blob: 5c7e7b801cc9e693e40d7abbce531bf445f21b1d [file] [log] [blame]
/* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/export.h>
#include <linux/interrupt.h>
#include <asm/page.h>
#include <linux/pm_runtime.h>
#include <mach/msm_iomap.h>
#include <mach/msm_bus.h>
#include <mach/msm_bus_board.h>
#include <linux/ktime.h>
#include <linux/delay.h>
#include "kgsl.h"
#include "kgsl_pwrscale.h"
#include "kgsl_device.h"
#include "kgsl_trace.h"
#include "kgsl_sharedmem.h"
#define KGSL_PWRFLAGS_POWER_ON 0
#define KGSL_PWRFLAGS_CLK_ON 1
#define KGSL_PWRFLAGS_AXI_ON 2
#define KGSL_PWRFLAGS_IRQ_ON 3
#define UPDATE_BUSY_VAL 1000000
#define UPDATE_BUSY 50
/*
* Expected delay for post-interrupt processing on A3xx.
* The delay may be longer, gradually increase the delay
* to compensate. If the GPU isn't done by max delay,
* it's working on something other than just the final
* command sequence so stop waiting for it to be idle.
*/
#define INIT_UDELAY 200
#define MAX_UDELAY 2000
struct clk_pair {
const char *name;
uint map;
};
struct clk_pair clks[KGSL_MAX_CLKS] = {
{
.name = "src_clk",
.map = KGSL_CLK_SRC,
},
{
.name = "core_clk",
.map = KGSL_CLK_CORE,
},
{
.name = "iface_clk",
.map = KGSL_CLK_IFACE,
},
{
.name = "mem_clk",
.map = KGSL_CLK_MEM,
},
{
.name = "mem_iface_clk",
.map = KGSL_CLK_MEM_IFACE,
},
{
.name = "alt_mem_iface_clk",
.map = KGSL_CLK_ALT_MEM_IFACE,
},
};
static void kgsl_pwrctrl_clk(struct kgsl_device *device, int state,
int requested_state);
static void kgsl_pwrctrl_axi(struct kgsl_device *device, int state);
static void kgsl_pwrctrl_pwrrail(struct kgsl_device *device, int state);
/* Update the elapsed time at a particular clock level
* if the device is active(on_time = true).Otherwise
* store it as sleep time.
*/
static void update_clk_statistics(struct kgsl_device *device,
bool on_time)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct kgsl_clk_stats *clkstats = &pwr->clk_stats;
ktime_t elapsed;
int elapsed_us;
if (clkstats->start.tv64 == 0)
clkstats->start = ktime_get();
clkstats->stop = ktime_get();
elapsed = ktime_sub(clkstats->stop, clkstats->start);
elapsed_us = ktime_to_us(elapsed);
clkstats->elapsed += elapsed_us;
if (on_time)
clkstats->clock_time[pwr->active_pwrlevel] += elapsed_us;
else
clkstats->clock_time[pwr->num_pwrlevels - 1] += elapsed_us;
clkstats->start = ktime_get();
}
/*
* Given a requested power level do bounds checking on the constraints and
* return the nearest possible level
*/
static inline int _adjust_pwrlevel(struct kgsl_pwrctrl *pwr, int level)
{
int max_pwrlevel = max_t(int, pwr->thermal_pwrlevel, pwr->max_pwrlevel);
int min_pwrlevel = max_t(int, pwr->thermal_pwrlevel, pwr->min_pwrlevel);
if (level < max_pwrlevel)
return max_pwrlevel;
if (level > min_pwrlevel)
return min_pwrlevel;
return level;
}
void kgsl_pwrctrl_buslevel_update(struct kgsl_device *device,
bool on)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
int cur = pwr->pwrlevels[pwr->active_pwrlevel].bus_freq;
int buslevel = 0;
if (!pwr->pcl)
return;
/* the bus should be ON to update the active frequency */
if (on && !(test_bit(KGSL_PWRFLAGS_AXI_ON, &pwr->power_flags)))
return;
/*
* If the bus should remain on calculate our request and submit it,
* otherwise request bus level 0, off.
*/
if (on) {
buslevel = min_t(int, pwr->pwrlevels[0].bus_freq,
cur + pwr->bus_mod);
buslevel = max_t(int, buslevel, 1);
}
msm_bus_scale_client_update_request(pwr->pcl, buslevel);
trace_kgsl_pwrlevel(device, pwr->active_pwrlevel, buslevel);
}
EXPORT_SYMBOL(kgsl_pwrctrl_buslevel_update);
void kgsl_pwrctrl_pwrlevel_change(struct kgsl_device *device,
unsigned int new_level)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct kgsl_pwrlevel *pwrlevel;
int delta, level;
/* Adjust the power level to the current constraints */
new_level = _adjust_pwrlevel(pwr, new_level);
if (new_level == pwr->active_pwrlevel)
return;
delta = new_level < pwr->active_pwrlevel ? -1 : 1;
update_clk_statistics(device, true);
level = pwr->active_pwrlevel;
/*
* Set the active powerlevel first in case the clocks are off - if we
* don't do this then the pwrlevel change won't take effect when the
* clocks come back
*/
pwr->active_pwrlevel = new_level;
pwr->bus_mod = 0;
pwrlevel = &pwr->pwrlevels[pwr->active_pwrlevel];
kgsl_pwrctrl_buslevel_update(device, true);
if (test_bit(KGSL_PWRFLAGS_AXI_ON, &pwr->power_flags))
if (pwr->ebi1_clk)
clk_set_rate(pwr->ebi1_clk, pwrlevel->bus_freq);
if (test_bit(KGSL_PWRFLAGS_CLK_ON, &pwr->power_flags) ||
(device->state == KGSL_STATE_NAP)) {
/*
* On some platforms, instability is caused on
* changing clock freq when the core is busy.
* Idle the gpu core before changing the clock freq.
*/
if (pwr->idle_needed == true)
device->ftbl->idle(device);
/*
* Don't shift by more than one level at a time to
* avoid glitches.
