver_attr_drv_name,
&driver_attr_device_ids,
};
static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver)
{
struct device_driver *drv = &driver->driver;
int i;
for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
if (driver_create_file(drv, fw_drv_attrs[i]))
goto fail;
return;
fail:
HPSB_ERR("Failed to add sysfs attribute");
}
static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver)
{
struct device_driver *drv = &driver->driver;
int i;
for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
driver_remove_file(drv, fw_drv_attrs[i]);
}
static void nodemgr_create_ne_dev_files(struct node_entry *ne)
{
struct device *dev = &ne->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
if (device_create_file(dev, fw_ne_attrs[i]))
goto fail;
return;
fail:
HPSB_ERR("Failed to add sysfs attribute");
}
static void nodemgr_create_host_dev_files(struct hpsb_host *host)
{
struct device *dev = &host->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
if (device_create_file(dev, fw_host_attrs[i]))
goto fail;
return;
fail:
HPSB_ERR("Failed to add sysfs attribute");
}
static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
nodeid_t nodeid);
static void nodemgr_update_host_dev_links(struct hpsb_host *host)
{
struct device *dev = &host->device;
struct node_entry *ne;
sysfs_remove_link(&dev->kobj, "irm_id");
sysfs_remove_link(&dev->kobj, "busmgr_id");
sysfs_remove_link(&dev->kobj, "host_id");
if ((ne = find_entry_by_nodeid(host, host->irm_id)) &&
sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id"))
goto fail;
if ((ne = find_entry_by_nodeid(host, host->busmgr_id)) &&
sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id"))
goto fail;
if ((ne = find_entry_by_nodeid(host, host->node_id)) &&
sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id"))
goto fail;
return;
fail:
HPSB_ERR("Failed to update sysfs attributes for host %d", host->id);
}
static void nodemgr_create_ud_dev_files(struct unit_directory *ud)
{
struct device *dev = &ud->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
if (device_create_file(dev, fw_ud_attrs[i]))
goto fail;
if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID)
if (device_create_file(dev, &dev_attr_ud_specifier_id))
goto fail;
if (ud->flags & UNIT_DIRECTORY_VERSION)
if (device_create_file(dev, &dev_attr_ud_version))
goto fail;
if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) {
if (device_create_file(dev, &dev_attr_ud_vendor_id))
goto fail;
if (ud->vendor_name_kv &&
device_create_file(dev, &dev_attr_ud_vendor_name_kv))
goto fail;
}
if (ud->flags & UNIT_DIRECTORY_MODEL_ID) {
if (device_create_file(dev, &dev_attr_ud_model_id))
goto fail;
if (ud->model_name_kv &&
device_create_file(dev, &dev_attr_ud_model_name_kv))
goto fail;
}
return;
fail:
HPSB_ERR("Failed to add sysfs attribute");
}
static int nodemgr_bus_match(struct device * dev, struct device_driver * drv)
{
struct hpsb_protocol_driver *driver;
struct unit_directory *ud;
struct ieee1394_device_id *id;
/* We only match unit directories */
if (dev->platform_data != &nodemgr_ud_platform_data)
return 0;
ud = container_of(dev, struct unit_directory, device);
if (ud->ne->in_limbo || ud->ignore_driver)
return 0;
/* We only match drivers of type hpsb_protocol_driver */
if (drv == &nodemgr_mid_layer_driver)
return 0;
driver = container_of(drv, struct hpsb_protocol_driver, driver);
id = driver->id_table;
if (!id)
return 0;
for (; id->match_flags != 0; id++) {
if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
id->vendor_id != ud->vendor_id)
continue;
if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) &&
id->model_id != ud->model_id)
continue;
if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) &&
id->specifier_id != ud->specifier_id)
continue;
if ((id->match_flags & IEEE1394_MATCH_VERSION) &&
id->version != ud->version)
continue;
return 1;
}
return 0;
}
static DEFINE_MUTEX(nodemgr_serialize_remove_uds);
static int __match_ne(struct device *dev, void *data)
{
struct unit_directory *ud;
struct node_entry *ne = (struct node_entry *)data;
ud = container_of(dev, struct unit_directory, unit_dev);
return ud->ne == ne;
}
static void nodemgr_remove_uds(struct node_entry *ne)
{
struct device *dev;
struct unit_directory *ud;
/* Use class_find device to iterate the devices. Since this code
* may be called from other contexts besides the knodemgrds,
* protect it by nodemgr_serialize_remove_uds.
