blob: 22b636d9cafbaa4318cd29d31ef972893e2f1f7e [file] [log] [blame]
/*
* Linux cfg80211 driver
*
* Copyright (C) 1999-2011, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: wl_cfg80211.c,v 1.1.4.1.2.14 2011/02/09 01:40:07 Exp $
*/
#include <typedefs.h>
#include <linuxver.h>
#include <osl.h>
#include <linux/kernel.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <bcmutils.h>
#include <bcmwifi.h>
#include <bcmendian.h>
#include <proto/ethernet.h>
#include <proto/802.11.h>
#include <linux/if_arp.h>
#include <asm/uaccess.h>
#include <dngl_stats.h>
#include <dhd.h>
#include <dhdioctl.h>
#include <wlioctl.h>
#include <proto/ethernet.h>
#include <dngl_stats.h>
#include <dhd.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <linux/wait.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include <linux/mmc/sdio_func.h>
#include <linux/firmware.h>
#include <bcmsdbus.h>
#include <wlioctl.h>
#include <wldev_common.h>
#include <wl_cfg80211.h>
#include <wl_cfgp2p.h>
static struct sdio_func *cfg80211_sdio_func;
static struct wl_dev *wl_cfg80211_dev;
u32 wl_dbg_level = WL_DBG_ERR;
#define WL_4329_FW_FILE "brcm/bcm4329-fullmac-4-218-248-5.bin"
#define WL_4329_NVRAM_FILE "brcm/bcm4329-fullmac-4-218-248-5.txt"
#define WL_TRACE(a) printk("%s ", __FUNCTION__); printk a
#define MAC2STR(a) (a)[0], (a)[1], (a)[2], (a)[3], (a)[4], (a)[5]
#define MACSTR "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAX_WAIT_TIME 3000
static s8 ioctlbuf[WLC_IOCTL_MAXLEN];
#ifdef CONFIG_SYSCTL
#define MAC_STRING_LEN (sizeof(u8) * 17)
u8 wl_sysctl_macstring[2][MAC_STRING_LEN];
static ctl_table wl_sysctl_child[] = {
{
.procname = "p2p_dev_addr",
.data = &wl_sysctl_macstring[0],
.maxlen = MAC_STRING_LEN,
.mode = 0444,
.child = NULL,
.proc_handler = proc_dostring,
},
{
.procname = "p2p_int_addr",
.data = &wl_sysctl_macstring[1],
.maxlen = MAC_STRING_LEN,
.mode = 0444,
.child = NULL,
.proc_handler = proc_dostring,
},
{0}
};
static ctl_table wl_sysctl_table[] = {
{
.procname = "wifi",
.data = NULL,
.maxlen = 0,
.mode = 0555,
.child = wl_sysctl_child,
.proc_handler = NULL,
},
{0}
};
static struct ctl_table_header *wl_sysctl_hdr;
#endif /* CONFIG_SYSCTL */
/* Data Element Definitions */
#define WPS_ID_CONFIG_METHODS 0x1008
#define WPS_ID_REQ_TYPE 0x103A
#define WPS_ID_DEVICE_NAME 0x1011
#define WPS_ID_VERSION 0x104A
#define WPS_ID_DEVICE_PWD_ID 0x1012
#define WPS_ID_REQ_DEV_TYPE 0x106A
#define WPS_ID_PRIM_DEV_TYPE 0x1054
/*
* cfg80211_ops api/callback list
*/
static s32 wl_frame_get_mgmt(u16 fc, const struct ether_addr *da,
const struct ether_addr *sa, const struct ether_addr *bssid,
u8 **pheader, u32 *body_len, u8 *pbody);
static s32 __wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request,
struct cfg80211_ssid *this_ssid);
static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request);
static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed);
static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params);
static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy,
struct net_device *dev);
static s32 wl_cfg80211_get_station(struct wiphy *wiphy,
struct net_device *dev, u8 *mac,
struct station_info *sinfo);
static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy,
struct net_device *dev, bool enabled,
s32 timeout);
static s32 wl_cfg80211_set_bitrate_mask(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask);
static int wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme);
static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
u16 reason_code);
static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy,
enum nl80211_tx_power_setting type,
s32 dbm);