*/
while (level != new_level) {
level += delta;
clk_set_rate(pwr->grp_clks[0],
pwr->pwrlevels[level].gpu_freq);
}
}
trace_kgsl_pwrlevel(device, pwr->active_pwrlevel, pwrlevel->gpu_freq);
}
EXPORT_SYMBOL(kgsl_pwrctrl_pwrlevel_change);
static int kgsl_pwrctrl_thermal_pwrlevel_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
int ret, level;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
ret = sscanf(buf, "%d", &level);
if (ret != 1)
return count;
if (level < 0)
return count;
mutex_lock(&device->mutex);
if (level > pwr->num_pwrlevels - 2)
level = pwr->num_pwrlevels - 2;
pwr->thermal_pwrlevel = level;
/*
* If there is no power policy set the clock to the requested thermal
* level - if thermal now happens to be higher than max, then that will
* be limited by the pwrlevel change function. Otherwise if there is
* a policy only change the active clock if it is higher then the new
* thermal level
*/
if (pwr->thermal_pwrlevel > pwr->active_pwrlevel)
kgsl_pwrctrl_pwrlevel_change(device, pwr->thermal_pwrlevel);
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_thermal_pwrlevel_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
return snprintf(buf, PAGE_SIZE, "%d\n", pwr->thermal_pwrlevel);
}
static int kgsl_pwrctrl_max_pwrlevel_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
int ret, level, max_level;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
ret = sscanf(buf, "%d", &level);
if (ret != 1)
return count;
/* If the use specifies a negative number, then don't change anything */
if (level < 0)
return count;
mutex_lock(&device->mutex);
/* You can't set a maximum power level lower than the minimum */
if (level > pwr->min_pwrlevel)
level = pwr->min_pwrlevel;
pwr->max_pwrlevel = level;
max_level = max_t(int, pwr->thermal_pwrlevel, pwr->max_pwrlevel);
/*
* If there is no policy then move to max by default. Otherwise only
* move max if the current level happens to be higher then the new max
*/
if (max_level > pwr->active_pwrlevel)
kgsl_pwrctrl_pwrlevel_change(device, max_level);
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_max_pwrlevel_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
return snprintf(buf, PAGE_SIZE, "%d\n", pwr->max_pwrlevel);
}
static int kgsl_pwrctrl_min_pwrlevel_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{ struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
int ret, level, min_level;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
ret = sscanf(buf, "%d", &level);
if (ret != 1)
return count;
/* Don't do anything on obviously incorrect values */
if (level < 0)
return count;
mutex_lock(&device->mutex);
if (level > pwr->num_pwrlevels - 2)
level = pwr->num_pwrlevels - 2;
/* You can't set a minimum power level lower than the maximum */
if (level < pwr->max_pwrlevel)
level = pwr->max_pwrlevel;
pwr->min_pwrlevel = level;
min_level = max_t(int, pwr->thermal_pwrlevel, pwr->min_pwrlevel);
/* Only move the power level higher if minimum is higher then the
* current level
*/
if (min_level < pwr->active_pwrlevel)
kgsl_pwrctrl_pwrlevel_change(device, min_level);
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_min_pwrlevel_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
return snprintf(buf, PAGE_SIZE, "%d\n", pwr->min_pwrlevel);
}
static int kgsl_pwrctrl_num_pwrlevels_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
return snprintf(buf, PAGE_SIZE, "%d\n", pwr->num_pwrlevels - 1);
}
/* Given a GPU clock value, return the lowest matching powerlevel */
static int _get_nearest_pwrlevel(struct kgsl_pwrctrl *pwr, unsigned int clock)
{
int i;
for (i = pwr->num_pwrlevels - 1; i >= 0; i--) {
if (abs(pwr->pwrlevels[i].gpu_freq - clock) < 5000000)
return i;
}
return -ERANGE;
}
static int kgsl_pwrctrl_max_gpuclk_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
unsigned long val;
int ret, level;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
ret = sscanf(buf, "%ld", &val);
if (ret != 1)
return count;
mutex_lock(&device->mutex);
level = _get_nearest_pwrlevel(pwr, val);
if (level < 0)
goto done;
pwr->thermal_pwrlevel = level;
/*
* if the thermal limit is lower than the current setting,
* move the speed down immediately
*/
if (pwr->thermal_pwrlevel > pwr->active_pwrlevel)
kgsl_pwrctrl_pwrlevel_change(device, pwr->thermal_pwrlevel);
done:
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_max_gpuclk_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
return snprintf(buf, PAGE_SIZE, "%d\n",
pwr->pwrlevels[pwr->thermal_pwrlevel].gpu_freq);
}
static int kgsl_pwrctrl_gpuclk_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
unsigned long val;
int ret, level;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
ret = sscanf(buf, "%ld", &val);
if (ret != 1)
return count;
mutex_lock(&device->mutex);
level = _get_nearest_pwrlevel(pwr, val);
if (level >= 0)
kgsl_pwrctrl_pwrlevel_change(device, level);
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_gpuclk_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
return snprintf(buf, PAGE_SIZE, "%ld\n", kgsl_pwrctrl_active_freq(pwr));
}
static int kgsl_pwrctrl_idle_timer_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char temp[20];
unsigned long val;
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
const long div = 1000/HZ;
int rc;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
