blob: b7d058925ce9bb888ad05165dfdd596edc64f14f [file] [log] [blame]
/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/regulator/consumer.h>
#include <asm/cpu.h>
#include <mach/board.h>
#include <mach/msm_iomap.h>
#include <mach/msm_bus.h>
#include <mach/msm_bus_board.h>
#include <mach/socinfo.h>
#include <mach/rpm-regulator.h>
#include "acpuclock.h"
#include "avs.h"
/* Frequency switch modes. */
#define SHOT_SWITCH 4
#define HOP_SWITCH 5
#define SIMPLE_SLEW 6
#define COMPLEX_SLEW 7
/* PLL calibration limits.
* The PLL hardware is capable of 384MHz to 1536MHz. The L_VALs
* used for calibration should respect these limits. */
#define L_VAL_SCPLL_CAL_MIN 0x08 /* = 432 MHz with 27MHz source */
#define L_VAL_SCPLL_CAL_MAX 0x1C /* = 1512 MHz with 27MHz source */
#define MAX_VDD_SC 1250000 /* uV */
#define MAX_VDD_MEM 1250000 /* uV */
#define MAX_VDD_DIG 1200000 /* uV */
#define MAX_AXI 310500 /* KHz */
#define SCPLL_LOW_VDD_FMAX 594000 /* KHz */
#define SCPLL_LOW_VDD 1000000 /* uV */
#define SCPLL_NOMINAL_VDD 1100000 /* uV */
/* SCPLL Modes. */
#define SCPLL_POWER_DOWN 0
#define SCPLL_BYPASS 1
#define SCPLL_STANDBY 2
#define SCPLL_FULL_CAL 4
#define SCPLL_HALF_CAL 5
#define SCPLL_STEP_CAL 6
#define SCPLL_NORMAL 7
#define SCPLL_DEBUG_NONE 0
#define SCPLL_DEBUG_FULL 3
/* SCPLL registers offsets. */
#define SCPLL_DEBUG_OFFSET 0x0
#define SCPLL_CTL_OFFSET 0x4
#define SCPLL_CAL_OFFSET 0x8
#define SCPLL_STATUS_OFFSET 0x10
#define SCPLL_CFG_OFFSET 0x1C
#define SCPLL_FSM_CTL_EXT_OFFSET 0x24
#define SCPLL_LUT_A_HW_MAX (0x38 + ((L_VAL_SCPLL_CAL_MAX / 4) * 4))
/* Clock registers. */
#define SPSS0_CLK_CTL_ADDR (MSM_ACC0_BASE + 0x04)
#define SPSS0_CLK_SEL_ADDR (MSM_ACC0_BASE + 0x08)
#define SPSS1_CLK_CTL_ADDR (MSM_ACC1_BASE + 0x04)
#define SPSS1_CLK_SEL_ADDR (MSM_ACC1_BASE + 0x08)
#define SPSS_L2_CLK_SEL_ADDR (MSM_GCC_BASE + 0x38)
/* PTE EFUSE register. */
#define QFPROM_PTE_EFUSE_ADDR (MSM_QFPROM_BASE + 0x00C0)
static const void * const clk_ctl_addr[] = {SPSS0_CLK_CTL_ADDR,
SPSS1_CLK_CTL_ADDR};
static const void * const clk_sel_addr[] = {SPSS0_CLK_SEL_ADDR,
SPSS1_CLK_SEL_ADDR, SPSS_L2_CLK_SEL_ADDR};
static const int rpm_vreg_voter[] = { RPM_VREG_VOTER1, RPM_VREG_VOTER2 };
static struct regulator *regulator_sc[NR_CPUS];
enum scplls {
CPU0 = 0,
CPU1,
L2,
};
static const void * const sc_pll_base[] = {
[CPU0] = MSM_SCPLL_BASE + 0x200,
[CPU1] = MSM_SCPLL_BASE + 0x300,
[L2] = MSM_SCPLL_BASE + 0x400,
};
enum sc_src {
ACPU_AFAB,
ACPU_PLL_8,
ACPU_SCPLL,
};
static struct clock_state {
struct clkctl_acpu_speed *current_speed[NR_CPUS];
struct clkctl_l2_speed *current_l2_speed;
spinlock_t l2_lock;
struct mutex lock;
} drv_state;
struct clkctl_l2_speed {
unsigned int khz;
unsigned int src_sel;
unsigned int l_val;
unsigned int vdd_dig;
unsigned int vdd_mem;
unsigned int bw_level;
};
static struct clkctl_l2_speed *l2_vote[NR_CPUS];
struct clkctl_acpu_speed {
unsigned int use_for_scaling[2]; /* One for each CPU. */
unsigned int acpuclk_khz;
int pll;
unsigned int acpuclk_src_sel;
unsigned int acpuclk_src_div;
unsigned int core_src_sel;
unsigned int l_val;
struct clkctl_l2_speed *l2_level;
unsigned int vdd_sc;
unsigned int avsdscr_setting;
};
/* Instantaneous bandwidth requests in MB/s. */
#define BW_MBPS(_bw) \
{ \
.vectors = &(struct msm_bus_vectors){ \