*/
mutex_lock(&nodemgr_serialize_remove_uds);
for (;;) {
dev = class_find_device(&nodemgr_ud_class, ne, __match_ne);
if (!dev)
break;
ud = container_of(dev, struct unit_directory, unit_dev);
put_device(dev);
device_unregister(&ud->unit_dev);
device_unregister(&ud->device);
}
mutex_unlock(&nodemgr_serialize_remove_uds);
}
static void nodemgr_remove_ne(struct node_entry *ne)
{
struct device *dev;
dev = get_device(&ne->device);
if (!dev)
return;
HPSB_DEBUG("Node removed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
nodemgr_remove_uds(ne);
device_unregister(&ne->node_dev);
device_unregister(dev);
put_device(dev);
}
static int __nodemgr_remove_host_dev(struct device *dev, void *data)
{
if (dev->bus == &ieee1394_bus_type)
nodemgr_remove_ne(container_of(dev, struct node_entry,
device));
return 0;
}
static void nodemgr_remove_host_dev(struct device *dev)
{
WARN_ON(device_for_each_child(dev, NULL, __nodemgr_remove_host_dev));
sysfs_remove_link(&dev->kobj, "irm_id");
sysfs_remove_link(&dev->kobj, "busmgr_id");
sysfs_remove_link(&dev->kobj, "host_id");
}
static void nodemgr_update_bus_options(struct node_entry *ne)
{
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
static const u16 mr[] = { 4, 64, 1024, 0};
#endif
quadlet_t busoptions = be32_to_cpu(ne->csr->bus_info_data[2]);
ne->busopt.irmc = (busoptions >> 31) & 1;
ne->busopt.cmc = (busoptions >> 30) & 1;
ne->busopt.isc = (busoptions >> 29) & 1;
ne->busopt.bmc = (busoptions >> 28) & 1;
ne->busopt.pmc = (busoptions >> 27) & 1;
ne->busopt.cyc_clk_acc = (busoptions >> 16) & 0xff;
ne->busopt.max_rec = 1 << (((busoptions >> 12) & 0xf) + 1);
ne->busopt.max_rom = (busoptions >> 8) & 0x3;
ne->busopt.generation = (busoptions >> 4) & 0xf;
ne->busopt.lnkspd = busoptions & 0x7;
HPSB_VERBOSE("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d "
"cyc_clk_acc=%d max_rec=%d max_rom=%d gen=%d lspd=%d",
busoptions, ne->busopt.irmc, ne->busopt.cmc,
ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc,
ne->busopt.cyc_clk_acc, ne->busopt.max_rec,
mr[ne->busopt.max_rom],
ne->busopt.generation, ne->busopt.lnkspd);
}
static struct node_entry *nodemgr_create_node(octlet_t guid, struct csr1212_csr *csr,
struct host_info *hi, nodeid_t nodeid,
unsigned int generation)
{
struct hpsb_host *host = hi->host;
struct node_entry *ne;
ne = kzalloc(sizeof(*ne), GFP_KERNEL);
if (!ne)
goto fail_alloc;
ne->host = host;
ne->nodeid = nodeid;
ne->generation = generation;
ne->needs_probe = 1;
ne->guid = guid;
ne->guid_vendor_id = (guid >> 40) & 0xffffff;
ne->csr = csr;
memcpy(&ne->device, &nodemgr_dev_template_ne,
sizeof(ne->device));
ne->device.parent = &host->device;
snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx",
(unsigned long long)(ne->guid));
ne->node_dev.parent = &ne->device;
ne->node_dev.class = &nodemgr_ne_class;
snprintf(ne->node_dev.bus_id, BUS_ID_SIZE, "%016Lx",
(unsigned long long)(ne->guid));
if (device_register(&ne->device))
goto fail_devreg;
if (device_register(&ne->node_dev))
goto fail_classdevreg;
get_device(&ne->device);
nodemgr_create_ne_dev_files(ne);
nodemgr_update_bus_options(ne);
HPSB_DEBUG("%s added: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
(host->node_id == nodeid) ? "Host" : "Node",
NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
return ne;
fail_classdevreg:
device_unregister(&ne->device);
fail_devreg:
kfree(ne);
fail_alloc:
HPSB_ERR("Failed to create node ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
return NULL;
}
static int __match_ne_guid(struct device *dev, void *data)
{
struct node_entry *ne;
u64 *guid = (u64 *)data;
ne = container_of(dev, struct node_entry, node_dev);
return ne->guid == *guid;
}
static struct node_entry *find_entry_by_guid(u64 guid)
{
struct device *dev;
struct node_entry *ne;
dev = class_find_device(&nodemgr_ne_class, &guid, __match_ne_guid);
if (!dev)
return NULL;
ne = container_of(dev, struct node_entry, node_dev);