snprintf(temp, sizeof(temp), "%.*s",
(int)min(count, sizeof(temp) - 1), buf);
rc = strict_strtoul(temp, 0, &val);
if (rc)
return rc;
mutex_lock(&device->mutex);
/* Let the timeout be requested in ms, but convert to jiffies. */
val /= div;
pwr->interval_timeout = val;
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_idle_timer_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
int mul = 1000/HZ;
if (device == NULL)
return 0;
/* Show the idle_timeout converted to msec */
return snprintf(buf, PAGE_SIZE, "%d\n",
device->pwrctrl.interval_timeout * mul);
}
static int kgsl_pwrctrl_pmqos_latency_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char temp[20];
unsigned long val;
struct kgsl_device *device = kgsl_device_from_dev(dev);
int rc;
if (device == NULL)
return 0;
snprintf(temp, sizeof(temp), "%.*s",
(int)min(count, sizeof(temp) - 1), buf);
rc = kstrtoul(temp, 0, &val);
if (rc)
return rc;
mutex_lock(&device->mutex);
device->pwrctrl.pm_qos_latency = val;
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_pmqos_latency_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
if (device == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n",
device->pwrctrl.pm_qos_latency);
}
static int kgsl_pwrctrl_gpubusy_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret;
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_clk_stats *clkstats;
if (device == NULL)
return 0;
clkstats = &device->pwrctrl.clk_stats;
ret = snprintf(buf, PAGE_SIZE, "%7d %7d\n",
clkstats->on_time_old, clkstats->elapsed_old);
if (!test_bit(KGSL_PWRFLAGS_AXI_ON, &device->pwrctrl.power_flags)) {
clkstats->on_time_old = 0;
clkstats->elapsed_old = 0;
}
return ret;
}
static int kgsl_pwrctrl_gputop_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret;
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_clk_stats *clkstats;
int i = 0;
char *ptr = buf;
if (device == NULL)
return 0;
clkstats = &device->pwrctrl.clk_stats;
ret = snprintf(buf, PAGE_SIZE, "%7d %7d ", clkstats->on_time_old,
clkstats->elapsed_old);
for (i = 0, ptr += ret; i < device->pwrctrl.num_pwrlevels;
i++, ptr += ret)
ret = snprintf(ptr, PAGE_SIZE, "%7d ",
clkstats->old_clock_time[i]);
if (!test_bit(KGSL_PWRFLAGS_AXI_ON, &device->pwrctrl.power_flags)) {
clkstats->on_time_old = 0;
clkstats->elapsed_old = 0;
for (i = 0; i < KGSL_MAX_PWRLEVELS ; i++)
clkstats->old_clock_time[i] = 0;
}
return (unsigned int) (ptr - buf);
}
static int kgsl_pwrctrl_gpu_available_frequencies_show(
struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct kgsl_pwrctrl *pwr;
int index, num_chars = 0;
if (device == NULL)
return 0;
pwr = &device->pwrctrl;
for (index = 0; index < pwr->num_pwrlevels - 1; index++)
num_chars += snprintf(buf + num_chars, PAGE_SIZE, "%d ",
pwr->pwrlevels[index].gpu_freq);
buf[num_chars++] = '\n';
return num_chars;
}
static int kgsl_pwrctrl_reset_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
if (device == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n", device->reset_counter);
}
static void __force_on(struct kgsl_device *device, int flag, int on)
{
if (on) {
switch (flag) {
case KGSL_PWRFLAGS_CLK_ON:
kgsl_pwrctrl_clk(device, KGSL_PWRFLAGS_ON,
KGSL_STATE_ACTIVE);
break;
case KGSL_PWRFLAGS_AXI_ON:
kgsl_pwrctrl_axi(device, KGSL_PWRFLAGS_ON);
break;
case KGSL_PWRFLAGS_POWER_ON:
kgsl_pwrctrl_pwrrail(device, KGSL_PWRFLAGS_ON);
break;
}
set_bit(flag, &device->pwrctrl.ctrl_flags);
} else {
clear_bit(flag, &device->pwrctrl.ctrl_flags);
}
}
static int __force_on_show(struct device *dev,
struct device_attribute *attr,
char *buf, int flag)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
if (device == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n",
test_bit(flag, &device->pwrctrl.ctrl_flags));
}
static int __force_on_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count,
int flag)
{
char temp[20];
unsigned long val;
struct kgsl_device *device = kgsl_device_from_dev(dev);
int rc;
if (device == NULL)
return 0;
snprintf(temp, sizeof(temp), "%.*s",
(int)min(count, sizeof(temp) - 1), buf);
rc = kstrtoul(temp, 0, &val);
if (rc)
return rc;
mutex_lock(&device->mutex);
__force_on(device, flag, val);
mutex_unlock(&device->mutex);
return count;
}
static int kgsl_pwrctrl_force_clk_on_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return __force_on_show(dev, attr, buf, KGSL_PWRFLAGS_CLK_ON);
}
static int kgsl_pwrctrl_force_clk_on_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return __force_on_store(dev, attr, buf, count, KGSL_PWRFLAGS_CLK_ON);
}
static int kgsl_pwrctrl_force_bus_on_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return __force_on_show(dev, attr, buf, KGSL_PWRFLAGS_AXI_ON);
}
static int kgsl_pwrctrl_force_bus_on_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return __force_on_store(dev, attr, buf, count, KGSL_PWRFLAGS_AXI_ON);
}
static int kgsl_pwrctrl_force_rail_on_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return __force_on_show(dev, attr, buf, KGSL_PWRFLAGS_POWER_ON);
}
static int kgsl_pwrctrl_force_rail_on_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return __force_on_store(dev, attr, buf, count, KGSL_PWRFLAGS_POWER_ON);
}
static ssize_t kgsl_pwrctrl_bus_split_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