static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm);
static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx, bool unicast, bool multicast);
static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params);
static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr);
static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
void *cookie, void (*callback) (void *cookie,
struct key_params *params));
static s32 wl_cfg80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *dev, u8 key_idx);
static s32 wl_cfg80211_resume(struct wiphy *wiphy);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39)
static s32 wl_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
#else
static s32 wl_cfg80211_suspend(struct wiphy *wiphy);
#endif
static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_pmksa *pmksa);
static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_pmksa *pmksa);
static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy,
struct net_device *dev);
/*
* event & event Q handlers for cfg80211 interfaces
*/
static s32 wl_create_event_handler(struct wl_priv *wl);
static void wl_destroy_event_handler(struct wl_priv *wl);
static s32 wl_event_handler(void *data);
static void wl_init_eq(struct wl_priv *wl);
static void wl_flush_eq(struct wl_priv *wl);
static void wl_lock_eq(struct wl_priv *wl);
static void wl_unlock_eq(struct wl_priv *wl);
static void wl_init_eq_lock(struct wl_priv *wl);
static void wl_init_event_handler(struct wl_priv *wl);
static struct wl_event_q *wl_deq_event(struct wl_priv *wl);
static s32 wl_enq_event(struct wl_priv *wl, struct net_device *ndev, u32 type,
const wl_event_msg_t *msg, void *data);
static void wl_put_event(struct wl_event_q *e);
static void wl_wakeup_event(struct wl_priv *wl);
static s32 wl_notify_connect_status(struct wl_priv *wl,
struct net_device *ndev,
const wl_event_msg_t *e, void *data);
static s32 wl_notify_roaming_status(struct wl_priv *wl,
struct net_device *ndev,
const wl_event_msg_t *e, void *data);
static s32 wl_notify_scan_status(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data);
static s32 wl_bss_connect_done(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data, bool completed);
static s32 wl_bss_roaming_done(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data);
static s32 wl_notify_mic_status(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data);
/*
* register/deregister sdio function
*/
struct sdio_func *wl_cfg80211_get_sdio_func(void);
static void wl_clear_sdio_func(void);
/*
* ioctl utilites
*/
static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf,
s32 buf_len);
static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name,
s8 *buf, s32 len);
static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val);
static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name,
s32 *retval);
/*
* cfg80211 set_wiphy_params utilities
*/
static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold);
static s32 wl_set_rts(struct net_device *dev, u32 frag_threshold);
static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l);
/*
* wl profile utilities
*/
static s32 wl_update_prof(struct wl_priv *wl, const wl_event_msg_t *e,
void *data, s32 item);
static void *wl_read_prof(struct wl_priv *wl, s32 item);
static void wl_init_prof(struct wl_profile *prof);
/*
* cfg80211 connect utilites
*/
static s32 wl_set_wpa_version(struct net_device *dev,
struct cfg80211_connect_params *sme);
static s32 wl_set_auth_type(struct net_device *dev,
struct cfg80211_connect_params *sme);
static s32 wl_set_set_cipher(struct net_device *dev,
struct cfg80211_connect_params *sme);