put_device(dev);
return ne;
}
struct match_nodeid_param {
struct hpsb_host *host;
nodeid_t nodeid;
};
static int __match_ne_nodeid(struct device *dev, void *data)
{
int found = 0;
struct node_entry *ne;
struct match_nodeid_param *param = (struct match_nodeid_param *)data;
if (!dev)
goto ret;
ne = container_of(dev, struct node_entry, node_dev);
if (ne->host == param->host && ne->nodeid == param->nodeid)
found = 1;
ret:
return found;
}
static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
nodeid_t nodeid)
{
struct device *dev;
struct node_entry *ne;
struct match_nodeid_param param;
param.host = host;
param.nodeid = nodeid;
dev = class_find_device(&nodemgr_ne_class, &param, __match_ne_nodeid);
if (!dev)
return NULL;
ne = container_of(dev, struct node_entry, node_dev);
put_device(dev);
return ne;
}
static void nodemgr_register_device(struct node_entry *ne,
struct unit_directory *ud, struct device *parent)
{
memcpy(&ud->device, &nodemgr_dev_template_ud,
sizeof(ud->device));
ud->device.parent = parent;
snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u",
ne->device.bus_id, ud->id);
ud->unit_dev.parent = &ud->device;
ud->unit_dev.class = &nodemgr_ud_class;
snprintf(ud->unit_dev.bus_id, BUS_ID_SIZE, "%s-%u",
ne->device.bus_id, ud->id);
if (device_register(&ud->device))
goto fail_devreg;
if (device_register(&ud->unit_dev))
goto fail_classdevreg;
get_device(&ud->device);
nodemgr_create_ud_dev_files(ud);
return;
fail_classdevreg:
device_unregister(&ud->device);
fail_devreg:
HPSB_ERR("Failed to create unit %s", ud->device.bus_id);
}
/* This implementation currently only scans the config rom and its
* immediate unit directories looking for software_id and
* software_version entries, in order to get driver autoloading working. */
static struct unit_directory *nodemgr_process_unit_directory
(struct host_info *hi, struct node_entry *ne, struct csr1212_keyval *ud_kv,
unsigned int *id, struct unit_directory *parent)
{
struct unit_directory *ud;
struct unit_directory *ud_child = NULL;
struct csr1212_dentry *dentry;
struct csr1212_keyval *kv;
u8 last_key_id = 0;
ud = kzalloc(sizeof(*ud), GFP_KERNEL);
if (!ud)
goto unit_directory_error;
ud->ne = ne;
ud->ignore_driver = ignore_drivers;
ud->address = ud_kv->offset + CSR1212_REGISTER_SPACE_BASE;
ud->directory_id = ud->address & 0xffffff;
ud->ud_kv = ud_kv;
ud->id = (*id)++;
csr1212_for_each_dir_entry(ne->csr, kv, ud_kv, dentry) {
switch (kv->key.id) {
case CSR1212_KV_ID_VENDOR:
if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
ud->vendor_id = kv->value.immediate;
ud->flags |= UNIT_DIRECTORY_VENDOR_ID;
}
break;
case CSR1212_KV_ID_MODEL:
ud->model_id = kv->value.immediate;
ud->flags |= UNIT_DIRECTORY_MODEL_ID;
break;
case CSR1212_KV_ID_SPECIFIER_ID:
ud->specifier_id = kv->value.immediate;
ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
break;
case CSR1212_KV_ID_VERSION:
ud->version = kv->value.immediate;
ud->flags |= UNIT_DIRECTORY_VERSION;
break;
case CSR1212_KV_ID_DESCRIPTOR:
if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
switch (last_key_id) {
case CSR1212_KV_ID_VENDOR:
csr1212_keep_keyval(kv);
ud->vendor_name_kv = kv;
break;
case CSR1212_KV_ID_MODEL:
csr1212_keep_keyval(kv);
ud->model_name_kv = kv;
break;
}
} /* else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) ... */
break;
case CSR1212_KV_ID_DEPENDENT_INFO:
/* Logical Unit Number */
if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
if (ud->flags & UNIT_DIRECTORY_HAS_LUN) {
ud_child = kmemdup(ud, sizeof(*ud_child), GFP_KERNEL);
if (!ud_child)
goto unit_directory_error;
nodemgr_register_device(ne, ud_child, &ne->device);
ud_child = NULL;
ud->id = (*id)++;
}
ud->lun = kv->value.immediate;
ud->flags |= UNIT_DIRECTORY_HAS_LUN;
/* Logical Unit Directory */
} else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) {
/* This should really be done in SBP2 as this is
* doing SBP2 specific parsing.
