| /* Driver for Datafab USB Compact Flash reader |
| * |
| * datafab driver v0.1: |
| * |
| * First release |
| * |
| * Current development and maintenance by: |
| * (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org) |
| * |
| * Many thanks to Robert Baruch for the SanDisk SmartMedia reader driver |
| * which I used as a template for this driver. |
| * |
| * Some bugfixes and scatter-gather code by Gregory P. Smith |
| * (greg-usb@electricrain.com) |
| * |
| * Fix for media change by Joerg Schneider (js@joergschneider.com) |
| * |
| * Other contributors: |
| * (c) 2002 Alan Stern <stern@rowland.org> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * This driver attempts to support USB CompactFlash reader/writer devices |
| * based on Datafab USB-to-ATA chips. It was specifically developed for the |
| * Datafab MDCFE-B USB CompactFlash reader but has since been found to work |
| * with a variety of Datafab-based devices from a number of manufacturers. |
| * I've received a report of this driver working with a Datafab-based |
| * SmartMedia device though please be aware that I'm personally unable to |
| * test SmartMedia support. |
| * |
| * This driver supports reading and writing. If you're truly paranoid, |
| * however, you can force the driver into a write-protected state by setting |
| * the WP enable bits in datafab_handle_mode_sense(). See the comments |
| * in that routine. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| |
| #include "usb.h" |
| #include "transport.h" |
| #include "protocol.h" |
| #include "debug.h" |
| #include "datafab.h" |
| |
| static int datafab_determine_lun(struct us_data *us, |
| struct datafab_info *info); |
| |
| |
| static inline int |
| datafab_bulk_read(struct us_data *us, unsigned char *data, unsigned int len) { |
| if (len == 0) |
| return USB_STOR_XFER_GOOD; |
| |
| US_DEBUGP("datafab_bulk_read: len = %d\n", len); |
| return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| data, len, NULL); |
| } |
| |
| |
| static inline int |
| datafab_bulk_write(struct us_data *us, unsigned char *data, unsigned int len) { |
| if (len == 0) |
| return USB_STOR_XFER_GOOD; |
| |
| US_DEBUGP("datafab_bulk_write: len = %d\n", len); |
| return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| data, len, NULL); |
| } |
| |
| |
| static int datafab_read_data(struct us_data *us, |
| struct datafab_info *info, |
| u32 sector, |
| u32 sectors) |
| { |
| unsigned char *command = us->iobuf; |
| unsigned char *buffer; |
| unsigned char thistime; |
| unsigned int totallen, alloclen; |
| int len, result; |
| unsigned int sg_offset = 0; |
| struct scatterlist *sg = NULL; |
| |
| // we're working in LBA mode. according to the ATA spec, |
| // we can support up to 28-bit addressing. I don't know if Datafab |
| // supports beyond 24-bit addressing. It's kind of hard to test |
| // since it requires > 8GB CF card. |
| // |
| if (sectors > 0x0FFFFFFF) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| if (info->lun == -1) { |
| result = datafab_determine_lun(us, info); |
| if (result != USB_STOR_TRANSPORT_GOOD) |
| return result; |
| } |
| |
| totallen = sectors * info->ssize; |
| |
| // Since we don't read more than 64 KB at a time, we have to create |
| // a bounce buffer and move the data a piece at a time between the |
| // bounce buffer and the actual transfer buffer. |
| |
| alloclen = min(totallen, 65536u); |
| buffer = kmalloc(alloclen, GFP_NOIO); |
| if (buffer == NULL) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| do { |
| // loop, never allocate or transfer more than 64k at once |
| // (min(128k, 255*info->ssize) is the real limit) |
| |
| len = min(totallen, alloclen); |
| thistime = (len / info->ssize) & 0xff; |
| |
| command[0] = 0; |
| command[1] = thistime; |