.src = MSM_BUS_MASTER_AMPSS_M0, \
.dst = MSM_BUS_SLAVE_EBI_CH0, \
.ib = (_bw) * 1000000UL, \
.ab = 0, \
}, \
.num_paths = 1, \
}
static struct msm_bus_paths bw_level_tbl[] = {
[0] = BW_MBPS(824), /* At least 103 MHz on bus. */
[1] = BW_MBPS(1336), /* At least 167 MHz on bus. */
[2] = BW_MBPS(2008), /* At least 251 MHz on bus. */
[3] = BW_MBPS(2480), /* At least 310 MHz on bus. */
};
static struct msm_bus_scale_pdata bus_client_pdata = {
.usecase = bw_level_tbl,
.num_usecases = ARRAY_SIZE(bw_level_tbl),
.active_only = 1,
.name = "acpuclock",
};
static uint32_t bus_perf_client;
/* L2 frequencies = 2 * 27 MHz * L_VAL */
static struct clkctl_l2_speed l2_freq_tbl_v2[] = {
[0] = { MAX_AXI, 0, 0, 1000000, 1100000, 0},
[1] = { 432000, 1, 0x08, 1000000, 1100000, 0},
[2] = { 486000, 1, 0x09, 1000000, 1100000, 0},
[3] = { 540000, 1, 0x0A, 1000000, 1100000, 0},
[4] = { 594000, 1, 0x0B, 1000000, 1100000, 0},
[5] = { 648000, 1, 0x0C, 1000000, 1100000, 1},
[6] = { 702000, 1, 0x0D, 1100000, 1100000, 1},
[7] = { 756000, 1, 0x0E, 1100000, 1100000, 1},
[8] = { 810000, 1, 0x0F, 1100000, 1100000, 1},
[9] = { 864000, 1, 0x10, 1100000, 1100000, 1},
[10] = { 918000, 1, 0x11, 1100000, 1100000, 2},
[11] = { 972000, 1, 0x12, 1100000, 1100000, 2},
[12] = {1026000, 1, 0x13, 1100000, 1100000, 2},
[13] = {1080000, 1, 0x14, 1100000, 1200000, 2},
[14] = {1134000, 1, 0x15, 1100000, 1200000, 2},
[15] = {1188000, 1, 0x16, 1200000, 1200000, 3},
[16] = {1242000, 1, 0x17, 1200000, 1212500, 3},
[17] = {1296000, 1, 0x18, 1200000, 1225000, 3},
[18] = {1350000, 1, 0x19, 1200000, 1225000, 3},
[19] = {1404000, 1, 0x1A, 1200000, 1250000, 3},
};
#define L2(x) (&l2_freq_tbl_v2[(x)])
/* SCPLL frequencies = 2 * 27 MHz * L_VAL */
static struct clkctl_acpu_speed acpu_freq_tbl_1188mhz[] = {
{ {1, 1}, 192000, ACPU_PLL_8, 3, 1, 0, 0, L2(1), 812500, 0x03006000},
/* MAX_AXI row is used to source CPU cores and L2 from the AFAB clock. */
{ {0, 0}, MAX_AXI, ACPU_AFAB, 1, 0, 0, 0, L2(0), 875000, 0x03006000},
{ {1, 1}, 384000, ACPU_PLL_8, 3, 0, 0, 0, L2(1), 875000, 0x03006000},
{ {1, 1}, 432000, ACPU_SCPLL, 0, 0, 1, 0x08, L2(1), 887500, 0x03006000},
{ {1, 1}, 486000, ACPU_SCPLL, 0, 0, 1, 0x09, L2(2), 912500, 0x03006000},
{ {1, 1}, 540000, ACPU_SCPLL, 0, 0, 1, 0x0A, L2(3), 925000, 0x03006000},
{ {1, 1}, 594000, ACPU_SCPLL, 0, 0, 1, 0x0B, L2(4), 937500, 0x03006000},
{ {1, 1}, 648000, ACPU_SCPLL, 0, 0, 1, 0x0C, L2(5), 950000, 0x03006000},
{ {1, 1}, 702000, ACPU_SCPLL, 0, 0, 1, 0x0D, L2(6), 975000, 0x03006000},
{ {1, 1}, 756000, ACPU_SCPLL, 0, 0, 1, 0x0E, L2(7), 1000000, 0x03006000},
{ {1, 1}, 810000, ACPU_SCPLL, 0, 0, 1, 0x0F, L2(8), 1012500, 0x03006000},
{ {1, 1}, 864000, ACPU_SCPLL, 0, 0, 1, 0x10, L2(9), 1037500, 0x03006000},
{ {1, 1}, 918000, ACPU_SCPLL, 0, 0, 1, 0x11, L2(10), 1062500, 0x03006000},
{ {1, 1}, 972000, ACPU_SCPLL, 0, 0, 1, 0x12, L2(11), 1087500, 0x03006000},
{ {1, 1}, 1026000, ACPU_SCPLL, 0, 0, 1, 0x13, L2(12), 1125000, 0x03006000},
{ {1, 1}, 1080000, ACPU_SCPLL, 0, 0, 1, 0x14, L2(13), 1137500, 0x03006000},
{ {1, 1}, 1134000, ACPU_SCPLL, 0, 0, 1, 0x15, L2(14), 1162500, 0x03006000},
{ {1, 1}, 1188000, ACPU_SCPLL, 0, 0, 1, 0x16, L2(15), 1187500, 0x03006000},
{ {0, 0}, 0 },
};
/* SCPLL frequencies = 2 * 27 MHz * L_VAL */
static struct clkctl_acpu_speed acpu_freq_tbl_slow[] = {