*/
/* first register the parent unit */
ud->flags |= UNIT_DIRECTORY_HAS_LUN_DIRECTORY;
if (ud->device.bus != &ieee1394_bus_type)
nodemgr_register_device(ne, ud, &ne->device);
/* process the child unit */
ud_child = nodemgr_process_unit_directory(hi, ne, kv, id, ud);
if (ud_child == NULL)
break;
/* inherit unspecified values, the driver core picks it up */
if ((ud->flags & UNIT_DIRECTORY_MODEL_ID) &&
!(ud_child->flags & UNIT_DIRECTORY_MODEL_ID))
{
ud_child->flags |= UNIT_DIRECTORY_MODEL_ID;
ud_child->model_id = ud->model_id;
}
if ((ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) &&
!(ud_child->flags & UNIT_DIRECTORY_SPECIFIER_ID))
{
ud_child->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
ud_child->specifier_id = ud->specifier_id;
}
if ((ud->flags & UNIT_DIRECTORY_VERSION) &&
!(ud_child->flags & UNIT_DIRECTORY_VERSION))
{
ud_child->flags |= UNIT_DIRECTORY_VERSION;
ud_child->version = ud->version;
}
/* register the child unit */
ud_child->flags |= UNIT_DIRECTORY_LUN_DIRECTORY;
nodemgr_register_device(ne, ud_child, &ud->device);
}
break;
case CSR1212_KV_ID_DIRECTORY_ID:
ud->directory_id = kv->value.immediate;
break;
default:
break;
}
last_key_id = kv->key.id;
}
/* do not process child units here and only if not already registered */
if (!parent && ud->device.bus != &ieee1394_bus_type)
nodemgr_register_device(ne, ud, &ne->device);
return ud;
unit_directory_error:
kfree(ud);
return NULL;
}
static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne)
{
unsigned int ud_id = 0;
struct csr1212_dentry *dentry;
struct csr1212_keyval *kv, *vendor_name_kv = NULL;
u8 last_key_id = 0;
ne->needs_probe = 0;
csr1212_for_each_dir_entry(ne->csr, kv, ne->csr->root_kv, dentry) {
switch (kv->key.id) {
case CSR1212_KV_ID_VENDOR:
ne->vendor_id = kv->value.immediate;
break;
case CSR1212_KV_ID_NODE_CAPABILITIES:
ne->capabilities = kv->value.immediate;
break;
case CSR1212_KV_ID_UNIT:
nodemgr_process_unit_directory(hi, ne, kv, &ud_id, NULL);
break;
case CSR1212_KV_ID_DESCRIPTOR:
if (last_key_id == CSR1212_KV_ID_VENDOR) {
if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
csr1212_keep_keyval(kv);
vendor_name_kv = kv;
}
}
break;
}
last_key_id = kv->key.id;
}
if (ne->vendor_name_kv) {
kv = ne->vendor_name_kv;
ne->vendor_name_kv = vendor_name_kv;
csr1212_release_keyval(kv);
} else if (vendor_name_kv) {
ne->vendor_name_kv = vendor_name_kv;
if (device_create_file(&ne->device,
&dev_attr_ne_vendor_name_kv) != 0)
HPSB_ERR("Failed to add sysfs attribute");
}
}
#ifdef CONFIG_HOTPLUG
static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct unit_directory *ud;
int retval = 0;
/* ieee1394:venNmoNspNverN */
char buf[8 + 1 + 3 + 8 + 2 + 8 + 2 + 8 + 3 + 8 + 1];
if (!dev)
return -ENODEV;
ud = container_of(dev, struct unit_directory, unit_dev);
if (ud->ne->in_limbo || ud->ignore_driver)
return -ENODEV;
#define PUT_ENVP(fmt,val) \
do { \
retval = add_uevent_var(env, fmt, val); \
if (retval) \
return retval; \
} while (0)
PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id);
PUT_ENVP("MODEL_ID=%06x", ud->model_id);
PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid);
PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id);
PUT_ENVP("VERSION=%06x", ud->version);
snprintf(buf, sizeof(buf), "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
ud->vendor_id,
ud->model_id,
ud->specifier_id,
ud->version);
PUT_ENVP("MODALIAS=%s", buf);
#undef PUT_ENVP
return 0;
}
#else
static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env)
{
return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */
int __hpsb_register_protocol(struct hpsb_protocol_driver *drv,
struct module *owner)
{
int error;
drv->driver.bus = &ieee1394_bus_type;
drv->driver.owner = owner;
drv->driver.name = drv->name;
/* This will cause a probe for devices */
error = driver_register(&drv->driver);
if (!error)
nodemgr_create_drv_files(drv);
return error;
}
void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver)
{
nodemgr_remove_drv_files(driver);
/* This will subsequently disconnect all devices that our driver
* is attached to. */
driver_unregister(&driver->driver);
}
/*
* This function updates nodes that were present on the bus before the
* reset and still are after the reset. The nodeid and the config rom
* may have changed, and the drivers managing this device must be
* informed that this device just went through a bus reset, to allow
* the to take whatever actions required.
