| /* |
| * processor_idle - idle state submodule to the ACPI processor driver |
| * |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> |
| * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| * - Added processor hotplug support |
| * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * - Added support for C3 on SMP |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/cpufreq.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/acpi.h> |
| #include <linux/dmi.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> /* need_resched() */ |
| #include <linux/pm_qos_params.h> |
| #include <linux/clockchips.h> |
| #include <linux/cpuidle.h> |
| #include <linux/irqflags.h> |
| |
| /* |
| * Include the apic definitions for x86 to have the APIC timer related defines |
| * available also for UP (on SMP it gets magically included via linux/smp.h). |
| * asm/acpi.h is not an option, as it would require more include magic. Also |
| * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. |
| */ |
| #ifdef CONFIG_X86 |
| #include <asm/apic.h> |
| #endif |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| |
| #include <acpi/acpi_bus.h> |
| #include <acpi/processor.h> |
| #include <asm/processor.h> |
| |
| #define ACPI_PROCESSOR_CLASS "processor" |
| #define _COMPONENT ACPI_PROCESSOR_COMPONENT |
| ACPI_MODULE_NAME("processor_idle"); |
| #define ACPI_PROCESSOR_FILE_POWER "power" |
| #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) |
| #define C2_OVERHEAD 1 /* 1us */ |
| #define C3_OVERHEAD 1 /* 1us */ |
| #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) |
| |
| static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; |
| module_param(max_cstate, uint, 0000); |
| static unsigned int nocst __read_mostly; |
| module_param(nocst, uint, 0000); |
| |
| static unsigned int latency_factor __read_mostly = 2; |
| module_param(latency_factor, uint, 0644); |
| |
| static s64 us_to_pm_timer_ticks(s64 t) |
| { |
| return div64_u64(t * PM_TIMER_FREQUENCY, 1000000); |
| } |
| /* |
| * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. |
| * For now disable this. Probably a bug somewhere else. |
| * |
| * To skip this limit, boot/load with a large max_cstate limit. |
| */ |
| static int set_max_cstate(const struct dmi_system_id *id) |
| { |
| if (max_cstate > ACPI_PROCESSOR_MAX_POWER) |
| return 0; |
| |
| printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." |
| " Override with \"processor.max_cstate=%d\"\n", id->ident, |
| (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); |
| |
| max_cstate = (long)id->driver_data; |
| |
| return 0; |
| } |
| |
| /* Actually this shouldn't be __cpuinitdata, would be better to fix the |
| callers to only run once -AK */ |
| static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { |
| { set_max_cstate, "Clevo 5600D", { |
| DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), |
| DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, |
| (void *)2}, |
| {}, |
| }; |
| |
| |
| /* |
| * Callers should disable interrupts before the call and enable |
| * interrupts after return. |
| */ |
| static void acpi_safe_halt(void) |
| { |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we |
| * test NEED_RESCHED: |
| */ |
| smp_mb(); |
| if (!need_resched()) { |
| safe_halt(); |
| local_irq_disable(); |
| } |
| current_thread_info()->status |= TS_POLLING; |
| } |
| |
| #ifdef ARCH_APICTIMER_STOPS_ON_C3 |
| |
| /* |
| * Some BIOS implementations switch to C3 in the published C2 state. |
| * This seems to be a common problem on AMD boxen, but other vendors |
| * are affected too. We pick the most conservative approach: we assume |
| * that the local APIC stops in both C2 and C3. |
| */ |
| static void acpi_timer_check_state(int state, struct acpi_processor *pr, |
| struct acpi_processor_cx *cx) |
| { |
| struct acpi_processor_power *pwr = &pr->power; |
| u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; |
| |
| if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) |
| return; |
| |
| /* |