| command[2] = sector & 0xFF; |
| command[3] = (sector >> 8) & 0xFF; |
| command[4] = (sector >> 16) & 0xFF; |
| |
| command[5] = 0xE0 + (info->lun << 4); |
| command[5] |= (sector >> 24) & 0x0F; |
| command[6] = 0x20; |
| command[7] = 0x01; |
| |
| // send the read command |
| result = datafab_bulk_write(us, command, 8); |
| if (result != USB_STOR_XFER_GOOD) |
| goto leave; |
| |
| // read the result |
| result = datafab_bulk_read(us, buffer, len); |
| if (result != USB_STOR_XFER_GOOD) |
| goto leave; |
| |
| // Store the data in the transfer buffer |
| usb_stor_access_xfer_buf(buffer, len, us->srb, |
| &sg, &sg_offset, TO_XFER_BUF); |
| |
| sector += thistime; |
| totallen -= len; |
| } while (totallen > 0); |
| |
| kfree(buffer); |
| return USB_STOR_TRANSPORT_GOOD; |
| |
| leave: |
| kfree(buffer); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| |
| static int datafab_write_data(struct us_data *us, |
| struct datafab_info *info, |
| u32 sector, |
| u32 sectors) |
| { |
| unsigned char *command = us->iobuf; |
| unsigned char *reply = us->iobuf; |
| unsigned char *buffer; |
| unsigned char thistime; |
| unsigned int totallen, alloclen; |
| int len, result; |
| unsigned int sg_offset = 0; |
| struct scatterlist *sg = NULL; |
| |
| // we're working in LBA mode. according to the ATA spec, |
| // we can support up to 28-bit addressing. I don't know if Datafab |
| // supports beyond 24-bit addressing. It's kind of hard to test |
| // since it requires > 8GB CF card. |
| // |
| if (sectors > 0x0FFFFFFF) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| if (info->lun == -1) { |
| result = datafab_determine_lun(us, info); |
| if (result != USB_STOR_TRANSPORT_GOOD) |
| return result; |
| } |
| |
| totallen = sectors * info->ssize; |
| |
| // Since we don't write more than 64 KB at a time, we have to create |
| // a bounce buffer and move the data a piece at a time between the |
| // bounce buffer and the actual transfer buffer. |
| |
| alloclen = min(totallen, 65536u); |
| buffer = kmalloc(alloclen, GFP_NOIO); |
| if (buffer == NULL) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| do { |
| // loop, never allocate or transfer more than 64k at once |
| // (min(128k, 255*info->ssize) is the real limit) |
| |
| len = min(totallen, alloclen); |
| thistime = (len / info->ssize) & 0xff; |
| |
| // Get the data from the transfer buffer |
| usb_stor_access_xfer_buf(buffer, len, us->srb, |
| &sg, &sg_offset, FROM_XFER_BUF); |
| |
| command[0] = 0; |
| command[1] = thistime; |
| command[2] = sector & 0xFF; |
| command[3] = (sector >> 8) & 0xFF; |
| command[4] = (sector >> 16) & 0xFF; |
| |
| command[5] = 0xE0 + (info->lun << 4); |
| command[5] |= (sector >> 24) & 0x0F; |
| command[6] = 0x30; |
| command[7] = 0x02; |
| |
| // send the command |
| result = datafab_bulk_write(us, command, 8); |
| if (result != USB_STOR_XFER_GOOD) |
| goto leave; |
| |
| // send the data |
| result = datafab_bulk_write(us, buffer, len); |
| if (result != USB_STOR_XFER_GOOD) |
| goto leave; |
| |
| // read the result |
| result = datafab_bulk_read(us, reply, 2); |
| if (result != USB_STOR_XFER_GOOD) |
| goto leave; |
| |
| if (reply[0] != 0x50 && reply[1] != 0) { |
| US_DEBUGP("datafab_write_data: Gah! " |
| "write return code: %02x %02x\n", |
| reply[0], reply[1]); |
| result = USB_STOR_TRANSPORT_ERROR; |
| goto leave; |
| } |
| |
| sector += thistime; |
| totallen -= len; |
| } while (totallen > 0); |
| |
| kfree(buffer); |
| return USB_STOR_TRANSPORT_GOOD; |
| |
| leave: |
| kfree(buffer); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| |
| static int datafab_determine_lun(struct us_data *us, |
| struct datafab_info *info) |
| { |
| // Dual-slot readers can be thought of as dual-LUN devices. |
| // We need to determine which card slot is being used. |