static s32 wl_set_key_mgmt(struct net_device *dev,
struct cfg80211_connect_params *sme);
static s32 wl_set_set_sharedkey(struct net_device *dev,
struct cfg80211_connect_params *sme);
static s32 wl_get_assoc_ies(struct wl_priv *wl, struct net_device *ndev);
static void wl_ch_to_chanspec(int ch,
struct wl_join_params *join_params, size_t *join_params_size);
/*
* information element utilities
*/
static void wl_rst_ie(struct wl_priv *wl);
static __used s32 wl_add_ie(struct wl_priv *wl, u8 t, u8 l, u8 *v);
static s32 wl_mrg_ie(struct wl_priv *wl, u8 *ie_stream, u16 ie_size);
static s32 wl_cp_ie(struct wl_priv *wl, u8 *dst, u16 dst_size);
static u32 wl_get_ielen(struct wl_priv *wl);
static s32 wl_mode_to_nl80211_iftype(s32 mode);
static struct wireless_dev *wl_alloc_wdev(s32 sizeof_iface,
struct device *dev);
static void wl_free_wdev(struct wl_priv *wl);
static s32 wl_inform_bss(struct wl_priv *wl);
static s32 wl_inform_single_bss(struct wl_priv *wl, struct wl_bss_info *bi);
static s32 wl_update_bss_info(struct wl_priv *wl, struct net_device *ndev);
static s32 wl_add_keyext(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, const u8 *mac_addr,
struct key_params *params);
/*
* key indianess swap utilities
*/
static void swap_key_from_BE(struct wl_wsec_key *key);
static void swap_key_to_BE(struct wl_wsec_key *key);
/*
* wl_priv memory init/deinit utilities
*/
static s32 wl_init_priv_mem(struct wl_priv *wl);
static void wl_deinit_priv_mem(struct wl_priv *wl);
static void wl_delay(u32 ms);
/*
* store/restore cfg80211 instance data
*/
static void wl_set_drvdata(struct wl_dev *dev, void *data);
static void *wl_get_drvdata(struct wl_dev *dev);
/*
* ibss mode utilities
*/
static bool wl_is_ibssmode(struct wl_priv *wl, struct net_device *ndev);
static __used bool wl_is_ibssstarter(struct wl_priv *wl);
/*
* dongle up/down , default configuration utilities
*/
static bool wl_is_linkdown(struct wl_priv *wl, const wl_event_msg_t *e);
static bool wl_is_linkup(struct wl_priv *wl, const wl_event_msg_t *e, struct net_device *ndev);
static bool wl_is_nonetwork(struct wl_priv *wl, const wl_event_msg_t *e);
static void wl_link_up(struct wl_priv *wl);
static void wl_link_down(struct wl_priv *wl);
static s32 wl_dongle_mode(struct wl_priv *wl, struct net_device *ndev, s32 iftype);
static s32 __wl_cfg80211_up(struct wl_priv *wl);
static s32 __wl_cfg80211_down(struct wl_priv *wl);
static s32 wl_dongle_probecap(struct wl_priv *wl);
static void wl_init_conf(struct wl_conf *conf);
static s32 wl_dongle_eventmsg(struct net_device *ndev);
/*
* dongle configuration utilities
*/
#ifndef EMBEDDED_PLATFORM
static s32 wl_dongle_country(struct net_device *ndev, u8 ccode);
static s32 wl_dongle_up(struct net_device *ndev, u32 up);
static s32 wl_dongle_power(struct net_device *ndev, u32 power_mode);
static s32 wl_dongle_glom(struct net_device *ndev, u32 glom,
u32 dongle_align);
static s32 wl_dongle_roam(struct net_device *ndev, u32 roamvar,
u32 bcn_timeout);
static s32 wl_dongle_eventmsg(struct net_device *ndev);
static s32 wl_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time,
s32 scan_unassoc_time);
static s32 wl_dongle_offload(struct net_device *ndev, s32 arpoe,
s32 arp_ol);
static s32 wl_pattern_atoh(s8 *src, s8 *dst);
static s32 wl_dongle_filter(struct net_device *ndev, u32 filter_mode);
static s32 wl_update_wiphybands(struct wl_priv *wl);
#endif /* !EMBEDDED_PLATFORM */
static s32 wl_config_dongle(struct wl_priv *wl, bool need_lock);
/*
* iscan handler
*/
static void wl_iscan_timer(unsigned long data);
static void wl_term_iscan(struct wl_priv *wl);
static s32 wl_init_iscan(struct wl_priv *wl);
