| /******************************************************************************* |
| |
| |
| Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at your option) |
| any later version. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., 59 |
| Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| |
| The full GNU General Public License is included in this distribution in the |
| file called LICENSE. |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include "e1000.h" |
| |
| char e1000_driver_name[] = "e1000"; |
| static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
| #ifndef CONFIG_E1000_NAPI |
| #define DRIVERNAPI |
| #else |
| #define DRIVERNAPI "-NAPI" |
| #endif |
| #define DRV_VERSION "7.1.9-k4"DRIVERNAPI |
| char e1000_driver_version[] = DRV_VERSION; |
| static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
| |
| /* e1000_pci_tbl - PCI Device ID Table |
| * |
| * Last entry must be all 0s |
| * |
| * Macro expands to... |
| * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
| */ |
| static struct pci_device_id e1000_pci_tbl[] = { |
| INTEL_E1000_ETHERNET_DEVICE(0x1000), |
| INTEL_E1000_ETHERNET_DEVICE(0x1001), |
| INTEL_E1000_ETHERNET_DEVICE(0x1004), |
| INTEL_E1000_ETHERNET_DEVICE(0x1008), |
| INTEL_E1000_ETHERNET_DEVICE(0x1009), |
| INTEL_E1000_ETHERNET_DEVICE(0x100C), |
| INTEL_E1000_ETHERNET_DEVICE(0x100D), |
| INTEL_E1000_ETHERNET_DEVICE(0x100E), |
| INTEL_E1000_ETHERNET_DEVICE(0x100F), |
| INTEL_E1000_ETHERNET_DEVICE(0x1010), |
| INTEL_E1000_ETHERNET_DEVICE(0x1011), |
| INTEL_E1000_ETHERNET_DEVICE(0x1012), |
| INTEL_E1000_ETHERNET_DEVICE(0x1013), |
| INTEL_E1000_ETHERNET_DEVICE(0x1014), |
| INTEL_E1000_ETHERNET_DEVICE(0x1015), |
| INTEL_E1000_ETHERNET_DEVICE(0x1016), |
| INTEL_E1000_ETHERNET_DEVICE(0x1017), |
| INTEL_E1000_ETHERNET_DEVICE(0x1018), |
| INTEL_E1000_ETHERNET_DEVICE(0x1019), |
| INTEL_E1000_ETHERNET_DEVICE(0x101A), |
| INTEL_E1000_ETHERNET_DEVICE(0x101D), |
| INTEL_E1000_ETHERNET_DEVICE(0x101E), |
| INTEL_E1000_ETHERNET_DEVICE(0x1026), |
| INTEL_E1000_ETHERNET_DEVICE(0x1027), |
| INTEL_E1000_ETHERNET_DEVICE(0x1028), |
| INTEL_E1000_ETHERNET_DEVICE(0x1049), |
| INTEL_E1000_ETHERNET_DEVICE(0x104A), |
| INTEL_E1000_ETHERNET_DEVICE(0x104B), |
| INTEL_E1000_ETHERNET_DEVICE(0x104C), |
| INTEL_E1000_ETHERNET_DEVICE(0x104D), |
| INTEL_E1000_ETHERNET_DEVICE(0x105E), |
| INTEL_E1000_ETHERNET_DEVICE(0x105F), |
| INTEL_E1000_ETHERNET_DEVICE(0x1060), |
| INTEL_E1000_ETHERNET_DEVICE(0x1075), |
| INTEL_E1000_ETHERNET_DEVICE(0x1076), |
| INTEL_E1000_ETHERNET_DEVICE(0x1077), |
| INTEL_E1000_ETHERNET_DEVICE(0x1078), |
| INTEL_E1000_ETHERNET_DEVICE(0x1079), |
| INTEL_E1000_ETHERNET_DEVICE(0x107A), |
| INTEL_E1000_ETHERNET_DEVICE(0x107B), |
| INTEL_E1000_ETHERNET_DEVICE(0x107C), |
| INTEL_E1000_ETHERNET_DEVICE(0x107D), |
| INTEL_E1000_ETHERNET_DEVICE(0x107E), |
| INTEL_E1000_ETHERNET_DEVICE(0x107F), |
| INTEL_E1000_ETHERNET_DEVICE(0x108A), |
| INTEL_E1000_ETHERNET_DEVICE(0x108B), |
| INTEL_E1000_ETHERNET_DEVICE(0x108C), |
| INTEL_E1000_ETHERNET_DEVICE(0x1096), |
| INTEL_E1000_ETHERNET_DEVICE(0x1098), |
| INTEL_E1000_ETHERNET_DEVICE(0x1099), |
| INTEL_E1000_ETHERNET_DEVICE(0x109A), |
| INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
| INTEL_E1000_ETHERNET_DEVICE(0x10B9), |
| INTEL_E1000_ETHERNET_DEVICE(0x10BA), |
| INTEL_E1000_ETHERNET_DEVICE(0x10BB), |
| /* required last entry */ |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
| |
| static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *txdr); |
| static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rxdr); |
| static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring); |
| static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring); |
| |
| /* Local Function Prototypes */ |
| |
| static int e1000_init_module(void); |
| static void e1000_exit_module(void); |
| static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
| static void __devexit e1000_remove(struct pci_dev *pdev); |
| static int e1000_alloc_queues(struct e1000_adapter *adapter); |
| static int e1000_sw_init(struct e1000_adapter *adapter); |
| static int e1000_open(struct net_device *netdev); |
| static int e1000_close(struct net_device *netdev); |
| static void e1000_configure_tx(struct e1000_adapter *adapter); |
| static void e1000_configure_rx(struct e1000_adapter *adapter); |
| static void e1000_setup_rctl(struct e1000_adapter *adapter); |
| static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
| static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
| static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring); |
| static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring); |
| static void e1000_set_multi(struct net_device *netdev); |
| static void e1000_update_phy_info(unsigned long data); |
| static void e1000_watchdog(unsigned long data); |
| static void e1000_82547_tx_fifo_stall(unsigned long data); |
| static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
| static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
| static int e1000_set_mac(struct net_device *netdev, void *p); |
| static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs); |
| static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring); |
| #ifdef CONFIG_E1000_NAPI |
| static int e1000_clean(struct net_device *poll_dev, int *budget); |
| static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do); |
| static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do); |
| #else |
| static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring); |
| static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring); |
| #endif |
| static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count); |
| static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count); |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
| int cmd); |
| static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
| static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
| static void e1000_tx_timeout(struct net_device *dev); |
| static void e1000_reset_task(struct net_device *dev); |
| static void e1000_smartspeed(struct e1000_adapter *adapter); |
| static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
| struct sk_buff *skb); |
| |
| static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
| static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); |
| static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); |
| static void e1000_restore_vlan(struct e1000_adapter *adapter); |
| |
| static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
| #ifdef CONFIG_PM |
| static int e1000_resume(struct pci_dev *pdev); |
| #endif |
| static void e1000_shutdown(struct pci_dev *pdev); |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* for netdump / net console */ |
| static void e1000_netpoll (struct net_device *netdev); |
| #endif |
| |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state); |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
| static void e1000_io_resume(struct pci_dev *pdev); |
| |
| static struct pci_error_handlers e1000_err_handler = { |
| .error_detected = e1000_io_error_detected, |
| .slot_reset = e1000_io_slot_reset, |
| .resume = e1000_io_resume, |
| }; |
| |
| static struct pci_driver e1000_driver = { |
| .name = e1000_driver_name, |
| .id_table = e1000_pci_tbl, |
| .probe = e1000_probe, |
| .remove = __devexit_p(e1000_remove), |
| /* Power Managment Hooks */ |
| .suspend = e1000_suspend, |
| #ifdef CONFIG_PM |
| .resume = e1000_resume, |
| #endif |
| .shutdown = e1000_shutdown, |
| .err_handler = &e1000_err_handler |
| }; |
| |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
| MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| |
| /** |
| * e1000_init_module - Driver Registration Routine |
| * |
| * e1000_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| |
| static int __init |
| e1000_init_module(void) |
| { |
| int ret; |
| printk(KERN_INFO "%s - version %s\n", |
| e1000_driver_string, e1000_driver_version); |
| |
| printk(KERN_INFO "%s\n", e1000_copyright); |
| |
| ret = pci_module_init(&e1000_driver); |
| |
| return ret; |
| } |
| |
| module_init(e1000_init_module); |
| |
| /** |
| * e1000_exit_module - Driver Exit Cleanup Routine |
| * |
| * e1000_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| |
| static void __exit |
| e1000_exit_module(void) |
| { |
| pci_unregister_driver(&e1000_driver); |
| } |
| |
| module_exit(e1000_exit_module); |
| |
| static int e1000_request_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int flags, err = 0; |
| |
| flags = IRQF_SHARED; |
| #ifdef CONFIG_PCI_MSI |
| if (adapter->hw.mac_type > e1000_82547_rev_2) { |
| adapter->have_msi = TRUE; |
| if ((err = pci_enable_msi(adapter->pdev))) { |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate MSI interrupt Error: %d\n", err); |
| adapter->have_msi = FALSE; |
| } |
| } |
| if (adapter->have_msi) |
| flags &= ~IRQF_SHARED; |
| #endif |
| if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags, |
| netdev->name, netdev))) |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate interrupt Error: %d\n", err); |
| |
| return err; |
| } |
| |
| static void e1000_free_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| free_irq(adapter->pdev->irq, netdev); |
| |
| #ifdef CONFIG_PCI_MSI |
| if (adapter->have_msi) |
| pci_disable_msi(adapter->pdev); |
| #endif |
| } |
| |
| /** |
| * e1000_irq_disable - Mask off interrupt generation on the NIC |
| * @adapter: board private structure |
| **/ |
| |
| static void |
| e1000_irq_disable(struct e1000_adapter *adapter) |
| { |
| atomic_inc(&adapter->irq_sem); |
| E1000_WRITE_REG(&adapter->hw, IMC, ~0); |
| E1000_WRITE_FLUSH(&adapter->hw); |
| synchronize_irq(adapter->pdev->irq); |
| } |
| |
| /** |
| * e1000_irq_enable - Enable default interrupt generation settings |
| * @adapter: board private structure |
| **/ |
| |
| static void |
| e1000_irq_enable(struct e1000_adapter *adapter) |
| { |
| if (likely(atomic_dec_and_test(&adapter->irq_sem))) { |
| E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); |
| E1000_WRITE_FLUSH(&adapter->hw); |
| } |
| } |
| |
| static void |
| e1000_update_mng_vlan(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| uint16_t vid = adapter->hw.mng_cookie.vlan_id; |
| uint16_t old_vid = adapter->mng_vlan_id; |
| if (adapter->vlgrp) { |
| if (!adapter->vlgrp->vlan_devices[vid]) { |
| if (adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
| e1000_vlan_rx_add_vid(netdev, vid); |
| adapter->mng_vlan_id = vid; |
| } else |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| |
| if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && |
| (vid != old_vid) && |
| !adapter->vlgrp->vlan_devices[old_vid]) |
| e1000_vlan_rx_kill_vid(netdev, old_vid); |
| } else |
| adapter->mng_vlan_id = vid; |
| } |
| } |
| |
| /** |
| * e1000_release_hw_control - release control of the h/w to f/w |
| * @adapter: address of board private structure |
| * |
| * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that the |
| * driver is no longer loaded. For AMT version (only with 82573) i |
| * of the f/w this means that the netowrk i/f is closed. |
| * |
| **/ |
| |
| static void |
| e1000_release_hw_control(struct e1000_adapter *adapter) |
| { |
| uint32_t ctrl_ext; |
| uint32_t swsm; |
| uint32_t extcnf; |
| |
| /* Let firmware taken over control of h/w */ |
| switch (adapter->hw.mac_type) { |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_80003es2lan: |
| ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); |
| E1000_WRITE_REG(&adapter->hw, CTRL_EXT, |
| ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| break; |
| case e1000_82573: |
| swsm = E1000_READ_REG(&adapter->hw, SWSM); |
| E1000_WRITE_REG(&adapter->hw, SWSM, |
| swsm & ~E1000_SWSM_DRV_LOAD); |
| case e1000_ich8lan: |
| extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT); |
| E1000_WRITE_REG(&adapter->hw, CTRL_EXT, |
| extcnf & ~E1000_CTRL_EXT_DRV_LOAD); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * e1000_get_hw_control - get control of the h/w from f/w |
| * @adapter: address of board private structure |
| * |
| * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that |
| * the driver is loaded. For AMT version (only with 82573) |
| * of the f/w this means that the netowrk i/f is open. |
| * |
| **/ |
| |
| static void |
| e1000_get_hw_control(struct e1000_adapter *adapter) |
| { |
| uint32_t ctrl_ext; |
| uint32_t swsm; |
| uint32_t extcnf; |
| /* Let firmware know the driver has taken over */ |
| switch (adapter->hw.mac_type) { |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_80003es2lan: |
| ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); |
| E1000_WRITE_REG(&adapter->hw, CTRL_EXT, |
| ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| break; |
| case e1000_82573: |
| swsm = E1000_READ_REG(&adapter->hw, SWSM); |
| E1000_WRITE_REG(&adapter->hw, SWSM, |
| swsm | E1000_SWSM_DRV_LOAD); |
| break; |
| case e1000_ich8lan: |
| extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL); |
| E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL, |
| extcnf | E1000_EXTCNF_CTRL_SWFLAG); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| int |
| e1000_up(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int i; |
| |
| /* hardware has been reset, we need to reload some things */ |
| |
| e1000_set_multi(netdev); |
| |
| e1000_restore_vlan(adapter); |
| |
| e1000_configure_tx(adapter); |
| e1000_setup_rctl(adapter); |
| e1000_configure_rx(adapter); |
| /* call E1000_DESC_UNUSED which always leaves |
| * at least 1 descriptor unused to make sure |
| * next_to_use != next_to_clean */ |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
| adapter->alloc_rx_buf(adapter, ring, |
| E1000_DESC_UNUSED(ring)); |
| } |
| |
| adapter->tx_queue_len = netdev->tx_queue_len; |
| |
| mod_timer(&adapter->watchdog_timer, jiffies); |
| |
| #ifdef CONFIG_E1000_NAPI |
| netif_poll_enable(netdev); |
| #endif |
| e1000_irq_enable(adapter); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_power_up_phy - restore link in case the phy was powered down |
| * @adapter: address of board private structure |
| * |
| * The phy may be powered down to save power and turn off link when the |
| * driver is unloaded and wake on lan is not enabled (among others) |
| * *** this routine MUST be followed by a call to e1000_reset *** |
| * |
| **/ |
| |
| static void e1000_power_up_phy(struct e1000_adapter *adapter) |
| { |
| uint16_t mii_reg = 0; |
| |
| /* Just clear the power down bit to wake the phy back up */ |
| if (adapter->hw.media_type == e1000_media_type_copper) { |
| /* according to the manual, the phy will retain its |
| * settings across a power-down/up cycle */ |
| e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); |
| mii_reg &= ~MII_CR_POWER_DOWN; |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); |
| } |
| } |
| |
| static void e1000_power_down_phy(struct e1000_adapter *adapter) |
| { |
| boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && |
| e1000_check_mng_mode(&adapter->hw); |
| /* Power down the PHY so no link is implied when interface is down |
| * The PHY cannot be powered down if any of the following is TRUE |
| * (a) WoL is enabled |
| * (b) AMT is active |
| * (c) SoL/IDER session is active */ |
| if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && |
| adapter->hw.mac_type != e1000_ich8lan && |
| adapter->hw.media_type == e1000_media_type_copper && |
| !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && |
| !mng_mode_enabled && |
| !e1000_check_phy_reset_block(&adapter->hw)) { |
| uint16_t mii_reg = 0; |
| e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); |
| mii_reg |= MII_CR_POWER_DOWN; |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); |
| mdelay(1); |
| } |
| } |
| |
| void |
| e1000_down(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| e1000_irq_disable(adapter); |
| |
| del_timer_sync(&adapter->tx_fifo_stall_timer); |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| #ifdef CONFIG_E1000_NAPI |
| netif_poll_disable(netdev); |
| #endif |
| netdev->tx_queue_len = adapter->tx_queue_len; |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| netif_carrier_off(netdev); |
| netif_stop_queue(netdev); |
| |
| e1000_reset(adapter); |
| e1000_clean_all_tx_rings(adapter); |
| e1000_clean_all_rx_rings(adapter); |
| } |
| |
| void |
| e1000_reinit_locked(struct e1000_adapter *adapter) |
| { |
| WARN_ON(in_interrupt()); |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
| msleep(1); |
| e1000_down(adapter); |
| e1000_up(adapter); |