*/
static void nodemgr_update_node(struct node_entry *ne, struct csr1212_csr *csr,
struct host_info *hi, nodeid_t nodeid,
unsigned int generation)
{
if (ne->nodeid != nodeid) {
HPSB_DEBUG("Node changed: " NODE_BUS_FMT " -> " NODE_BUS_FMT,
NODE_BUS_ARGS(ne->host, ne->nodeid),
NODE_BUS_ARGS(ne->host, nodeid));
ne->nodeid = nodeid;
}
if (ne->busopt.generation != ((be32_to_cpu(csr->bus_info_data[2]) >> 4) & 0xf)) {
kfree(ne->csr->private);
csr1212_destroy_csr(ne->csr);
ne->csr = csr;
/* If the node's configrom generation has changed, we
* unregister all the unit directories. */
nodemgr_remove_uds(ne);
nodemgr_update_bus_options(ne);
/* Mark the node as new, so it gets re-probed */
ne->needs_probe = 1;
} else {
/* old cache is valid, so update its generation */
struct nodemgr_csr_info *ci = ne->csr->private;
ci->generation = generation;
/* free the partially filled now unneeded new cache */
kfree(csr->private);
csr1212_destroy_csr(csr);
}
if (ne->in_limbo)
nodemgr_resume_ne(ne);
/* Mark the node current */
ne->generation = generation;
}
static void nodemgr_node_scan_one(struct host_info *hi,
nodeid_t nodeid, int generation)
{
struct hpsb_host *host = hi->host;
struct node_entry *ne;
octlet_t guid;
struct csr1212_csr *csr;
struct nodemgr_csr_info *ci;
u8 *speed;
ci = kmalloc(sizeof(*ci), GFP_KERNEL);
if (!ci)
return;
ci->host = host;
ci->nodeid = nodeid;
ci->generation = generation;
/* Prepare for speed probe which occurs when reading the ROM */
speed = &(host->speed[NODEID_TO_NODE(nodeid)]);
if (*speed > host->csr.lnk_spd)
*speed = host->csr.lnk_spd;
ci->speed_unverified = *speed > IEEE1394_SPEED_100;
/* We need to detect when the ConfigROM's generation has changed,
* so we only update the node's info when it needs to be. */
csr = csr1212_create_csr(&nodemgr_csr_ops, 5 * sizeof(quadlet_t), ci);
if (!csr || csr1212_parse_csr(csr) != CSR1212_SUCCESS) {
HPSB_ERR("Error parsing configrom for node " NODE_BUS_FMT,
NODE_BUS_ARGS(host, nodeid));
if (csr)
csr1212_destroy_csr(csr);
kfree(ci);
return;
}
if (csr->bus_info_data[1] != IEEE1394_BUSID_MAGIC) {
/* This isn't a 1394 device, but we let it slide. There
* was a report of a device with broken firmware which
* reported '2394' instead of '1394', which is obviously a
* mistake. One would hope that a non-1394 device never
* gets connected to Firewire bus. If someone does, we
* shouldn't be held responsible, so we'll allow it with a
* warning. */
HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]",
NODE_BUS_ARGS(host, nodeid), csr->bus_info_data[1]);
}
guid = ((u64)be32_to_cpu(csr->bus_info_data[3]) << 32) | be32_to_cpu(csr->bus_info_data[4]);
ne = find_entry_by_guid(guid);
if (ne && ne->host != host && ne->in_limbo) {
/* Must have moved this device from one host to another */
nodemgr_remove_ne(ne);
ne = NULL;
}
if (!ne)
nodemgr_create_node(guid, csr, hi, nodeid, generation);
else
nodemgr_update_node(ne, csr, hi, nodeid, generation);
}
static void nodemgr_node_scan(struct host_info *hi, int generation)
{
int count;
struct hpsb_host *host = hi->host;
struct selfid *sid = (struct selfid *)host->topology_map;
nodeid_t nodeid = LOCAL_BUS;
/* Scan each node on the bus */
for (count = host->selfid_count; count; count--, sid++) {
if (sid->extended)
continue;
if (!sid->link_active) {
nodeid++;
continue;
}
nodemgr_node_scan_one(hi, nodeid++, generation);
}
}
static int __nodemgr_driver_suspend(struct device *dev, void *data)
{
struct unit_directory *ud;
struct device_driver *drv;
struct node_entry *ne = (struct node_entry *)data;
int error;
ud = container_of(dev, struct unit_directory, unit_dev);
if (ud->ne == ne) {
drv = get_driver(ud->device.driver);
if (drv) {
error = 1; /* release if suspend is not implemented */
if (drv->suspend) {
down(&ud->device.sem);
error = drv->suspend(&ud->device, PMSG_SUSPEND);
up(&ud->device.sem);
}
if (error)
device_release_driver(&ud->device);
put_driver(drv);
}
}
return 0;
}
static int __nodemgr_driver_resume(struct device *dev, void *data)
{
struct unit_directory *ud;
struct device_driver *drv;
struct node_entry *ne = (struct node_entry *)data;
ud = container_of(dev, struct unit_directory, unit_dev);
if (ud->ne == ne) {
drv = get_driver(ud->device.driver);
if (drv) {
if (drv->resume) {
down(&ud->device.sem);
drv->resume(&ud->device);
up(&ud->device.sem);
}
put_driver(drv);
}