if (device == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n",
device->pwrctrl.bus_control);
}
static ssize_t kgsl_pwrctrl_bus_split_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char temp[20];
unsigned long val;
struct kgsl_device *device = kgsl_device_from_dev(dev);
int rc;
if (device == NULL)
return 0;
snprintf(temp, sizeof(temp), "%.*s",
(int)min(count, sizeof(temp) - 1), buf);
rc = kstrtoul(temp, 0, &val);
if (rc)
return rc;
mutex_lock(&device->mutex);
device->pwrctrl.bus_control = val ? true : false;
mutex_unlock(&device->mutex);
return count;
}
DEVICE_ATTR(gpuclk, 0644, kgsl_pwrctrl_gpuclk_show, kgsl_pwrctrl_gpuclk_store);
DEVICE_ATTR(max_gpuclk, 0644, kgsl_pwrctrl_max_gpuclk_show,
kgsl_pwrctrl_max_gpuclk_store);
DEVICE_ATTR(idle_timer, 0644, kgsl_pwrctrl_idle_timer_show,
kgsl_pwrctrl_idle_timer_store);
DEVICE_ATTR(gpubusy, 0444, kgsl_pwrctrl_gpubusy_show,
NULL);
DEVICE_ATTR(gputop, 0444, kgsl_pwrctrl_gputop_show,
NULL);
DEVICE_ATTR(gpu_available_frequencies, 0444,
kgsl_pwrctrl_gpu_available_frequencies_show,
NULL);
DEVICE_ATTR(max_pwrlevel, 0644,
kgsl_pwrctrl_max_pwrlevel_show,
kgsl_pwrctrl_max_pwrlevel_store);
DEVICE_ATTR(min_pwrlevel, 0644,
kgsl_pwrctrl_min_pwrlevel_show,
kgsl_pwrctrl_min_pwrlevel_store);
DEVICE_ATTR(thermal_pwrlevel, 0644,
kgsl_pwrctrl_thermal_pwrlevel_show,
kgsl_pwrctrl_thermal_pwrlevel_store);
DEVICE_ATTR(num_pwrlevels, 0444,
kgsl_pwrctrl_num_pwrlevels_show,
NULL);
DEVICE_ATTR(pmqos_latency, 0644,
kgsl_pwrctrl_pmqos_latency_show,
kgsl_pwrctrl_pmqos_latency_store);
DEVICE_ATTR(reset_count, 0444,
kgsl_pwrctrl_reset_count_show,
NULL);
DEVICE_ATTR(force_clk_on, 0644,
kgsl_pwrctrl_force_clk_on_show,
kgsl_pwrctrl_force_clk_on_store);
DEVICE_ATTR(force_bus_on, 0644,
kgsl_pwrctrl_force_bus_on_show,
kgsl_pwrctrl_force_bus_on_store);
DEVICE_ATTR(force_rail_on, 0644,
kgsl_pwrctrl_force_rail_on_show,
kgsl_pwrctrl_force_rail_on_store);
DEVICE_ATTR(bus_split, 0644,
kgsl_pwrctrl_bus_split_show,
kgsl_pwrctrl_bus_split_store);
static const struct device_attribute *pwrctrl_attr_list[] = {
&dev_attr_gpuclk,
&dev_attr_max_gpuclk,
&dev_attr_idle_timer,
&dev_attr_gpubusy,
&dev_attr_gputop,
&dev_attr_gpu_available_frequencies,
&dev_attr_max_pwrlevel,
&dev_attr_min_pwrlevel,
&dev_attr_thermal_pwrlevel,
&dev_attr_num_pwrlevels,
&dev_attr_pmqos_latency,
&dev_attr_reset_count,
&dev_attr_force_clk_on,
&dev_attr_force_bus_on,
&dev_attr_force_rail_on,
&dev_attr_bus_split,
NULL
};
int kgsl_pwrctrl_init_sysfs(struct kgsl_device *device)
{
return kgsl_create_device_sysfs_files(device->dev, pwrctrl_attr_list);
}
void kgsl_pwrctrl_uninit_sysfs(struct kgsl_device *device)
{
kgsl_remove_device_sysfs_files(device->dev, pwrctrl_attr_list);
}
static void update_statistics(struct kgsl_device *device)
{
struct kgsl_clk_stats *clkstats = &device->pwrctrl.clk_stats;
unsigned int on_time = 0;
int i;
int num_pwrlevels = device->pwrctrl.num_pwrlevels - 1;
/*PER CLK TIME*/
for (i = 0; i < num_pwrlevels; i++) {
clkstats->old_clock_time[i] = clkstats->clock_time[i];
on_time += clkstats->clock_time[i];
clkstats->clock_time[i] = 0;
}
clkstats->old_clock_time[num_pwrlevels] =
clkstats->clock_time[num_pwrlevels];
clkstats->clock_time[num_pwrlevels] = 0;
clkstats->on_time_old = on_time;
clkstats->elapsed_old = clkstats->elapsed;
clkstats->elapsed = 0;
trace_kgsl_gpubusy(device, clkstats->on_time_old,
clkstats->elapsed_old);
}
/* Track the amount of time the gpu is on vs the total system time. *
* Regularly update the percentage of busy time displayed by sysfs. */
static void kgsl_pwrctrl_busy_time(struct kgsl_device *device, bool on_time)
{
struct kgsl_clk_stats *clkstats = &device->pwrctrl.clk_stats;
update_clk_statistics(device, on_time);
/* Update the output regularly and reset the counters. */
if ((clkstats->elapsed > UPDATE_BUSY_VAL) ||
!test_bit(KGSL_PWRFLAGS_AXI_ON, &device->pwrctrl.power_flags)) {
update_statistics(device);
}
}
static void kgsl_pwrctrl_clk(struct kgsl_device *device, int state,
int requested_state)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
int i = 0;
if (test_bit(KGSL_PWRFLAGS_CLK_ON, &pwr->ctrl_flags))
return;
if (state == KGSL_PWRFLAGS_OFF) {
if (test_and_clear_bit(KGSL_PWRFLAGS_CLK_ON,
&pwr->power_flags)) {
trace_kgsl_clk(device, state);
for (i = KGSL_MAX_CLKS - 1; i > 0; i--)
if (pwr->grp_clks[i])
clk_disable(pwr->grp_clks[i]);
/* High latency clock maintenance. */
if ((pwr->pwrlevels[0].gpu_freq > 0) &&
(requested_state != KGSL_STATE_NAP)) {
for (i = KGSL_MAX_CLKS - 1; i > 0; i--)
if (pwr->grp_clks[i])
clk_unprepare(pwr->grp_clks[i]);
clk_set_rate(pwr->grp_clks[0],
pwr->pwrlevels[pwr->num_pwrlevels - 1].
gpu_freq);
}
kgsl_pwrctrl_busy_time(device, true);
} else if (requested_state == KGSL_STATE_SLEEP) {
/* High latency clock maintenance. */
for (i = KGSL_MAX_CLKS - 1; i > 0; i--)
if (pwr->grp_clks[i])
clk_unprepare(pwr->grp_clks[i]);
if ((pwr->pwrlevels[0].gpu_freq > 0))
clk_set_rate(pwr->grp_clks[0],
pwr->pwrlevels[pwr->num_pwrlevels - 1].
gpu_freq);
}
} else if (state == KGSL_PWRFLAGS_ON) {
if (!test_and_set_bit(KGSL_PWRFLAGS_CLK_ON,
&pwr->power_flags)) {
trace_kgsl_clk(device, state);
/* High latency clock maintenance. */
if (device->state != KGSL_STATE_NAP) {
if (pwr->pwrlevels[0].gpu_freq > 0)
clk_set_rate(pwr->grp_clks[0],
pwr->pwrlevels
[pwr->active_pwrlevel].