| clear_bit(__E1000_RESETTING, &adapter->flags); |
| } |
| |
| void |
| e1000_reset(struct e1000_adapter *adapter) |
| { |
| uint32_t pba, manc; |
| uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; |
| |
| /* Repartition Pba for greater than 9k mtu |
| * To take effect CTRL.RST is required. |
| */ |
| |
| switch (adapter->hw.mac_type) { |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| pba = E1000_PBA_30K; |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_80003es2lan: |
| pba = E1000_PBA_38K; |
| break; |
| case e1000_82573: |
| pba = E1000_PBA_12K; |
| break; |
| case e1000_ich8lan: |
| pba = E1000_PBA_8K; |
| break; |
| default: |
| pba = E1000_PBA_48K; |
| break; |
| } |
| |
| if ((adapter->hw.mac_type != e1000_82573) && |
| (adapter->netdev->mtu > E1000_RXBUFFER_8192)) |
| pba -= 8; /* allocate more FIFO for Tx */ |
| |
| |
| if (adapter->hw.mac_type == e1000_82547) { |
| adapter->tx_fifo_head = 0; |
| adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
| adapter->tx_fifo_size = |
| (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
| atomic_set(&adapter->tx_fifo_stall, 0); |
| } |
| |
| E1000_WRITE_REG(&adapter->hw, PBA, pba); |
| |
| /* flow control settings */ |
| /* Set the FC high water mark to 90% of the FIFO size. |
| * Required to clear last 3 LSB */ |
| fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
| /* We can't use 90% on small FIFOs because the remainder |
| * would be less than 1 full frame. In this case, we size |
| * it to allow at least a full frame above the high water |
| * mark. */ |
| if (pba < E1000_PBA_16K) |
| fc_high_water_mark = (pba * 1024) - 1600; |
| |
| adapter->hw.fc_high_water = fc_high_water_mark; |
| adapter->hw.fc_low_water = fc_high_water_mark - 8; |
| if (adapter->hw.mac_type == e1000_80003es2lan) |
| adapter->hw.fc_pause_time = 0xFFFF; |
| else |
| adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; |
| adapter->hw.fc_send_xon = 1; |
| adapter->hw.fc = adapter->hw.original_fc; |
| |
| /* Allow time for pending master requests to run */ |
| e1000_reset_hw(&adapter->hw); |
| if (adapter->hw.mac_type >= e1000_82544) |
| E1000_WRITE_REG(&adapter->hw, WUC, 0); |
| if (e1000_init_hw(&adapter->hw)) |
| DPRINTK(PROBE, ERR, "Hardware Error\n"); |
| e1000_update_mng_vlan(adapter); |
| /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); |
| |
| e1000_reset_adaptive(&adapter->hw); |
| e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
| |
| if (!adapter->smart_power_down && |
| (adapter->hw.mac_type == e1000_82571 || |
| adapter->hw.mac_type == e1000_82572)) { |
| uint16_t phy_data = 0; |
| /* speed up time to link by disabling smart power down, ignore |
| * the return value of this function because there is nothing |
| * different we would do if it failed */ |
| e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, |
| &phy_data); |
| phy_data &= ~IGP02E1000_PM_SPD; |
| e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, |
| phy_data); |
| } |
| |
| if (adapter->hw.mac_type < e1000_ich8lan) |
| /* FIXME: this code is duplicate and wrong for PCI Express */ |
| if (adapter->en_mng_pt) { |
| manc = E1000_READ_REG(&adapter->hw, MANC); |
| manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); |
| E1000_WRITE_REG(&adapter->hw, MANC, manc); |
| } |
| } |
| |
| /** |
| * e1000_probe - Device Initialization Routine |
| * @pdev: PCI device information struct |
| * @ent: entry in e1000_pci_tbl |
| * |
| * Returns 0 on success, negative on failure |
| * |
| * e1000_probe initializes an adapter identified by a pci_dev structure. |
| * The OS initialization, configuring of the adapter private structure, |
| * and a hardware reset occur. |
| **/ |
| |
| static int __devinit |
| e1000_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct e1000_adapter *adapter; |
| unsigned long mmio_start, mmio_len; |
| unsigned long flash_start, flash_len; |
| |
| static int cards_found = 0; |
| static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ |
| int i, err, pci_using_dac; |
| uint16_t eeprom_data; |
| uint16_t eeprom_apme_mask = E1000_EEPROM_APME; |
| if ((err = pci_enable_device(pdev))) |
| return err; |
| |
| if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) && |
| !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) { |
| pci_using_dac = 1; |
| } else { |
| if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) && |
| (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) { |
| E1000_ERR("No usable DMA configuration, aborting\n"); |
| return err; |
| } |
| pci_using_dac = 0; |
| } |
| |
| if ((err = pci_request_regions(pdev, e1000_driver_name))) |
| return err; |
| |
| pci_set_master(pdev); |
| |
| netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
| if (!netdev) { |
| err = -ENOMEM; |
| goto err_alloc_etherdev; |
| } |
| |
| SET_MODULE_OWNER(netdev); |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| pci_set_drvdata(pdev, netdev); |
| adapter = netdev_priv(netdev); |
| adapter->netdev = netdev; |
| adapter->pdev = pdev; |
| adapter->hw.back = adapter; |
| adapter->msg_enable = (1 << debug) - 1; |
| |
| mmio_start = pci_resource_start(pdev, BAR_0); |
| mmio_len = pci_resource_len(pdev, BAR_0); |
| |
| adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
| if (!adapter->hw.hw_addr) { |
| err = -EIO; |
| goto err_ioremap; |
| } |
| |
| for (i = BAR_1; i <= BAR_5; i++) { |
| if (pci_resource_len(pdev, i) == 0) |
| continue; |
| if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
| adapter->hw.io_base = pci_resource_start(pdev, i); |
| break; |
| } |
| } |
| |
| netdev->open = &e1000_open; |
| netdev->stop = &e1000_close; |
| netdev->hard_start_xmit = &e1000_xmit_frame; |
| netdev->get_stats = &e1000_get_stats; |
| netdev->set_multicast_list = &e1000_set_multi; |
| netdev->set_mac_address = &e1000_set_mac; |
| netdev->change_mtu = &e1000_change_mtu; |
| netdev->do_ioctl = &e1000_ioctl; |
| e1000_set_ethtool_ops(netdev); |
| netdev->tx_timeout = &e1000_tx_timeout; |
| netdev->watchdog_timeo = 5 * HZ; |
| #ifdef CONFIG_E1000_NAPI |
| netdev->poll = &e1000_clean; |
| netdev->weight = 64; |
| #endif |
| netdev->vlan_rx_register = e1000_vlan_rx_register; |
| netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; |
| netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| netdev->poll_controller = e1000_netpoll; |
| #endif |
| strcpy(netdev->name, pci_name(pdev)); |
| |
| netdev->mem_start = mmio_start; |
| netdev->mem_end = mmio_start + mmio_len; |
| netdev->base_addr = adapter->hw.io_base; |
| |
| adapter->bd_number = cards_found; |
| |
| /* setup the private structure */ |
| |
| if ((err = e1000_sw_init(adapter))) |
| goto err_sw_init; |
| |
| /* Flash BAR mapping must happen after e1000_sw_init |
| * because it depends on mac_type */ |
| if ((adapter->hw.mac_type == e1000_ich8lan) && |
| (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
| flash_start = pci_resource_start(pdev, 1); |
| flash_len = pci_resource_len(pdev, 1); |
| adapter->hw.flash_address = ioremap(flash_start, flash_len); |
| if (!adapter->hw.flash_address) { |
| err = -EIO; |
| goto err_flashmap; |
| } |
| } |
| |
| if ((err = e1000_check_phy_reset_block(&adapter->hw))) |
| DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
| |
| /* if ksp3, indicate if it's port a being setup */ |
| if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 && |
| e1000_ksp3_port_a == 0) |
| adapter->ksp3_port_a = 1; |
| e1000_ksp3_port_a++; |
| /* Reset for multiple KP3 adapters */ |
| if (e1000_ksp3_port_a == 4) |
| e1000_ksp3_port_a = 0; |
| |
| if (adapter->hw.mac_type >= e1000_82543) { |
| netdev->features = NETIF_F_SG | |
| NETIF_F_HW_CSUM | |
| NETIF_F_HW_VLAN_TX | |
| NETIF_F_HW_VLAN_RX | |
| NETIF_F_HW_VLAN_FILTER; |
| if (adapter->hw.mac_type == e1000_ich8lan) |
| netdev->features &= ~NETIF_F_HW_VLAN_FILTER; |
| } |
| |
| #ifdef NETIF_F_TSO |
| if ((adapter->hw.mac_type >= e1000_82544) && |
| (adapter->hw.mac_type != e1000_82547)) |
| netdev->features |= NETIF_F_TSO; |
| |
| #ifdef NETIF_F_TSO_IPV6 |
| if (adapter->hw.mac_type > e1000_82547_rev_2) |
| netdev->features |= NETIF_F_TSO_IPV6; |
| #endif |
| #endif |
| if (pci_using_dac) |
| netdev->features |= NETIF_F_HIGHDMA; |
| |
| netdev->features |= NETIF_F_LLTX; |
| |
| adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); |
| |
| /* initialize eeprom parameters */ |
| |
| if (e1000_init_eeprom_params(&adapter->hw)) { |
| E1000_ERR("EEPROM initialization failed\n"); |
| return -EIO; |
| } |
| |
| /* before reading the EEPROM, reset the controller to |
| * put the device in a known good starting state */ |
| |
| e1000_reset_hw(&adapter->hw); |
| |
| /* make sure the EEPROM is good */ |
| |
| if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) { |
| DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| /* copy the MAC address out of the EEPROM */ |
| |
| if (e1000_read_mac_addr(&adapter->hw)) |
| DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); |
| memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); |
| memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); |
| |
| if (!is_valid_ether_addr(netdev->perm_addr)) { |
| DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| e1000_read_part_num(&adapter->hw, &(adapter->part_num)); |
| |
| e1000_get_bus_info(&adapter->hw); |
| |
| init_timer(&adapter->tx_fifo_stall_timer); |
| adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
| adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; |
| |
| init_timer(&adapter->watchdog_timer); |
| adapter->watchdog_timer.function = &e1000_watchdog; |
| adapter->watchdog_timer.data = (unsigned long) adapter; |
| |
| init_timer(&adapter->phy_info_timer); |
| adapter->phy_info_timer.function = &e1000_update_phy_info; |
| adapter->phy_info_timer.data = (unsigned long) adapter; |
| |
| INIT_WORK(&adapter->reset_task, |
| (void (*)(void *))e1000_reset_task, netdev); |
| |
| /* we're going to reset, so assume we have no link for now */ |
| |
| netif_carrier_off(netdev); |
| netif_stop_queue(netdev); |
| |
| e1000_check_options(adapter); |
| |
| /* Initial Wake on LAN setting |
| * If APM wake is enabled in the EEPROM, |
| * enable the ACPI Magic Packet filter |
| */ |
| |
| switch (adapter->hw.mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| break; |
| case e1000_82544: |
| e1000_read_eeprom(&adapter->hw, |
| EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
| eeprom_apme_mask = E1000_EEPROM_82544_APM; |
| break; |
| case e1000_ich8lan: |
| e1000_read_eeprom(&adapter->hw, |
| EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); |
| eeprom_apme_mask = E1000_EEPROM_ICH8_APME; |
| break; |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| case e1000_82571: |
| case e1000_80003es2lan: |
| if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){ |
| e1000_read_eeprom(&adapter->hw, |
| EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
| break; |
| } |
| /* Fall Through */ |
| default: |
| e1000_read_eeprom(&adapter->hw, |
| EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
| break; |
| } |
| if (eeprom_data & eeprom_apme_mask) |
| adapter->wol |= E1000_WUFC_MAG; |
| |
| /* print bus type/speed/width info */ |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", |
| ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : |
| (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), |
| ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : |
| (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : |
| (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : |
| (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : |
| (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), |
| ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : |
| (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : |
| (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : |
| "32-bit")); |
| } |
| |
| for (i = 0; i < 6; i++) |
| printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':'); |
| |
| /* reset the hardware with the new settings */ |
| e1000_reset(adapter); |
| |
| /* If the controller is 82573 and f/w is AMT, do not set |
| * DRV_LOAD until the interface is up. For all other cases, |
| * let the f/w know that the h/w is now under the control |
| * of the driver. */ |
| if (adapter->hw.mac_type != e1000_82573 || |
| !e1000_check_mng_mode(&adapter->hw)) |
| e1000_get_hw_control(adapter); |
| |
| strcpy(netdev->name, "eth%d"); |
| if ((err = register_netdev(netdev))) |
| goto err_register; |
| |
| DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); |
| |
| cards_found++; |
| return 0; |
| |
| err_register: |
| if (adapter->hw.flash_address) |
| iounmap(adapter->hw.flash_address); |
| err_flashmap: |
| err_sw_init: |
| err_eeprom: |
| iounmap(adapter->hw.hw_addr); |
| err_ioremap: |
| free_netdev(netdev); |
| err_alloc_etherdev: |
| pci_release_regions(pdev); |
| return err; |
| } |
| |
| /** |
| * e1000_remove - Device Removal Routine |
| * @pdev: PCI device information struct |
| * |
| * e1000_remove is called by the PCI subsystem to alert the driver |
| * that it should release a PCI device. The could be caused by a |
| * Hot-Plug event, or because the driver is going to be removed from |
| * memory. |
| **/ |
| |
| static void __devexit |
| e1000_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| uint32_t manc; |
| #ifdef CONFIG_E1000_NAPI |
| int i; |
| #endif |
| |
| flush_scheduled_work(); |
| |
| if (adapter->hw.mac_type >= e1000_82540 && |
| adapter->hw.mac_type != e1000_ich8lan && |
| adapter->hw.media_type == e1000_media_type_copper) { |
| manc = E1000_READ_REG(&adapter->hw, MANC); |
| if (manc & E1000_MANC_SMBUS_EN) { |
| manc |= E1000_MANC_ARP_EN; |
| E1000_WRITE_REG(&adapter->hw, MANC, manc); |
| } |
| } |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. */ |
| e1000_release_hw_control(adapter); |
| |
| unregister_netdev(netdev); |
| #ifdef CONFIG_E1000_NAPI |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| dev_put(&adapter->polling_netdev[i]); |
| #endif |
| |
| if (!e1000_check_phy_reset_block(&adapter->hw)) |
| e1000_phy_hw_reset(&adapter->hw); |
| |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| #ifdef CONFIG_E1000_NAPI |
| kfree(adapter->polling_netdev); |
| #endif |
| |
| iounmap(adapter->hw.hw_addr); |
| if (adapter->hw.flash_address) |
| iounmap(adapter->hw.flash_address); |
| pci_release_regions(pdev); |
| |
| free_netdev(netdev); |
| |
| pci_disable_device(pdev); |
| } |
| |
| /** |
| * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| * @adapter: board private structure to initialize |
| * |
| * e1000_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| |
| static int __devinit |
| e1000_sw_init(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| #ifdef CONFIG_E1000_NAPI |
| int i; |
| #endif |
| |
| /* PCI config space info */ |
| |
| hw->vendor_id = pdev->vendor; |
| hw->device_id = pdev->device; |
| hw->subsystem_vendor_id = pdev->subsystem_vendor; |
| hw->subsystem_id = pdev->subsystem_device; |
| |
| pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| |
| adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; |
| hw->max_frame_size = netdev->mtu + |
| ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
| hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
| |
| /* identify the MAC */ |
| |
| if (e1000_set_mac_type(hw)) { |
| DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); |
| return -EIO; |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| hw->phy_init_script = 1; |
| break; |
| } |
| |
| e1000_set_media_type(hw); |
| |
| hw->wait_autoneg_complete = FALSE; |
| hw->tbi_compatibility_en = TRUE; |
| hw->adaptive_ifs = TRUE; |
| |
| /* Copper options */ |
| |
| if (hw->media_type == e1000_media_type_copper) { |
| hw->mdix = AUTO_ALL_MODES; |
| hw->disable_polarity_correction = FALSE; |
| hw->master_slave = E1000_MASTER_SLAVE; |
| } |
| |
| adapter->num_tx_queues = 1; |
| adapter->num_rx_queues = 1; |
| |
| if (e1000_alloc_queues(adapter)) { |
| DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_E1000_NAPI |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| adapter->polling_netdev[i].priv = adapter; |
| adapter->polling_netdev[i].poll = &e1000_clean; |
| adapter->polling_netdev[i].weight = 64; |
| dev_hold(&adapter->polling_netdev[i]); |
| set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); |
| } |
| spin_lock_init(&adapter->tx_queue_lock); |
| #endif |
| |
| atomic_set(&adapter->irq_sem, 1); |
| spin_lock_init(&adapter->stats_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_alloc_queues - Allocate memory for all rings |