{ {1, 1}, 192000, ACPU_PLL_8, 3, 1, 0, 0, L2(1), 812500, 0x03006000},
/* MAX_AXI row is used to source CPU cores and L2 from the AFAB clock. */
{ {0, 0}, MAX_AXI, ACPU_AFAB, 1, 0, 0, 0, L2(0), 875000, 0x03006000},
{ {1, 1}, 384000, ACPU_PLL_8, 3, 0, 0, 0, L2(1), 875000, 0x03006000},
{ {1, 1}, 432000, ACPU_SCPLL, 0, 0, 1, 0x08, L2(1), 887500, 0x03006000},
{ {1, 1}, 486000, ACPU_SCPLL, 0, 0, 1, 0x09, L2(2), 912500, 0x03006000},
{ {1, 1}, 540000, ACPU_SCPLL, 0, 0, 1, 0x0A, L2(3), 925000, 0x03006000},
{ {1, 1}, 594000, ACPU_SCPLL, 0, 0, 1, 0x0B, L2(4), 937500, 0x03006000},
{ {1, 1}, 648000, ACPU_SCPLL, 0, 0, 1, 0x0C, L2(5), 950000, 0x03006000},
{ {1, 1}, 702000, ACPU_SCPLL, 0, 0, 1, 0x0D, L2(6), 975000, 0x03006000},
{ {1, 1}, 756000, ACPU_SCPLL, 0, 0, 1, 0x0E, L2(7), 1000000, 0x03006000},
{ {1, 1}, 810000, ACPU_SCPLL, 0, 0, 1, 0x0F, L2(8), 1012500, 0x03006000},
{ {1, 1}, 864000, ACPU_SCPLL, 0, 0, 1, 0x10, L2(9), 1037500, 0x03006000},
{ {1, 1}, 918000, ACPU_SCPLL, 0, 0, 1, 0x11, L2(10), 1062500, 0x03006000},
{ {1, 1}, 972000, ACPU_SCPLL, 0, 0, 1, 0x12, L2(11), 1087500, 0x03006000},
{ {1, 1}, 1026000, ACPU_SCPLL, 0, 0, 1, 0x13, L2(12), 1100000, 0x03006000},
{ {1, 1}, 1080000, ACPU_SCPLL, 0, 0, 1, 0x14, L2(13), 1112500, 0x03006000},
{ {1, 1}, 1134000, ACPU_SCPLL, 0, 0, 1, 0x15, L2(14), 1125000, 0x03006000},
{ {1, 1}, 1188000, ACPU_SCPLL, 0, 0, 1, 0x16, L2(15), 1137500, 0x03006000},
{ {1, 1}, 1242000, ACPU_SCPLL, 0, 0, 1, 0x17, L2(16), 1150000, 0x03006000},
{ {1, 1}, 1296000, ACPU_SCPLL, 0, 0, 1, 0x18, L2(17), 1175000, 0x03006000},
{ {1, 1}, 1350000, ACPU_SCPLL, 0, 0, 1, 0x19, L2(18), 1200000, 0x03006000},
{ {1, 1}, 1404000, ACPU_SCPLL, 0, 0, 1, 0x1A, L2(19), 1225000, 0x03006000},
{ {1, 1}, 1458000, ACPU_SCPLL, 0, 0, 1, 0x1B, L2(19), 1237500, 0x03006000},
{ {1, 1}, 1512000, ACPU_SCPLL, 0, 0, 1, 0x1C, L2(19), 1250000, 0x03006000},
{ {0, 0}, 0 },
};
/* SCPLL frequencies = 2 * 27 MHz * L_VAL */
static struct clkctl_acpu_speed acpu_freq_tbl_nom[] = {
{ {1, 1}, 192000, ACPU_PLL_8, 3, 1, 0, 0, L2(1), 812500, 0x03006000},
/* MAX_AXI row is used to source CPU cores and L2 from the AFAB clock. */
{ {0, 0}, MAX_AXI, ACPU_AFAB, 1, 0, 0, 0, L2(0), 875000, 0x03006000},
{ {1, 1}, 384000, ACPU_PLL_8, 3, 0, 0, 0, L2(1), 875000, 0x03006000},
{ {1, 1}, 432000, ACPU_SCPLL, 0, 0, 1, 0x08, L2(1), 887500, 0x03006000},
{ {1, 1}, 486000, ACPU_SCPLL, 0, 0, 1, 0x09, L2(2), 912500, 0x03006000},
{ {1, 1}, 540000, ACPU_SCPLL, 0, 0, 1, 0x0A, L2(3), 925000, 0x03006000},
{ {1, 1}, 594000, ACPU_SCPLL, 0, 0, 1, 0x0B, L2(4), 937500, 0x03006000},
{ {1, 1}, 648000, ACPU_SCPLL, 0, 0, 1, 0x0C, L2(5), 950000, 0x03006000},
{ {1, 1}, 702000, ACPU_SCPLL, 0, 0, 1, 0x0D, L2(6), 975000, 0x03006000},
{ {1, 1}, 756000, ACPU_SCPLL, 0, 0, 1, 0x0E, L2(7), 1000000, 0x03006000},
{ {1, 1}, 810000, ACPU_SCPLL, 0, 0, 1, 0x0F, L2(8), 1012500, 0x03006000},
{ {1, 1}, 864000, ACPU_SCPLL, 0, 0, 1, 0x10, L2(9), 1037500, 0x03006000},
{ {1, 1}, 918000, ACPU_SCPLL, 0, 0, 1, 0x11, L2(10), 1062500, 0x03006000},
{ {1, 1}, 972000, ACPU_SCPLL, 0, 0, 1, 0x12, L2(11), 1062500, 0x03006000},
{ {1, 1}, 1026000, ACPU_SCPLL, 0, 0, 1, 0x13, L2(12), 1075000, 0x03006000},
{ {1, 1}, 1080000, ACPU_SCPLL, 0, 0, 1, 0x14, L2(13), 1087500, 0x03006000},
{ {1, 1}, 1134000, ACPU_SCPLL, 0, 0, 1, 0x15, L2(14), 1100000, 0x03006000},