static s32 wl_iscan_thread(void *data);
static s32 wl_run_iscan(struct wl_iscan_ctrl *iscan, struct wlc_ssid *ssid,
u16 action);
static s32 wl_do_iscan(struct wl_priv *wl);
static s32 wl_wakeup_iscan(struct wl_iscan_ctrl *iscan);
static s32 wl_invoke_iscan(struct wl_priv *wl);
static s32 wl_get_iscan_results(struct wl_iscan_ctrl *iscan, u32 *status,
struct wl_scan_results **bss_list);
static void wl_notify_iscan_complete(struct wl_iscan_ctrl *iscan, bool aborted);
static void wl_init_iscan_handler(struct wl_iscan_ctrl *iscan);
static s32 wl_iscan_done(struct wl_priv *wl);
static s32 wl_iscan_pending(struct wl_priv *wl);
static s32 wl_iscan_inprogress(struct wl_priv *wl);
static s32 wl_iscan_aborted(struct wl_priv *wl);
/*
* fw/nvram downloading handler
*/
static void wl_init_fw(struct wl_fw_ctrl *fw);
/*
* find most significant bit set
*/
static __used u32 wl_find_msb(u16 bit16);
/*
* update pmklist to dongle
*/
static __used s32 wl_update_pmklist(struct net_device *dev,
struct wl_pmk_list *pmk_list, s32 err);
/*
* debufs support
*/
static int wl_debugfs_add_netdev_params(struct wl_priv *wl);
static void wl_debugfs_remove_netdev(struct wl_priv *wl);
/*
* rfkill support
*/
static int wl_setup_rfkill(struct wl_priv *wl);
static int wl_rfkill_set(void *data, bool blocked);
#define WL_PRIV_GET() \
({ \
struct wl_iface *ci = NULL; \
if (unlikely(!(wl_cfg80211_dev && \
(ci = wl_get_drvdata(wl_cfg80211_dev))))) { \
WL_ERR(("wl_cfg80211_dev is unavailable\n")); \
BUG(); \
} \
ci_to_wl(ci); \
})
#define CHECK_SYS_UP() \
do { \
struct wl_priv *wl = WL_PRIV_GET(); \
if (unlikely(!test_bit(WL_STATUS_READY, &wl->status))) { \
WL_INFO(("device is not ready : status (%d)\n", \
(int)wl->status)); \
return -EIO; \
} \
} while (0)
extern int dhd_wait_pend8021x(struct net_device *dev);
#if (WL_DBG_LEVEL > 0)
#define WL_DBG_ESTR_MAX 50
static s8 wl_dbg_estr[][WL_DBG_ESTR_MAX] = {
"SET_SSID", "JOIN", "START", "AUTH", "AUTH_IND",
"DEAUTH", "DEAUTH_IND", "ASSOC", "ASSOC_IND", "REASSOC",
"REASSOC_IND", "DISASSOC", "DISASSOC_IND", "QUIET_START", "QUIET_END",
"BEACON_RX", "LINK", "MIC_ERROR", "NDIS_LINK", "ROAM",
"TXFAIL", "PMKID_CACHE", "RETROGRADE_TSF", "PRUNE", "AUTOAUTH",
"EAPOL_MSG", "SCAN_COMPLETE", "ADDTS_IND", "DELTS_IND", "BCNSENT_IND",
"BCNRX_MSG", "BCNLOST_MSG", "ROAM_PREP", "PFN_NET_FOUND",
"PFN_NET_LOST",
"RESET_COMPLETE", "JOIN_START", "ROAM_START", "ASSOC_START",
"IBSS_ASSOC",
"RADIO", "PSM_WATCHDOG", "WLC_E_CCX_ASSOC_START", "WLC_E_CCX_ASSOC_ABORT",
"PROBREQ_MSG",
"SCAN_CONFIRM_IND", "PSK_SUP", "COUNTRY_CODE_CHANGED",
"EXCEEDED_MEDIUM_TIME", "ICV_ERROR",
"UNICAST_DECODE_ERROR", "MULTICAST_DECODE_ERROR", "TRACE",
"WLC_E_BTA_HCI_EVENT", "IF", "WLC_E_P2P_DISC_LISTEN_COMPLETE",
"RSSI", "PFN_SCAN_COMPLETE", "WLC_E_EXTLOG_MSG",
"ACTION_FRAME", "ACTION_FRAME_COMPLETE", "WLC_E_PRE_ASSOC_IND",
"WLC_E_PRE_REASSOC_IND", "WLC_E_CHANNEL_ADOPTED", "WLC_E_AP_STARTED",
"WLC_E_DFS_AP_STOP", "WLC_E_DFS_AP_RESUME", "WLC_E_WAI_STA_EVENT",
"WLC_E_WAI_MSG", "WLC_E_ESCAN_RESULT", "WLC_E_ACTION_FRAME_OFF_CHAN_COMPLETE",
"WLC_E_PROBRESP_MSG", "WLC_E_P2P_PROBREQ_MSG", "WLC_E_DCS_REQUEST", "WLC_E_FIFO_CREDIT_MAP",
"WLC_E_ACTION_FRAME_RX", "WLC_E_WAKE_EVENT", "WLC_E_RM_COMPLETE"
};
#endif /* WL_DBG_LEVEL */
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = 5000 + (5 * (_channel)), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2)
#define RATETAB_ENT(_rateid, _flags) \
{ \
.bitrate = RATE_TO_BASE100KBPS(_rateid), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
static struct ieee80211_rate __wl_rates[] = {
RATETAB_ENT(WLC_RATE_1M, 0),