| * Check, if one of the previous states already marked the lapic |
| * unstable |
| */ |
| if (pwr->timer_broadcast_on_state < state) |
| return; |
| |
| if (cx->type >= type) |
| pr->power.timer_broadcast_on_state = state; |
| } |
| |
| static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) |
| { |
| unsigned long reason; |
| |
| reason = pr->power.timer_broadcast_on_state < INT_MAX ? |
| CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; |
| |
| clockevents_notify(reason, &pr->id); |
| } |
| |
| /* Power(C) State timer broadcast control */ |
| static void acpi_state_timer_broadcast(struct acpi_processor *pr, |
| struct acpi_processor_cx *cx, |
| int broadcast) |
| { |
| int state = cx - pr->power.states; |
| |
| if (state >= pr->power.timer_broadcast_on_state) { |
| unsigned long reason; |
| |
| reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : |
| CLOCK_EVT_NOTIFY_BROADCAST_EXIT; |
| clockevents_notify(reason, &pr->id); |
| } |
| } |
| |
| #else |
| |
| static void acpi_timer_check_state(int state, struct acpi_processor *pr, |
| struct acpi_processor_cx *cstate) { } |
| static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { } |
| static void acpi_state_timer_broadcast(struct acpi_processor *pr, |
| struct acpi_processor_cx *cx, |
| int broadcast) |
| { |
| } |
| |
| #endif |
| |
| /* |
| * Suspend / resume control |
| */ |
| static int acpi_idle_suspend; |
| static u32 saved_bm_rld; |
| |
| static void acpi_idle_bm_rld_save(void) |
| { |
| acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); |
| } |
| static void acpi_idle_bm_rld_restore(void) |
| { |
| u32 resumed_bm_rld; |
| |
| acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); |
| |
| if (resumed_bm_rld != saved_bm_rld) |
| acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); |
| } |
| |
| int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) |
| { |
| if (acpi_idle_suspend == 1) |
| return 0; |
| |
| acpi_idle_bm_rld_save(); |
| acpi_idle_suspend = 1; |
| return 0; |
| } |
| |
| int acpi_processor_resume(struct acpi_device * device) |
| { |
| if (acpi_idle_suspend == 0) |
| return 0; |
| |
| acpi_idle_bm_rld_restore(); |
| acpi_idle_suspend = 0; |
| return 0; |
| } |
| |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) |
| static int tsc_halts_in_c(int state) |
| { |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_AMD: |
| case X86_VENDOR_INTEL: |
| /* |
| * AMD Fam10h TSC will tick in all |
| * C/P/S0/S1 states when this bit is set. |
| */ |
| if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| return 0; |
| |
| /*FALL THROUGH*/ |
| default: |
| return state > ACPI_STATE_C1; |
| } |
| } |
| #endif |
| |
| static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) |
| { |
| |
| if (!pr) |
| return -EINVAL; |
| |
| if (!pr->pblk) |
| return -ENODEV; |
| |
| /* if info is obtained from pblk/fadt, type equals state */ |
| pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; |
| pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; |
| |
| #ifndef CONFIG_HOTPLUG_CPU |
| /* |
| * Check for P_LVL2_UP flag before entering C2 and above on |
| * an SMP system. |
| */ |
| if ((num_online_cpus() > 1) && |
| !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
| return -ENODEV; |
| #endif |
| |
| /* determine C2 and C3 address from pblk */ |
| pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; |
| pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; |
| |
| /* determine latencies from FADT */ |
| pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; |
| pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "lvl2[0x%08x] lvl3[0x%08x]\n", |
| pr->power.states[ACPI_STATE_C2].address, |
| pr->power.states[ACPI_STATE_C3].address)); |
| |
| return 0; |
| } |
| |
| static int acpi_processor_get_power_info_default(struct acpi_processor *pr) |
| { |
| if (!pr->power.states[ACPI_STATE_C1].valid) { |
| /* set the first C-State to C1 */ |
| /* all processors need to support C1 */ |
| pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; |
| pr->power.states[ACPI_STATE_C1].valid = 1; |
| pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; |
| } |
| /* the C0 state only exists as a filler in our array */ |
| pr->power.states[ACPI_STATE_C0].valid = 1; |
| return 0; |
| } |
| |
| static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) |
| { |
| acpi_status status = 0; |
| acpi_integer count; |
| int current_count; |
| int i; |
| struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
| union acpi_object *cst; |
| |
| |
| if (nocst) |
| return -ENODEV; |
| |
| current_count = 0; |
| |
| status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); |
| if (ACPI_FAILURE(status)) { |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); |
| return -ENODEV; |
| } |
| |
| cst = buffer.pointer; |
| |
| /* There must be at least 2 elements */ |
| if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { |
| printk(KERN_ERR PREFIX "not enough elements in _CST\n"); |
| status = -EFAULT; |
| goto end; |
| } |
| |
| count = cst->package.elements[0].integer.value; |
| |
| /* Validate number of power states. */ |
| if (count < 1 || count != cst->package.count - 1) { |
| printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); |
| status = -EFAULT; |
| goto end; |
| } |
| |
| /* Tell driver that at least _CST is supported. */ |
| pr->flags.has_cst = 1; |
| |
| for (i = 1; i <= count; i++) { |
| union acpi_object *element; |
| union acpi_object *obj; |
| struct acpi_power_register *reg; |
| struct acpi_processor_cx cx; |
| |
| memset(&cx, 0, sizeof(cx)); |
| |
| element = &(cst->package.elements[i]); |
| if (element->type != ACPI_TYPE_PACKAGE) |
| continue; |
| |
| if (element->package.count != 4) |
| continue; |
| |
| obj = &(element->package.elements[0]); |
| |
| if (obj->type != ACPI_TYPE_BUFFER) |
| continue; |
| |
| reg = (struct acpi_power_register *)obj->buffer.pointer; |
| |
| if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && |
| (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) |
| continue; |
| |
| /* There should be an easy way to extract an integer... */ |
| obj = &(element->package.elements[1]); |
| if (obj->type != ACPI_TYPE_INTEGER) |
| continue; |
| |
| cx.type = obj->integer.value; |
| /* |
| * Some buggy BIOSes won't list C1 in _CST - |
| * Let acpi_processor_get_power_info_default() handle them later |
| */ |
| if (i == 1 && cx.type != ACPI_STATE_C1) |
| current_count++; |
| |
| cx.address = reg->address; |
| cx.index = current_count + 1; |
| |
| cx.entry_method = ACPI_CSTATE_SYSTEMIO; |
| if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { |
| if (acpi_processor_ffh_cstate_probe |
| (pr->id, &cx, reg) == 0) { |
| cx.entry_method = ACPI_CSTATE_FFH; |
| } else if (cx.type == ACPI_STATE_C1) { |
| /* |
| * C1 is a special case where FIXED_HARDWARE |
| * can be handled in non-MWAIT way as well. |
| * In that case, save this _CST entry info. |
| * Otherwise, ignore this info and continue. |
| */ |
| cx.entry_method = ACPI_CSTATE_HALT; |
| snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); |
| } else { |
| continue; |
| } |
| if (cx.type == ACPI_STATE_C1 && |
| (idle_halt || idle_nomwait)) { |
| /* |
| * In most cases the C1 space_id obtained from |
| * _CST object is FIXED_HARDWARE access mode. |
| * But when the option of idle=halt is added, |
| * the entry_method type should be changed from |
| * CSTATE_FFH to CSTATE_HALT. |
| * When the option of idle=nomwait is added, |
| * the C1 entry_method type should be |
| * CSTATE_HALT. |
| */ |
| cx.entry_method = ACPI_CSTATE_HALT; |
| snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); |
| } |
| } else { |
| snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", |
| cx.address); |
| } |
| |
| if (cx.type == ACPI_STATE_C1) { |
| cx.valid = 1; |
| } |
| |
| obj = &(element->package.elements[2]); |
| if (obj->type != ACPI_TYPE_INTEGER) |
| continue; |
| |
| cx.latency = obj->integer.value; |
| |
| obj = &(element->package.elements[3]); |
| if (obj->type != ACPI_TYPE_INTEGER) |
| continue; |
| |
| cx.power = obj->integer.value; |
| |
| current_count++; |
| memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); |
| |
| /* |
| * We support total ACPI_PROCESSOR_MAX_POWER - 1 |
| * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) |
| */ |
| if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { |
| printk(KERN_WARNING |
| "Limiting number of power states to max (%d)\n", |
| ACPI_PROCESSOR_MAX_POWER); |
| printk(KERN_WARNING |
| "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); |
| break; |
| } |
| } |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", |
| current_count)); |
| |
| /* Validate number of power states discovered */ |
| if (current_count < 2) |
| status = -EFAULT; |
| |
| end: |
| kfree(buffer.pointer); |
| |
| return status; |
| } |
| |
| static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) |
| { |
| |
| if (!cx->address) |
| return; |
| |
| /* |
| * C2 latency must be less than or equal to 100 |
| * microseconds. |
| */ |
| else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "latency too large [%d]\n", cx->latency)); |
| return; |
| } |
| |
| /* |
| * Otherwise we've met all of our C2 requirements. |
| * Normalize the C2 latency to expidite policy |
| */ |
| cx->valid = 1; |
| |
| cx->latency_ticks = cx->latency; |
| |
| return; |
| } |
| |
| static void acpi_processor_power_verify_c3(struct acpi_processor *pr, |
| struct acpi_processor_cx *cx) |
| { |
| static int bm_check_flag; |
| |
| |
| if (!cx->address) |
| return; |
| |
| /* |
| * C3 latency must be less than or equal to 1000 |
| * microseconds. |
| */ |
| else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "latency too large [%d]\n", cx->latency)); |
| return; |
| } |
| |
| /* |
| * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) |
| * DMA transfers are used by any ISA device to avoid livelock. |
| * Note that we could disable Type-F DMA (as recommended by |
| * the erratum), but this is known to disrupt certain ISA |
| * devices thus we take the conservative approach. |
| */ |
| else if (errata.piix4.fdma) { |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "C3 not supported on PIIX4 with Type-F DMA\n")); |
| return; |
| } |
| |
| /* All the logic here assumes flags.bm_check is same across all CPUs */ |
| if (!bm_check_flag) { |
| /* Determine whether bm_check is needed based on CPU */ |
| acpi_processor_power_init_bm_check(&(pr->flags), pr->id); |
| bm_check_flag = pr->flags.bm_check; |
| } else { |
| pr->flags.bm_check = bm_check_flag; |
| } |
| |
| if (pr->flags.bm_check) { |
| if (!pr->flags.bm_control) { |
| if (pr->flags.has_cst != 1) { |
| /* bus mastering control is necessary */ |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "C3 support requires BM control\n")); |
| return; |
| } else { |
| /* Here we enter C3 without bus mastering */ |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "C3 support without BM control\n")); |
| } |
| } |
| } else { |
| /* |
| * WBINVD should be set in fadt, for C3 state to be |
| * supported on when bm_check is not required. |
| */ |
| if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { |
| ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| "Cache invalidation should work properly" |
| " for C3 to be enabled on SMP systems\n")); |
| return; |
| } |
| } |
| |
| /* |
| * Otherwise we've met all of our C3 requirements. |
| * Normalize the C3 latency to expidite policy. Enable |
| * checking of bus mastering status (bm_check) so we can |
| * use this in our C3 policy |
| */ |
| cx->valid = 1; |
| |
| cx->latency_ticks = cx->latency; |
| /* |
| * On older chipsets, BM_RLD needs to be set |
| * in order for Bus Master activity to wake the |
| * system from C3. Newer chipsets handle DMA |
| * during C3 automatically and BM_RLD is a NOP. |
| * In either case, the proper way to |
| * handle BM_RLD is to set it and leave it set. |
| */ |
| acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); |
| |
| return; |
| } |
| |
| static int acpi_processor_power_verify(struct acpi_processor *pr) |
| { |
| unsigned int i; |
| unsigned int working = 0; |
| |