| * @adapter: board private structure to initialize |
| * |
| * We allocate one ring per queue at run-time since we don't know the |
| * number of queues at compile-time. The polling_netdev array is |
| * intended for Multiqueue, but should work fine with a single queue. |
| **/ |
| |
| static int __devinit |
| e1000_alloc_queues(struct e1000_adapter *adapter) |
| { |
| int size; |
| |
| size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; |
| adapter->tx_ring = kmalloc(size, GFP_KERNEL); |
| if (!adapter->tx_ring) |
| return -ENOMEM; |
| memset(adapter->tx_ring, 0, size); |
| |
| size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; |
| adapter->rx_ring = kmalloc(size, GFP_KERNEL); |
| if (!adapter->rx_ring) { |
| kfree(adapter->tx_ring); |
| return -ENOMEM; |
| } |
| memset(adapter->rx_ring, 0, size); |
| |
| #ifdef CONFIG_E1000_NAPI |
| size = sizeof(struct net_device) * adapter->num_rx_queues; |
| adapter->polling_netdev = kmalloc(size, GFP_KERNEL); |
| if (!adapter->polling_netdev) { |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| return -ENOMEM; |
| } |
| memset(adapter->polling_netdev, 0, size); |
| #endif |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_open - Called when a network interface is made active |
| * @netdev: network interface device structure |
| * |
| * Returns 0 on success, negative value on failure |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS, the watchdog timer is started, |
| * and the stack is notified that the interface is ready. |
| **/ |
| |
| static int |
| e1000_open(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int err; |
| |
| /* disallow open during test */ |
| if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags)) |
| return -EBUSY; |
| |
| /* allocate transmit descriptors */ |
| |
| if ((err = e1000_setup_all_tx_resources(adapter))) |
| goto err_setup_tx; |
| |
| /* allocate receive descriptors */ |
| |
| if ((err = e1000_setup_all_rx_resources(adapter))) |
| goto err_setup_rx; |
| |
| err = e1000_request_irq(adapter); |
| if (err) |
| goto err_up; |
| |
| e1000_power_up_phy(adapter); |
| |
| if ((err = e1000_up(adapter))) |
| goto err_up; |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
| e1000_update_mng_vlan(adapter); |
| } |
| |
| /* If AMT is enabled, let the firmware know that the network |
| * interface is now open */ |
| if (adapter->hw.mac_type == e1000_82573 && |
| e1000_check_mng_mode(&adapter->hw)) |
| e1000_get_hw_control(adapter); |
| |
| return E1000_SUCCESS; |
| |
| err_up: |
| e1000_free_all_rx_resources(adapter); |
| err_setup_rx: |
| e1000_free_all_tx_resources(adapter); |
| err_setup_tx: |
| e1000_reset(adapter); |
| |
| return err; |
| } |
| |
| /** |
| * e1000_close - Disables a network interface |
| * @netdev: network interface device structure |
| * |
| * Returns 0, this is not allowed to fail |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the drivers control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| **/ |
| |
| static int |
| e1000_close(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
| e1000_down(adapter); |
| e1000_power_down_phy(adapter); |
| e1000_free_irq(adapter); |
| |
| e1000_free_all_tx_resources(adapter); |
| e1000_free_all_rx_resources(adapter); |
| |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
| e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| } |
| |
| /* If AMT is enabled, let the firmware know that the network |
| * interface is now closed */ |
| if (adapter->hw.mac_type == e1000_82573 && |
| e1000_check_mng_mode(&adapter->hw)) |
| e1000_release_hw_control(adapter); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
| * @adapter: address of board private structure |
| * @start: address of beginning of memory |
| * @len: length of memory |
| **/ |
| static boolean_t |
| e1000_check_64k_bound(struct e1000_adapter *adapter, |
| void *start, unsigned long len) |
| { |
| unsigned long begin = (unsigned long) start; |
| unsigned long end = begin + len; |
| |
| /* First rev 82545 and 82546 need to not allow any memory |
| * write location to cross 64k boundary due to errata 23 */ |
| if (adapter->hw.mac_type == e1000_82545 || |
| adapter->hw.mac_type == e1000_82546) { |
| return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; |
| } |
| |
| return TRUE; |
| } |
| |
| /** |
| * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @adapter: board private structure |
| * @txdr: tx descriptor ring (for a specific queue) to setup |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| |
| static int |
| e1000_setup_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *txdr) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int size; |
| |
| size = sizeof(struct e1000_buffer) * txdr->count; |
| txdr->buffer_info = vmalloc(size); |
| if (!txdr->buffer_info) { |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory for the transmit descriptor ring\n"); |
| return -ENOMEM; |
| } |
| memset(txdr->buffer_info, 0, size); |
| |
| /* round up to nearest 4K */ |
| |
| txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
| E1000_ROUNDUP(txdr->size, 4096); |
| |
| txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
| if (!txdr->desc) { |
| setup_tx_desc_die: |
| vfree(txdr->buffer_info); |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory for the transmit descriptor ring\n"); |
| return -ENOMEM; |
| } |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
| void *olddesc = txdr->desc; |
| dma_addr_t olddma = txdr->dma; |
| DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " |
| "at %p\n", txdr->size, txdr->desc); |
| /* Try again, without freeing the previous */ |
| txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
| /* Failed allocation, critical failure */ |
| if (!txdr->desc) { |
| pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
| goto setup_tx_desc_die; |
| } |
| |
| if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
| /* give up */ |
| pci_free_consistent(pdev, txdr->size, txdr->desc, |
| txdr->dma); |
| pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate aligned memory " |
| "for the transmit descriptor ring\n"); |
| vfree(txdr->buffer_info); |
| return -ENOMEM; |
| } else { |
| /* Free old allocation, new allocation was successful */ |
| pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
| } |
| } |
| memset(txdr->desc, 0, txdr->size); |
| |
| txdr->next_to_use = 0; |
| txdr->next_to_clean = 0; |
| spin_lock_init(&txdr->tx_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * If this function returns with an error, then it's possible one or |
| * more of the rings is populated (while the rest are not). It is the |
| * callers duty to clean those orphaned rings. |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| |
| int |
| e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
| if (err) { |
| DPRINTK(PROBE, ERR, |
| "Allocation for Tx Queue %u failed\n", i); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| |
| static void |
| e1000_configure_tx(struct e1000_adapter *adapter) |
| { |
| uint64_t tdba; |
| struct e1000_hw *hw = &adapter->hw; |
| uint32_t tdlen, tctl, tipg, tarc; |
| uint32_t ipgr1, ipgr2; |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| |
| switch (adapter->num_tx_queues) { |
| case 1: |
| default: |
| tdba = adapter->tx_ring[0].dma; |
| tdlen = adapter->tx_ring[0].count * |
| sizeof(struct e1000_tx_desc); |
| E1000_WRITE_REG(hw, TDLEN, tdlen); |
| E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); |
| E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); |
| E1000_WRITE_REG(hw, TDT, 0); |
| E1000_WRITE_REG(hw, TDH, 0); |
| adapter->tx_ring[0].tdh = E1000_TDH; |
| adapter->tx_ring[0].tdt = E1000_TDT; |
| break; |
| } |
| |
| /* Set the default values for the Tx Inter Packet Gap timer */ |
| |
| if (hw->media_type == e1000_media_type_fiber || |
| hw->media_type == e1000_media_type_internal_serdes) |
| tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| else |
| tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| tipg = DEFAULT_82542_TIPG_IPGT; |
| ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
| ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
| break; |
| case e1000_80003es2lan: |
| ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
| break; |
| default: |
| ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
| break; |
| } |
| tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
| tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| |
| /* Set the Tx Interrupt Delay register */ |
| |
| E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); |
| if (hw->mac_type >= e1000_82540) |
| E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); |
| |
| /* Program the Transmit Control Register */ |
| |
| tctl = E1000_READ_REG(hw, TCTL); |
| |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| #ifdef DISABLE_MULR |
| /* disable Multiple Reads for debugging */ |
| tctl &= ~E1000_TCTL_MULR; |
| #endif |
| |
| if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
| tarc = E1000_READ_REG(hw, TARC0); |
| tarc |= ((1 << 25) | (1 << 21)); |
| E1000_WRITE_REG(hw, TARC0, tarc); |
| tarc = E1000_READ_REG(hw, TARC1); |
| tarc |= (1 << 25); |
| if (tctl & E1000_TCTL_MULR) |
| tarc &= ~(1 << 28); |
| else |
| tarc |= (1 << 28); |
| E1000_WRITE_REG(hw, TARC1, tarc); |
| } else if (hw->mac_type == e1000_80003es2lan) { |
| tarc = E1000_READ_REG(hw, TARC0); |
| tarc |= 1; |
| if (hw->media_type == e1000_media_type_internal_serdes) |
| tarc |= (1 << 20); |
| E1000_WRITE_REG(hw, TARC0, tarc); |
| tarc = E1000_READ_REG(hw, TARC1); |
| tarc |= 1; |
| E1000_WRITE_REG(hw, TARC1, tarc); |
| } |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Setup Transmit Descriptor Settings for eop descriptor */ |
| adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP | |
| E1000_TXD_CMD_IFCS; |
| |
| if (hw->mac_type < e1000_82543) |
| adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
| else |
| adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| |
| /* Cache if we're 82544 running in PCI-X because we'll |
| * need this to apply a workaround later in the send path. */ |
| if (hw->mac_type == e1000_82544 && |
| hw->bus_type == e1000_bus_type_pcix) |
| adapter->pcix_82544 = 1; |
| |
| E1000_WRITE_REG(hw, TCTL, tctl); |
| |
| } |
| |
| /** |
| * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @adapter: board private structure |
| * @rxdr: rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| |
| static int |
| e1000_setup_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rxdr) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int size, desc_len; |
| |
| size = sizeof(struct e1000_buffer) * rxdr->count; |
| rxdr->buffer_info = vmalloc(size); |
| if (!rxdr->buffer_info) { |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory for the receive descriptor ring\n"); |
| return -ENOMEM; |
| } |
| memset(rxdr->buffer_info, 0, size); |
| |
| size = sizeof(struct e1000_ps_page) * rxdr->count; |
| rxdr->ps_page = kmalloc(size, GFP_KERNEL); |
| if (!rxdr->ps_page) { |
| vfree(rxdr->buffer_info); |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory for the receive descriptor ring\n"); |
| return -ENOMEM; |
| } |
| memset(rxdr->ps_page, 0, size); |
| |
| size = sizeof(struct e1000_ps_page_dma) * rxdr->count; |
| rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); |
| if (!rxdr->ps_page_dma) { |
| vfree(rxdr->buffer_info); |
| kfree(rxdr->ps_page); |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory for the receive descriptor ring\n"); |
| return -ENOMEM; |
| } |
| memset(rxdr->ps_page_dma, 0, size); |
| |
| if (adapter->hw.mac_type <= e1000_82547_rev_2) |
| desc_len = sizeof(struct e1000_rx_desc); |
| else |
| desc_len = sizeof(union e1000_rx_desc_packet_split); |
| |
| /* Round up to nearest 4K */ |
| |
| rxdr->size = rxdr->count * desc_len; |
| E1000_ROUNDUP(rxdr->size, 4096); |
| |
| rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
| |
| if (!rxdr->desc) { |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory for the receive descriptor ring\n"); |
| setup_rx_desc_die: |
| vfree(rxdr->buffer_info); |
| kfree(rxdr->ps_page); |
| kfree(rxdr->ps_page_dma); |
| return -ENOMEM; |
| } |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
| void *olddesc = rxdr->desc; |
| dma_addr_t olddma = rxdr->dma; |
| DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " |
| "at %p\n", rxdr->size, rxdr->desc); |
| /* Try again, without freeing the previous */ |
| rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
| /* Failed allocation, critical failure */ |
| if (!rxdr->desc) { |
| pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate memory " |
| "for the receive descriptor ring\n"); |
| goto setup_rx_desc_die; |
| } |
| |
| if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
| /* give up */ |
| pci_free_consistent(pdev, rxdr->size, rxdr->desc, |
| rxdr->dma); |
| pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
| DPRINTK(PROBE, ERR, |
| "Unable to allocate aligned memory " |
| "for the receive descriptor ring\n"); |
| goto setup_rx_desc_die; |
| } else { |
| /* Free old allocation, new allocation was successful */ |
| pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
| } |
| } |
| memset(rxdr->desc, 0, rxdr->size); |
| |
| rxdr->next_to_clean = 0; |
| rxdr->next_to_use = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * If this function returns with an error, then it's possible one or |
| * more of the rings is populated (while the rest are not). It is the |
| * callers duty to clean those orphaned rings. |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| |
| int |
| e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
| if (err) { |
| DPRINTK(PROBE, ERR, |
| "Allocation for Rx Queue %u failed\n", i); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * e1000_setup_rctl - configure the receive control registers |
| * @adapter: Board private structure |
| **/ |
| #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
| (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
| static void |
| e1000_setup_rctl(struct e1000_adapter *adapter) |
| { |
| uint32_t rctl, rfctl; |
| uint32_t psrctl = 0; |
| #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT |
| uint32_t pages = 0; |
| #endif |
| |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
| E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| |
| if (adapter->hw.tbi_compatibility_on == 1) |
| rctl |= E1000_RCTL_SBP; |
| else |
| rctl &= ~E1000_RCTL_SBP; |
| |
| if (adapter->netdev->mtu <= ETH_DATA_LEN) |
| rctl &= ~E1000_RCTL_LPE; |
| else |
| rctl |= E1000_RCTL_LPE; |
| |
| /* Setup buffer sizes */ |
| rctl &= ~E1000_RCTL_SZ_4096; |
| rctl |= E1000_RCTL_BSEX; |
| switch (adapter->rx_buffer_len) { |
| case E1000_RXBUFFER_256: |
| rctl |= E1000_RCTL_SZ_256; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case E1000_RXBUFFER_512: |
| rctl |= E1000_RCTL_SZ_512; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case E1000_RXBUFFER_1024: |
| rctl |= E1000_RCTL_SZ_1024; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case E1000_RXBUFFER_2048: |
| default: |
| rctl |= E1000_RCTL_SZ_2048; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case E1000_RXBUFFER_4096: |
| rctl |= E1000_RCTL_SZ_4096; |
| break; |
| case E1000_RXBUFFER_8192: |
| rctl |= E1000_RCTL_SZ_8192; |
| break; |
| case E1000_RXBUFFER_16384: |
| rctl |= E1000_RCTL_SZ_16384; |
| break; |
| } |
| |
| #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT |
| /* 82571 and greater support packet-split where the protocol |
| * header is placed in skb->data and the packet data is |
| * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
| * In the case of a non-split, skb->data is linearly filled, |
| * followed by the page buffers. Therefore, skb->data is |
| * sized to hold the largest protocol header. |
| */ |
| pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
| if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) && |
| PAGE_SIZE <= 16384) |
| adapter->rx_ps_pages = pages; |
| else |
| adapter->rx_ps_pages = 0; |
| #endif |
| if (adapter->rx_ps_pages) { |
| /* Configure extra packet-split registers */ |
| rfctl = E1000_READ_REG(&adapter->hw, RFCTL); |
| rfctl |= E1000_RFCTL_EXTEN; |
| /* disable IPv6 packet split support */ |
| rfctl |= E1000_RFCTL_IPV6_DIS; |
| E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); |
| |
| rctl |= E1000_RCTL_DTYP_PS; |
| |
| psrctl |= adapter->rx_ps_bsize0 >> |
| E1000_PSRCTL_BSIZE0_SHIFT; |
| |
| switch (adapter->rx_ps_pages) { |
| case 3: |