| // We'll send an IDENTIFY DEVICE command and see which LUN responds... |
| // |
| // There might be a better way of doing this? |
| |
| static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 }; |
| unsigned char *command = us->iobuf; |
| unsigned char *buf; |
| int count = 0, rc; |
| |
| if (!us || !info) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| memcpy(command, scommand, 8); |
| buf = kmalloc(512, GFP_NOIO); |
| if (!buf) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| US_DEBUGP("datafab_determine_lun: locating...\n"); |
| |
| // we'll try 3 times before giving up... |
| // |
| while (count++ < 3) { |
| command[5] = 0xa0; |
| |
| rc = datafab_bulk_write(us, command, 8); |
| if (rc != USB_STOR_XFER_GOOD) { |
| rc = USB_STOR_TRANSPORT_ERROR; |
| goto leave; |
| } |
| |
| rc = datafab_bulk_read(us, buf, 512); |
| if (rc == USB_STOR_XFER_GOOD) { |
| info->lun = 0; |
| rc = USB_STOR_TRANSPORT_GOOD; |
| goto leave; |
| } |
| |
| command[5] = 0xb0; |
| |
| rc = datafab_bulk_write(us, command, 8); |
| if (rc != USB_STOR_XFER_GOOD) { |
| rc = USB_STOR_TRANSPORT_ERROR; |
| goto leave; |
| } |
| |
| rc = datafab_bulk_read(us, buf, 512); |
| if (rc == USB_STOR_XFER_GOOD) { |
| info->lun = 1; |
| rc = USB_STOR_TRANSPORT_GOOD; |
| goto leave; |
| } |
| |
| msleep(20); |
| } |
| |
| rc = USB_STOR_TRANSPORT_ERROR; |
| |
| leave: |
| kfree(buf); |
| return rc; |
| } |
| |
| static int datafab_id_device(struct us_data *us, |
| struct datafab_info *info) |
| { |
| // this is a variation of the ATA "IDENTIFY DEVICE" command...according |
| // to the ATA spec, 'Sector Count' isn't used but the Windows driver |
| // sets this bit so we do too... |
| // |
| static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 }; |
| unsigned char *command = us->iobuf; |
| unsigned char *reply; |
| int rc; |
| |
| if (!us || !info) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| if (info->lun == -1) { |
| rc = datafab_determine_lun(us, info); |
| if (rc != USB_STOR_TRANSPORT_GOOD) |
| return rc; |
| } |
| |
| memcpy(command, scommand, 8); |
| reply = kmalloc(512, GFP_NOIO); |
| if (!reply) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| command[5] += (info->lun << 4); |
| |
| rc = datafab_bulk_write(us, command, 8); |
| if (rc != USB_STOR_XFER_GOOD) { |
| rc = USB_STOR_TRANSPORT_ERROR; |
| goto leave; |
| } |
| |
| // we'll go ahead and extract the media capacity while we're here... |
| // |
| rc = datafab_bulk_read(us, reply, 512); |
| if (rc == USB_STOR_XFER_GOOD) { |
| // capacity is at word offset 57-58 |
| // |
| info->sectors = ((u32)(reply[117]) << 24) | |
| ((u32)(reply[116]) << 16) | |
| ((u32)(reply[115]) << 8) | |
| ((u32)(reply[114]) ); |
| rc = USB_STOR_TRANSPORT_GOOD; |
| goto leave; |
| } |
| |
| rc = USB_STOR_TRANSPORT_ERROR; |
| |
| leave: |
| kfree(reply); |
| return rc; |
| } |
| |
| |
| static int datafab_handle_mode_sense(struct us_data *us, |
| struct scsi_cmnd * srb, |
| int sense_6) |
| { |
| static unsigned char rw_err_page[12] = { |
| 0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0 |
| }; |
| static unsigned char cache_page[12] = { |
| 0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| static unsigned char rbac_page[12] = { |
| 0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| static unsigned char timer_page[8] = { |
| 0x1C, 0x6, 0, 0, 0, 0 |
| }; |
| unsigned char pc, page_code; |
| unsigned int i = 0; |
| struct datafab_info *info = (struct datafab_info *) (us->extra); |
| unsigned char *ptr = us->iobuf; |
| |
| // most of this stuff is just a hack to get things working. the |
| // datafab reader doesn't present a SCSI interface so we |
| // fudge the SCSI commands... |
| // |
| |
| pc = srb->cmnd[2] >> 6; |
| page_code = srb->cmnd[2] & 0x3F; |