| pr->power.timer_broadcast_on_state = INT_MAX; |
| |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { |
| struct acpi_processor_cx *cx = &pr->power.states[i]; |
| |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) |
| /* TSC could halt in idle, so notify users */ |
| if (tsc_halts_in_c(cx->type)) |
| mark_tsc_unstable("TSC halts in idle");; |
| #endif |
| switch (cx->type) { |
| case ACPI_STATE_C1: |
| cx->valid = 1; |
| break; |
| |
| case ACPI_STATE_C2: |
| acpi_processor_power_verify_c2(cx); |
| if (cx->valid) |
| acpi_timer_check_state(i, pr, cx); |
| break; |
| |
| case ACPI_STATE_C3: |
| acpi_processor_power_verify_c3(pr, cx); |
| if (cx->valid) |
| acpi_timer_check_state(i, pr, cx); |
| break; |
| } |
| |
| if (cx->valid) |
| working++; |
| } |
| |
| acpi_propagate_timer_broadcast(pr); |
| |
| return (working); |
| } |
| |
| static int acpi_processor_get_power_info(struct acpi_processor *pr) |
| { |
| unsigned int i; |
| int result; |
| |
| |
| /* NOTE: the idle thread may not be running while calling |
| * this function */ |
| |
| /* Zero initialize all the C-states info. */ |
| memset(pr->power.states, 0, sizeof(pr->power.states)); |
| |
| result = acpi_processor_get_power_info_cst(pr); |
| if (result == -ENODEV) |
| result = acpi_processor_get_power_info_fadt(pr); |
| |
| if (result) |
| return result; |
| |
| acpi_processor_get_power_info_default(pr); |
| |
| pr->power.count = acpi_processor_power_verify(pr); |
| |
| /* |
| * if one state of type C2 or C3 is available, mark this |
| * CPU as being "idle manageable" |
| */ |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { |
| if (pr->power.states[i].valid) { |
| pr->power.count = i; |
| if (pr->power.states[i].type >= ACPI_STATE_C2) |
| pr->flags.power = 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) |
| { |
| struct acpi_processor *pr = seq->private; |
| unsigned int i; |
| |
| |
| if (!pr) |
| goto end; |
| |
| seq_printf(seq, "active state: C%zd\n" |
| "max_cstate: C%d\n" |
| "maximum allowed latency: %d usec\n", |
| pr->power.state ? pr->power.state - pr->power.states : 0, |
| max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)); |
| |
| seq_puts(seq, "states:\n"); |
| |
| for (i = 1; i <= pr->power.count; i++) { |
| seq_printf(seq, " %cC%d: ", |
| (&pr->power.states[i] == |
| pr->power.state ? '*' : ' '), i); |
| |
| if (!pr->power.states[i].valid) { |
| seq_puts(seq, "<not supported>\n"); |
| continue; |
| } |
| |
| switch (pr->power.states[i].type) { |
| case ACPI_STATE_C1: |
| seq_printf(seq, "type[C1] "); |
| break; |
| case ACPI_STATE_C2: |
| seq_printf(seq, "type[C2] "); |
| break; |
| case ACPI_STATE_C3: |
| seq_printf(seq, "type[C3] "); |
| break; |
| default: |
| seq_printf(seq, "type[--] "); |
| break; |
| } |
| |
| if (pr->power.states[i].promotion.state) |
| seq_printf(seq, "promotion[C%zd] ", |
| (pr->power.states[i].promotion.state - |
| pr->power.states)); |
| else |
| seq_puts(seq, "promotion[--] "); |
| |
| if (pr->power.states[i].demotion.state) |
| seq_printf(seq, "demotion[C%zd] ", |
| (pr->power.states[i].demotion.state - |
| pr->power.states)); |
| else |
| seq_puts(seq, "demotion[--] "); |
| |
| seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", |
| pr->power.states[i].latency, |
| pr->power.states[i].usage, |
| (unsigned long long)pr->power.states[i].time); |
| } |
| |
| end: |
| return 0; |
| } |
| |
| static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) |
| { |
| return single_open(file, acpi_processor_power_seq_show, |
| PDE(inode)->data); |
| } |
| |
| static const struct file_operations acpi_processor_power_fops = { |
| .owner = THIS_MODULE, |
| .open = acpi_processor_power_open_fs, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| |
| /** |
| * acpi_idle_bm_check - checks if bus master activity was detected |
| */ |
| static int acpi_idle_bm_check(void) |
| { |
| u32 bm_status = 0; |
| |
| acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); |
| if (bm_status) |
| acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); |