| psrctl |= PAGE_SIZE << |
| E1000_PSRCTL_BSIZE3_SHIFT; |
| case 2: |
| psrctl |= PAGE_SIZE << |
| E1000_PSRCTL_BSIZE2_SHIFT; |
| case 1: |
| psrctl |= PAGE_SIZE >> |
| E1000_PSRCTL_BSIZE1_SHIFT; |
| break; |
| } |
| |
| E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); |
| } |
| |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| } |
| |
| /** |
| * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| |
| static void |
| e1000_configure_rx(struct e1000_adapter *adapter) |
| { |
| uint64_t rdba; |
| struct e1000_hw *hw = &adapter->hw; |
| uint32_t rdlen, rctl, rxcsum, ctrl_ext; |
| |
| if (adapter->rx_ps_pages) { |
| /* this is a 32 byte descriptor */ |
| rdlen = adapter->rx_ring[0].count * |
| sizeof(union e1000_rx_desc_packet_split); |
| adapter->clean_rx = e1000_clean_rx_irq_ps; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
| } else { |
| rdlen = adapter->rx_ring[0].count * |
| sizeof(struct e1000_rx_desc); |
| adapter->clean_rx = e1000_clean_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
| } |
| |
| /* disable receives while setting up the descriptors */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
| |
| /* set the Receive Delay Timer Register */ |
| E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); |
| |
| if (hw->mac_type >= e1000_82540) { |
| E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); |
| if (adapter->itr > 1) |
| E1000_WRITE_REG(hw, ITR, |
| 1000000000 / (adapter->itr * 256)); |
| } |
| |
| if (hw->mac_type >= e1000_82571) { |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| /* Reset delay timers after every interrupt */ |
| ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
| #ifdef CONFIG_E1000_NAPI |
| /* Auto-Mask interrupts upon ICR read. */ |
| ctrl_ext |= E1000_CTRL_EXT_IAME; |
| #endif |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_REG(hw, IAM, ~0); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring */ |
| switch (adapter->num_rx_queues) { |
| case 1: |
| default: |
| rdba = adapter->rx_ring[0].dma; |
| E1000_WRITE_REG(hw, RDLEN, rdlen); |
| E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); |
| E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); |
| E1000_WRITE_REG(hw, RDT, 0); |
| E1000_WRITE_REG(hw, RDH, 0); |
| adapter->rx_ring[0].rdh = E1000_RDH; |
| adapter->rx_ring[0].rdt = E1000_RDT; |
| break; |
| } |
| |
| /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
| if (hw->mac_type >= e1000_82543) { |
| rxcsum = E1000_READ_REG(hw, RXCSUM); |
| if (adapter->rx_csum == TRUE) { |
| rxcsum |= E1000_RXCSUM_TUOFL; |
| |
| /* Enable 82571 IPv4 payload checksum for UDP fragments |
| * Must be used in conjunction with packet-split. */ |
| if ((hw->mac_type >= e1000_82571) && |
| (adapter->rx_ps_pages)) { |
| rxcsum |= E1000_RXCSUM_IPPCSE; |
| } |
| } else { |
| rxcsum &= ~E1000_RXCSUM_TUOFL; |
| /* don't need to clear IPPCSE as it defaults to 0 */ |
| } |
| E1000_WRITE_REG(hw, RXCSUM, rxcsum); |
| } |
| |
| /* Enable Receives */ |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| } |
| |
| /** |
| * e1000_free_tx_resources - Free Tx Resources per Queue |
| * @adapter: board private structure |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| |
| static void |
| e1000_free_tx_resources(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| e1000_clean_tx_ring(adapter, tx_ring); |
| |
| vfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| |
| pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); |
| |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all transmit software resources |
| **/ |
| |
| void |
| e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
| } |
| |
| static void |
| e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
| struct e1000_buffer *buffer_info) |
| { |
| if (buffer_info->dma) { |
| pci_unmap_page(adapter->pdev, |
| buffer_info->dma, |
| buffer_info->length, |
| PCI_DMA_TODEVICE); |
| } |
| if (buffer_info->skb) |
| dev_kfree_skb_any(buffer_info->skb); |
| memset(buffer_info, 0, sizeof(struct e1000_buffer)); |
| } |
| |
| /** |
| * e1000_clean_tx_ring - Free Tx Buffers |
| * @adapter: board private structure |
| * @tx_ring: ring to be cleaned |
| **/ |
| |
| static void |
| e1000_clean_tx_ring(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring) |
| { |
| struct e1000_buffer *buffer_info; |
| unsigned long size; |
| unsigned int i; |
| |
| /* Free all the Tx ring sk_buffs */ |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
| } |
| |
| size = sizeof(struct e1000_buffer) * tx_ring->count; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| tx_ring->last_tx_tso = 0; |
| |
| writel(0, adapter->hw.hw_addr + tx_ring->tdh); |
| writel(0, adapter->hw.hw_addr + tx_ring->tdt); |
| } |
| |
| /** |
| * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| |
| static void |
| e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
| } |
| |
| /** |
| * e1000_free_rx_resources - Free Rx Resources |
| * @adapter: board private structure |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| |
| static void |
| e1000_free_rx_resources(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| e1000_clean_rx_ring(adapter, rx_ring); |
| |
| vfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| kfree(rx_ring->ps_page); |
| rx_ring->ps_page = NULL; |
| kfree(rx_ring->ps_page_dma); |
| rx_ring->ps_page_dma = NULL; |
| |
| pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
| |
| rx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all receive software resources |
| **/ |
| |
| void |
| e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
| } |
| |
| /** |
| * e1000_clean_rx_ring - Free Rx Buffers per Queue |
| * @adapter: board private structure |
| * @rx_ring: ring to free buffers from |
| **/ |
| |
| static void |
| e1000_clean_rx_ring(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring) |
| { |
| struct e1000_buffer *buffer_info; |
| struct e1000_ps_page *ps_page; |
| struct e1000_ps_page_dma *ps_page_dma; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned long size; |
| unsigned int i, j; |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| if (buffer_info->skb) { |
| pci_unmap_single(pdev, |
| buffer_info->dma, |
| buffer_info->length, |
| PCI_DMA_FROMDEVICE); |
| |
| dev_kfree_skb(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| ps_page = &rx_ring->ps_page[i]; |
| ps_page_dma = &rx_ring->ps_page_dma[i]; |
| for (j = 0; j < adapter->rx_ps_pages; j++) { |
| if (!ps_page->ps_page[j]) break; |
| pci_unmap_page(pdev, |
| ps_page_dma->ps_page_dma[j], |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| ps_page_dma->ps_page_dma[j] = 0; |
| put_page(ps_page->ps_page[j]); |
| ps_page->ps_page[j] = NULL; |
| } |
| } |
| |
| size = sizeof(struct e1000_buffer) * rx_ring->count; |
| memset(rx_ring->buffer_info, 0, size); |
| size = sizeof(struct e1000_ps_page) * rx_ring->count; |
| memset(rx_ring->ps_page, 0, size); |
| size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; |
| memset(rx_ring->ps_page_dma, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| writel(0, adapter->hw.hw_addr + rx_ring->rdh); |
| writel(0, adapter->hw.hw_addr + rx_ring->rdt); |
| } |
| |
| /** |
| * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| |
| static void |
| e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
| } |
| |
| /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
| * and memory write and invalidate disabled for certain operations |
| */ |
| static void |
| e1000_enter_82542_rst(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| uint32_t rctl; |
| |
| e1000_pci_clear_mwi(&adapter->hw); |
| |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl |= E1000_RCTL_RST; |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| E1000_WRITE_FLUSH(&adapter->hw); |
| mdelay(5); |
| |
| if (netif_running(netdev)) |
| e1000_clean_all_rx_rings(adapter); |
| } |
| |
| static void |
| e1000_leave_82542_rst(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| uint32_t rctl; |
| |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl &= ~E1000_RCTL_RST; |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| E1000_WRITE_FLUSH(&adapter->hw); |
| mdelay(5); |
| |
| if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) |
| e1000_pci_set_mwi(&adapter->hw); |
| |
| if (netif_running(netdev)) { |
| /* No need to loop, because 82542 supports only 1 queue */ |
| struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
| e1000_configure_rx(adapter); |
| adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
| } |
| } |
| |
| /** |
| * e1000_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| |
| static int |
| e1000_set_mac(struct net_device *netdev, void *p) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| /* 82542 2.0 needs to be in reset to write receive address registers */ |
| |
| if (adapter->hw.mac_type == e1000_82542_rev2_0) |
| e1000_enter_82542_rst(adapter); |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); |
| |
| e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); |
| |
| /* With 82571 controllers, LAA may be overwritten (with the default) |
| * due to controller reset from the other port. */ |
| if (adapter->hw.mac_type == e1000_82571) { |
| /* activate the work around */ |
| adapter->hw.laa_is_present = 1; |
| |
| /* Hold a copy of the LAA in RAR[14] This is done so that |
| * between the time RAR[0] gets clobbered and the time it |
| * gets fixed (in e1000_watchdog), the actual LAA is in one |
| * of the RARs and no incoming packets directed to this port |
| * are dropped. Eventaully the LAA will be in RAR[0] and |
| * RAR[14] */ |
| e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, |
| E1000_RAR_ENTRIES - 1); |
| } |
| |
| if (adapter->hw.mac_type == e1000_82542_rev2_0) |
| e1000_leave_82542_rst(adapter); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_multi - Multicast and Promiscuous mode set |
| * @netdev: network interface device structure |
| * |
| * The set_multi entry point is called whenever the multicast address |
| * list or the network interface flags are updated. This routine is |
| * responsible for configuring the hardware for proper multicast, |
| * promiscuous mode, and all-multi behavior. |
| **/ |
| |
| static void |
| e1000_set_multi(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct dev_mc_list *mc_ptr; |
| uint32_t rctl; |
| uint32_t hash_value; |
| int i, rar_entries = E1000_RAR_ENTRIES; |
| int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? |
| E1000_NUM_MTA_REGISTERS_ICH8LAN : |
| E1000_NUM_MTA_REGISTERS; |
| |
| if (adapter->hw.mac_type == e1000_ich8lan) |
| rar_entries = E1000_RAR_ENTRIES_ICH8LAN; |
| |
| /* reserve RAR[14] for LAA over-write work-around */ |
| if (adapter->hw.mac_type == e1000_82571) |
| rar_entries--; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| |
| rctl = E1000_READ_REG(hw, RCTL); |
| |
| if (netdev->flags & IFF_PROMISC) { |
| rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| } else if (netdev->flags & IFF_ALLMULTI) { |
| rctl |= E1000_RCTL_MPE; |
| rctl &= ~E1000_RCTL_UPE; |
| } else { |
| rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
| } |
| |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| |
| /* 82542 2.0 needs to be in reset to write receive address registers */ |
| |
| if (hw->mac_type == e1000_82542_rev2_0) |
| e1000_enter_82542_rst(adapter); |
| |
| /* load the first 14 multicast address into the exact filters 1-14 |
| * RAR 0 is used for the station MAC adddress |
| * if there are not 14 addresses, go ahead and clear the filters |
| * -- with 82571 controllers only 0-13 entries are filled here |
| */ |
| mc_ptr = netdev->mc_list; |
| |
| for (i = 1; i < rar_entries; i++) { |
| if (mc_ptr) { |
| e1000_rar_set(hw, mc_ptr->dmi_addr, i); |
| mc_ptr = mc_ptr->next; |
| } else { |
| E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
| E1000_WRITE_FLUSH(hw); |
| E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| /* clear the old settings from the multicast hash table */ |
| |
| for (i = 0; i < mta_reg_count; i++) { |
| E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /* load any remaining addresses into the hash table */ |
| |
| for (; mc_ptr; mc_ptr = mc_ptr->next) { |
| hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); |
| e1000_mta_set(hw, hash_value); |
| } |
| |
| if (hw->mac_type == e1000_82542_rev2_0) |
| e1000_leave_82542_rst(adapter); |
| } |
| |
| /* Need to wait a few seconds after link up to get diagnostic information from |
| * the phy */ |
| |
| static void |
| e1000_update_phy_info(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
| } |
| |
| /** |
| * e1000_82547_tx_fifo_stall - Timer Call-back |
| * @data: pointer to adapter cast into an unsigned long |
| **/ |
| |
| static void |
| e1000_82547_tx_fifo_stall(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| struct net_device *netdev = adapter->netdev; |
| uint32_t tctl; |
| |
| if (atomic_read(&adapter->tx_fifo_stall)) { |
| if ((E1000_READ_REG(&adapter->hw, TDT) == |
| E1000_READ_REG(&adapter->hw, TDH)) && |
| (E1000_READ_REG(&adapter->hw, TDFT) == |
| E1000_READ_REG(&adapter->hw, TDFH)) && |
| (E1000_READ_REG(&adapter->hw, TDFTS) == |
| E1000_READ_REG(&adapter->hw, TDFHS))) { |
| tctl = E1000_READ_REG(&adapter->hw, TCTL); |
| E1000_WRITE_REG(&adapter->hw, TCTL, |
| tctl & ~E1000_TCTL_EN); |
| E1000_WRITE_REG(&adapter->hw, TDFT, |
| adapter->tx_head_addr); |
| E1000_WRITE_REG(&adapter->hw, TDFH, |
| adapter->tx_head_addr); |
| E1000_WRITE_REG(&adapter->hw, TDFTS, |
| adapter->tx_head_addr); |
| E1000_WRITE_REG(&adapter->hw, TDFHS, |
| adapter->tx_head_addr); |
| E1000_WRITE_REG(&adapter->hw, TCTL, tctl); |
| E1000_WRITE_FLUSH(&adapter->hw); |
| |
| adapter->tx_fifo_head = 0; |
| atomic_set(&adapter->tx_fifo_stall, 0); |
| netif_wake_queue(netdev); |
| } else { |
| mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
| } |
| } |
| } |
| |
| /** |
| * e1000_watchdog - Timer Call-back |
| * @data: pointer to adapter cast into an unsigned long |
| **/ |
| static void |
| e1000_watchdog(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_tx_ring *txdr = adapter->tx_ring; |
| uint32_t link, tctl; |
| int32_t ret_val; |
| |
| ret_val = e1000_check_for_link(&adapter->hw); |
| if ((ret_val == E1000_ERR_PHY) && |
| (adapter->hw.phy_type == e1000_phy_igp_3) && |
| (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
| /* See e1000_kumeran_lock_loss_workaround() */ |
| DPRINTK(LINK, INFO, |
| "Gigabit has been disabled, downgrading speed\n"); |
| } |
| if (adapter->hw.mac_type == e1000_82573) { |
| e1000_enable_tx_pkt_filtering(&adapter->hw); |
| if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) |
| e1000_update_mng_vlan(adapter); |
| } |
| |
| if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && |
| !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) |
| link = !adapter->hw.serdes_link_down; |
| else |
| link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; |
| |
| if (link) { |
| if (!netif_carrier_ok(netdev)) { |
| boolean_t txb2b = 1; |
| e1000_get_speed_and_duplex(&adapter->hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| |
| DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", |
| adapter->link_speed, |
| adapter->link_duplex == FULL_DUPLEX ? |
| "Full Duplex" : "Half Duplex"); |
| |
| /* tweak tx_queue_len according to speed/duplex |
| * and adjust the timeout factor */ |
| netdev->tx_queue_len = adapter->tx_queue_len; |
| adapter->tx_timeout_factor = 1; |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| txb2b = 0; |
| netdev->tx_queue_len = 10; |
| adapter->tx_timeout_factor = 8; |
| break; |
| case SPEED_100: |
| txb2b = 0; |
| netdev->tx_queue_len = 100; |
| /* maybe add some timeout factor ? */ |
| break; |
| } |
| |
| if ((adapter->hw.mac_type == e1000_82571 || |
| adapter->hw.mac_type == e1000_82572) && |
| txb2b == 0) { |
| #define SPEED_MODE_BIT (1 << 21) |
| uint32_t tarc0; |
| tarc0 = E1000_READ_REG(&adapter->hw, TARC0); |
| tarc0 &= ~SPEED_MODE_BIT; |
| E1000_WRITE_REG(&adapter->hw, TARC0, tarc0); |
| } |
| |
| #ifdef NETIF_F_TSO |
| /* disable TSO for pcie and 10/100 speeds, to avoid |
| * some hardware issues */ |
| if (!adapter->tso_force && |
| adapter->hw.bus_type == e1000_bus_type_pci_express){ |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| case SPEED_100: |
| DPRINTK(PROBE,INFO, |
| "10/100 speed: disabling TSO\n"); |
| netdev->features &= ~NETIF_F_TSO; |
| break; |
| case SPEED_1000: |
| netdev->features |= NETIF_F_TSO; |
| break; |
| default: |
| /* oops */ |
| break; |
| } |
| } |
| #endif |
| |