RATETAB_ENT(WLC_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(WLC_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(WLC_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(WLC_RATE_6M, 0),
RATETAB_ENT(WLC_RATE_9M, 0),
RATETAB_ENT(WLC_RATE_12M, 0),
RATETAB_ENT(WLC_RATE_18M, 0),
RATETAB_ENT(WLC_RATE_24M, 0),
RATETAB_ENT(WLC_RATE_36M, 0),
RATETAB_ENT(WLC_RATE_48M, 0),
RATETAB_ENT(WLC_RATE_54M, 0)
};
#define wl_a_rates (__wl_rates + 4)
#define wl_a_rates_size 8
#define wl_g_rates (__wl_rates + 0)
#define wl_g_rates_size 12
static struct ieee80211_channel __wl_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0)
};
static struct ieee80211_channel __wl_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0)
};
static struct ieee80211_channel __wl_5ghz_n_channels[] = {
CHAN5G(32, 0), CHAN5G(34, 0),
CHAN5G(36, 0), CHAN5G(38, 0),
CHAN5G(40, 0), CHAN5G(42, 0),
CHAN5G(44, 0), CHAN5G(46, 0),
CHAN5G(48, 0), CHAN5G(50, 0),
CHAN5G(52, 0), CHAN5G(54, 0),
CHAN5G(56, 0), CHAN5G(58, 0),
CHAN5G(60, 0), CHAN5G(62, 0),
CHAN5G(64, 0), CHAN5G(66, 0),
CHAN5G(68, 0), CHAN5G(70, 0),
CHAN5G(72, 0), CHAN5G(74, 0),
CHAN5G(76, 0), CHAN5G(78, 0),
CHAN5G(80, 0), CHAN5G(82, 0),
CHAN5G(84, 0), CHAN5G(86, 0),
CHAN5G(88, 0), CHAN5G(90, 0),
CHAN5G(92, 0), CHAN5G(94, 0),
CHAN5G(96, 0), CHAN5G(98, 0),
CHAN5G(100, 0), CHAN5G(102, 0),
CHAN5G(104, 0), CHAN5G(106, 0),
CHAN5G(108, 0), CHAN5G(110, 0),
CHAN5G(112, 0), CHAN5G(114, 0),
CHAN5G(116, 0), CHAN5G(118, 0),
CHAN5G(120, 0), CHAN5G(122, 0),
CHAN5G(124, 0), CHAN5G(126, 0),
CHAN5G(128, 0), CHAN5G(130, 0),
CHAN5G(132, 0), CHAN5G(134, 0),
CHAN5G(136, 0), CHAN5G(138, 0),
CHAN5G(140, 0), CHAN5G(142, 0),
CHAN5G(144, 0), CHAN5G(145, 0),
CHAN5G(146, 0), CHAN5G(147, 0),
CHAN5G(148, 0), CHAN5G(149, 0),
CHAN5G(150, 0), CHAN5G(151, 0),
CHAN5G(152, 0), CHAN5G(153, 0),
CHAN5G(154, 0), CHAN5G(155, 0),
CHAN5G(156, 0), CHAN5G(157, 0),
CHAN5G(158, 0), CHAN5G(159, 0),
CHAN5G(160, 0), CHAN5G(161, 0),
CHAN5G(162, 0), CHAN5G(163, 0),
CHAN5G(164, 0), CHAN5G(165, 0),
CHAN5G(166, 0), CHAN5G(168, 0),
CHAN5G(170, 0), CHAN5G(172, 0),
CHAN5G(174, 0), CHAN5G(176, 0),
CHAN5G(178, 0), CHAN5G(180, 0),
CHAN5G(182, 0), CHAN5G(184, 0),
CHAN5G(186, 0), CHAN5G(188, 0),
CHAN5G(190, 0), CHAN5G(192, 0),
CHAN5G(194, 0), CHAN5G(196, 0),
CHAN5G(198, 0), CHAN5G(200, 0),
CHAN5G(202, 0), CHAN5G(204, 0),
CHAN5G(206, 0), CHAN5G(208, 0),
CHAN5G(210, 0), CHAN5G(212, 0),
CHAN5G(214, 0), CHAN5G(216, 0),
CHAN5G(218, 0), CHAN5G(220, 0),
CHAN5G(222, 0), CHAN5G(224, 0),
CHAN5G(226, 0), CHAN5G(228, 0)
};
static struct ieee80211_supported_band __wl_band_2ghz = {
.band = IEEE80211_BAND_2GHZ,
.channels = __wl_2ghz_channels,
.n_channels = ARRAY_SIZE(__wl_2ghz_channels),
.bitrates = wl_g_rates,
.n_bitrates = wl_g_rates_size
};
static struct ieee80211_supported_band __wl_band_5ghz_a = {
.band = IEEE80211_BAND_5GHZ,
.channels = __wl_5ghz_a_channels,
.n_channels = ARRAY_SIZE(__wl_5ghz_a_channels),
.bitrates = wl_a_rates,
.n_bitrates = wl_a_rates_size
};
static struct ieee80211_supported_band __wl_band_5ghz_n = {
.band = IEEE80211_BAND_5GHZ,
.channels = __wl_5ghz_n_channels,
.n_channels = ARRAY_SIZE(__wl_5ghz_n_channels),
.bitrates = wl_a_rates,
.n_bitrates = wl_a_rates_size
};
static const u32 __wl_cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_AES_CMAC
};
/* There isn't a lot of sense in it, but you can transmit anything you like */
static const struct ieee80211_txrx_stypes
wl_cfg80211_default_mgmt_stypes[NUM_NL80211_IFTYPES] = {
[NL80211_IFTYPE_ADHOC] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_STATION] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_AP] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_AP_VLAN] = {
/* copy AP */
