blob: 8a05aa168616f6d548bd78e03d7e474eee3cf1ad [file] [log] [blame]
/* pgtable.h: FR-V page table mangling
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Derived from:
* include/asm-m68knommu/pgtable.h
* include/asm-i386/pgtable.h
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
#include <asm/mem-layout.h>
#include <asm/setup.h>
#include <asm/processor.h>
#ifndef __ASSEMBLY__
#include <linux/threads.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
struct mm_struct;
struct vm_area_struct;
#endif
#ifndef __ASSEMBLY__
#if defined(CONFIG_HIGHPTE)
typedef unsigned long pte_addr_t;
#else
typedef pte_t *pte_addr_t;
#endif
#endif
/*****************************************************************************/
/*
* MMU-less operation case first
*/
#ifndef CONFIG_MMU
#define pgd_present(pgd) (1) /* pages are always present on NO_MM */
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_clear(pgdp)
#define kern_addr_valid(addr) (1)
#define pmd_offset(a, b) ((void *) 0)
#define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
#define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
#define __swp_type(x) (0)
#define __swp_offset(x) (0)
#define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#ifndef __ASSEMBLY__
static inline int pte_file(pte_t pte) { return 0; }
#endif
#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
#define swapper_pg_dir ((pgd_t *) NULL)
#define pgtable_cache_init() do {} while (0)
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#define arch_enter_lazy_cpu_mode() do {} while (0)
#define arch_leave_lazy_cpu_mode() do {} while (0)
#else /* !CONFIG_MMU */
/*****************************************************************************/
/*
* then MMU operation
*/
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
#ifndef __ASSEMBLY__
extern unsigned long empty_zero_page;
#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
#endif
/*
* we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
* [see Documentation/fujitsu/frv/mmu-layout.txt]
*
* Page Directory:
* - Size: 16KB
* - 64 PGEs per PGD
* - Each PGE holds 1 PUD and covers 64MB
*
* Page Upper Directory:
* - Size: 256B
* - 1 PUE per PUD
* - Each PUE holds 1 PMD and covers 64MB
*
* Page Mid-Level Directory
* - Size: 256B
* - 1 PME per PMD
* - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
* - All STEs are instantiated at the same time
*
* Page Table
* - Size: 16KB
* - 4096 PTEs per PT
* - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
*
* Pages
* - Size: 4KB
*
* total PTEs
* = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
* = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
* = 262144 (or 256 * 1024)
*/
#define PGDIR_SHIFT 26
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE - 1))
#define PTRS_PER_PGD 64
#define PUD_SHIFT 26
#define PTRS_PER_PUD 1
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE - 1))
#define PUE_SIZE 256
#define PMD_SHIFT 26
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE - 1))
#define PTRS_PER_PMD 1
#define PME_SIZE 256
#define __frv_PT_SIZE 256
#define PTRS_PER_PTE 4096
#define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
#define TWOLEVEL_PGDIR_SHIFT 26
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
#define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
#ifndef __ASSEMBLY__
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pud_ERROR(e) \
printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) \
do { \
*(pteptr) = (pteval); \
asm volatile("dcf %M0" :: "U"(*pteptr)); \
} while(0)
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
/*
* pgd_offset() returns a (pgd_t *)
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pud is never bad, and a pud always exists (as it's folded
* into the pgd entry)
*/
static inline int pgd_none(pgd_t pgd) { return 0; }
static inline int pgd_bad(pgd_t pgd) { return 0; }
static inline int pgd_present(pgd_t pgd) { return 1; }
static inline void pgd_clear(pgd_t *pgd) { }
#define pgd_populate(mm, pgd, pud) do { } while (0)
/*
* (puds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pgd(pgdptr, pgdval) \
do { \
memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
} while(0)
static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
{
return (pud_t *) pgd;
}
#define pgd_page(pgd) (pud_page((pud_t){ pgd }))
#define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd }))
/*
* allocating and freeing a pud is trivial: the 1-entry pud is
* inside the pgd, so has no extra memory associated with it.