gpu_freq);
for (i = KGSL_MAX_CLKS - 1; i > 0; i--)
if (pwr->grp_clks[i])
clk_prepare(pwr->grp_clks[i]);
}
/* as last step, enable grp_clk
this is to let GPU interrupt to come */
for (i = KGSL_MAX_CLKS - 1; i > 0; i--)
if (pwr->grp_clks[i])
clk_enable(pwr->grp_clks[i]);
kgsl_pwrctrl_busy_time(device, false);
}
}
}
static void kgsl_pwrctrl_axi(struct kgsl_device *device, int state)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
if (test_bit(KGSL_PWRFLAGS_AXI_ON, &pwr->ctrl_flags))
return;
if (state == KGSL_PWRFLAGS_OFF) {
if (test_and_clear_bit(KGSL_PWRFLAGS_AXI_ON,
&pwr->power_flags)) {
trace_kgsl_bus(device, state);
if (pwr->ebi1_clk) {
clk_set_rate(pwr->ebi1_clk, 0);
clk_disable_unprepare(pwr->ebi1_clk);
}
kgsl_pwrctrl_buslevel_update(device, false);
}
} else if (state == KGSL_PWRFLAGS_ON) {
if (!test_and_set_bit(KGSL_PWRFLAGS_AXI_ON,
&pwr->power_flags)) {
trace_kgsl_bus(device, state);
if (pwr->ebi1_clk) {
clk_prepare_enable(pwr->ebi1_clk);
clk_set_rate(pwr->ebi1_clk,
pwr->pwrlevels[pwr->active_pwrlevel].
bus_freq);
}
kgsl_pwrctrl_buslevel_update(device, true);
}
}
}
static void kgsl_pwrctrl_pwrrail(struct kgsl_device *device, int state)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
if (test_bit(KGSL_PWRFLAGS_POWER_ON, &pwr->ctrl_flags))
return;
if (state == KGSL_PWRFLAGS_OFF) {
if (test_and_clear_bit(KGSL_PWRFLAGS_POWER_ON,
&pwr->power_flags)) {
trace_kgsl_rail(device, state);
if (pwr->gpu_cx)
regulator_disable(pwr->gpu_cx);
if (pwr->gpu_reg)
regulator_disable(pwr->gpu_reg);
}
} else if (state == KGSL_PWRFLAGS_ON) {
if (!test_and_set_bit(KGSL_PWRFLAGS_POWER_ON,
&pwr->power_flags)) {
trace_kgsl_rail(device, state);
if (pwr->gpu_reg) {
int status = regulator_enable(pwr->gpu_reg);
if (status)
KGSL_DRV_ERR(device,
"core regulator_enable "
"failed: %d\n",
status);
}
if (pwr->gpu_cx) {
int status = regulator_enable(pwr->gpu_cx);
if (status)
KGSL_DRV_ERR(device,
"cx regulator_enable "
"failed: %d\n",
status);
}
}
}
}
void kgsl_pwrctrl_irq(struct kgsl_device *device, int state)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
if (state == KGSL_PWRFLAGS_ON) {
if (!test_and_set_bit(KGSL_PWRFLAGS_IRQ_ON,
&pwr->power_flags)) {
trace_kgsl_irq(device, state);
enable_irq(pwr->interrupt_num);
}
} else if (state == KGSL_PWRFLAGS_OFF) {
if (test_and_clear_bit(KGSL_PWRFLAGS_IRQ_ON,
&pwr->power_flags)) {
trace_kgsl_irq(device, state);
if (in_interrupt())
disable_irq_nosync(pwr->interrupt_num);
else
disable_irq(pwr->interrupt_num);
}
}
}
EXPORT_SYMBOL(kgsl_pwrctrl_irq);
int kgsl_pwrctrl_init(struct kgsl_device *device)
{
int i, k, m, n = 0, result = 0;
struct clk *clk;
struct platform_device *pdev =
container_of(device->parentdev, struct platform_device, dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct kgsl_device_platform_data *pdata = pdev->dev.platform_data;
/*acquire clocks */
for (i = 0; i < KGSL_MAX_CLKS; i++) {
if (pdata->clk_map & clks[i].map) {
clk = clk_get(&pdev->dev, clks[i].name);
if (IS_ERR(clk))
goto clk_err;
pwr->grp_clks[i] = clk;
}
}
/* Make sure we have a source clk for freq setting */
if (pwr->grp_clks[0] == NULL)
pwr->grp_clks[0] = pwr->grp_clks[1];
/* put the AXI bus into asynchronous mode with the graphics cores */
if (pdata->set_grp_async != NULL)
pdata->set_grp_async();
if (pdata->num_levels > KGSL_MAX_PWRLEVELS ||
pdata->num_levels < 1) {
KGSL_PWR_ERR(device, "invalid power level count: %d\n",
pdata->num_levels);
result = -EINVAL;
goto done;
}
pwr->num_pwrlevels = pdata->num_levels;
/* Initialize the user and thermal clock constraints */
pwr->max_pwrlevel = 0;
pwr->min_pwrlevel = pdata->num_levels - 2;
pwr->thermal_pwrlevel = 0;
pwr->active_pwrlevel = pdata->init_level;
pwr->default_pwrlevel = pdata->init_level;
pwr->init_pwrlevel = pdata->init_level;
for (i = 0; i < pdata->num_levels; i++) {
pwr->pwrlevels[i].gpu_freq =
(pdata->pwrlevel[i].gpu_freq > 0) ?
clk_round_rate(pwr->grp_clks[0],
pdata->pwrlevel[i].
gpu_freq) : 0;
pwr->pwrlevels[i].bus_freq =
pdata->pwrlevel[i].bus_freq;
pwr->pwrlevels[i].io_fraction =
pdata->pwrlevel[i].io_fraction;
}
/* Do not set_rate for targets in sync with AXI */
if (pwr->pwrlevels[0].gpu_freq > 0)
clk_set_rate(pwr->grp_clks[0], pwr->
pwrlevels[pwr->num_pwrlevels - 1].gpu_freq);
pwr->gpu_reg = regulator_get(&pdev->dev, "vdd");
if (IS_ERR(pwr->gpu_reg))
pwr->gpu_reg = NULL;
if (pwr->gpu_reg) {
pwr->gpu_cx = regulator_get(&pdev->dev, "vddcx");
if (IS_ERR(pwr->gpu_cx))
pwr->gpu_cx = NULL;
} else
pwr->gpu_cx = NULL;
pwr->power_flags = 0;
pwr->idle_needed = pdata->idle_needed;
pwr->interval_timeout = pdata->idle_timeout;
pwr->strtstp_sleepwake = pdata->strtstp_sleepwake;
pwr->ebi1_clk = clk_get(&pdev->dev, "bus_clk");
if (IS_ERR(pwr->ebi1_clk))
pwr->ebi1_clk = NULL;
else
clk_set_rate(pwr->ebi1_clk,
pwr->pwrlevels[pwr->active_pwrlevel].
bus_freq);
/* Set the CPU latency to 501usec to allow low latency PC modes */
pwr->pm_qos_latency = 501;
pm_runtime_enable(device->parentdev);
if (pdata->bus_scale_table == NULL)
return result;
pwr->pcl = msm_bus_scale_register_client(pdata->
bus_scale_table);
if (!pwr->pcl) {
KGSL_PWR_ERR(device,
"msm_bus_scale_register_client failed: "
"id %d table %p", device->id,
pdata->bus_scale_table);
result = -EINVAL;
goto done;
}
/* Set if independent bus BW voting is supported */
pwr->bus_control = pdata->bus_control;
/*
* Pull the BW vote out of the bus table. They will be used to
* calculate the ratio between the votes.