| /* |
| * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect |
| * the true state of bus mastering activity; forcing us to |
| * manually check the BMIDEA bit of each IDE channel. |
| */ |
| else if (errata.piix4.bmisx) { |
| if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) |
| || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) |
| bm_status = 1; |
| } |
| return bm_status; |
| } |
| |
| /** |
| * acpi_idle_do_entry - a helper function that does C2 and C3 type entry |
| * @cx: cstate data |
| * |
| * Caller disables interrupt before call and enables interrupt after return. |
| */ |
| static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) |
| { |
| /* Don't trace irqs off for idle */ |
| stop_critical_timings(); |
| if (cx->entry_method == ACPI_CSTATE_FFH) { |
| /* Call into architectural FFH based C-state */ |
| acpi_processor_ffh_cstate_enter(cx); |
| } else if (cx->entry_method == ACPI_CSTATE_HALT) { |
| acpi_safe_halt(); |
| } else { |
| int unused; |
| /* IO port based C-state */ |
| inb(cx->address); |
| /* Dummy wait op - must do something useless after P_LVL2 read |
| because chipsets cannot guarantee that STPCLK# signal |
| gets asserted in time to freeze execution properly. */ |
| unused = inl(acpi_gbl_FADT.xpm_timer_block.address); |
| } |
| start_critical_timings(); |
| } |
| |
| /** |
| * acpi_idle_enter_c1 - enters an ACPI C1 state-type |
| * @dev: the target CPU |
| * @state: the state data |
| * |
| * This is equivalent to the HALT instruction. |
| */ |
| static int acpi_idle_enter_c1(struct cpuidle_device *dev, |
| struct cpuidle_state *state) |
| { |
| ktime_t kt1, kt2; |
| s64 idle_time; |
| struct acpi_processor *pr; |
| struct acpi_processor_cx *cx = cpuidle_get_statedata(state); |
| |
| pr = __get_cpu_var(processors); |
| |
| if (unlikely(!pr)) |
| return 0; |
| |
| local_irq_disable(); |
| |
| /* Do not access any ACPI IO ports in suspend path */ |
| if (acpi_idle_suspend) { |
| acpi_safe_halt(); |
| local_irq_enable(); |
| return 0; |
| } |
| |
| kt1 = ktime_get_real(); |
| acpi_idle_do_entry(cx); |
| kt2 = ktime_get_real(); |
| idle_time = ktime_to_us(ktime_sub(kt2, kt1)); |
| |
| local_irq_enable(); |
| cx->usage++; |
| |
| return idle_time; |
| } |
| |
| /** |
| * acpi_idle_enter_simple - enters an ACPI state without BM handling |
| * @dev: the target CPU |
| * @state: the state data |
| */ |
| static int acpi_idle_enter_simple(struct cpuidle_device *dev, |
| struct cpuidle_state *state) |
| { |
| struct acpi_processor *pr; |
| struct acpi_processor_cx *cx = cpuidle_get_statedata(state); |
| ktime_t kt1, kt2; |
| s64 idle_time; |
| s64 sleep_ticks = 0; |
| |
| pr = __get_cpu_var(processors); |
| |
| if (unlikely(!pr)) |
| return 0; |
| |
| if (acpi_idle_suspend) |
| return(acpi_idle_enter_c1(dev, state)); |
| |
| local_irq_disable(); |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we test |
| * NEED_RESCHED: |
| */ |
| smp_mb(); |
| |
| if (unlikely(need_resched())) { |
| current_thread_info()->status |= TS_POLLING; |
| local_irq_enable(); |
| return 0; |
| } |
| |
| /* |
| * Must be done before busmaster disable as we might need to |
| * access HPET ! |
| */ |
| acpi_state_timer_broadcast(pr, cx, 1); |
| |
| if (cx->type == ACPI_STATE_C3) |
| ACPI_FLUSH_CPU_CACHE(); |
| |
| kt1 = ktime_get_real(); |
| /* Tell the scheduler that we are going deep-idle: */ |
| sched_clock_idle_sleep_event(); |
| acpi_idle_do_entry(cx); |
| kt2 = ktime_get_real(); |
| idle_time = ktime_to_us(ktime_sub(kt2, kt1)); |
| |
| sleep_ticks = us_to_pm_timer_ticks(idle_time); |
| |
| /* Tell the scheduler how much we idled: */ |
| sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); |
| |
| local_irq_enable(); |
| current_thread_info()->status |= TS_POLLING; |
| |
| cx->usage++; |
| |
| acpi_state_timer_broadcast(pr, cx, 0); |
| cx->time += sleep_ticks; |
| return idle_time; |
| } |
| |
| static int c3_cpu_count; |
| static DEFINE_SPINLOCK(c3_lock); |
| |
| /** |
| * acpi_idle_enter_bm - enters C3 with proper BM handling |