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_P2P_CLIENT] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_P2P_GO] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
}
};
static void swap_key_from_BE(struct wl_wsec_key *key)
{
key->index = htod32(key->index);
key->len = htod32(key->len);
key->algo = htod32(key->algo);
key->flags = htod32(key->flags);
key->rxiv.hi = htod32(key->rxiv.hi);
key->rxiv.lo = htod16(key->rxiv.lo);
key->iv_initialized = htod32(key->iv_initialized);
}
static void swap_key_to_BE(struct wl_wsec_key *key)
{
key->index = dtoh32(key->index);
key->len = dtoh32(key->len);
key->algo = dtoh32(key->algo);
key->flags = dtoh32(key->flags);
key->rxiv.hi = dtoh32(key->rxiv.hi);
key->rxiv.lo = dtoh16(key->rxiv.lo);
key->iv_initialized = dtoh32(key->iv_initialized);
}
/* For debug: Dump the contents of the encoded wps ie buffe */
static void
wl_dbg_dump_wps_ie(char *wps_ie)
{
#define WPS_IE_FIXED_LEN 6
u16 len = (u16) wps_ie[TLV_LEN_OFF];
u8 *subel = wps_ie+ WPS_IE_FIXED_LEN;
u16 subelt_id;
u16 subelt_len;
u16 val;
u8 *valptr = (uint8*) &val;
WL_DBG(("wps_ie len=%d\n", len));
len -= 4; /* for the WPS IE's OUI, oui_type fields */
while (len >= 4) { /* must have attr id, attr len fields */
valptr[0] = *subel++;
valptr[1] = *subel++;
subelt_id = HTON16(val);
valptr[0] = *subel++;
valptr[1] = *subel++;
subelt_len = HTON16(val);
len -= 4; /* for the attr id, attr len fields */
len -= subelt_len; /* for the remaining fields in this attribute */
WL_DBG((" subel=%p, subelt_id=0x%x subelt_len=%u\n",
subel, subelt_id, subelt_len));
if (subelt_id == WPS_ID_VERSION) {
WL_DBG((" attr WPS_ID_VERSION: %u\n", *subel));
} else if (subelt_id == WPS_ID_REQ_TYPE) {
WL_DBG((" attr WPS_ID_REQ_TYPE: %u\n", *subel));
} else if (subelt_id == WPS_ID_CONFIG_METHODS) {
valptr[0] = *subel;
valptr[1] = *(subel + 1);
WL_DBG((" attr WPS_ID_CONFIG_METHODS: %x\n", HTON16(val)));
} else if (subelt_id == WPS_ID_DEVICE_NAME) {
char devname[100];
memcpy(devname, subel, subelt_len);
devname[subelt_len] = '\0';
WL_DBG((" attr WPS_ID_DEVICE_NAME: %s (len %u)\n",
devname, subelt_len));
} else if (subelt_id == WPS_ID_DEVICE_PWD_ID) {
valptr[0] = *subel;
valptr[1] = *(subel + 1);
WL_DBG((" attr WPS_ID_DEVICE_PWD_ID: %u\n", HTON16(val)));
} else if (subelt_id == WPS_ID_PRIM_DEV_TYPE) {
valptr[0] = *subel;
valptr[1] = *(subel + 1);
WL_DBG((" attr WPS_ID_PRIM_DEV_TYPE: cat=%u \n", HTON16(val)));
valptr[0] = *(subel + 6);
valptr[1] = *(subel + 7);
WL_DBG((" attr WPS_ID_PRIM_DEV_TYPE: subcat=%u\n", HTON16(val)));
} else if (subelt_id == WPS_ID_REQ_DEV_TYPE) {
valptr[0] = *subel;
valptr[1] = *(subel + 1);
WL_DBG((" attr WPS_ID_REQ_DEV_TYPE: cat=%u\n", HTON16(val)));
valptr[0] = *(subel + 6);
valptr[1] = *(subel + 7);
WL_DBG((" attr WPS_ID_REQ_DEV_TYPE: subcat=%u\n", HTON16(val)));
} else {
WL_DBG((" unknown attr 0x%x\n", subelt_id));
}
subel += subelt_len;
}
}
static struct net_device *
wl_cfg80211_add_virtual_iface(struct wiphy *wiphy, char *name,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
s32 err;
s32 timeout = -1;
s32 wlif_type;
s32 index = 0;
s32 mode = 0;
chanspec_t chspec;
struct wl_priv *wl = WL_PRIV_GET();
struct net_device *_ndev;
dhd_pub_t *dhd = (dhd_pub_t *)(wl->pub);
WL_DBG(("if name: %s, type: %d\n", name, type));
switch (type) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MESH_POINT:
WL_ERR(("Unsupported interface type\n"));
mode = WL_MODE_IBSS;
return NULL;
case NL80211_IFTYPE_MONITOR:
return wl_to_p2p_bss_ndev(wl, P2PAPI_BSSCFG_CONNECTION);
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_STATION:
wlif_type = WL_P2P_IF_CLIENT;
mode = WL_MODE_BSS;