}
return 0;
}
static void nodemgr_suspend_ne(struct node_entry *ne)
{
HPSB_DEBUG("Node suspended: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
NODE_BUS_ARGS(ne->host, ne->nodeid),
(unsigned long long)ne->guid);
ne->in_limbo = 1;
WARN_ON(device_create_file(&ne->device, &dev_attr_ne_in_limbo));
class_for_each_device(&nodemgr_ud_class, ne, __nodemgr_driver_suspend);
}
static void nodemgr_resume_ne(struct node_entry *ne)
{
ne->in_limbo = 0;
device_remove_file(&ne->device, &dev_attr_ne_in_limbo);
class_for_each_device(&nodemgr_ud_class, ne, __nodemgr_driver_resume);
HPSB_DEBUG("Node resumed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
}
static int __nodemgr_update_pdrv(struct device *dev, void *data)
{
struct unit_directory *ud;
struct device_driver *drv;
struct hpsb_protocol_driver *pdrv;
struct node_entry *ne = (struct node_entry *)data;
int error;
ud = container_of(dev, struct unit_directory, unit_dev);
if (ud->ne == ne) {
drv = get_driver(ud->device.driver);
if (drv) {
error = 0;
pdrv = container_of(drv, struct hpsb_protocol_driver,
driver);
if (pdrv->update) {
down(&ud->device.sem);
error = pdrv->update(ud);
up(&ud->device.sem);
}
if (error)
device_release_driver(&ud->device);
put_driver(drv);
}
}
return 0;
}
static void nodemgr_update_pdrv(struct node_entry *ne)
{
class_for_each_device(&nodemgr_ud_class, ne, __nodemgr_update_pdrv);
}
/* Write the BROADCAST_CHANNEL as per IEEE1394a 8.3.2.3.11 and 8.4.2.3. This
* seems like an optional service but in the end it is practically mandatory
* as a consequence of these clauses.
*
* Note that we cannot do a broadcast write to all nodes at once because some
* pre-1394a devices would hang. */
static void nodemgr_irm_write_bc(struct node_entry *ne, int generation)
{
const u64 bc_addr = (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL);
quadlet_t bc_remote, bc_local;
int error;
if (!ne->host->is_irm || ne->generation != generation ||
ne->nodeid == ne->host->node_id)
return;
bc_local = cpu_to_be32(ne->host->csr.broadcast_channel);
/* Check if the register is implemented and 1394a compliant. */
error = hpsb_read(ne->host, ne->nodeid, generation, bc_addr, &bc_remote,
sizeof(bc_remote));
if (!error && bc_remote & cpu_to_be32(0x80000000) &&
bc_remote != bc_local)
hpsb_node_write(ne, bc_addr, &bc_local, sizeof(bc_local));
}
static void nodemgr_probe_ne(struct host_info *hi, struct node_entry *ne, int generation)
{
struct device *dev;
if (ne->host != hi->host || ne->in_limbo)
return;
dev = get_device(&ne->device);
if (!dev)
return;
nodemgr_irm_write_bc(ne, generation);
/* If "needs_probe", then this is either a new or changed node we
* rescan totally. If the generation matches for an existing node
* (one that existed prior to the bus reset) we send update calls
* down to the drivers. Otherwise, this is a dead node and we
* suspend it. */
if (ne->needs_probe)
nodemgr_process_root_directory(hi, ne);
else if (ne->generation == generation)
nodemgr_update_pdrv(ne);
else
nodemgr_suspend_ne(ne);
put_device(dev);
}
struct probe_param {
struct host_info *hi;
int generation;
};
static int __nodemgr_node_probe(struct device *dev, void *data)
{
struct probe_param *param = (struct probe_param *)data;
struct node_entry *ne;
ne = container_of(dev, struct node_entry, node_dev);
if (!ne->needs_probe)
nodemgr_probe_ne(param->hi, ne, param->generation);
if (ne->needs_probe)
nodemgr_probe_ne(param->hi, ne, param->generation);
return 0;
}
static void nodemgr_node_probe(struct host_info *hi, int generation)
{
struct hpsb_host *host = hi->host;
struct probe_param param;
param.hi = hi;
param.generation = generation;
/* Do some processing of the nodes we've probed. This pulls them
* into the sysfs layer if needed, and can result in processing of
* unit-directories, or just updating the node and it's
* unit-directories.
*
* Run updates before probes. Usually, updates are time-critical
* while probes are time-consuming. (Well, those probes need some
* improvement...) */
class_for_each_device(&nodemgr_ne_class, &param, __nodemgr_node_probe);
/* If we had a bus reset while we were scanning the bus, it is
* possible that we did not probe all nodes. In that case, we
* skip the clean up for now, since we could remove nodes that
* were still on the bus. Another bus scan is pending which will
* do the clean up eventually.