{ {1, 1}, 1188000, ACPU_SCPLL, 0, 0, 1, 0x16, L2(15), 1112500, 0x03006000},
{ {1, 1}, 1242000, ACPU_SCPLL, 0, 0, 1, 0x17, L2(16), 1125000, 0x03006000},
{ {1, 1}, 1296000, ACPU_SCPLL, 0, 0, 1, 0x18, L2(17), 1150000, 0x03006000},
{ {1, 1}, 1350000, ACPU_SCPLL, 0, 0, 1, 0x19, L2(18), 1175000, 0x03006000},
{ {1, 1}, 1404000, ACPU_SCPLL, 0, 0, 1, 0x1A, L2(19), 1200000, 0x03006000},
{ {1, 1}, 1458000, ACPU_SCPLL, 0, 0, 1, 0x1B, L2(19), 1212500, 0x03006000},
{ {1, 1}, 1512000, ACPU_SCPLL, 0, 0, 1, 0x1C, L2(19), 1225000, 0x03006000},
{ {0, 0}, 0 },
};
/* SCPLL frequencies = 2 * 27 MHz * L_VAL */
static struct clkctl_acpu_speed acpu_freq_tbl_fast[] = {
{ {1, 1}, 192000, ACPU_PLL_8, 3, 1, 0, 0, L2(1), 812500, 0x03006000},
/* MAX_AXI row is used to source CPU cores and L2 from the AFAB clock. */
{ {0, 0}, MAX_AXI, ACPU_AFAB, 1, 0, 0, 0, L2(0), 875000, 0x03006000},
{ {1, 1}, 384000, ACPU_PLL_8, 3, 0, 0, 0, L2(1), 875000, 0x03006000},
{ {1, 1}, 432000, ACPU_SCPLL, 0, 0, 1, 0x08, L2(1), 887500, 0x03006000},
{ {1, 1}, 486000, ACPU_SCPLL, 0, 0, 1, 0x09, L2(2), 912500, 0x03006000},
{ {1, 1}, 540000, ACPU_SCPLL, 0, 0, 1, 0x0A, L2(3), 925000, 0x03006000},
{ {1, 1}, 594000, ACPU_SCPLL, 0, 0, 1, 0x0B, L2(4), 937500, 0x03006000},
{ {1, 1}, 648000, ACPU_SCPLL, 0, 0, 1, 0x0C, L2(5), 950000, 0x03006000},
{ {1, 1}, 702000, ACPU_SCPLL, 0, 0, 1, 0x0D, L2(6), 975000, 0x03006000},
{ {1, 1}, 756000, ACPU_SCPLL, 0, 0, 1, 0x0E, L2(7), 1000000, 0x03006000},
{ {1, 1}, 810000, ACPU_SCPLL, 0, 0, 1, 0x0F, L2(8), 1012500, 0x03006000},
{ {1, 1}, 864000, ACPU_SCPLL, 0, 0, 1, 0x10, L2(9), 1037500, 0x03006000},
{ {1, 1}, 918000, ACPU_SCPLL, 0, 0, 1, 0x11, L2(10), 1037500, 0x03006000},
{ {1, 1}, 972000, ACPU_SCPLL, 0, 0, 1, 0x12, L2(11), 1037500, 0x03006000},
{ {1, 1}, 1026000, ACPU_SCPLL, 0, 0, 1, 0x13, L2(12), 1050000, 0x03006000},
{ {1, 1}, 1080000, ACPU_SCPLL, 0, 0, 1, 0x14, L2(13), 1062500, 0x03006000},
{ {1, 1}, 1134000, ACPU_SCPLL, 0, 0, 1, 0x15, L2(14), 1075000, 0x03006000},
{ {1, 1}, 1188000, ACPU_SCPLL, 0, 0, 1, 0x16, L2(15), 1087500, 0x03006000},
{ {1, 1}, 1242000, ACPU_SCPLL, 0, 0, 1, 0x17, L2(16), 1100000, 0x03006000},
{ {1, 1}, 1296000, ACPU_SCPLL, 0, 0, 1, 0x18, L2(17), 1125000, 0x03006000},
{ {1, 1}, 1350000, ACPU_SCPLL, 0, 0, 1, 0x19, L2(18), 1150000, 0x03006000},
{ {1, 1}, 1404000, ACPU_SCPLL, 0, 0, 1, 0x1A, L2(19), 1175000, 0x03006000},
{ {1, 1}, 1458000, ACPU_SCPLL, 0, 0, 1, 0x1B, L2(19), 1187500, 0x03006000},
{ {1, 1}, 1512000, ACPU_SCPLL, 0, 0, 1, 0x1C, L2(19), 1200000, 0x03006000},
{ {0, 0}, 0 },
};
/* acpu_freq_tbl row to use when reconfiguring SC/L2 PLLs. */
#define CAL_IDX 1
static struct clkctl_acpu_speed *acpu_freq_tbl;
static struct clkctl_l2_speed *l2_freq_tbl = l2_freq_tbl_v2;
static unsigned int l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_v2);
static unsigned long acpuclk_8x60_get_rate(int cpu)
{
return drv_state.current_speed[cpu]->acpuclk_khz;
}
static void select_core_source(unsigned int id, unsigned int src)
{
uint32_t regval;
int shift;
shift = (id == L2) ? 0 : 1;
regval = readl_relaxed(clk_sel_addr[id]);
regval &= ~(0x3 << shift);
regval |= (src << shift);
writel_relaxed(regval, clk_sel_addr[id]);
}
static void select_clk_source_div(unsigned int id, struct clkctl_acpu_speed *s)
{
uint32_t reg_clksel, reg_clkctl, src_sel;
/* Configure the PLL divider mux if we plan to use it. */