*/
#define pud_alloc_one(mm, address) NULL
#define pud_free(x) do { } while (0)
#define __pud_free_tlb(tlb, x) do { } while (0)
/*
* The "pud_xxx()" functions here are trivial for a folded two-level
* setup: the pmd is never bad, and a pmd always exists (as it's folded
* into the pud entry)
*/
static inline int pud_none(pud_t pud) { return 0; }
static inline int pud_bad(pud_t pud) { return 0; }
static inline int pud_present(pud_t pud) { return 1; }
static inline void pud_clear(pud_t *pud) { }
#define pud_populate(mm, pmd, pte) do { } while (0)
/*
* (pmds are folded into puds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
#define pud_page(pud) (pmd_page((pmd_t){ pud }))
#define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud }))
/*
* (pmds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
#define set_pmd(pmdptr, pmdval) \
do { \
__set_pmd((pmdptr), (pmdval).ste[0]); \
} while(0)
#define __pmd_index(address) 0
static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
{
return (pmd_t *) dir + __pmd_index(address);
}
#define pte_same(a, b) ((a).pte == (b).pte)
#define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
#define pte_none(x) (!(x).pte)
#define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define VMALLOC_VMADDR(x) ((unsigned long) (x))
#endif /* !__ASSEMBLY__ */
/*
* control flags in AMPR registers and TLB entries
*/
#define _PAGE_BIT_PRESENT xAMPRx_V_BIT
#define _PAGE_BIT_WP DAMPRx_WP_BIT
#define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
#define _PAGE_BIT_SUPER xAMPRx_S_BIT
#define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
#define _PAGE_BIT_DIRTY xAMPRx_M_BIT
#define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
#define _PAGE_PRESENT xAMPRx_V
#define _PAGE_WP DAMPRx_WP
#define _PAGE_NOCACHE xAMPRx_C
#define _PAGE_SUPER xAMPRx_S
#define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
#define _PAGE_DIRTY xAMPRx_M
#define _PAGE_NOTGLOBAL xAMPRx_NG
#define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
#define _PAGE_FILE 0x002 /* set:pagecache unset:swap */
#define _PAGE_PROTNONE 0x000 /* If not present */
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define __PGPROT_BASE \
(_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(__PGPROT_BASE)
#define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
#define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
#define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
#define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
#define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
#define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
#define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
#ifndef __ASSEMBLY__
/*
* The FR451 can do execute protection by virtue of having separate TLB miss handlers for
* instruction access and for data access. However, we don't have enough reserved bits to say
* "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
/*
* Define this to warn about kernel memory accesses that are
* done without a 'access_ok(VERIFY_WRITE,..)'
*/
#undef TEST_ACCESS_OK
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
#define pmd_none(x) (!pmd_val(x))
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
#define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
#define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
#define pmd_page_vaddr(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#ifndef CONFIG_DISCONTIGMEM
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#endif
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_read(pte_t pte) { return !((pte).pte & _PAGE_SUPER); }
static inline int pte_exec(pte_t pte) { return !((pte).pte & _PAGE_SUPER); }
static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; }
static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); }
static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; }
static inline pte_t pte_exprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; }
static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; }
static inline pte_t pte_mkread(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; }
static inline pte_t pte_mkexec(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; }
static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
int i = test_and_clear_bit(_PAGE_BIT_DIRTY, ptep);
asm volatile("dcf %M0" :: "U"(*ptep));
return i;
}
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
asm volatile("dcf %M0" :: "U"(*ptep));
return i;
}
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
unsigned long x = xchg(&ptep->pte, 0);
asm volatile("dcf %M0" :: "U"(*ptep));
return __pte(x);
}
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
set_bit(_PAGE_BIT_WP, ptep);
asm volatile("dcf %M0" :: "U"(*ptep));
}
/*
* Macro to mark a page protection value as "uncacheable"
*/
#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte.pte &= _PAGE_CHG_MASK;
pte.pte |= pgprot_val(newprot);
return pte;
}
/* to find an entry in a page-table-directory. */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#define pgd_index_k(addr) pgd_index(addr)
/* Find an entry in the bottom-level page table.. */
#define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
/*
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
*
* this macro returns the index of the entry in the pte page which would
* control the given virtual address
*/
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address) \
((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
#define pte_offset_map_nested(dir, address) \
((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
#else
#define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#endif
/*
* Handle swap and file entries
* - the PTE is encoded in the following format:
* bit 0: Must be 0 (!_PAGE_PRESENT)
* bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE)
* bits 2-7: Swap type
* bits 8-31: Swap offset
* bits 2-31: File pgoff
*/
#define __swp_type(x) (((x).val >> 2) & 0x1f)
#define __swp_offset(x) ((x).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
static inline int pte_file(pte_t pte)
{
return pte.pte & _PAGE_FILE;
}
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(PTE) ((PTE).pte >> 2)
#define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE)
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
#define MK_IOSPACE_PFN(space, pfn) (pfn)
#define GET_IOSPACE(pfn) 0
#define GET_PFN(pfn) (pfn)
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#include <asm-generic/pgtable.h>
/*
* preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
*/
static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
unsigned long ampr;
pgd_t *pge = pgd_offset(current->mm, address);
pud_t *pue = pud_offset(pge, address);
pmd_t *pme = pmd_offset(pue, address);
ampr = pme->ste[0] & 0xffffff00;
ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C | xAMPRx_V;
asm volatile("movgs %0,scr0\n"
"movgs %0,scr1\n"
"movgs %1,dampr4\n"
"movgs %1,dampr5\n"
:
: "r"(address), "r"(ampr)
);
}
#ifdef CONFIG_PROC_FS
extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
#endif
extern void __init pgtable_cache_init(void);
#endif /* !__ASSEMBLY__ */
#endif /* !CONFIG_MMU */
#ifndef __ASSEMBLY__
extern void __init paging_init(void);
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_PGTABLE_H */