| /* enable transmits in the hardware, need to do this |
| * after setting TARC0 */ |
| tctl = E1000_READ_REG(&adapter->hw, TCTL); |
| tctl |= E1000_TCTL_EN; |
| E1000_WRITE_REG(&adapter->hw, TCTL, tctl); |
| |
| netif_carrier_on(netdev); |
| netif_wake_queue(netdev); |
| mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); |
| adapter->smartspeed = 0; |
| } |
| } else { |
| if (netif_carrier_ok(netdev)) { |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| DPRINTK(LINK, INFO, "NIC Link is Down\n"); |
| netif_carrier_off(netdev); |
| netif_stop_queue(netdev); |
| mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); |
| |
| /* 80003ES2LAN workaround-- |
| * For packet buffer work-around on link down event; |
| * disable receives in the ISR and |
| * reset device here in the watchdog |
| */ |
| if (adapter->hw.mac_type == e1000_80003es2lan) { |
| /* reset device */ |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| e1000_smartspeed(adapter); |
| } |
| |
| e1000_update_stats(adapter); |
| |
| adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
| adapter->tpt_old = adapter->stats.tpt; |
| adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; |
| adapter->colc_old = adapter->stats.colc; |
| |
| adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
| adapter->gorcl_old = adapter->stats.gorcl; |
| adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
| adapter->gotcl_old = adapter->stats.gotcl; |
| |
| e1000_update_adaptive(&adapter->hw); |
| |
| if (!netif_carrier_ok(netdev)) { |
| if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
| /* We've lost link, so the controller stops DMA, |
| * but we've got queued Tx work that's never going |
| * to get done, so reset controller to flush Tx. |
| * (Do the reset outside of interrupt context). */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| /* Dynamic mode for Interrupt Throttle Rate (ITR) */ |
| if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) { |
| /* Symmetric Tx/Rx gets a reduced ITR=2000; Total |
| * asymmetrical Tx or Rx gets ITR=8000; everyone |
| * else is between 2000-8000. */ |
| uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000; |
| uint32_t dif = (adapter->gotcl > adapter->gorcl ? |
| adapter->gotcl - adapter->gorcl : |
| adapter->gorcl - adapter->gotcl) / 10000; |
| uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
| E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256)); |
| } |
| |
| /* Cause software interrupt to ensure rx ring is cleaned */ |
| E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); |
| |
| /* Force detection of hung controller every watchdog period */ |
| adapter->detect_tx_hung = TRUE; |
| |
| /* With 82571 controllers, LAA may be overwritten due to controller |
| * reset from the other port. Set the appropriate LAA in RAR[0] */ |
| if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present) |
| e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); |
| |
| /* Reset the timer */ |
| mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); |
| } |
| |
| #define E1000_TX_FLAGS_CSUM 0x00000001 |
| #define E1000_TX_FLAGS_VLAN 0x00000002 |
| #define E1000_TX_FLAGS_TSO 0x00000004 |
| #define E1000_TX_FLAGS_IPV4 0x00000008 |
| #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
| |
| static int |
| e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, |
| struct sk_buff *skb) |
| { |
| #ifdef NETIF_F_TSO |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| uint32_t cmd_length = 0; |
| uint16_t ipcse = 0, tucse, mss; |
| uint8_t ipcss, ipcso, tucss, tucso, hdr_len; |
| int err; |
| |
| if (skb_is_gso(skb)) { |
| if (skb_header_cloned(skb)) { |
| err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (err) |
| return err; |
| } |
| |
| hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); |
| mss = skb_shinfo(skb)->gso_size; |
| if (skb->protocol == htons(ETH_P_IP)) { |
| skb->nh.iph->tot_len = 0; |
| skb->nh.iph->check = 0; |
| skb->h.th->check = |
| ~csum_tcpudp_magic(skb->nh.iph->saddr, |
| skb->nh.iph->daddr, |
| 0, |
| IPPROTO_TCP, |
| 0); |
| cmd_length = E1000_TXD_CMD_IP; |
| ipcse = skb->h.raw - skb->data - 1; |
| #ifdef NETIF_F_TSO_IPV6 |
| } else if (skb->protocol == ntohs(ETH_P_IPV6)) { |
| skb->nh.ipv6h->payload_len = 0; |
| skb->h.th->check = |
| ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, |
| &skb->nh.ipv6h->daddr, |
| 0, |
| IPPROTO_TCP, |
| 0); |
| ipcse = 0; |
| #endif |
| } |
| ipcss = skb->nh.raw - skb->data; |
| ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; |
| tucss = skb->h.raw - skb->data; |
| tucso = (void *)&(skb->h.th->check) - (void *)skb->data; |
| tucse = 0; |
| |
| cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
| E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
| |
| i = tx_ring->next_to_use; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| |
| context_desc->lower_setup.ip_fields.ipcss = ipcss; |
| context_desc->lower_setup.ip_fields.ipcso = ipcso; |
| context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
| context_desc->upper_setup.tcp_fields.tucss = tucss; |
| context_desc->upper_setup.tcp_fields.tucso = tucso; |
| context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
| context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
| context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
| |
| buffer_info->time_stamp = jiffies; |
| |
| if (++i == tx_ring->count) i = 0; |
| tx_ring->next_to_use = i; |
| |
| return TRUE; |
| } |
| #endif |
| |
| return FALSE; |
| } |
| |
| static boolean_t |
| e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, |
| struct sk_buff *skb) |
| { |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| uint8_t css; |
| |
| if (likely(skb->ip_summed == CHECKSUM_HW)) { |
| css = skb->h.raw - skb->data; |
| |
| i = tx_ring->next_to_use; |
| buffer_info = &tx_ring->buffer_info[i]; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| |
| context_desc->upper_setup.tcp_fields.tucss = css; |
| context_desc->upper_setup.tcp_fields.tucso = css + skb->csum; |
| context_desc->upper_setup.tcp_fields.tucse = 0; |
| context_desc->tcp_seg_setup.data = 0; |
| context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); |
| |
| buffer_info->time_stamp = jiffies; |
| |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| tx_ring->next_to_use = i; |
| |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| #define E1000_MAX_TXD_PWR 12 |
| #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
| |
| static int |
| e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, |
| struct sk_buff *skb, unsigned int first, unsigned int max_per_txd, |
| unsigned int nr_frags, unsigned int mss) |
| { |
| struct e1000_buffer *buffer_info; |
| unsigned int len = skb->len; |
| unsigned int offset = 0, size, count = 0, i; |
| unsigned int f; |
| len -= skb->data_len; |
| |
| i = tx_ring->next_to_use; |
| |
| while (len) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| #ifdef NETIF_F_TSO |
| /* Workaround for Controller erratum -- |
| * descriptor for non-tso packet in a linear SKB that follows a |
| * tso gets written back prematurely before the data is fully |
| * DMA'd to the controller */ |
| if (!skb->data_len && tx_ring->last_tx_tso && |
| !skb_is_gso(skb)) { |
| tx_ring->last_tx_tso = 0; |
| size -= 4; |
| } |
| |
| /* Workaround for premature desc write-backs |
| * in TSO mode. Append 4-byte sentinel desc */ |
| if (unlikely(mss && !nr_frags && size == len && size > 8)) |
| size -= 4; |
| #endif |
| /* work-around for errata 10 and it applies |
| * to all controllers in PCI-X mode |
| * The fix is to make sure that the first descriptor of a |
| * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
| */ |
| if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && |
| (size > 2015) && count == 0)) |
| size = 2015; |
| |
| /* Workaround for potential 82544 hang in PCI-X. Avoid |
| * terminating buffers within evenly-aligned dwords. */ |
| if (unlikely(adapter->pcix_82544 && |
| !((unsigned long)(skb->data + offset + size - 1) & 4) && |
| size > 4)) |
| size -= 4; |
| |
| buffer_info->length = size; |
| buffer_info->dma = |
| pci_map_single(adapter->pdev, |
| skb->data + offset, |
| size, |
| PCI_DMA_TODEVICE); |
| buffer_info->time_stamp = jiffies; |
| |
| len -= size; |
| offset += size; |
| count++; |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| } |
| |
| for (f = 0; f < nr_frags; f++) { |
| struct skb_frag_struct *frag; |
| |
| frag = &skb_shinfo(skb)->frags[f]; |
| len = frag->size; |
| offset = frag->page_offset; |
| |
| while (len) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| #ifdef NETIF_F_TSO |
| /* Workaround for premature desc write-backs |
| * in TSO mode. Append 4-byte sentinel desc */ |
| if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
| size -= 4; |
| #endif |
| /* Workaround for potential 82544 hang in PCI-X. |
| * Avoid terminating buffers within evenly-aligned |
| * dwords. */ |
| if (unlikely(adapter->pcix_82544 && |
| !((unsigned long)(frag->page+offset+size-1) & 4) && |
| size > 4)) |
| size -= 4; |
| |
| buffer_info->length = size; |
| buffer_info->dma = |
| pci_map_page(adapter->pdev, |
| frag->page, |
| offset, |
| size, |
| PCI_DMA_TODEVICE); |
| buffer_info->time_stamp = jiffies; |
| |
| len -= size; |
| offset += size; |
| count++; |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| } |
| } |
| |
| i = (i == 0) ? tx_ring->count - 1 : i - 1; |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[first].next_to_watch = i; |
| |
| return count; |
| } |
| |
| static void |
| e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, |
| int tx_flags, int count) |
| { |
| struct e1000_tx_desc *tx_desc = NULL; |
| struct e1000_buffer *buffer_info; |
| uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
| unsigned int i; |
| |
| if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
| E1000_TXD_CMD_TSE; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| |
| if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
| txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
| } |
| |
| if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| } |
| |
| if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
| txd_lower |= E1000_TXD_CMD_VLE; |
| txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
| } |
| |
| i = tx_ring->next_to_use; |
| |
| while (count--) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| tx_desc->lower.data = |
| cpu_to_le32(txd_lower | buffer_info->length); |
| tx_desc->upper.data = cpu_to_le32(txd_upper); |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| } |
| |
| tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| |
| tx_ring->next_to_use = i; |
| writel(i, adapter->hw.hw_addr + tx_ring->tdt); |
| } |
| |
| /** |
| * 82547 workaround to avoid controller hang in half-duplex environment. |
| * The workaround is to avoid queuing a large packet that would span |
| * the internal Tx FIFO ring boundary by notifying the stack to resend |
| * the packet at a later time. This gives the Tx FIFO an opportunity to |
| * flush all packets. When that occurs, we reset the Tx FIFO pointers |
| * to the beginning of the Tx FIFO. |
| **/ |
| |
| #define E1000_FIFO_HDR 0x10 |
| #define E1000_82547_PAD_LEN 0x3E0 |
| |
| static int |
| e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) |
| { |
| uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
| uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; |
| |
| E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); |
| |
| if (adapter->link_duplex != HALF_DUPLEX) |
| goto no_fifo_stall_required; |
| |
| if (atomic_read(&adapter->tx_fifo_stall)) |
| return 1; |
| |
| if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
| atomic_set(&adapter->tx_fifo_stall, 1); |
| return 1; |
| } |
| |
| no_fifo_stall_required: |
| adapter->tx_fifo_head += skb_fifo_len; |
| if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
| adapter->tx_fifo_head -= adapter->tx_fifo_size; |
| return 0; |
| } |
| |
| #define MINIMUM_DHCP_PACKET_SIZE 282 |
| static int |
| e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| uint16_t length, offset; |
| if (vlan_tx_tag_present(skb)) { |
| if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
| ( adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) |
| return 0; |
| } |
| if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { |
| struct ethhdr *eth = (struct ethhdr *) skb->data; |
| if ((htons(ETH_P_IP) == eth->h_proto)) { |
| const struct iphdr *ip = |
| (struct iphdr *)((uint8_t *)skb->data+14); |
| if (IPPROTO_UDP == ip->protocol) { |
| struct udphdr *udp = |
| (struct udphdr *)((uint8_t *)ip + |
| (ip->ihl << 2)); |
| if (ntohs(udp->dest) == 67) { |
| offset = (uint8_t *)udp + 8 - skb->data; |
| length = skb->len - offset; |
| |
| return e1000_mng_write_dhcp_info(hw, |
| (uint8_t *)udp + 8, |
| length); |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
| static int |
| e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_tx_ring *tx_ring; |
| unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
| unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
| unsigned int tx_flags = 0; |
| unsigned int len = skb->len; |
| unsigned long flags; |
| unsigned int nr_frags = 0; |
| unsigned int mss = 0; |
| int count = 0; |
| int tso; |
| unsigned int f; |
| len -= skb->data_len; |
| |
| tx_ring = adapter->tx_ring; |
| |
| if (unlikely(skb->len <= 0)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| #ifdef NETIF_F_TSO |
| mss = skb_shinfo(skb)->gso_size; |
| /* The controller does a simple calculation to |
| * make sure there is enough room in the FIFO before |
| * initiating the DMA for each buffer. The calc is: |
| * 4 = ceil(buffer len/mss). To make sure we don't |
| * overrun the FIFO, adjust the max buffer len if mss |
| * drops. */ |
| if (mss) { |
| uint8_t hdr_len; |
| max_per_txd = min(mss << 2, max_per_txd); |
| max_txd_pwr = fls(max_per_txd) - 1; |
| |
| /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
| * points to just header, pull a few bytes of payload from |
| * frags into skb->data */ |
| hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); |
| if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) { |
| switch (adapter->hw.mac_type) { |
| unsigned int pull_size; |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| case e1000_ich8lan: |
| pull_size = min((unsigned int)4, skb->data_len); |
| if (!__pskb_pull_tail(skb, pull_size)) { |
| DPRINTK(DRV, ERR, |
| "__pskb_pull_tail failed.\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| len = skb->len - skb->data_len; |
| break; |
| default: |
| /* do nothing */ |
| break; |
| } |
| } |
| } |
| |
| /* reserve a descriptor for the offload context */ |
| if ((mss) || (skb->ip_summed == CHECKSUM_HW)) |
| count++; |
| count++; |
| #else |
| if (skb->ip_summed == CHECKSUM_HW) |
| count++; |
| #endif |
| |
| #ifdef NETIF_F_TSO |
| /* Controller Erratum workaround */ |
| if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
| count++; |
| #endif |
| |
| count += TXD_USE_COUNT(len, max_txd_pwr); |
| |
| if (adapter->pcix_82544) |
| count++; |
| |
| /* work-around for errata 10 and it applies to all controllers |
| * in PCI-X mode, so add one more descriptor to the count |
| */ |
| if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && |
| (len > 2015))) |
| count++; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| for (f = 0; f < nr_frags; f++) |
| count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
| max_txd_pwr); |
| if (adapter->pcix_82544) |
| count += nr_frags; |
| |
| |
| if (adapter->hw.tx_pkt_filtering && |
| (adapter->hw.mac_type == e1000_82573)) |
| e1000_transfer_dhcp_info(adapter, skb); |
| |
| local_irq_save(flags); |
| if (!spin_trylock(&tx_ring->tx_lock)) { |
| /* Collision - tell upper layer to requeue */ |
| local_irq_restore(flags); |
| return NETDEV_TX_LOCKED; |
| } |
| |
| /* need: count + 2 desc gap to keep tail from touching |
| * head, otherwise try next time */ |
| if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) { |
| netif_stop_queue(netdev); |
| spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (unlikely(adapter->hw.mac_type == e1000_82547)) { |
| if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
| netif_stop_queue(netdev); |
| mod_timer(&adapter->tx_fifo_stall_timer, jiffies); |
| spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
| return NETDEV_TX_BUSY; |
| } |
| } |
| |
| if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
| tx_flags |= E1000_TX_FLAGS_VLAN; |
| tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