*
* Now let's tell the bus to rescan our devices. This may seem
* like overhead, but the driver-model core will only scan a
* device for a driver when either the device is added, or when a
* new driver is added. A bus reset is a good reason to rescan
* devices that were there before. For example, an sbp2 device
* may become available for login, if the host that held it was
* just removed. */
if (generation == get_hpsb_generation(host))
if (bus_rescan_devices(&ieee1394_bus_type))
HPSB_DEBUG("bus_rescan_devices had an error");
}
static int nodemgr_send_resume_packet(struct hpsb_host *host)
{
struct hpsb_packet *packet;
int error = -ENOMEM;
packet = hpsb_make_phypacket(host,
EXTPHYPACKET_TYPE_RESUME |
NODEID_TO_NODE(host->node_id) << PHYPACKET_PORT_SHIFT);
if (packet) {
packet->no_waiter = 1;
packet->generation = get_hpsb_generation(host);
error = hpsb_send_packet(packet);
}
if (error)
HPSB_WARN("fw-host%d: Failed to broadcast resume packet",
host->id);
return error;
}
/* Perform a few high-level IRM responsibilities. */
static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles)
{
quadlet_t bc;
/* if irm_id == -1 then there is no IRM on this bus */
if (!host->is_irm || host->irm_id == (nodeid_t)-1)
return 1;
/* We are a 1394a-2000 compliant IRM. Set the validity bit. */
host->csr.broadcast_channel |= 0x40000000;
/* If there is no bus manager then we should set the root node's
* force_root bit to promote bus stability per the 1394
* spec. (8.4.2.6) */
if (host->busmgr_id == 0xffff && host->node_count > 1)
{
u16 root_node = host->node_count - 1;
/* get cycle master capability flag from root node */
if (host->is_cycmst ||
(!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host),
(CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)),
&bc, sizeof(quadlet_t)) &&
be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT))
hpsb_send_phy_config(host, root_node, -1);
else {
HPSB_DEBUG("The root node is not cycle master capable; "
"selecting a new root node and resetting...");
if (cycles >= 5) {
/* Oh screw it! Just leave the bus as it is */
HPSB_DEBUG("Stopping reset loop for IRM sanity");
return 1;
}
hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
return 0;
}
}
/* Some devices suspend their ports while being connected to an inactive
* host adapter, i.e. if connected before the low-level driver is
* loaded. They become visible either when physically unplugged and
* replugged, or when receiving a resume packet. Send one once. */
if (!host->resume_packet_sent && !nodemgr_send_resume_packet(host))
host->resume_packet_sent = 1;
return 1;
}
/* We need to ensure that if we are not the IRM, that the IRM node is capable of
* everything we can do, otherwise issue a bus reset and try to become the IRM
* ourselves. */
static int nodemgr_check_irm_capability(struct hpsb_host *host, int cycles)
{
quadlet_t bc;
int status;
if (hpsb_disable_irm || host->is_irm)
return 1;
status = hpsb_read(host, LOCAL_BUS | (host->irm_id),
get_hpsb_generation(host),
(CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
&bc, sizeof(quadlet_t));
if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) {
/* The current irm node does not have a valid BROADCAST_CHANNEL
* register and we do, so reset the bus with force_root set */
HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting...");
if (cycles >= 5) {
/* Oh screw it! Just leave the bus as it is */
HPSB_DEBUG("Stopping reset loop for IRM sanity");
return 1;
}
hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
return 0;
}
return 1;
}
static int nodemgr_host_thread(void *__hi)
{
struct host_info *hi = (struct host_info *)__hi;
struct hpsb_host *host = hi->host;
unsigned int g, generation = 0;
int i, reset_cycles = 0;
set_freezable();
/* Setup our device-model entries */
nodemgr_create_host_dev_files(host);
for (;;) {
/* Sleep until next bus reset */
set_current_state(TASK_INTERRUPTIBLE);
if (get_hpsb_generation(host) == generation &&
!kthread_should_stop())
schedule();
__set_current_state(TASK_RUNNING);
/* Thread may have been woken up to freeze or to exit */
if (try_to_freeze())
continue;
if (kthread_should_stop())
goto exit;
/* Pause for 1/4 second in 1/16 second intervals,
* to make sure things settle down. */
g = get_hpsb_generation(host);
for (i = 0; i < 4 ; i++) {
msleep_interruptible(63);
if (kthread_should_stop())
goto exit;
/* Now get the generation in which the node ID's we collect
* are valid. During the bus scan we will use this generation
* for the read transactions, so that if another reset occurs
* during the scan the transactions will fail instead of
* returning bogus data. */
generation = get_hpsb_generation(host);
/* If we get a reset before we are done waiting, then
* start the waiting over again */
if (generation != g)
g = generation, i = 0;
}
if (!nodemgr_check_irm_capability(host, reset_cycles) ||
!nodemgr_do_irm_duties(host, reset_cycles)) {
reset_cycles++;
continue;
}
reset_cycles = 0;
/* Scan our nodes to get the bus options and create node
* entries. This does not do the sysfs stuff, since that
* would trigger uevents and such, which is a bad idea at
* this point. */
nodemgr_node_scan(hi, generation);
/* This actually does the full probe, with sysfs
* registration. */
nodemgr_node_probe(hi, generation);
/* Update some of our sysfs symlinks */
nodemgr_update_host_dev_links(host);
}
exit:
HPSB_VERBOSE("NodeMgr: Exiting thread");
return 0;
}
struct host_iter_param {
void *data;
int (*cb)(struct hpsb_host *, void *);
};
static int __nodemgr_for_each_host(struct device *dev, void *data)
{
struct hpsb_host *host;
struct host_iter_param *hip = (struct host_iter_param *)data;
int error = 0;
host = container_of(dev, struct hpsb_host, host_dev);
error = hip->cb(host, hip->data);
return error;
}
/**
* nodemgr_for_each_host - call a function for each IEEE 1394 host
* @data: an address to supply to the callback
* @cb: function to call for each host
*
* Iterate the hosts, calling a given function with supplied data for each host.