if (s->core_src_sel == 0) {
reg_clksel = readl_relaxed(clk_sel_addr[id]);
/* CLK_SEL_SRC1N0 (bank) bit. */
src_sel = reg_clksel & 1;
/* Program clock source and divider. */
reg_clkctl = readl_relaxed(clk_ctl_addr[id]);
reg_clkctl &= ~(0xFF << (8 * src_sel));
reg_clkctl |= s->acpuclk_src_sel << (4 + 8 * src_sel);
reg_clkctl |= s->acpuclk_src_div << (0 + 8 * src_sel);
writel_relaxed(reg_clkctl, clk_ctl_addr[id]);
/* Toggle clock source. */
reg_clksel ^= 1;
/* Program clock source selection. */
writel_relaxed(reg_clksel, clk_sel_addr[id]);
}
}
static void scpll_enable(int sc_pll, uint32_t l_val)
{
uint32_t regval;
/* Power-up SCPLL into standby mode. */
writel_relaxed(SCPLL_STANDBY, sc_pll_base[sc_pll] + SCPLL_CTL_OFFSET);
mb();
udelay(10);
/* Shot-switch to target frequency. */
regval = (l_val << 3) | SHOT_SWITCH;
writel_relaxed(regval, sc_pll_base[sc_pll] + SCPLL_FSM_CTL_EXT_OFFSET);
writel_relaxed(SCPLL_NORMAL, sc_pll_base[sc_pll] + SCPLL_CTL_OFFSET);
mb();
udelay(20);
}
static void scpll_disable(int sc_pll)
{
/* Power down SCPLL. */
writel_relaxed(SCPLL_POWER_DOWN,
sc_pll_base[sc_pll] + SCPLL_CTL_OFFSET);
}
static void scpll_change_freq(int sc_pll, uint32_t l_val)
{
uint32_t regval;
const void *base_addr = sc_pll_base[sc_pll];
/* Complex-slew switch to target frequency. */
regval = (l_val << 3) | COMPLEX_SLEW;
writel_relaxed(regval, base_addr + SCPLL_FSM_CTL_EXT_OFFSET);
writel_relaxed(SCPLL_NORMAL, base_addr + SCPLL_CTL_OFFSET);
/* Wait for frequency switch to start. */
while (((readl_relaxed(base_addr + SCPLL_CTL_OFFSET) >> 3) & 0x3F)
!= l_val)
cpu_relax();
/* Wait for frequency switch to finish. */
while (readl_relaxed(base_addr + SCPLL_STATUS_OFFSET) & 0x1)
cpu_relax();
}
/* Vote for the L2 speed and return the speed that should be applied. */
static struct clkctl_l2_speed *compute_l2_speed(unsigned int voting_cpu,
struct clkctl_l2_speed *tgt_s)
{
struct clkctl_l2_speed *new_s;
int cpu;
/* Bounds check. */
BUG_ON(tgt_s >= (l2_freq_tbl + l2_freq_tbl_size));
/* Find max L2 speed vote. */
l2_vote[voting_cpu] = tgt_s;
new_s = l2_freq_tbl;
for_each_present_cpu(cpu)
new_s = max(new_s, l2_vote[cpu]);
return new_s;
}
/* Set the L2's clock speed. */
static void set_l2_speed(struct clkctl_l2_speed *tgt_s)
{
if (tgt_s == drv_state.current_l2_speed)
return;
if (drv_state.current_l2_speed->src_sel == 1
&& tgt_s->src_sel == 1)
scpll_change_freq(L2, tgt_s->l_val);
else {
if (tgt_s->src_sel == 1) {
scpll_enable(L2, tgt_s->l_val);
mb();
select_core_source(L2, tgt_s->src_sel);
} else {
select_core_source(L2, tgt_s->src_sel);
mb();
scpll_disable(L2);
}
}
drv_state.current_l2_speed = tgt_s;
}
/* Update the bus bandwidth request. */
static void set_bus_bw(unsigned int bw)
{
int ret;
/* Bounds check. */
if (bw >= ARRAY_SIZE(bw_level_tbl)) {
pr_err("%s: invalid bandwidth request (%d)\n", __func__, bw);
return;
}
/* Update bandwidth if requst has changed. This may sleep. */
ret = msm_bus_scale_client_update_request(bus_perf_client, bw);
if (ret)
pr_err("%s: bandwidth request failed (%d)\n", __func__, ret);
return;
}
/* Apply any per-cpu voltage increases. */
static int increase_vdd(int cpu, unsigned int vdd_sc, unsigned int vdd_mem,
unsigned int vdd_dig, enum setrate_reason reason)
{
int rc = 0;
/* Increase vdd_mem active-set before vdd_dig and vdd_sc.