*/
for (i = 0; i < pdata->bus_scale_table->num_usecases; i++) {
struct msm_bus_paths *usecase =
&pdata->bus_scale_table->usecase[i];
struct msm_bus_vectors *vector = &usecase->vectors[0];
if (vector->dst == MSM_BUS_SLAVE_EBI_CH0 &&
vector->ib != 0) {
for (k = 0; k < n; k++)
if (vector->ib == pwr->bus_ib[k])
break;
/* if this is a new ib value, save it */
if (k == n) {
pwr->bus_ib[k] = vector->ib;
n++;
/* find which pwrlevels use this ib */
for (m = 0; m < pwr->num_pwrlevels - 1; m++) {
if (pdata->bus_scale_table->
usecase[pwr->pwrlevels[m].
bus_freq].vectors[0].ib
== vector->ib)
pwr->bus_index[m] = k;
}
printk("kgsl bus ib [%d] = %llu\n", k, vector->ib);
}
}
}
for (m = 0; m < pwr->num_pwrlevels - 1; m++)
printk("kgsl bus index is %d for pwrlevel %d\n", pwr->bus_index[m], m);
return result;
clk_err:
result = PTR_ERR(clk);
KGSL_PWR_ERR(device, "clk_get(%s) failed: %d\n",
clks[i].name, result);
done:
return result;
}
void kgsl_pwrctrl_close(struct kgsl_device *device)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
int i;
KGSL_PWR_INFO(device, "close device %d\n", device->id);
pm_runtime_disable(device->parentdev);
clk_put(pwr->ebi1_clk);
if (pwr->pcl)
msm_bus_scale_unregister_client(pwr->pcl);
pwr->pcl = 0;
if (pwr->gpu_reg) {
regulator_put(pwr->gpu_reg);
pwr->gpu_reg = NULL;
}
if (pwr->gpu_cx) {
regulator_put(pwr->gpu_cx);
pwr->gpu_cx = NULL;
}
for (i = 1; i < KGSL_MAX_CLKS; i++)
if (pwr->grp_clks[i]) {
clk_put(pwr->grp_clks[i]);
pwr->grp_clks[i] = NULL;
}
pwr->grp_clks[0] = NULL;
pwr->power_flags = 0;
}
/**
* kgsl_idle_check() - Work function for GPU interrupts and idle timeouts.
* @device: The device
*
* This function is called for work that is queued by the interrupt
* handler or the idle timer. It attempts to transition to a clocks
* off state if the active_cnt is 0 and the hardware is idle.
*/
void kgsl_idle_check(struct work_struct *work)
{
int delay = INIT_UDELAY;
int requested_state;
struct kgsl_device *device = container_of(work, struct kgsl_device,
idle_check_ws);
WARN_ON(device == NULL);
if (device == NULL)
return;
mutex_lock(&device->mutex);
kgsl_pwrscale_update(device);
if (device->state == KGSL_STATE_ACTIVE
|| device->state == KGSL_STATE_NAP) {
/*
* If no user is explicitly trying to use the GPU
* (active_cnt is zero), then loop with increasing delay,
* waiting for the GPU to become idle.
*/
while (!atomic_read(&device->active_cnt) &&
(delay < MAX_UDELAY)) {
requested_state = device->requested_state;
if (!kgsl_pwrctrl_sleep(device))
break;
/*
* If no new commands have been issued since the
* last interrupt, stay in this loop waiting for
* the GPU to become idle.
*/
if (!device->pwrctrl.irq_last)
break;
kgsl_pwrctrl_request_state(device, requested_state);
mutex_unlock(&device->mutex);
udelay(delay);
delay *= 2;
mutex_lock(&device->mutex);
}
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
if (device->state == KGSL_STATE_ACTIVE) {
mod_timer(&device->idle_timer,
jiffies +
device->pwrctrl.interval_timeout);
/*
* If the GPU has been too busy to sleep, make sure
* that is acurately reflected in the % busy numbers.
*/
device->pwrctrl.clk_stats.no_nap_cnt++;
if (device->pwrctrl.clk_stats.no_nap_cnt >
UPDATE_BUSY) {
kgsl_pwrctrl_busy_time(device, true);
device->pwrctrl.clk_stats.no_nap_cnt = 0;
}
} else {
device->pwrctrl.irq_last = 0;
}
}
mutex_unlock(&device->mutex);
}
EXPORT_SYMBOL(kgsl_idle_check);
void kgsl_timer(unsigned long data)
{
struct kgsl_device *device = (struct kgsl_device *) data;
KGSL_PWR_INFO(device, "idle timer expired device %d\n", device->id);
if (device->requested_state != KGSL_STATE_SUSPEND) {
if (device->pwrctrl.strtstp_sleepwake)
kgsl_pwrctrl_request_state(device, KGSL_STATE_SLUMBER);
else
kgsl_pwrctrl_request_state(device, KGSL_STATE_SLEEP);
/* Have work run in a non-interrupt context. */
queue_work(device->work_queue, &device->idle_check_ws);
}
}
bool kgsl_pwrctrl_isenabled(struct kgsl_device *device)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
return (test_bit(KGSL_PWRFLAGS_CLK_ON, &pwr->power_flags) != 0);
}
/**
* kgsl_pre_hwaccess - Enforce preconditions for touching registers
* @device: The device
*
* This function ensures that the correct lock is held and that the GPU
* clock is on immediately before a register is read or written. Note
* that this function does not check active_cnt because the registers
* must be accessed during device start and stop, when the active_cnt
* may legitimately be 0.