| |
| switch (pc) { |
| case 0x0: |
| US_DEBUGP("datafab_handle_mode_sense: Current values\n"); |
| break; |
| case 0x1: |
| US_DEBUGP("datafab_handle_mode_sense: Changeable values\n"); |
| break; |
| case 0x2: |
| US_DEBUGP("datafab_handle_mode_sense: Default values\n"); |
| break; |
| case 0x3: |
| US_DEBUGP("datafab_handle_mode_sense: Saves values\n"); |
| break; |
| } |
| |
| memset(ptr, 0, 8); |
| if (sense_6) { |
| ptr[2] = 0x00; // WP enable: 0x80 |
| i = 4; |
| } else { |
| ptr[3] = 0x00; // WP enable: 0x80 |
| i = 8; |
| } |
| |
| switch (page_code) { |
| default: |
| // vendor-specific mode |
| info->sense_key = 0x05; |
| info->sense_asc = 0x24; |
| info->sense_ascq = 0x00; |
| return USB_STOR_TRANSPORT_FAILED; |
| |
| case 0x1: |
| memcpy(ptr + i, rw_err_page, sizeof(rw_err_page)); |
| i += sizeof(rw_err_page); |
| break; |
| |
| case 0x8: |
| memcpy(ptr + i, cache_page, sizeof(cache_page)); |
| i += sizeof(cache_page); |
| break; |
| |
| case 0x1B: |
| memcpy(ptr + i, rbac_page, sizeof(rbac_page)); |
| i += sizeof(rbac_page); |
| break; |
| |
| case 0x1C: |
| memcpy(ptr + i, timer_page, sizeof(timer_page)); |
| i += sizeof(timer_page); |
| break; |
| |
| case 0x3F: // retrieve all pages |
| memcpy(ptr + i, timer_page, sizeof(timer_page)); |
| i += sizeof(timer_page); |
| memcpy(ptr + i, rbac_page, sizeof(rbac_page)); |
| i += sizeof(rbac_page); |
| memcpy(ptr + i, cache_page, sizeof(cache_page)); |
| i += sizeof(cache_page); |
| memcpy(ptr + i, rw_err_page, sizeof(rw_err_page)); |
| i += sizeof(rw_err_page); |
| break; |
| } |
| |
| if (sense_6) |
| ptr[0] = i - 1; |
| else |
| ((__be16 *) ptr)[0] = cpu_to_be16(i - 2); |
| usb_stor_set_xfer_buf(ptr, i, srb); |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| static void datafab_info_destructor(void *extra) |
| { |
| // this routine is a placeholder... |
| // currently, we don't allocate any extra memory so we're okay |
| } |
| |
| |
| // Transport for the Datafab MDCFE-B |
| // |
| int datafab_transport(struct scsi_cmnd * srb, struct us_data *us) |
| { |
| struct datafab_info *info; |
| int rc; |
| unsigned long block, blocks; |
| unsigned char *ptr = us->iobuf; |
| static unsigned char inquiry_reply[8] = { |
| 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 |
| }; |
| |
| if (!us->extra) { |
| us->extra = kzalloc(sizeof(struct datafab_info), GFP_NOIO); |
| if (!us->extra) { |
| US_DEBUGP("datafab_transport: Gah! " |
| "Can't allocate storage for Datafab info struct!\n"); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| us->extra_destructor = datafab_info_destructor; |
| ((struct datafab_info *)us->extra)->lun = -1; |
| } |
| |
| info = (struct datafab_info *) (us->extra); |
| |
| if (srb->cmnd[0] == INQUIRY) { |
| US_DEBUGP("datafab_transport: INQUIRY. Returning bogus response"); |
| memcpy(ptr, inquiry_reply, sizeof(inquiry_reply)); |
| fill_inquiry_response(us, ptr, 36); |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == READ_CAPACITY) { |
| info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec |
| rc = datafab_id_device(us, info); |
| if (rc != USB_STOR_TRANSPORT_GOOD) |
| return rc; |
| |
| US_DEBUGP("datafab_transport: READ_CAPACITY: %ld sectors, %ld bytes per sector\n", |
| info->sectors, info->ssize); |
| |
| // build the reply |
| // we need the last sector, not the number of sectors |
| ((__be32 *) ptr)[0] = cpu_to_be32(info->sectors - 1); |
| ((__be32 *) ptr)[1] = cpu_to_be32(info->ssize); |
| usb_stor_set_xfer_buf(ptr, 8, srb); |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == MODE_SELECT_10) { |
| US_DEBUGP("datafab_transport: Gah! MODE_SELECT_10.\n"); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| // don't bother implementing READ_6 or WRITE_6. |
| // |
| if (srb->cmnd[0] == READ_10) { |