* vdd_mem should be >= both vdd_sc and vdd_dig. */
rc = rpm_vreg_set_voltage(RPM_VREG_ID_PM8058_S0, rpm_vreg_voter[cpu],
vdd_mem, MAX_VDD_MEM, 0);
if (rc) {
pr_err("%s: vdd_mem (cpu%d) increase failed (%d)\n",
__func__, cpu, rc);
return rc;
}
/* Increase vdd_dig active-set vote. */
rc = rpm_vreg_set_voltage(RPM_VREG_ID_PM8058_S1, rpm_vreg_voter[cpu],
vdd_dig, MAX_VDD_DIG, 0);
if (rc) {
pr_err("%s: vdd_dig (cpu%d) increase failed (%d)\n",
__func__, cpu, rc);
return rc;
}
/* Don't update the Scorpion voltage in the hotplug path. It should
* already be correct. Attempting to set it is bad because we don't
* know what CPU we are running on at this point, but the Scorpion
* regulator API requires we call it from the affected CPU. */
if (reason == SETRATE_HOTPLUG)
return rc;
/* Update per-core Scorpion voltage. */
rc = regulator_set_voltage(regulator_sc[cpu], vdd_sc, MAX_VDD_SC);
if (rc) {
pr_err("%s: vdd_sc (cpu%d) increase failed (%d)\n",
__func__, cpu, rc);
return rc;
}
return rc;
}
/* Apply any per-cpu voltage decreases. */
static void decrease_vdd(int cpu, unsigned int vdd_sc, unsigned int vdd_mem,
unsigned int vdd_dig, enum setrate_reason reason)
{
int ret;
/* Update per-core Scorpion voltage. This must be called on the CPU
* that's being affected. Don't do this in the hotplug remove path,
* where the rail is off and we're executing on the other CPU. */
if (reason != SETRATE_HOTPLUG) {
ret = regulator_set_voltage(regulator_sc[cpu], vdd_sc,
MAX_VDD_SC);
if (ret) {
pr_err("%s: vdd_sc (cpu%d) decrease failed (%d)\n",
__func__, cpu, ret);
return;
}
}
/* Decrease vdd_dig active-set vote. */
ret = rpm_vreg_set_voltage(RPM_VREG_ID_PM8058_S1, rpm_vreg_voter[cpu],
vdd_dig, MAX_VDD_DIG, 0);
if (ret) {
pr_err("%s: vdd_dig (cpu%d) decrease failed (%d)\n",
__func__, cpu, ret);
return;
}
/* Decrease vdd_mem active-set after vdd_dig and vdd_sc.
* vdd_mem should be >= both vdd_sc and vdd_dig. */
ret = rpm_vreg_set_voltage(RPM_VREG_ID_PM8058_S0, rpm_vreg_voter[cpu],
vdd_mem, MAX_VDD_MEM, 0);
if (ret) {
pr_err("%s: vdd_mem (cpu%d) decrease failed (%d)\n",
__func__, cpu, ret);
return;
}
}
static void switch_sc_speed(int cpu, struct clkctl_acpu_speed *tgt_s)
{
struct clkctl_acpu_speed *strt_s = drv_state.current_speed[cpu];
if (strt_s->pll != ACPU_SCPLL && tgt_s->pll != ACPU_SCPLL) {
select_clk_source_div(cpu, tgt_s);
/* Select core source because target may be AFAB. */
select_core_source(cpu, tgt_s->core_src_sel);
} else if (strt_s->pll != ACPU_SCPLL && tgt_s->pll == ACPU_SCPLL) {
scpll_enable(cpu, tgt_s->l_val);
mb();
select_core_source(cpu, tgt_s->core_src_sel);
} else if (strt_s->pll == ACPU_SCPLL && tgt_s->pll != ACPU_SCPLL) {
select_clk_source_div(cpu, tgt_s);
select_core_source(cpu, tgt_s->core_src_sel);
/* Core source switch must complete before disabling SCPLL. */
mb();
udelay(1);
scpll_disable(cpu);
} else
scpll_change_freq(cpu, tgt_s->l_val);
/* Update the driver state with the new clock freq */
drv_state.current_speed[cpu] = tgt_s;
}
static int acpuclk_8x60_set_rate(int cpu, unsigned long rate,
enum setrate_reason reason)
{
struct clkctl_acpu_speed *tgt_s, *strt_s;
struct clkctl_l2_speed *tgt_l2;
unsigned int vdd_mem, vdd_dig, pll_vdd_dig;
unsigned long flags;
int rc = 0;
if (cpu > num_possible_cpus()) {
rc = -EINVAL;
goto out;
}
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG)
mutex_lock(&drv_state.lock);
strt_s = drv_state.current_speed[cpu];
/* Return early if rate didn't change. */
if (rate == strt_s->acpuclk_khz)
goto out;
/* Find target frequency. */
for (tgt_s = acpu_freq_tbl; tgt_s->acpuclk_khz != 0; tgt_s++)
if (tgt_s->acpuclk_khz == rate)
break;
if (tgt_s->acpuclk_khz == 0) {
rc = -EINVAL;
goto out;
}
/* AVS needs SAW_VCTL to be intitialized correctly, before enable,
* and is not initialized at acpuclk_init().
*/
if (reason == SETRATE_CPUFREQ)
AVS_DISABLE(cpu);
/* Calculate vdd_mem and vdd_dig requirements.