* If the callback fails on a host, i.e. if it returns a non-zero value, the
* iteration is stopped.
*
* Return value: 0 on success, non-zero on failure (same as returned by last run
* of the callback).
*/
int nodemgr_for_each_host(void *data, int (*cb)(struct hpsb_host *, void *))
{
struct host_iter_param hip;
int error;
hip.cb = cb;
hip.data = data;
error = class_for_each_device(&hpsb_host_class, &hip,
__nodemgr_for_each_host);
return error;
}
/* The following two convenience functions use a struct node_entry
* for addressing a node on the bus. They are intended for use by any
* process context, not just the nodemgr thread, so we need to be a
* little careful when reading out the node ID and generation. The
* thing that can go wrong is that we get the node ID, then a bus
* reset occurs, and then we read the generation. The node ID is
* possibly invalid, but the generation is current, and we end up
* sending a packet to a the wrong node.
*
* The solution is to make sure we read the generation first, so that
* if a reset occurs in the process, we end up with a stale generation
* and the transactions will fail instead of silently using wrong node
* ID's.
*/
/**
* hpsb_node_fill_packet - fill some destination information into a packet
* @ne: destination node
* @packet: packet to fill in
*
* This will fill in the given, pre-initialised hpsb_packet with the current
* information from the node entry (host, node ID, bus generation number).
*/
void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *packet)
{
packet->host = ne->host;
packet->generation = ne->generation;
barrier();
packet->node_id = ne->nodeid;
}
int hpsb_node_write(struct node_entry *ne, u64 addr,
quadlet_t *buffer, size_t length)
{
unsigned int generation = ne->generation;
barrier();
return hpsb_write(ne->host, ne->nodeid, generation,
addr, buffer, length);
}
static void nodemgr_add_host(struct hpsb_host *host)
{
struct host_info *hi;
hi = hpsb_create_hostinfo(&nodemgr_highlevel, host, sizeof(*hi));
if (!hi) {
HPSB_ERR("NodeMgr: out of memory in add host");
return;
}
hi->host = host;
hi->thread = kthread_run(nodemgr_host_thread, hi, "knodemgrd_%d",
host->id);
if (IS_ERR(hi->thread)) {
HPSB_ERR("NodeMgr: cannot start thread for host %d", host->id);
hpsb_destroy_hostinfo(&nodemgr_highlevel, host);
}
}
static void nodemgr_host_reset(struct hpsb_host *host)
{
struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
if (hi) {
HPSB_VERBOSE("NodeMgr: Processing reset for host %d", host->id);
wake_up_process(hi->thread);
}
}
static void nodemgr_remove_host(struct hpsb_host *host)
{
struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
if (hi) {
kthread_stop(hi->thread);
nodemgr_remove_host_dev(&host->device);
}
}
static struct hpsb_highlevel nodemgr_highlevel = {
.name = "Node manager",
.add_host = nodemgr_add_host,
.host_reset = nodemgr_host_reset,
.remove_host = nodemgr_remove_host,
};
int init_ieee1394_nodemgr(void)
{
int error;
error = class_register(&nodemgr_ne_class);
if (error)
goto fail_ne;
error = class_register(&nodemgr_ud_class);
if (error)
goto fail_ud;
error = driver_register(&nodemgr_mid_layer_driver);
if (error)
goto fail_ml;
/* This driver is not used if nodemgr is off (disable_nodemgr=1). */
nodemgr_dev_template_host.driver = &nodemgr_mid_layer_driver;
hpsb_register_highlevel(&nodemgr_highlevel);
return 0;
fail_ml:
class_unregister(&nodemgr_ud_class);
fail_ud:
class_unregister(&nodemgr_ne_class);
fail_ne:
return error;
}
void cleanup_ieee1394_nodemgr(void)
{
hpsb_unregister_highlevel(&nodemgr_highlevel);
driver_unregister(&nodemgr_mid_layer_driver);
class_unregister(&nodemgr_ud_class);
class_unregister(&nodemgr_ne_class);
}