| } |
| |
| first = tx_ring->next_to_use; |
| |
| tso = e1000_tso(adapter, tx_ring, skb); |
| if (tso < 0) { |
| dev_kfree_skb_any(skb); |
| spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
| return NETDEV_TX_OK; |
| } |
| |
| if (likely(tso)) { |
| tx_ring->last_tx_tso = 1; |
| tx_flags |= E1000_TX_FLAGS_TSO; |
| } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
| tx_flags |= E1000_TX_FLAGS_CSUM; |
| |
| /* Old method was to assume IPv4 packet by default if TSO was enabled. |
| * 82571 hardware supports TSO capabilities for IPv6 as well... |
| * no longer assume, we must. */ |
| if (likely(skb->protocol == htons(ETH_P_IP))) |
| tx_flags |= E1000_TX_FLAGS_IPV4; |
| |
| e1000_tx_queue(adapter, tx_ring, tx_flags, |
| e1000_tx_map(adapter, tx_ring, skb, first, |
| max_per_txd, nr_frags, mss)); |
| |
| netdev->trans_start = jiffies; |
| |
| /* Make sure there is space in the ring for the next send. */ |
| if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2)) |
| netif_stop_queue(netdev); |
| |
| spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * e1000_tx_timeout - Respond to a Tx Hang |
| * @netdev: network interface device structure |
| **/ |
| |
| static void |
| e1000_tx_timeout(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* Do the reset outside of interrupt context */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| } |
| |
| static void |
| e1000_reset_task(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| e1000_reinit_locked(adapter); |
| } |
| |
| /** |
| * e1000_get_stats - Get System Network Statistics |
| * @netdev: network interface device structure |
| * |
| * Returns the address of the device statistics structure. |
| * The statistics are actually updated from the timer callback. |
| **/ |
| |
| static struct net_device_stats * |
| e1000_get_stats(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* only return the current stats */ |
| return &adapter->net_stats; |
| } |
| |
| /** |
| * e1000_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| |
| static int |
| e1000_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
| uint16_t eeprom_data = 0; |
| |
| if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
| (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
| DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); |
| return -EINVAL; |
| } |
| |
| /* Adapter-specific max frame size limits. */ |
| switch (adapter->hw.mac_type) { |
| case e1000_undefined ... e1000_82542_rev2_1: |
| case e1000_ich8lan: |
| if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
| DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
| return -EINVAL; |
| } |
| break; |
| case e1000_82573: |
| /* only enable jumbo frames if ASPM is disabled completely |
| * this means both bits must be zero in 0x1A bits 3:2 */ |
| e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1, |
| &eeprom_data); |
| if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) { |
| if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
| DPRINTK(PROBE, ERR, |
| "Jumbo Frames not supported.\n"); |
| return -EINVAL; |
| } |
| break; |
| } |
| /* fall through to get support */ |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_80003es2lan: |
| #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
| if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
| DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); |
| return -EINVAL; |
| } |
| break; |
| default: |
| /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
| break; |
| } |
| |
| /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| * means we reserve 2 more, this pushes us to allocate from the next |
| * larger slab size |
| * i.e. RXBUFFER_2048 --> size-4096 slab */ |
| |
| if (max_frame <= E1000_RXBUFFER_256) |
| adapter->rx_buffer_len = E1000_RXBUFFER_256; |
| else if (max_frame <= E1000_RXBUFFER_512) |
| adapter->rx_buffer_len = E1000_RXBUFFER_512; |
| else if (max_frame <= E1000_RXBUFFER_1024) |
| adapter->rx_buffer_len = E1000_RXBUFFER_1024; |
| else if (max_frame <= E1000_RXBUFFER_2048) |
| adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
| else if (max_frame <= E1000_RXBUFFER_4096) |
| adapter->rx_buffer_len = E1000_RXBUFFER_4096; |
| else if (max_frame <= E1000_RXBUFFER_8192) |
| adapter->rx_buffer_len = E1000_RXBUFFER_8192; |
| else if (max_frame <= E1000_RXBUFFER_16384) |
| adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
| |
| /* adjust allocation if LPE protects us, and we aren't using SBP */ |
| if (!adapter->hw.tbi_compatibility_on && |
| ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || |
| (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
| adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| |
| netdev->mtu = new_mtu; |
| |
| if (netif_running(netdev)) |
| e1000_reinit_locked(adapter); |
| |
| adapter->hw.max_frame_size = max_frame; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_update_stats - Update the board statistics counters |
| * @adapter: board private structure |
| **/ |
| |
| void |
| e1000_update_stats(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned long flags; |
| uint16_t phy_tmp; |
| |
| #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
| |
| /* |
| * Prevent stats update while adapter is being reset, or if the pci |
| * connection is down. |
| */ |
| if (adapter->link_speed == 0) |
| return; |
| if (pdev->error_state && pdev->error_state != pci_channel_io_normal) |
| return; |
| |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| |
| /* these counters are modified from e1000_adjust_tbi_stats, |
| * called from the interrupt context, so they must only |
| * be written while holding adapter->stats_lock |
| */ |
| |
| adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); |
| adapter->stats.gprc += E1000_READ_REG(hw, GPRC); |
| adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); |
| adapter->stats.gorch += E1000_READ_REG(hw, GORCH); |
| adapter->stats.bprc += E1000_READ_REG(hw, BPRC); |
| adapter->stats.mprc += E1000_READ_REG(hw, MPRC); |
| adapter->stats.roc += E1000_READ_REG(hw, ROC); |
| |
| if (adapter->hw.mac_type != e1000_ich8lan) { |
| adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); |
| adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); |
| adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); |
| adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); |
| adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); |
| adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); |
| } |
| |
| adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); |
| adapter->stats.mpc += E1000_READ_REG(hw, MPC); |
| adapter->stats.scc += E1000_READ_REG(hw, SCC); |
| adapter->stats.ecol += E1000_READ_REG(hw, ECOL); |
| adapter->stats.mcc += E1000_READ_REG(hw, MCC); |
| adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); |
| adapter->stats.dc += E1000_READ_REG(hw, DC); |
| adapter->stats.sec += E1000_READ_REG(hw, SEC); |
| adapter->stats.rlec += E1000_READ_REG(hw, RLEC); |
| adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); |
| adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); |
| adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); |
| adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); |
| adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); |
| adapter->stats.gptc += E1000_READ_REG(hw, GPTC); |
| adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); |
| adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); |
| adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); |
| adapter->stats.ruc += E1000_READ_REG(hw, RUC); |
| adapter->stats.rfc += E1000_READ_REG(hw, RFC); |
| adapter->stats.rjc += E1000_READ_REG(hw, RJC); |
| adapter->stats.torl += E1000_READ_REG(hw, TORL); |
| adapter->stats.torh += E1000_READ_REG(hw, TORH); |
| adapter->stats.totl += E1000_READ_REG(hw, TOTL); |
| adapter->stats.toth += E1000_READ_REG(hw, TOTH); |
| adapter->stats.tpr += E1000_READ_REG(hw, TPR); |
| |
| if (adapter->hw.mac_type != e1000_ich8lan) { |
| adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); |
| adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); |
| adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); |
| adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); |
| adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); |
| adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); |
| } |
| |
| adapter->stats.mptc += E1000_READ_REG(hw, MPTC); |
| adapter->stats.bptc += E1000_READ_REG(hw, BPTC); |
| |
| /* used for adaptive IFS */ |
| |
| hw->tx_packet_delta = E1000_READ_REG(hw, TPT); |
| adapter->stats.tpt += hw->tx_packet_delta; |
| hw->collision_delta = E1000_READ_REG(hw, COLC); |
| adapter->stats.colc += hw->collision_delta; |
| |
| if (hw->mac_type >= e1000_82543) { |
| adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); |
| adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); |
| adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); |
| adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); |
| adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); |
| adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); |
| } |
| if (hw->mac_type > e1000_82547_rev_2) { |
| adapter->stats.iac += E1000_READ_REG(hw, IAC); |
| adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); |
| |
| if (adapter->hw.mac_type != e1000_ich8lan) { |
| adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); |
| adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); |
| adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); |
| adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); |
| adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); |
| adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); |
| adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); |
| } |
| } |
| |
| /* Fill out the OS statistics structure */ |
| |
| adapter->net_stats.rx_packets = adapter->stats.gprc; |
| adapter->net_stats.tx_packets = adapter->stats.gptc; |
| adapter->net_stats.rx_bytes = adapter->stats.gorcl; |
| adapter->net_stats.tx_bytes = adapter->stats.gotcl; |
| adapter->net_stats.multicast = adapter->stats.mprc; |
| adapter->net_stats.collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC */ |
| adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + |
| adapter->stats.cexterr; |
| adapter->net_stats.rx_length_errors = adapter->stats.ruc + |
| adapter->stats.roc; |
| adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
| adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
| adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| |
| adapter->net_stats.tx_errors = adapter->stats.ecol + |
| adapter->stats.latecol; |
| adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
| adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
| adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| /* Phy Stats */ |
| |
| if (hw->media_type == e1000_media_type_copper) { |
| if ((adapter->link_speed == SPEED_1000) && |
| (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
| phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
| adapter->phy_stats.idle_errors += phy_tmp; |
| } |
| |
| if ((hw->mac_type <= e1000_82546) && |
| (hw->phy_type == e1000_phy_m88) && |
| !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
| adapter->phy_stats.receive_errors += phy_tmp; |
| } |
| |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| } |
| |
| /** |
| * e1000_intr - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| * @pt_regs: CPU registers structure |
| **/ |
| |
| static irqreturn_t |
| e1000_intr(int irq, void *data, struct pt_regs *regs) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| uint32_t rctl, icr = E1000_READ_REG(hw, ICR); |
| #ifndef CONFIG_E1000_NAPI |
| int i; |
| #else |
| /* Interrupt Auto-Mask...upon reading ICR, |
| * interrupts are masked. No need for the |
| * IMC write, but it does mean we should |
| * account for it ASAP. */ |
| if (likely(hw->mac_type >= e1000_82571)) |
| atomic_inc(&adapter->irq_sem); |
| #endif |
| |
| if (unlikely(!icr)) { |
| #ifdef CONFIG_E1000_NAPI |
| if (hw->mac_type >= e1000_82571) |
| e1000_irq_enable(adapter); |
| #endif |
| return IRQ_NONE; /* Not our interrupt */ |
| } |
| |
| if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
| hw->get_link_status = 1; |
| /* 80003ES2LAN workaround-- |
| * For packet buffer work-around on link down event; |
| * disable receives here in the ISR and |
| * reset adapter in watchdog |
| */ |
| if (netif_carrier_ok(netdev) && |
| (adapter->hw.mac_type == e1000_80003es2lan)) { |
| /* disable receives */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
| } |
| mod_timer(&adapter->watchdog_timer, jiffies); |
| } |
| |
| #ifdef CONFIG_E1000_NAPI |
| if (unlikely(hw->mac_type < e1000_82571)) { |
| atomic_inc(&adapter->irq_sem); |
| E1000_WRITE_REG(hw, IMC, ~0); |
| E1000_WRITE_FLUSH(hw); |
| } |
| if (likely(netif_rx_schedule_prep(netdev))) |
| __netif_rx_schedule(netdev); |
| else |
| e1000_irq_enable(adapter); |
| #else |
| /* Writing IMC and IMS is needed for 82547. |
| * Due to Hub Link bus being occupied, an interrupt |
| * de-assertion message is not able to be sent. |
| * When an interrupt assertion message is generated later, |
| * two messages are re-ordered and sent out. |
| * That causes APIC to think 82547 is in de-assertion |
| * state, while 82547 is in assertion state, resulting |
| * in dead lock. Writing IMC forces 82547 into |
| * de-assertion state. |
| */ |
| if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) { |
| atomic_inc(&adapter->irq_sem); |
| E1000_WRITE_REG(hw, IMC, ~0); |
| } |
| |
| for (i = 0; i < E1000_MAX_INTR; i++) |
| if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) & |
| !e1000_clean_tx_irq(adapter, adapter->tx_ring))) |
| break; |
| |
| if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) |
| e1000_irq_enable(adapter); |
| |
| #endif |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_E1000_NAPI |
| /** |
| * e1000_clean - NAPI Rx polling callback |
| * @adapter: board private structure |
| **/ |
| |
| static int |
| e1000_clean(struct net_device *poll_dev, int *budget) |
| { |
| struct e1000_adapter *adapter; |
| int work_to_do = min(*budget, poll_dev->quota); |
| int tx_cleaned = 0, work_done = 0; |
| |
| /* Must NOT use netdev_priv macro here. */ |
| adapter = poll_dev->priv; |
| |
| /* Keep link state information with original netdev */ |
| if (!netif_carrier_ok(poll_dev)) |
| goto quit_polling; |
| |
| /* e1000_clean is called per-cpu. This lock protects |
| * tx_ring[0] from being cleaned by multiple cpus |
| * simultaneously. A failure obtaining the lock means |
| * tx_ring[0] is currently being cleaned anyway. */ |
| if (spin_trylock(&adapter->tx_queue_lock)) { |
| tx_cleaned = e1000_clean_tx_irq(adapter, |
| &adapter->tx_ring[0]); |
| spin_unlock(&adapter->tx_queue_lock); |
| } |
| |
| adapter->clean_rx(adapter, &adapter->rx_ring[0], |
| &work_done, work_to_do); |
| |
| *budget -= work_done; |
| poll_dev->quota -= work_done; |
| |
| /* If no Tx and not enough Rx work done, exit the polling mode */ |
| if ((!tx_cleaned && (work_done == 0)) || |
| !netif_running(poll_dev)) { |
| quit_polling: |
| netif_rx_complete(poll_dev); |
| e1000_irq_enable(adapter); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| #endif |
| /** |
| * e1000_clean_tx_irq - Reclaim resources after transmit completes |
| * @adapter: board private structure |
| **/ |
| |
| static boolean_t |
| e1000_clean_tx_irq(struct e1000_adapter *adapter, |
| struct e1000_tx_ring *tx_ring) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_tx_desc *tx_desc, *eop_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i, eop; |
| #ifdef CONFIG_E1000_NAPI |
| unsigned int count = 0; |
| #endif |
| boolean_t cleaned = FALSE; |
| |
| i = tx_ring->next_to_clean; |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| |
| while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { |
| for (cleaned = FALSE; !cleaned; ) { |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| cleaned = (i == eop); |
| |
| e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
| memset(tx_desc, 0, sizeof(struct e1000_tx_desc)); |
| |
| if (unlikely(++i == tx_ring->count)) i = 0; |
| } |
| |
| |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| #ifdef CONFIG_E1000_NAPI |
| #define E1000_TX_WEIGHT 64 |
| /* weight of a sort for tx, to avoid endless transmit cleanup */ |
| if (count++ == E1000_TX_WEIGHT) break; |
| #endif |
| } |
| |
| tx_ring->next_to_clean = i; |
| |
| #define TX_WAKE_THRESHOLD 32 |