| block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | |
| ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); |
| |
| blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8])); |
| |
| US_DEBUGP("datafab_transport: READ_10: read block 0x%04lx count %ld\n", block, blocks); |
| return datafab_read_data(us, info, block, blocks); |
| } |
| |
| if (srb->cmnd[0] == READ_12) { |
| // we'll probably never see a READ_12 but we'll do it anyway... |
| // |
| block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | |
| ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); |
| |
| blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) | |
| ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9])); |
| |
| US_DEBUGP("datafab_transport: READ_12: read block 0x%04lx count %ld\n", block, blocks); |
| return datafab_read_data(us, info, block, blocks); |
| } |
| |
| if (srb->cmnd[0] == WRITE_10) { |
| block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | |
| ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); |
| |
| blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8])); |
| |
| US_DEBUGP("datafab_transport: WRITE_10: write block 0x%04lx count %ld\n", block, blocks); |
| return datafab_write_data(us, info, block, blocks); |
| } |
| |
| if (srb->cmnd[0] == WRITE_12) { |
| // we'll probably never see a WRITE_12 but we'll do it anyway... |
| // |
| block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | |
| ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); |
| |
| blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) | |
| ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9])); |
| |
| US_DEBUGP("datafab_transport: WRITE_12: write block 0x%04lx count %ld\n", block, blocks); |
| return datafab_write_data(us, info, block, blocks); |
| } |
| |
| if (srb->cmnd[0] == TEST_UNIT_READY) { |
| US_DEBUGP("datafab_transport: TEST_UNIT_READY.\n"); |
| return datafab_id_device(us, info); |
| } |
| |
| if (srb->cmnd[0] == REQUEST_SENSE) { |
| US_DEBUGP("datafab_transport: REQUEST_SENSE. Returning faked response\n"); |
| |
| // this response is pretty bogus right now. eventually if necessary |
| // we can set the correct sense data. so far though it hasn't been |
| // necessary |
| // |
| memset(ptr, 0, 18); |
| ptr[0] = 0xF0; |
| ptr[2] = info->sense_key; |
| ptr[7] = 11; |
| ptr[12] = info->sense_asc; |
| ptr[13] = info->sense_ascq; |
| usb_stor_set_xfer_buf(ptr, 18, srb); |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == MODE_SENSE) { |
| US_DEBUGP("datafab_transport: MODE_SENSE_6 detected\n"); |
| return datafab_handle_mode_sense(us, srb, 1); |
| } |
| |
| if (srb->cmnd[0] == MODE_SENSE_10) { |
| US_DEBUGP("datafab_transport: MODE_SENSE_10 detected\n"); |
| return datafab_handle_mode_sense(us, srb, 0); |
| } |
| |
| if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { |
| // sure. whatever. not like we can stop the user from |
| // popping the media out of the device (no locking doors, etc) |
| // |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == START_STOP) { |
| /* this is used by sd.c'check_scsidisk_media_change to detect |
| media change */ |
| US_DEBUGP("datafab_transport: START_STOP.\n"); |
| /* the first datafab_id_device after a media change returns |
| an error (determined experimentally) */ |
| rc = datafab_id_device(us, info); |
| if (rc == USB_STOR_TRANSPORT_GOOD) { |
| info->sense_key = NO_SENSE; |
| srb->result = SUCCESS; |
| } else { |
| info->sense_key = UNIT_ATTENTION; |
| srb->result = SAM_STAT_CHECK_CONDITION; |
| } |
| return rc; |
| } |
| |
| US_DEBUGP("datafab_transport: Gah! Unknown command: %d (0x%x)\n", |
| srb->cmnd[0], srb->cmnd[0]); |
| info->sense_key = 0x05; |
| info->sense_asc = 0x20; |
| info->sense_ascq = 0x00; |
| return USB_STOR_TRANSPORT_FAILED; |
| } |