| * @dev: the target CPU |
| * @state: the state data |
| * |
| * If BM is detected, the deepest non-C3 idle state is entered instead. |
| */ |
| static int acpi_idle_enter_bm(struct cpuidle_device *dev, |
| struct cpuidle_state *state) |
| { |
| struct acpi_processor *pr; |
| struct acpi_processor_cx *cx = cpuidle_get_statedata(state); |
| ktime_t kt1, kt2; |
| s64 idle_time; |
| s64 sleep_ticks = 0; |
| |
| |
| pr = __get_cpu_var(processors); |
| |
| if (unlikely(!pr)) |
| return 0; |
| |
| if (acpi_idle_suspend) |
| return(acpi_idle_enter_c1(dev, state)); |
| |
| if (acpi_idle_bm_check()) { |
| if (dev->safe_state) { |
| dev->last_state = dev->safe_state; |
| return dev->safe_state->enter(dev, dev->safe_state); |
| } else { |
| local_irq_disable(); |
| acpi_safe_halt(); |
| local_irq_enable(); |
| return 0; |
| } |
| } |
| |
| local_irq_disable(); |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we test |
| * NEED_RESCHED: |
| */ |
| smp_mb(); |
| |
| if (unlikely(need_resched())) { |
| current_thread_info()->status |= TS_POLLING; |
| local_irq_enable(); |
| return 0; |
| } |
| |
| acpi_unlazy_tlb(smp_processor_id()); |
| |
| /* Tell the scheduler that we are going deep-idle: */ |
| sched_clock_idle_sleep_event(); |
| /* |
| * Must be done before busmaster disable as we might need to |
| * access HPET ! |
| */ |
| acpi_state_timer_broadcast(pr, cx, 1); |
| |
| kt1 = ktime_get_real(); |
| /* |
| * disable bus master |
| * bm_check implies we need ARB_DIS |
| * !bm_check implies we need cache flush |
| * bm_control implies whether we can do ARB_DIS |
| * |
| * That leaves a case where bm_check is set and bm_control is |
| * not set. In that case we cannot do much, we enter C3 |
| * without doing anything. |
| */ |
| if (pr->flags.bm_check && pr->flags.bm_control) { |
| spin_lock(&c3_lock); |
| c3_cpu_count++; |
| /* Disable bus master arbitration when all CPUs are in C3 */ |
| if (c3_cpu_count == num_online_cpus()) |
| acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); |
| spin_unlock(&c3_lock); |
| } else if (!pr->flags.bm_check) { |
| ACPI_FLUSH_CPU_CACHE(); |
| } |
| |
| acpi_idle_do_entry(cx); |
| |
| /* Re-enable bus master arbitration */ |
| if (pr->flags.bm_check && pr->flags.bm_control) { |
| spin_lock(&c3_lock); |
| acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); |
| c3_cpu_count--; |
| spin_unlock(&c3_lock); |
| } |
| kt2 = ktime_get_real(); |
| idle_time = ktime_to_us(ktime_sub(kt2, kt1)); |
| |
| sleep_ticks = us_to_pm_timer_ticks(idle_time); |
| /* Tell the scheduler how much we idled: */ |
| sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); |
| |
| local_irq_enable(); |
| current_thread_info()->status |= TS_POLLING; |
| |
| cx->usage++; |
| |
| acpi_state_timer_broadcast(pr, cx, 0); |
| cx->time += sleep_ticks; |
| return idle_time; |
| } |
| |
| struct cpuidle_driver acpi_idle_driver = { |
| .name = "acpi_idle", |
| .owner = THIS_MODULE, |
| }; |
| |
| /** |
| * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE |
| * @pr: the ACPI processor |
| */ |
| static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) |
| { |
| int i, count = CPUIDLE_DRIVER_STATE_START; |
| struct acpi_processor_cx *cx; |
| struct cpuidle_state *state; |
| struct cpuidle_device *dev = &pr->power.dev; |
| |
| if (!pr->flags.power_setup_done) |
| return -EINVAL; |
| |
| if (pr->flags.power == 0) { |
| return -EINVAL; |
| } |
| |
| dev->cpu = pr->id; |
| for (i = 0; i < CPUIDLE_STATE_MAX; i++) { |
| dev->states[i].name[0] = '\0'; |
| dev->states[i].desc[0] = '\0'; |
| } |
| |
| if (max_cstate == 0) |
| max_cstate = 1; |
| |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| cx = &pr->power.states[i]; |
| state = &dev->states[count]; |
| |
| if (!cx->valid) |
| continue; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && |
| !pr->flags.has_cst && |
| !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
| continue; |
| #endif |
| cpuidle_set_statedata(state, cx); |
| |
| snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); |
| strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); |
| state->exit_latency = cx->latency; |
| state->target_residency = cx->latency * latency_factor; |
| state->power_usage = cx->power; |
| |
| state->flags = 0; |
| switch (cx->type) { |
| case ACPI_STATE_C1: |
| state->flags |= CPUIDLE_FLAG_SHALLOW; |
| if (cx->entry_method == ACPI_CSTATE_FFH) |
| state->flags |= CPUIDLE_FLAG_TIME_VALID; |
| |
| state->enter = acpi_idle_enter_c1; |
| dev->safe_state = state; |
| break; |
| |
| case ACPI_STATE_C2: |
| state->flags |= CPUIDLE_FLAG_BALANCED; |
| state->flags |= CPUIDLE_FLAG_TIME_VALID; |
| state->enter = acpi_idle_enter_simple; |
| dev->safe_state = state; |
| break; |
| |
| case ACPI_STATE_C3: |
| state->flags |= CPUIDLE_FLAG_DEEP; |
| state->flags |= CPUIDLE_FLAG_TIME_VALID; |
| state->flags |= CPUIDLE_FLAG_CHECK_BM; |
| state->enter = pr->flags.bm_check ? |
| acpi_idle_enter_bm : |
| acpi_idle_enter_simple; |
| break; |
| } |
| |
| count++; |
| if (count == CPUIDLE_STATE_MAX) |
| break; |
| } |
| |
| dev->state_count = count; |
| |
| if (!count) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int acpi_processor_cst_has_changed(struct acpi_processor *pr) |
| { |
| int ret = 0; |
| |
| if (boot_option_idle_override) |
| return 0; |
| |
| if (!pr) |
| return -EINVAL; |
| |
| if (nocst) { |
| return -ENODEV; |
| } |
| |
| if (!pr->flags.power_setup_done) |
| return -ENODEV; |
| |
| cpuidle_pause_and_lock(); |
| cpuidle_disable_device(&pr->power.dev); |
| acpi_processor_get_power_info(pr); |
| if (pr->flags.power) { |
| acpi_processor_setup_cpuidle(pr); |
| ret = cpuidle_enable_device(&pr->power.dev); |
| } |
| cpuidle_resume_and_unlock(); |
| |
| return ret; |
| } |
| |
| int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, |
| struct acpi_device *device) |
| { |
| acpi_status status = 0; |
| static int first_run; |
| struct proc_dir_entry *entry = NULL; |
| unsigned int i; |
| |
| if (boot_option_idle_override) |
| return 0; |
| |
| if (!first_run) { |
| if (idle_halt) { |
| /* |
| * When the boot option of "idle=halt" is added, halt |
| * is used for CPU IDLE. |
| * In such case C2/C3 is meaningless. So the max_cstate |
| * is set to one. |
| */ |
| max_cstate = 1; |
| } |
| dmi_check_system(processor_power_dmi_table); |
| max_cstate = acpi_processor_cstate_check(max_cstate); |
| if (max_cstate < ACPI_C_STATES_MAX) |
| printk(KERN_NOTICE |
| "ACPI: processor limited to max C-state %d\n", |
| max_cstate); |
| first_run++; |
| } |
| |
| if (!pr) |
| return -EINVAL; |
| |
| if (acpi_gbl_FADT.cst_control && !nocst) { |
| status = |
| acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); |
| if (ACPI_FAILURE(status)) { |
| ACPI_EXCEPTION((AE_INFO, status, |
| "Notifying BIOS of _CST ability failed")); |
| } |
| } |
| |
| acpi_processor_get_power_info(pr); |
| pr->flags.power_setup_done = 1; |
| |
| /* |
| * Install the idle handler if processor power management is supported. |
| * Note that we use previously set idle handler will be used on |
| * platforms that only support C1. |
| */ |
| if (pr->flags.power) { |
| acpi_processor_setup_cpuidle(pr); |
| if (cpuidle_register_device(&pr->power.dev)) |
| return -EIO; |
| |
| printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); |
| for (i = 1; i <= pr->power.count; i++) |
| if (pr->power.states[i].valid) |
| printk(" C%d[C%d]", i, |
| pr->power.states[i].type); |
| printk(")\n"); |
| } |
| |
| /* 'power' [R] */ |
| entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, |
| S_IRUGO, acpi_device_dir(device), |
| &acpi_processor_power_fops, |
| acpi_driver_data(device)); |
| if (!entry) |
| return -EIO; |
| return 0; |
| } |
| |
| int acpi_processor_power_exit(struct acpi_processor *pr, |
| struct acpi_device *device) |
| { |
| if (boot_option_idle_override) |
| return 0; |
| |
| cpuidle_unregister_device(&pr->power.dev); |
| pr->flags.power_setup_done = 0; |
| |
| if (acpi_device_dir(device)) |
| remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, |
| acpi_device_dir(device)); |
| |
| return 0; |
| } |