*/
void kgsl_pre_hwaccess(struct kgsl_device *device)
{
/* In order to touch a register you must hold the device mutex...*/
BUG_ON(!mutex_is_locked(&device->mutex));
/* and have the clock on! */
BUG_ON(!kgsl_pwrctrl_isenabled(device));
}
EXPORT_SYMBOL(kgsl_pre_hwaccess);
static int
_nap(struct kgsl_device *device)
{
struct kgsl_power_stats stats;
switch (device->state) {
case KGSL_STATE_ACTIVE:
if (!device->ftbl->isidle(device)) {
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
return -EBUSY;
}
/*
* Read HW busy counters before going to NAP state.
* The data might be used by power scale governors
* independently of the HW activity. For example
* the simple-on-demand governor will get the latest
* busy_time data even if the gpu isn't active.
*/
device->ftbl->power_stats(device, &stats);
device->pwrscale.accum_stats.busy_time += stats.busy_time;
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_OFF);
kgsl_pwrctrl_clk(device, KGSL_PWRFLAGS_OFF, KGSL_STATE_NAP);
kgsl_pwrctrl_set_state(device, KGSL_STATE_NAP);
case KGSL_STATE_NAP:
case KGSL_STATE_SLEEP:
case KGSL_STATE_SLUMBER:
break;
default:
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
break;
}
return 0;
}
static void
_sleep_accounting(struct kgsl_device *device)
{
kgsl_pwrctrl_busy_time(device, false);
device->pwrctrl.clk_stats.start = ktime_set(0, 0);
kgsl_pwrscale_sleep(device);
}
static int
_sleep(struct kgsl_device *device)
{
switch (device->state) {
case KGSL_STATE_ACTIVE:
if (!device->ftbl->isidle(device)) {
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
return -EBUSY;
}
/* fall through */
case KGSL_STATE_NAP:
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_OFF);
kgsl_pwrctrl_axi(device, KGSL_PWRFLAGS_OFF);
_sleep_accounting(device);
kgsl_pwrctrl_clk(device, KGSL_PWRFLAGS_OFF, KGSL_STATE_SLEEP);
kgsl_pwrctrl_set_state(device, KGSL_STATE_SLEEP);
pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma,
PM_QOS_DEFAULT_VALUE);
break;
case KGSL_STATE_SLEEP:
case KGSL_STATE_SLUMBER:
break;
default:
KGSL_PWR_WARN(device, "unhandled state %s\n",
kgsl_pwrstate_to_str(device->state));
break;
}
return 0;
}
static int
_slumber(struct kgsl_device *device)
{
switch (device->state) {
case KGSL_STATE_ACTIVE:
if (!device->ftbl->isidle(device)) {
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
return -EBUSY;
}
/* fall through */
case KGSL_STATE_NAP:
case KGSL_STATE_SLEEP:
del_timer_sync(&device->idle_timer);
/* make sure power is on to stop the device*/
kgsl_pwrctrl_enable(device);
device->ftbl->suspend_context(device);
device->ftbl->stop(device);
_sleep_accounting(device);
kgsl_pwrctrl_set_state(device, KGSL_STATE_SLUMBER);
pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma,
PM_QOS_DEFAULT_VALUE);
break;
case KGSL_STATE_SLUMBER:
break;
default:
KGSL_PWR_WARN(device, "unhandled state %s\n",
kgsl_pwrstate_to_str(device->state));
break;
}
return 0;
}
/******************************************************************/
/* Caller must hold the device mutex. */
int kgsl_pwrctrl_sleep(struct kgsl_device *device)
{
int status = 0;
KGSL_PWR_INFO(device, "sleep device %d\n", device->id);
/* Work through the legal state transitions */
switch (device->requested_state) {
case KGSL_STATE_NAP:
status = _nap(device);
break;
case KGSL_STATE_SLEEP:
status = _sleep(device);
break;
case KGSL_STATE_SLUMBER:
status = _slumber(device);
break;
default:
KGSL_PWR_INFO(device, "bad state request 0x%x\n",
device->requested_state);
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
status = -EINVAL;
break;
}
return status;
}
EXPORT_SYMBOL(kgsl_pwrctrl_sleep);
/**
* kgsl_pwrctrl_wake() - Power up the GPU from a slumber/sleep state
* @device - Pointer to the kgsl_device struct
* @priority - Boolean flag to indicate that the GPU start should be run in the
* higher priority thread
*
* Resume the GPU from a lower power state to ACTIVE. The caller to this
* fucntion must host the kgsl_device mutex.
*/
int kgsl_pwrctrl_wake(struct kgsl_device *device, int priority)
{
int status = 0;
unsigned int context_id;
unsigned int state = device->state;
unsigned int ts_processed = 0xdeaddead;
struct kgsl_context *context;
kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE);
switch (device->state) {
case KGSL_STATE_SLUMBER:
status = device->ftbl->start(device, priority);
if (status) {
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
KGSL_DRV_ERR(device, "start failed %d\n", status);
break;
}
/* fall through */
case KGSL_STATE_SLEEP:
kgsl_pwrctrl_axi(device, KGSL_PWRFLAGS_ON);
kgsl_pwrscale_wake(device);
kgsl_sharedmem_readl(&device->memstore,
(unsigned int *) &context_id,
KGSL_MEMSTORE_OFFSET(KGSL_MEMSTORE_GLOBAL,
current_context));
context = kgsl_context_get(device, context_id);
if (context)
ts_processed = kgsl_readtimestamp(device, context,
KGSL_TIMESTAMP_RETIRED);
KGSL_PWR_INFO(device, "Wake from %s state. CTXT: %d RTRD TS: %08X\n",
kgsl_pwrstate_to_str(state),
context ? context->id : -1, ts_processed);
kgsl_context_put(context);
/* fall through */
case KGSL_STATE_NAP:
/* Turn on the core clocks */
kgsl_pwrctrl_clk(device, KGSL_PWRFLAGS_ON, KGSL_STATE_ACTIVE);
/* Enable state before turning on irq */
kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE);
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_ON);
mod_timer(&device->idle_timer, jiffies +
device->pwrctrl.interval_timeout);
pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma,
device->pwrctrl.pm_qos_latency);
case KGSL_STATE_ACTIVE:
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
break;
case KGSL_STATE_INIT:
break;
default:
KGSL_PWR_WARN(device, "unhandled state %s\n",
kgsl_pwrstate_to_str(device->state));
kgsl_pwrctrl_request_state(device, KGSL_STATE_NONE);
status = -EINVAL;
break;
}
return status;
}
EXPORT_SYMBOL(kgsl_pwrctrl_wake);
void kgsl_pwrctrl_enable(struct kgsl_device *device)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
/* Order pwrrail/clk sequence based upon platform */
kgsl_pwrctrl_pwrrail(device, KGSL_PWRFLAGS_ON);
if (pwr->constraint.type == KGSL_CONSTRAINT_NONE)
kgsl_pwrctrl_pwrlevel_change(device, pwr->active_pwrlevel);
kgsl_pwrctrl_clk(device, KGSL_PWRFLAGS_ON, KGSL_STATE_ACTIVE);
kgsl_pwrctrl_axi(device, KGSL_PWRFLAGS_ON);
}
EXPORT_SYMBOL(kgsl_pwrctrl_enable);
void kgsl_pwrctrl_disable(struct kgsl_device *device)
{
/* Order pwrrail/clk sequence based upon platform */
kgsl_pwrctrl_axi(device, KGSL_PWRFLAGS_OFF);
kgsl_pwrctrl_clk(device, KGSL_PWRFLAGS_OFF, KGSL_STATE_SLEEP);
kgsl_pwrctrl_pwrrail(device, KGSL_PWRFLAGS_OFF);
}
EXPORT_SYMBOL(kgsl_pwrctrl_disable);
void kgsl_pwrctrl_set_state(struct kgsl_device *device, unsigned int state)
{
trace_kgsl_pwr_set_state(device, state);
device->state = state;
device->requested_state = KGSL_STATE_NONE;
}
EXPORT_SYMBOL(kgsl_pwrctrl_set_state);
void kgsl_pwrctrl_request_state(struct kgsl_device *device, unsigned int state)
{
if (state != KGSL_STATE_NONE && state != device->requested_state)
trace_kgsl_pwr_request_state(device, state);
device->requested_state = state;
}
EXPORT_SYMBOL(kgsl_pwrctrl_request_state);
const char *kgsl_pwrstate_to_str(unsigned int state)
{
switch (state) {
case KGSL_STATE_NONE:
return "NONE";
case KGSL_STATE_INIT:
return "INIT";
case KGSL_STATE_ACTIVE:
return "ACTIVE";
case KGSL_STATE_NAP:
return "NAP";
case KGSL_STATE_SLEEP:
return "SLEEP";
case KGSL_STATE_SUSPEND:
return "SUSPEND";
case KGSL_STATE_SLUMBER:
return "SLUMBER";
default:
break;
}
return "UNKNOWN";
}
EXPORT_SYMBOL(kgsl_pwrstate_to_str);
/**
* kgsl_active_count_get() - Increase the device active count
* @device: Pointer to a KGSL device
*
* Increase the active count for the KGSL device and turn on
* clocks if this is the first reference. Code paths that need
* to touch the hardware or wait for the hardware to complete
* an operation must hold an active count reference until they
* are finished. An error code will be returned if waking the
* device fails. The device mutex must be held while *calling
* this function.
*/
int kgsl_active_count_get(struct kgsl_device *device)
{
int ret = 0;
BUG_ON(!mutex_is_locked(&device->mutex));
if ((atomic_read(&device->active_cnt) == 0) &&
(device->state != KGSL_STATE_ACTIVE)) {
mutex_unlock(&device->mutex);
wait_for_completion(&device->hwaccess_gate);
mutex_lock(&device->mutex);
ret = kgsl_pwrctrl_wake(device, 1);
}
if (ret == 0)
atomic_inc(&device->active_cnt);
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
return ret;
}
EXPORT_SYMBOL(kgsl_active_count_get);
/**
* kgsl_active_count_get_light() - Increase the device active count
* @device: Pointer to a KGSL device
*
* Increase the active count for the KGSL device WITHOUT
* turning on the clocks based on the assumption that the clocks are already
* on from a previous active_count_get(). Currently this is only used for
* creating kgsl_events.
*/
int kgsl_active_count_get_light(struct kgsl_device *device)
{
if (atomic_inc_not_zero(&device->active_cnt) == 0) {
dev_WARN_ONCE(device->dev, 1, "active count is 0!\n");
return -EINVAL;
}
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
return 0;
}
EXPORT_SYMBOL(kgsl_active_count_get_light);
/**
* kgsl_active_count_put() - Decrease the device active count
* @device: Pointer to a KGSL device
*
* Decrease the active count for the KGSL device and turn off
* clocks if there are no remaining references. This function will
* transition the device to NAP if there are no other pending state
* changes. It also completes the suspend gate. The device mutex must
* be held while calling this function.
*/
void kgsl_active_count_put(struct kgsl_device *device)
{
BUG_ON(!mutex_is_locked(&device->mutex));
BUG_ON(atomic_read(&device->active_cnt) == 0);
if (atomic_dec_and_test(&device->active_cnt)) {
if (device->state == KGSL_STATE_ACTIVE &&
device->requested_state == KGSL_STATE_NONE) {
kgsl_pwrctrl_request_state(device, KGSL_STATE_NAP);
queue_work(device->work_queue, &device->idle_check_ws);
}
mod_timer(&device->idle_timer,
jiffies + device->pwrctrl.interval_timeout);
} else {
kgsl_pwrscale_update(device);
}
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
wake_up(&device->active_cnt_wq);
}
EXPORT_SYMBOL(kgsl_active_count_put);
static int _check_active_count(struct kgsl_device *device, int count)
{
/* Return 0 if the active count is greater than the desired value */
return atomic_read(&device->active_cnt) > count ? 0 : 1;
}
/**
* kgsl_active_count_wait() - Wait for activity to finish.
* @device: Pointer to a KGSL device
* @count: Active count value to wait for
*
* Block until the active_cnt value hits the desired value
*/
int kgsl_active_count_wait(struct kgsl_device *device, int count)
{
int result = 0;
BUG_ON(!mutex_is_locked(&device->mutex));
if (atomic_read(&device->active_cnt) > count) {
int ret;
mutex_unlock(&device->mutex);
ret = wait_event_timeout(device->active_cnt_wq,
_check_active_count(device, count), HZ);
mutex_lock(&device->mutex);
result = ret == 0 ? -ETIMEDOUT : 0;
}
return result;
}
EXPORT_SYMBOL(kgsl_active_count_wait);