* vdd_mem must be >= vdd_sc */
vdd_mem = max(tgt_s->vdd_sc, tgt_s->l2_level->vdd_mem);
/* Factor-in PLL vdd_dig requirements. */
if ((tgt_s->l2_level->khz > SCPLL_LOW_VDD_FMAX) ||
(tgt_s->pll == ACPU_SCPLL
&& tgt_s->acpuclk_khz > SCPLL_LOW_VDD_FMAX))
pll_vdd_dig = SCPLL_NOMINAL_VDD;
else
pll_vdd_dig = SCPLL_LOW_VDD;
vdd_dig = max(tgt_s->l2_level->vdd_dig, pll_vdd_dig);
/* Increase VDD levels if needed. */
if ((reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG
|| reason == SETRATE_INIT)
&& (tgt_s->acpuclk_khz > strt_s->acpuclk_khz)) {
rc = increase_vdd(cpu, tgt_s->vdd_sc, vdd_mem, vdd_dig, reason);
if (rc)
goto out;
}
pr_debug("Switching from ACPU%d rate %u KHz -> %u KHz\n",
cpu, strt_s->acpuclk_khz, tgt_s->acpuclk_khz);
/* Switch CPU speed. */
switch_sc_speed(cpu, tgt_s);
/* Update the L2 vote and apply the rate change. */
spin_lock_irqsave(&drv_state.l2_lock, flags);
tgt_l2 = compute_l2_speed(cpu, tgt_s->l2_level);
set_l2_speed(tgt_l2);
spin_unlock_irqrestore(&drv_state.l2_lock, flags);
/* Nothing else to do for SWFI. */
if (reason == SETRATE_SWFI)
goto out;
/* Nothing else to do for power collapse. */
if (reason == SETRATE_PC)
goto out;
/* Update bus bandwith request. */
set_bus_bw(tgt_l2->bw_level);
/* Drop VDD levels if we can. */
if (tgt_s->acpuclk_khz < strt_s->acpuclk_khz)
decrease_vdd(cpu, tgt_s->vdd_sc, vdd_mem, vdd_dig, reason);
pr_debug("ACPU%d speed change complete\n", cpu);
/* Re-enable AVS */
if (reason == SETRATE_CPUFREQ)
AVS_ENABLE(cpu, tgt_s->avsdscr_setting);
out:
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG)
mutex_unlock(&drv_state.lock);
return rc;
}
static void __init scpll_init(int sc_pll)
{
uint32_t regval;
pr_debug("Initializing SCPLL%d\n", sc_pll);
/* Clear calibration LUT registers containing max frequency entry.
* LUT registers are only writeable in debug mode. */
writel_relaxed(SCPLL_DEBUG_FULL,
sc_pll_base[sc_pll] + SCPLL_DEBUG_OFFSET);
writel_relaxed(0x0, sc_pll_base[sc_pll] + SCPLL_LUT_A_HW_MAX);
writel_relaxed(SCPLL_DEBUG_NONE,
sc_pll_base[sc_pll] + SCPLL_DEBUG_OFFSET);
/* Power-up SCPLL into standby mode. */
writel_relaxed(SCPLL_STANDBY, sc_pll_base[sc_pll] + SCPLL_CTL_OFFSET);
mb();
udelay(10);
/* Calibrate the SCPLL to the maximum range supported by the h/w. We
* might not use the full range of calibrated frequencies, but this
* simplifies changes required for future increases in max CPU freq.
*/
regval = (L_VAL_SCPLL_CAL_MAX << 24) | (L_VAL_SCPLL_CAL_MIN << 16);
writel_relaxed(regval, sc_pll_base[sc_pll] + SCPLL_CAL_OFFSET);
/* Start calibration */
writel_relaxed(SCPLL_FULL_CAL, sc_pll_base[sc_pll] + SCPLL_CTL_OFFSET);
/* Wait for proof that calibration has started before checking the
* 'calibration done' bit in the status register. Waiting for the
* LUT register we cleared to contain data accomplishes this.
* This is required since the 'calibration done' bit takes time to
* transition from 'done' to 'not done' when starting a calibration.
*/
while (readl_relaxed(sc_pll_base[sc_pll] + SCPLL_LUT_A_HW_MAX) == 0)
cpu_relax();
/* Wait for calibration to complete. */
while (readl_relaxed(sc_pll_base[sc_pll] + SCPLL_STATUS_OFFSET) & 0x2)
cpu_relax();
/* Power-down SCPLL. */
scpll_disable(sc_pll);
}
/* Force ACPU core and L2 cache clocks to rates that don't require SCPLLs. */
static void __init unselect_scplls(void)
{
int cpu;
/* Ensure CAL_IDX frequency uses AFAB sources for CPU cores and L2. */
BUG_ON(acpu_freq_tbl[CAL_IDX].core_src_sel != 0);
BUG_ON(acpu_freq_tbl[CAL_IDX].l2_level->src_sel != 0);
for_each_possible_cpu(cpu) {
select_clk_source_div(cpu, &acpu_freq_tbl[CAL_IDX]);
select_core_source(cpu, acpu_freq_tbl[CAL_IDX].core_src_sel);
drv_state.current_speed[cpu] = &acpu_freq_tbl[CAL_IDX];
l2_vote[cpu] = acpu_freq_tbl[CAL_IDX].l2_level;
}
select_core_source(L2, acpu_freq_tbl[CAL_IDX].l2_level->src_sel);
drv_state.current_l2_speed = acpu_freq_tbl[CAL_IDX].l2_level;
}
/* Ensure SCPLLs use the 27MHz PXO. */
static void __init scpll_set_refs(void)
{
int cpu;
uint32_t regval;
/* Bit 4 = 0:PXO, 1:MXO. */
for_each_possible_cpu(cpu) {
regval = readl_relaxed(sc_pll_base[cpu] + SCPLL_CFG_OFFSET);
regval &= ~BIT(4);
writel_relaxed(regval, sc_pll_base[cpu] + SCPLL_CFG_OFFSET);
}
regval = readl_relaxed(sc_pll_base[L2] + SCPLL_CFG_OFFSET);
regval &= ~BIT(4);
writel_relaxed(regval, sc_pll_base[L2] + SCPLL_CFG_OFFSET);