| if (unlikely(cleaned && netif_queue_stopped(netdev) && |
| netif_carrier_ok(netdev))) { |
| spin_lock(&tx_ring->tx_lock); |
| if (netif_queue_stopped(netdev) && |
| (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) |
| netif_wake_queue(netdev); |
| spin_unlock(&tx_ring->tx_lock); |
| } |
| |
| if (adapter->detect_tx_hung) { |
| /* Detect a transmit hang in hardware, this serializes the |
| * check with the clearing of time_stamp and movement of i */ |
| adapter->detect_tx_hung = FALSE; |
| if (tx_ring->buffer_info[eop].dma && |
| time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
| (adapter->tx_timeout_factor * HZ)) |
| && !(E1000_READ_REG(&adapter->hw, STATUS) & |
| E1000_STATUS_TXOFF)) { |
| |
| /* detected Tx unit hang */ |
| DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" |
| " Tx Queue <%lu>\n" |
| " TDH <%x>\n" |
| " TDT <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n" |
| "buffer_info[next_to_clean]\n" |
| " time_stamp <%lx>\n" |
| " next_to_watch <%x>\n" |
| " jiffies <%lx>\n" |
| " next_to_watch.status <%x>\n", |
| (unsigned long)((tx_ring - adapter->tx_ring) / |
| sizeof(struct e1000_tx_ring)), |
| readl(adapter->hw.hw_addr + tx_ring->tdh), |
| readl(adapter->hw.hw_addr + tx_ring->tdt), |
| tx_ring->next_to_use, |
| tx_ring->next_to_clean, |
| tx_ring->buffer_info[eop].time_stamp, |
| eop, |
| jiffies, |
| eop_desc->upper.fields.status); |
| netif_stop_queue(netdev); |
| } |
| } |
| return cleaned; |
| } |
| |
| /** |
| * e1000_rx_checksum - Receive Checksum Offload for 82543 |
| * @adapter: board private structure |
| * @status_err: receive descriptor status and error fields |
| * @csum: receive descriptor csum field |
| * @sk_buff: socket buffer with received data |
| **/ |
| |
| static void |
| e1000_rx_checksum(struct e1000_adapter *adapter, |
| uint32_t status_err, uint32_t csum, |
| struct sk_buff *skb) |
| { |
| uint16_t status = (uint16_t)status_err; |
| uint8_t errors = (uint8_t)(status_err >> 24); |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* 82543 or newer only */ |
| if (unlikely(adapter->hw.mac_type < e1000_82543)) return; |
| /* Ignore Checksum bit is set */ |
| if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
| /* TCP/UDP checksum error bit is set */ |
| if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
| /* let the stack verify checksum errors */ |
| adapter->hw_csum_err++; |
| return; |
| } |
| /* TCP/UDP Checksum has not been calculated */ |
| if (adapter->hw.mac_type <= e1000_82547_rev_2) { |
| if (!(status & E1000_RXD_STAT_TCPCS)) |
| return; |
| } else { |
| if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
| return; |
| } |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| if (likely(status & E1000_RXD_STAT_TCPCS)) { |
| /* TCP checksum is good */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else if (adapter->hw.mac_type > e1000_82547_rev_2) { |
| /* IP fragment with UDP payload */ |
| /* Hardware complements the payload checksum, so we undo it |
| * and then put the value in host order for further stack use. |
| */ |
| csum = ntohl(csum ^ 0xFFFF); |
| skb->csum = csum; |
| skb->ip_summed = CHECKSUM_HW; |
| } |
| adapter->hw_csum_good++; |
| } |
| |
| /** |
| * e1000_clean_rx_irq - Send received data up the network stack; legacy |
| * @adapter: board private structure |
| **/ |
| |
| static boolean_t |
| #ifdef CONFIG_E1000_NAPI |
| e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do) |
| #else |
| e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring) |
| #endif |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| unsigned long flags; |
| uint32_t length; |
| uint8_t last_byte; |
| unsigned int i; |
| int cleaned_count = 0; |
| boolean_t cleaned = FALSE; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (rx_desc->status & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| u8 status; |
| #ifdef CONFIG_E1000_NAPI |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| #endif |
| status = rx_desc->status; |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| if (++i == rx_ring->count) i = 0; |
| next_rxd = E1000_RX_DESC(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = TRUE; |
| cleaned_count++; |
| pci_unmap_single(pdev, |
| buffer_info->dma, |
| buffer_info->length, |
| PCI_DMA_FROMDEVICE); |
| |
| length = le16_to_cpu(rx_desc->length); |
| |
| /* adjust length to remove Ethernet CRC */ |
| length -= 4; |
| |
| if (unlikely(!(status & E1000_RXD_STAT_EOP))) { |
| /* All receives must fit into a single buffer */ |
| E1000_DBG("%s: Receive packet consumed multiple" |
| " buffers\n", netdev->name); |
| /* recycle */ |
| buffer_info-> skb = skb; |
| goto next_desc; |
| } |
| |
| if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
| last_byte = *(skb->data + length - 1); |
| if (TBI_ACCEPT(&adapter->hw, status, |
| rx_desc->errors, length, last_byte)) { |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| e1000_tbi_adjust_stats(&adapter->hw, |
| &adapter->stats, |
| length, skb->data); |
| spin_unlock_irqrestore(&adapter->stats_lock, |
| flags); |
| length--; |
| } else { |
| /* recycle */ |
| buffer_info->skb = skb; |
| goto next_desc; |
| } |
| } |
| |
| /* code added for copybreak, this should improve |
| * performance for small packets with large amounts |
| * of reassembly being done in the stack */ |
| #define E1000_CB_LENGTH 256 |
| if (length < E1000_CB_LENGTH) { |
| struct sk_buff *new_skb = |
| netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
| if (new_skb) { |
| skb_reserve(new_skb, NET_IP_ALIGN); |
| new_skb->dev = netdev; |
| memcpy(new_skb->data - NET_IP_ALIGN, |
| skb->data - NET_IP_ALIGN, |
| length + NET_IP_ALIGN); |
| /* save the skb in buffer_info as good */ |
| buffer_info->skb = skb; |
| skb = new_skb; |
| skb_put(skb, length); |
| } |
| } else |
| skb_put(skb, length); |
| |
| /* end copybreak code */ |
| |
| /* Receive Checksum Offload */ |
| e1000_rx_checksum(adapter, |
| (uint32_t)(status) | |
| ((uint32_t)(rx_desc->errors) << 24), |
| le16_to_cpu(rx_desc->csum), skb); |
| |
| skb->protocol = eth_type_trans(skb, netdev); |
| #ifdef CONFIG_E1000_NAPI |
| if (unlikely(adapter->vlgrp && |
| (status & E1000_RXD_STAT_VP))) { |
| vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
| le16_to_cpu(rx_desc->special) & |
| E1000_RXD_SPC_VLAN_MASK); |
| } else { |
| netif_receive_skb(skb); |
| } |
| #else /* CONFIG_E1000_NAPI */ |
| if (unlikely(adapter->vlgrp && |
| (status & E1000_RXD_STAT_VP))) { |
| vlan_hwaccel_rx(skb, adapter->vlgrp, |
| le16_to_cpu(rx_desc->special) & |
| E1000_RXD_SPC_VLAN_MASK); |
| } else { |
| netif_rx(skb); |
| } |
| #endif /* CONFIG_E1000_NAPI */ |
| netdev->last_rx = jiffies; |
| |
| next_desc: |
| rx_desc->status = 0; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = E1000_DESC_UNUSED(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| |
| return cleaned; |
| } |
| |
| /** |
| * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
| * @adapter: board private structure |
| **/ |
| |
| static boolean_t |
| #ifdef CONFIG_E1000_NAPI |
| e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int *work_done, int work_to_do) |
| #else |
| e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring) |
| #endif |
| { |
| union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| struct e1000_ps_page *ps_page; |
| struct e1000_ps_page_dma *ps_page_dma; |
| struct sk_buff *skb; |
| unsigned int i, j; |
| uint32_t length, staterr; |
| int cleaned_count = 0; |
| boolean_t cleaned = FALSE; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (staterr & E1000_RXD_STAT_DD) { |
| ps_page = &rx_ring->ps_page[i]; |
| ps_page_dma = &rx_ring->ps_page_dma[i]; |
| #ifdef CONFIG_E1000_NAPI |
| if (unlikely(*work_done >= work_to_do)) |
| break; |
| (*work_done)++; |
| #endif |
| skb = buffer_info->skb; |
| |
| /* in the packet split case this is header only */ |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| if (++i == rx_ring->count) i = 0; |
| next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = TRUE; |
| cleaned_count++; |
| pci_unmap_single(pdev, buffer_info->dma, |
| buffer_info->length, |
| PCI_DMA_FROMDEVICE); |
| |
| if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) { |
| E1000_DBG("%s: Packet Split buffers didn't pick up" |
| " the full packet\n", netdev->name); |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| length = le16_to_cpu(rx_desc->wb.middle.length0); |
| |
| if (unlikely(!length)) { |
| E1000_DBG("%s: Last part of the packet spanning" |
| " multiple descriptors\n", netdev->name); |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| /* Good Receive */ |
| skb_put(skb, length); |
| |
| { |
| /* this looks ugly, but it seems compiler issues make it |
| more efficient than reusing j */ |
| int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
| |
| /* page alloc/put takes too long and effects small packet |
| * throughput, so unsplit small packets and save the alloc/put*/ |
| if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) { |
| u8 *vaddr; |
| /* there is no documentation about how to call |
| * kmap_atomic, so we can't hold the mapping |
| * very long */ |
| pci_dma_sync_single_for_cpu(pdev, |
| ps_page_dma->ps_page_dma[0], |
| PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| vaddr = kmap_atomic(ps_page->ps_page[0], |
| KM_SKB_DATA_SOFTIRQ); |
| memcpy(skb->tail, vaddr, l1); |
| kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
| pci_dma_sync_single_for_device(pdev, |
| ps_page_dma->ps_page_dma[0], |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| /* remove the CRC */ |
| l1 -= 4; |
| skb_put(skb, l1); |
| goto copydone; |
| } /* if */ |
| } |
| |
| for (j = 0; j < adapter->rx_ps_pages; j++) { |
| if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j]))) |
| break; |
| pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| ps_page_dma->ps_page_dma[j] = 0; |
| skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0, |
| length); |
| ps_page->ps_page[j] = NULL; |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| } |
| |
| /* strip the ethernet crc, problem is we're using pages now so |
| * this whole operation can get a little cpu intensive */ |
| pskb_trim(skb, skb->len - 4); |
| |
| copydone: |
| e1000_rx_checksum(adapter, staterr, |
| le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
| skb->protocol = eth_type_trans(skb, netdev); |
| |
| if (likely(rx_desc->wb.upper.header_status & |
| cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))) |
| adapter->rx_hdr_split++; |
| #ifdef CONFIG_E1000_NAPI |
| if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { |
| vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
| le16_to_cpu(rx_desc->wb.middle.vlan) & |
| E1000_RXD_SPC_VLAN_MASK); |
| } else { |
| netif_receive_skb(skb); |
| } |
| #else /* CONFIG_E1000_NAPI */ |
| if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { |
| vlan_hwaccel_rx(skb, adapter->vlgrp, |
| le16_to_cpu(rx_desc->wb.middle.vlan) & |
| E1000_RXD_SPC_VLAN_MASK); |
| } else { |
| netif_rx(skb); |
| } |
| #endif /* CONFIG_E1000_NAPI */ |
| netdev->last_rx = jiffies; |
| |
| next_desc: |
| rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
| buffer_info->skb = NULL; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| |
| staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = E1000_DESC_UNUSED(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
| |
| return cleaned; |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
| * @adapter: address of board private structure |
| **/ |
| |
| static void |
| e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| if (!(skb = buffer_info->skb)) |
| skb = netdev_alloc_skb(netdev, bufsz); |
| else { |
| skb_trim(skb, 0); |
| goto map_skb; |
| } |
| |
| if (unlikely(!skb)) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
| struct sk_buff *oldskb = skb; |
| DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
| "at %p\n", bufsz, skb->data); |
| /* Try again, without freeing the previous */ |
| skb = netdev_alloc_skb(netdev, bufsz); |
| /* Failed allocation, critical failure */ |
| if (!skb) { |
| dev_kfree_skb(oldskb); |
| break; |
| } |
| |
| if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
| /* give up */ |
| dev_kfree_skb(skb); |
| dev_kfree_skb(oldskb); |
| break; /* while !buffer_info->skb */ |
| } else { |
| /* Use new allocation */ |
| dev_kfree_skb(oldskb); |
| } |
| } |
| /* Make buffer alignment 2 beyond a 16 byte boundary |
| * this will result in a 16 byte aligned IP header after |
| * the 14 byte MAC header is removed |
| */ |
| skb_reserve(skb, NET_IP_ALIGN); |
| |
| skb->dev = netdev; |
| |
| buffer_info->skb = skb; |
| buffer_info->length = adapter->rx_buffer_len; |
| map_skb: |
| buffer_info->dma = pci_map_single(pdev, |
| skb->data, |
| adapter->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| |
| /* Fix for errata 23, can't cross 64kB boundary */ |
| if (!e1000_check_64k_bound(adapter, |
| (void *)(unsigned long)buffer_info->dma, |
| adapter->rx_buffer_len)) { |
| DPRINTK(RX_ERR, ERR, |
| "dma align check failed: %u bytes at %p\n", |
| adapter->rx_buffer_len, |
| (void *)(unsigned long)buffer_info->dma); |
| dev_kfree_skb(skb); |
| buffer_info->skb = NULL; |
| |
| pci_unmap_single(pdev, buffer_info->dma, |
| adapter->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| |
| break; /* while !buffer_info->skb */ |
| } |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(++i == rx_ring->count)) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| if (likely(rx_ring->next_to_use != i)) { |
| rx_ring->next_to_use = i; |
| if (unlikely(i-- == 0)) |
| i = (rx_ring->count - 1); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| writel(i, adapter->hw.hw_addr + rx_ring->rdt); |
| } |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
| * @adapter: address of board private structure |
| **/ |
| |
| static void |
| e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
| struct e1000_rx_ring *rx_ring, |
| int cleaned_count) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| union e1000_rx_desc_packet_split *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct e1000_ps_page *ps_page; |
| struct e1000_ps_page_dma *ps_page_dma; |
| struct sk_buff *skb; |
| unsigned int i, j; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| ps_page = &rx_ring->ps_page[i]; |
| ps_page_dma = &rx_ring->ps_page_dma[i]; |
| |
| while (cleaned_count--) { |
| rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| if (j < adapter->rx_ps_pages) { |
| if (likely(!ps_page->ps_page[j])) { |
| ps_page->ps_page[j] = |
| alloc_page(GFP_ATOMIC); |
| if (unlikely(!ps_page->ps_page[j])) { |
| adapter->alloc_rx_buff_failed++; |
| goto no_buffers; |
| } |
| ps_page_dma->ps_page_dma[j] = |
| pci_map_page(pdev, |
| ps_page->ps_page[j], |
| 0, PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| } |
| /* Refresh the desc even if buffer_addrs didn't |
| * change because each write-back erases |
| * this info. |
| */ |
| rx_desc->read.buffer_addr[j+1] = |
| cpu_to_le64(ps_page_dma->ps_page_dma[j]); |
| } else |
| rx_desc->read.buffer_addr[j+1] = ~0; |
| } |
| |
| skb = netdev_alloc_skb(netdev, |
| adapter->rx_ps_bsize0 + NET_IP_ALIGN); |
| |
| if (unlikely(!skb)) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| /* Make buffer alignment 2 beyond a 16 byte boundary |
| * this will result in a 16 byte aligned IP header after |
| * the 14 byte MAC header is removed |
| */ |
| skb_reserve(skb, NET_IP_ALIGN); |
| |
| skb->dev = netdev; |
| |
| buffer_info->skb = skb; |
| buffer_info->length = adapter->rx_ps_bsize0; |
| buffer_info->dma = pci_map_single(pdev, skb->data, |
| adapter->rx_ps_bsize0, |
| PCI_DMA_FROMDEVICE); |
| |
| rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(++i == rx_ring->count)) i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| ps_page = &rx_ring->ps_page[i]; |
| ps_page_dma = &rx_ring->ps_page_dma[i]; |
| } |
| |
| no_buffers: |
| if (likely(rx_ring->next_to_use != i)) { |
| rx_ring->next_to_use = i; |
| if (unlikely(i-- == 0)) i = (rx_ring->count - 1); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| /* Hardware increments by 16 bytes, but packet split |
| * descriptors are 32 bytes...so we increment tail |
| * twice as much. |
| */ |
| writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt); |
| } |
| } |
| |
| /** |
| * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
| * @adapter: |
| **/ |
| |
| static void |
| e1000_smartspeed(struct e1000_adapter *adapter) |
| { |
| uint16_t phy_status; |
| uint16_t phy_ctrl; |
| |