}
/* Voltage regulator initialization. */
static void __init regulator_init(void)
{
struct clkctl_acpu_speed **freq = drv_state.current_speed;
const char *regulator_sc_name[] = {"8901_s0", "8901_s1"};
int cpu, ret;
for_each_possible_cpu(cpu) {
/* VDD_SC0, VDD_SC1 */
regulator_sc[cpu] = regulator_get(NULL, regulator_sc_name[cpu]);
if (IS_ERR(regulator_sc[cpu]))
goto err;
ret = regulator_set_voltage(regulator_sc[cpu],
freq[cpu]->vdd_sc, MAX_VDD_SC);
if (ret)
goto err;
ret = regulator_enable(regulator_sc[cpu]);
if (ret)
goto err;
}
return;
err:
pr_err("%s: Failed to initialize voltage regulators\n", __func__);
BUG();
}
/* Register with bus driver. */
static void __init bus_init(void)
{
bus_perf_client = msm_bus_scale_register_client(&bus_client_pdata);
if (!bus_perf_client) {
pr_err("%s: unable register bus client\n", __func__);
BUG();
}
}
#ifdef CONFIG_CPU_FREQ_MSM
static struct cpufreq_frequency_table freq_table[NR_CPUS][30];
static void __init cpufreq_table_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
int i, freq_cnt = 0;
/* Construct the freq_table tables from acpu_freq_tbl. */
for (i = 0; acpu_freq_tbl[i].acpuclk_khz != 0
&& freq_cnt < ARRAY_SIZE(*freq_table); i++) {
if (acpu_freq_tbl[i].use_for_scaling[cpu]) {
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency
= acpu_freq_tbl[i].acpuclk_khz;
freq_cnt++;
}
}
/* freq_table not big enough to store all usable freqs. */
BUG_ON(acpu_freq_tbl[i].acpuclk_khz != 0);
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END;
pr_info("CPU%d: %d scaling frequencies supported.\n",
cpu, freq_cnt);
/* Register table with CPUFreq. */
cpufreq_frequency_table_get_attr(freq_table[cpu], cpu);
}
}
#else
static void __init cpufreq_table_init(void) {}
#endif
#define HOT_UNPLUG_KHZ MAX_AXI
static int __cpuinit acpuclock_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
static int prev_khz[NR_CPUS];
int cpu = (int)hcpu;
switch (action) {
case CPU_DEAD:
case CPU_DEAD_FROZEN:
prev_khz[cpu] = acpuclk_8x60_get_rate(cpu);
/* Fall through. */
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
acpuclk_8x60_set_rate(cpu, HOT_UNPLUG_KHZ, SETRATE_HOTPLUG);
break;
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
if (WARN_ON(!prev_khz[cpu]))
prev_khz[cpu] = acpu_freq_tbl->acpuclk_khz;
acpuclk_8x60_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata acpuclock_cpu_notifier = {
.notifier_call = acpuclock_cpu_callback,
};
static unsigned int __init select_freq_plan(void)
{
uint32_t pte_efuse, speed_bin, pvs, max_khz;
struct clkctl_acpu_speed *f;
pte_efuse = readl_relaxed(QFPROM_PTE_EFUSE_ADDR);
speed_bin = pte_efuse & 0xF;
if (speed_bin == 0xF)
speed_bin = (pte_efuse >> 4) & 0xF;
if (speed_bin == 0x1) {
max_khz = 1512000;
pvs = (pte_efuse >> 10) & 0x7;
if (pvs == 0x7)
pvs = (pte_efuse >> 13) & 0x7;
switch (pvs) {
case 0x0:
case 0x7:
acpu_freq_tbl = acpu_freq_tbl_slow;
pr_info("ACPU PVS: Slow\n");
break;
case 0x1:
acpu_freq_tbl = acpu_freq_tbl_nom;
pr_info("ACPU PVS: Nominal\n");
break;
case 0x3:
acpu_freq_tbl = acpu_freq_tbl_fast;
pr_info("ACPU PVS: Fast\n");
break;
default:
acpu_freq_tbl = acpu_freq_tbl_slow;
pr_warn("ACPU PVS: Unknown. Defaulting to slow.\n");
break;
}
} else {
max_khz = 1188000;
acpu_freq_tbl = acpu_freq_tbl_1188mhz;
}
/* Truncate the table based to max_khz. */
for (f = acpu_freq_tbl; f->acpuclk_khz != 0; f++) {
if (f->acpuclk_khz > max_khz) {
f->acpuclk_khz = 0;
break;
}
}
f--;
pr_info("Max ACPU freq: %u KHz\n", f->acpuclk_khz);
return f->acpuclk_khz;
}
static struct acpuclk_data acpuclk_8x60_data = {
.set_rate = acpuclk_8x60_set_rate,
.get_rate = acpuclk_8x60_get_rate,
.power_collapse_khz = MAX_AXI,
.wait_for_irq_khz = MAX_AXI,
};
int __init acpuclk_8x60_init(struct acpuclk_platform_data *clkdata)
{
unsigned int max_cpu_khz;
int cpu;
mutex_init(&drv_state.lock);
spin_lock_init(&drv_state.l2_lock);
/* Configure hardware. */
max_cpu_khz = select_freq_plan();
unselect_scplls();
scpll_set_refs();
for_each_possible_cpu(cpu)
scpll_init(cpu);
scpll_init(L2);
regulator_init();
bus_init();
/* Improve boot time by ramping up CPUs immediately. */
for_each_online_cpu(cpu)
acpuclk_8x60_set_rate(cpu, max_cpu_khz, SETRATE_INIT);
acpuclk_register(&acpuclk_8x60_data);
cpufreq_table_init();
register_hotcpu_notifier(&acpuclock_cpu_notifier);
return 0;
}