| if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || |
| !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) |
| return; |
| |
| if (adapter->smartspeed == 0) { |
| /* If Master/Slave config fault is asserted twice, |
| * we assume back-to-back */ |
| e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); |
| if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
| e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); |
| if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
| e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); |
| if (phy_ctrl & CR_1000T_MS_ENABLE) { |
| phy_ctrl &= ~CR_1000T_MS_ENABLE; |
| e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, |
| phy_ctrl); |
| adapter->smartspeed++; |
| if (!e1000_phy_setup_autoneg(&adapter->hw) && |
| !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, |
| &phy_ctrl)) { |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
| MII_CR_RESTART_AUTO_NEG); |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, |
| phy_ctrl); |
| } |
| } |
| return; |
| } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
| /* If still no link, perhaps using 2/3 pair cable */ |
| e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); |
| phy_ctrl |= CR_1000T_MS_ENABLE; |
| e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); |
| if (!e1000_phy_setup_autoneg(&adapter->hw) && |
| !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
| MII_CR_RESTART_AUTO_NEG); |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); |
| } |
| } |
| /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
| if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
| adapter->smartspeed = 0; |
| } |
| |
| /** |
| * e1000_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| |
| static int |
| e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| return e1000_mii_ioctl(netdev, ifr, cmd); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| /** |
| * e1000_mii_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| |
| static int |
| e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| int retval; |
| uint16_t mii_reg; |
| uint16_t spddplx; |
| unsigned long flags; |
| |
| if (adapter->hw.media_type != e1000_media_type_copper) |
| return -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = adapter->hw.phy_addr; |
| break; |
| case SIOCGMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, |
| &data->val_out)) { |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| return -EIO; |
| } |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| break; |
| case SIOCSMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| if (data->reg_num & ~(0x1F)) |
| return -EFAULT; |
| mii_reg = data->val_in; |
| spin_lock_irqsave(&adapter->stats_lock, flags); |
| if (e1000_write_phy_reg(&adapter->hw, data->reg_num, |
| mii_reg)) { |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| return -EIO; |
| } |
| if (adapter->hw.media_type == e1000_media_type_copper) { |
| switch (data->reg_num) { |
| case PHY_CTRL: |
| if (mii_reg & MII_CR_POWER_DOWN) |
| break; |
| if (mii_reg & MII_CR_AUTO_NEG_EN) { |
| adapter->hw.autoneg = 1; |
| adapter->hw.autoneg_advertised = 0x2F; |
| } else { |
| if (mii_reg & 0x40) |
| spddplx = SPEED_1000; |
| else if (mii_reg & 0x2000) |
| spddplx = SPEED_100; |
| else |
| spddplx = SPEED_10; |
| spddplx += (mii_reg & 0x100) |
| ? DUPLEX_FULL : |
| DUPLEX_HALF; |
| retval = e1000_set_spd_dplx(adapter, |
| spddplx); |
| if (retval) { |
| spin_unlock_irqrestore( |
| &adapter->stats_lock, |
| flags); |
| return retval; |
| } |
| } |
| if (netif_running(adapter->netdev)) |
| e1000_reinit_locked(adapter); |
| else |
| e1000_reset(adapter); |
| break; |
| case M88E1000_PHY_SPEC_CTRL: |
| case M88E1000_EXT_PHY_SPEC_CTRL: |
| if (e1000_phy_reset(&adapter->hw)) { |
| spin_unlock_irqrestore( |
| &adapter->stats_lock, flags); |
| return -EIO; |
| } |
| break; |
| } |
| } else { |
| switch (data->reg_num) { |
| case PHY_CTRL: |
| if (mii_reg & MII_CR_POWER_DOWN) |
| break; |
| if (netif_running(adapter->netdev)) |
| e1000_reinit_locked(adapter); |
| else |
| e1000_reset(adapter); |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&adapter->stats_lock, flags); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| void |
| e1000_pci_set_mwi(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| int ret_val = pci_set_mwi(adapter->pdev); |
| |
| if (ret_val) |
| DPRINTK(PROBE, ERR, "Error in setting MWI\n"); |
| } |
| |
| void |
| e1000_pci_clear_mwi(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| |
| pci_clear_mwi(adapter->pdev); |
| } |
| |
| void |
| e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| |
| pci_read_config_word(adapter->pdev, reg, value); |
| } |
| |
| void |
| e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) |
| { |
| struct e1000_adapter *adapter = hw->back; |
| |
| pci_write_config_word(adapter->pdev, reg, *value); |
| } |
| |
| #if 0 |
| uint32_t |
| e1000_io_read(struct e1000_hw *hw, unsigned long port) |
| { |
| return inl(port); |
| } |
| #endif /* 0 */ |
| |
| void |
| e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) |
| { |
| outl(value, port); |
| } |
| |
| static void |
| e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| uint32_t ctrl, rctl; |
| |
| e1000_irq_disable(adapter); |
| adapter->vlgrp = grp; |
| |
| if (grp) { |
| /* enable VLAN tag insert/strip */ |
| ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
| ctrl |= E1000_CTRL_VME; |
| E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
| |
| if (adapter->hw.mac_type != e1000_ich8lan) { |
| /* enable VLAN receive filtering */ |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl |= E1000_RCTL_VFE; |
| rctl &= ~E1000_RCTL_CFIEN; |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| e1000_update_mng_vlan(adapter); |
| } |
| } else { |
| /* disable VLAN tag insert/strip */ |
| ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
| ctrl &= ~E1000_CTRL_VME; |
| E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
| |
| if (adapter->hw.mac_type != e1000_ich8lan) { |
| /* disable VLAN filtering */ |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl &= ~E1000_RCTL_VFE; |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) { |
| e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| } |
| } |
| } |
| |
| e1000_irq_enable(adapter); |
| } |
| |
| static void |
| e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| uint32_t vfta, index; |
| |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
| (vid == adapter->mng_vlan_id)) |
| return; |
| /* add VID to filter table */ |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); |
| vfta |= (1 << (vid & 0x1F)); |
| e1000_write_vfta(&adapter->hw, index, vfta); |
| } |
| |
| static void |
| e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| uint32_t vfta, index; |
| |
| e1000_irq_disable(adapter); |
| |
| if (adapter->vlgrp) |
| adapter->vlgrp->vlan_devices[vid] = NULL; |
| |
| e1000_irq_enable(adapter); |
| |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
| (vid == adapter->mng_vlan_id)) { |
| /* release control to f/w */ |
| e1000_release_hw_control(adapter); |
| return; |
| } |
| |
| /* remove VID from filter table */ |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); |
| vfta &= ~(1 << (vid & 0x1F)); |
| e1000_write_vfta(&adapter->hw, index, vfta); |
| } |
| |
| static void |
| e1000_restore_vlan(struct e1000_adapter *adapter) |
| { |
| e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
| |
| if (adapter->vlgrp) { |
| uint16_t vid; |
| for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
| if (!adapter->vlgrp->vlan_devices[vid]) |
| continue; |
| e1000_vlan_rx_add_vid(adapter->netdev, vid); |
| } |
| } |
| } |
| |
| int |
| e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) |
| { |
| adapter->hw.autoneg = 0; |
| |
| /* Fiber NICs only allow 1000 gbps Full duplex */ |
| if ((adapter->hw.media_type == e1000_media_type_fiber) && |
| spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
| DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| |
| switch (spddplx) { |
| case SPEED_10 + DUPLEX_HALF: |
| adapter->hw.forced_speed_duplex = e1000_10_half; |
| break; |
| case SPEED_10 + DUPLEX_FULL: |
| adapter->hw.forced_speed_duplex = e1000_10_full; |
| break; |
| case SPEED_100 + DUPLEX_HALF: |
| adapter->hw.forced_speed_duplex = e1000_100_half; |
| break; |
| case SPEED_100 + DUPLEX_FULL: |
| adapter->hw.forced_speed_duplex = e1000_100_full; |
| break; |
| case SPEED_1000 + DUPLEX_FULL: |
| adapter->hw.autoneg = 1; |
| adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| default: |
| DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| /* Save/restore 16 or 64 dwords of PCI config space depending on which |
| * bus we're on (PCI(X) vs. PCI-E) |
| */ |
| #define PCIE_CONFIG_SPACE_LEN 256 |
| #define PCI_CONFIG_SPACE_LEN 64 |
| static int |
| e1000_pci_save_state(struct e1000_adapter *adapter) |
| { |
| struct pci_dev *dev = adapter->pdev; |
| int size; |
| int i; |
| |
| if (adapter->hw.mac_type >= e1000_82571) |
| size = PCIE_CONFIG_SPACE_LEN; |
| else |
| size = PCI_CONFIG_SPACE_LEN; |
| |
| WARN_ON(adapter->config_space != NULL); |
| |
| adapter->config_space = kmalloc(size, GFP_KERNEL); |
| if (!adapter->config_space) { |
| DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size); |
| return -ENOMEM; |
| } |
| for (i = 0; i < (size / 4); i++) |
| pci_read_config_dword(dev, i * 4, &adapter->config_space[i]); |
| return 0; |
| } |
| |
| static void |
| e1000_pci_restore_state(struct e1000_adapter *adapter) |
| { |
| struct pci_dev *dev = adapter->pdev; |
| int size; |
| int i; |
| |
| if (adapter->config_space == NULL) |
| return; |
| |
| if (adapter->hw.mac_type >= e1000_82571) |
| size = PCIE_CONFIG_SPACE_LEN; |
| else |
| size = PCI_CONFIG_SPACE_LEN; |
| for (i = 0; i < (size / 4); i++) |
| pci_write_config_dword(dev, i * 4, adapter->config_space[i]); |
| kfree(adapter->config_space); |
| adapter->config_space = NULL; |
| return; |
| } |
| #endif /* CONFIG_PM */ |
| |
| static int |
| e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| uint32_t ctrl, ctrl_ext, rctl, manc, status; |
| uint32_t wufc = adapter->wol; |
| #ifdef CONFIG_PM |
| int retval = 0; |
| #endif |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) { |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
| e1000_down(adapter); |
| } |
| |
| #ifdef CONFIG_PM |
| /* Implement our own version of pci_save_state(pdev) because pci- |
| * express adapters have 256-byte config spaces. */ |
| retval = e1000_pci_save_state(adapter); |
| if (retval) |
| return retval; |
| #endif |
| |
| status = E1000_READ_REG(&adapter->hw, STATUS); |
| if (status & E1000_STATUS_LU) |
| wufc &= ~E1000_WUFC_LNKC; |
| |
| if (wufc) { |
| e1000_setup_rctl(adapter); |
| e1000_set_multi(netdev); |
| |
| /* turn on all-multi mode if wake on multicast is enabled */ |
| if (adapter->wol & E1000_WUFC_MC) { |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl |= E1000_RCTL_MPE; |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| } |
| |
| if (adapter->hw.mac_type >= e1000_82540) { |
| ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
| /* advertise wake from D3Cold */ |
| #define E1000_CTRL_ADVD3WUC 0x00100000 |
| /* phy power management enable */ |
| #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
| ctrl |= E1000_CTRL_ADVD3WUC | |
| E1000_CTRL_EN_PHY_PWR_MGMT; |
| E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
| } |
| |
| if (adapter->hw.media_type == e1000_media_type_fiber || |
| adapter->hw.media_type == e1000_media_type_internal_serdes) { |
| /* keep the laser running in D3 */ |
| ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
| E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); |
| } |
| |
| /* Allow time for pending master requests to run */ |
| e1000_disable_pciex_master(&adapter->hw); |
| |
| E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); |
| E1000_WRITE_REG(&adapter->hw, WUFC, wufc); |
| pci_enable_wake(pdev, PCI_D3hot, 1); |
| pci_enable_wake(pdev, PCI_D3cold, 1); |
| } else { |
| E1000_WRITE_REG(&adapter->hw, WUC, 0); |
| E1000_WRITE_REG(&adapter->hw, WUFC, 0); |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| } |
| |
| /* FIXME: this code is incorrect for PCI Express */ |
| if (adapter->hw.mac_type >= e1000_82540 && |
| adapter->hw.mac_type != e1000_ich8lan && |
| adapter->hw.media_type == e1000_media_type_copper) { |
| manc = E1000_READ_REG(&adapter->hw, MANC); |
| if (manc & E1000_MANC_SMBUS_EN) { |
| manc |= E1000_MANC_ARP_EN; |
| E1000_WRITE_REG(&adapter->hw, MANC, manc); |
| pci_enable_wake(pdev, PCI_D3hot, 1); |
| pci_enable_wake(pdev, PCI_D3cold, 1); |
| } |
| } |
| |
| if (adapter->hw.phy_type == e1000_phy_igp_3) |
| e1000_phy_powerdown_workaround(&adapter->hw); |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. */ |
| e1000_release_hw_control(adapter); |
| |
| pci_disable_device(pdev); |
| |
| pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int |
| e1000_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| uint32_t manc, ret_val; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| e1000_pci_restore_state(adapter); |
| ret_val = pci_enable_device(pdev); |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| e1000_reset(adapter); |
| E1000_WRITE_REG(&adapter->hw, WUS, ~0); |
| |
| if (netif_running(netdev)) |
| e1000_up(adapter); |
| |
| netif_device_attach(netdev); |
| |
| /* FIXME: this code is incorrect for PCI Express */ |
| if (adapter->hw.mac_type >= e1000_82540 && |
| adapter->hw.mac_type != e1000_ich8lan && |
| adapter->hw.media_type == e1000_media_type_copper) { |
| manc = E1000_READ_REG(&adapter->hw, MANC); |
| manc &= ~(E1000_MANC_ARP_EN); |
| E1000_WRITE_REG(&adapter->hw, MANC, manc); |
| } |
| |
| /* If the controller is 82573 and f/w is AMT, do not set |
| * DRV_LOAD until the interface is up. For all other cases, |
| * let the f/w know that the h/w is now under the control |
| * of the driver. */ |
| if (adapter->hw.mac_type != e1000_82573 || |
| !e1000_check_mng_mode(&adapter->hw)) |
| e1000_get_hw_control(adapter); |
| |
| return 0; |
| } |
| #endif |
| |
| static void e1000_shutdown(struct pci_dev *pdev) |
| { |
| e1000_suspend(pdev, PMSG_SUSPEND); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void |
| e1000_netpoll(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| disable_irq(adapter->pdev->irq); |
| e1000_intr(adapter->pdev->irq, netdev, NULL); |
| e1000_clean_tx_irq(adapter, adapter->tx_ring); |
| #ifndef CONFIG_E1000_NAPI |
| adapter->clean_rx(adapter, adapter->rx_ring); |
| #endif |
| enable_irq(adapter->pdev->irq); |
| } |
| #endif |
| |
| /** |
| * e1000_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci conneection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev->priv; |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) |
| e1000_down(adapter); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * e1000_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. Implementation |
| * resembles the first-half of the e1000_resume routine. |
| */ |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev->priv; |
| |
| if (pci_enable_device(pdev)) { |
| printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, 3, 0); |
| pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ |
| |
| /* Perform card reset only on one instance of the card */ |
| if (PCI_FUNC (pdev->devfn) != 0) |
| return PCI_ERS_RESULT_RECOVERED; |
| |
| e1000_reset(adapter); |
| E1000_WRITE_REG(&adapter->hw, WUS, ~0); |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * e1000_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. Implementation resembles the |
| * second-half of the e1000_resume routine. |
| */ |
| static void e1000_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev->priv; |
| uint32_t manc, swsm; |
| |
| if (netif_running(netdev)) { |
| if (e1000_up(adapter)) { |
| printk("e1000: can't bring device back up after reset\n"); |
| return; |
| } |
| } |
| |
| netif_device_attach(netdev); |
| |
| if (adapter->hw.mac_type >= e1000_82540 && |
| adapter->hw.media_type == e1000_media_type_copper) { |
| manc = E1000_READ_REG(&adapter->hw, MANC); |
| manc &= ~(E1000_MANC_ARP_EN); |
| E1000_WRITE_REG(&adapter->hw, MANC, manc); |
| } |
| |
| switch (adapter->hw.mac_type) { |
| case e1000_82573: |
| swsm = E1000_READ_REG(&adapter->hw, SWSM); |
| E1000_WRITE_REG(&adapter->hw, SWSM, |
| swsm | E1000_SWSM_DRV_LOAD); |
| break; |
| default: |
| break; |
| } |
| |
| if (netif_running(netdev)) |
| mod_timer(&adapter->watchdog_timer, jiffies); |
| } |
| |
| /* e1000_main.c */ |