break;
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_AP:
wlif_type = WL_P2P_IF_GO;
mode = WL_MODE_AP;
break;
default:
WL_ERR(("Unsupported interface type\n"));
return NULL;
break;
}
if (!name) {
WL_ERR(("name is NULL\n"));
return NULL;
}
if (wl_get_p2p_status(wl, IF_DELETING) == 1) {
/* wait till IF_DEL is complete
* release the lock for the unregister to proceed
*/
rtnl_unlock();
WL_INFO(("%s: Released the lock and wait till IF_DEL is complete\n", __func__));
timeout = wait_event_interruptible_timeout(wl->dongle_event_wait,
(wl_get_p2p_status(wl, IF_DELETING) == FALSE),
msecs_to_jiffies(MAX_WAIT_TIME));
/* put back the rtnl_lock again */
rtnl_lock();
if (timeout > 0) {
WL_ERR(("IF DEL is Success\n"));
} else {
WL_ERR(("%s: timeount < 0, return -EAGAIN\n", __func__));
return ERR_PTR(-EAGAIN);
}
}
if (!p2p_on(wl) && strstr(name, WL_P2P_INTERFACE_PREFIX)) {
p2p_on(wl) = true;
wl_cfgp2p_init_discovery(wl);
}
memset(wl->p2p.vir_ifname, 0, IFNAMSIZ);
strncpy(wl->p2p.vir_ifname, name, IFNAMSIZ - 1);
wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p.dev_addr, &wl->p2p.int_addr);
/* Temporary use channel 11, in case GO will be changed with set_channel API */
chspec = wf_chspec_aton(WL_P2P_TEMP_CHAN);
/* For P2P mode, use P2P-specific driver features to create the
* bss: "wl p2p_ifadd"
*/
wl_set_p2p_status(wl, IF_ADD);
err = wl_cfgp2p_ifadd(wl, &wl->p2p.int_addr, htod32(wlif_type), chspec);
if (unlikely(err))
return ERR_PTR(-ENOMEM);
timeout = wait_event_interruptible_timeout(wl->dongle_event_wait,
(wl_get_p2p_status(wl, IF_ADD) == FALSE),
msecs_to_jiffies(MAX_WAIT_TIME));
if (timeout > 0 && (!wl_get_p2p_status(wl, IF_ADD))) {
struct wireless_dev *vwdev;
vwdev = kzalloc(sizeof(*vwdev), GFP_KERNEL);
if (unlikely(!vwdev)) {
WL_ERR(("Could not allocate wireless device\n"));
return ERR_PTR(-ENOMEM);
}
vwdev->wiphy = wl->wdev->wiphy;
WL_INFO((" virtual interface(%s) is created \n", wl->p2p.vir_ifname));
index = alloc_idx_vwdev(wl);
wl->vwdev[index] = vwdev;
vwdev->iftype =
(wlif_type == WL_P2P_IF_CLIENT) ? NL80211_IFTYPE_STATION
: NL80211_IFTYPE_AP;
_ndev = wl_to_p2p_bss_ndev(wl, P2PAPI_BSSCFG_CONNECTION);
_ndev->ieee80211_ptr = vwdev;
SET_NETDEV_DEV(_ndev, wiphy_dev(vwdev->wiphy));
vwdev->netdev = _ndev;
set_bit(WL_STATUS_READY, &wl->status);
wl->p2p.vif_created = TRUE;
set_mode_by_netdev(wl, _ndev, mode);
wl = wdev_to_wl(vwdev);
return _ndev;
} else {
wl_clr_p2p_status(wl, IF_ADD);
WL_ERR((" virtual interface(%s) is not created timeout=%d\n",
wl->p2p.vir_ifname, timeout));
memset(wl->p2p.vir_ifname, '\0', IFNAMSIZ);
wl->p2p.vif_created = FALSE;
}
return ERR_PTR(-ENODEV);
}
static s32
wl_cfg80211_del_virtual_iface(struct wiphy *wiphy, struct net_device *dev)
{
struct ether_addr p2p_mac;
struct wl_priv *wl = WL_PRIV_GET();
memcpy(p2p_mac.octet, wl->p2p.int_addr.octet, ETHER_ADDR_LEN);
if (wl->p2p.vif_created) {
if (test_bit(WL_STATUS_SCANNING, &wl->status)) {
wl_cfg80211_scan_abort(wl, dev);
}
wl_cfgp2p_ifdel(wl, &p2p_mac);
WL_ERR(("ifdel command sent to Firmware.. "
"and we just come out without waiting.."));
wl_set_p2p_status(wl, IF_DELETING);
}
WL_DBG(("Done\n"));
return 0;
}
static s32
wl_cfg80211_change_virtual_iface(struct wiphy *wiphy, struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
s32 ap = 0;
s32 infra = 0;
s32 err = BCME_OK;
s32 timeout = -1;
s32 wlif_type;
s32 mode = 0;
chanspec_t chspec;
struct wl_priv *wl = WL_PRIV_GET();
CHECK_SYS_UP();
switch (type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MESH_POINT:
ap = 1;
WL_ERR(("type (%d) : currently we do not support this type\n",
type));
break;
case NL80211_IFTYPE_ADHOC:
mode = WL_MODE_IBSS;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
mode = WL_MODE_BSS;
infra = 1;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_GO:
mode = WL_MODE_AP;
ap = 1;
break;
default:
return -EINVAL;
}
if (ap && wl->p2p.vif_created) {
WL_DBG(("p2p_vif_created (%d) p2p_on (%d)\n", wl->p2p.vif_created,
p2p_on(wl)));
chspec = wf_chspec_aton(WL_P2P_TEMP_CHAN);
wlif_type = ap ? WL_P2P_IF_GO : WL_P2P_IF_CLIENT;
WL_ERR(("%s : ap (%d), infra (%d), iftype: (%d)\n", ndev->name, ap, infra, type));
wl_set_p2p_status(wl, IF_CHANGING);
wl_clr_p2p_status(wl, IF_CHANGED);
err = wl_cfgp2p_ifchange(wl, &wl->p2p.int_addr, htod32(wlif_type), chspec);
timeout = wait_event_interruptible_timeout(wl->dongle_event_wait,
(wl_get_p2p_status(wl, IF_CHANGED) == TRUE),
msecs_to_jiffies(MAX_WAIT_TIME));
set_mode_by_netdev(wl, ndev, mode);
wl_clr_p2p_status(wl, IF_CHANGING);
wl_clr_p2p_status(wl, IF_CHANGED);
}
ndev->ieee80211_ptr->iftype = type;
return 0;
}
s32
wl_cfg80211_notify_ifadd(struct net_device *net)
{
struct wl_priv *wl = WL_PRIV_GET();
s32 ret = BCME_OK;
if (!net || !net->name) {
WL_ERR(("net is NULL\n"));
return 0;
}
WL_DBG(("IF_ADD event called from dongle, old interface name: %s, new name: %s\n",
net->name, wl->p2p.vir_ifname));
/* Assign the net device to CONNECT BSSCFG */
strncpy(net->name, wl->p2p.vir_ifname, IFNAMSIZ - 1);
wl_to_p2p_bss_ndev(wl, P2PAPI_BSSCFG_CONNECTION) = net;
wl_to_p2p_bss_bssidx(wl, P2PAPI_BSSCFG_CONNECTION) = P2PAPI_BSSCFG_CONNECTION;
wl_clr_p2p_status(wl, IF_ADD);
wake_up_interruptible(&wl->dongle_event_wait);
return ret;
}
s32
wl_cfg80211_notify_ifdel(struct net_device *net)
{
struct wl_priv *wl = WL_PRIV_GET();
if (!net || !net->name) {
WL_DBG(("net is NULL\n"));
return 0;
}
WL_DBG(("IF_DEL event called from dongle, _net name: %s, vif name: %s\n",
net->name, wl->p2p.vir_ifname));
if (wl->p2p.vif_created) {
s32 index = 0;
memset(wl->p2p.vir_ifname, '\0', IFNAMSIZ);
index = wl_cfgp2p_find_idx(wl, net);
wl_to_p2p_bss_ndev(wl, index) = NULL;
wl_to_p2p_bss_bssidx(wl, index) = 0;
wl->p2p.vif_created = FALSE;
set_mode_by_netdev(wl, net, -1);
wl_cfgp2p_clear_management_ie(wl,
index);
index = get_idx_vwdev_by_netdev(wl, net);
WL_DBG(("index : %d\n", index));
if (index >= 0) {
free_vwdev_by_index(wl, index);
}
/* Another option.. Make the IF_ADD wait, if the IF_DEL is not complete.. */
wl_clr_p2p_status(wl, IF_DELETING);
WL_ERR(("Cleared IF_DELETING status bit\n"));
wake_up_interruptible(&wl->dongle_event_wait);
WL_ERR(("Cleared IF_DELETING status bit DONE WAKEUP Interruptible\n"));
}
return 0;
}
s32
wl_cfg80211_is_progress_ifadd(void)
{
s32 is_progress = 0;
struct wl_priv *wl = WL_PRIV_GET();
if (wl_get_p2p_status(wl, IF_ADD))
is_progress = 1;
return is_progress;
}
s32
wl_cfg80211_is_progress_ifchange(void)
{
s32 is_progress = 0;
struct wl_priv *wl = WL_PRIV_GET();
if (wl_get_p2p_status(wl, IF_CHANGING))
is_progress = 1;
return is_progress;
}
s32
wl_cfg80211_notify_ifchange(void)
{
struct wl_priv *wl = WL_PRIV_GET();
if (wl_get_p2p_status(wl, IF_CHANGING)) {
wl_set_p2p_status(wl, IF_CHANGED);
wake_up_interruptible(&wl->dongle_event_wait);
}
return 0;
}
static void wl_iscan_prep(struct wl_scan_params *params, struct wlc_ssid *ssid)
{
memcpy(&params->bssid, &ether_bcast, ETHER_ADDR_LEN);
params->bss_type = DOT11_BSSTYPE_ANY;
params->scan_type = 0;
params->nprobes = -1;
params->active_time = -1;
params->passive_time = -1;
params->home_time = -1;
params->channel_num = 0;
params->nprobes = htod32(params->nprobes);
params->active_time = htod32(params->active_time);
params->passive_time = htod32(params->passive_time);
params->home_time = htod32(params->home_time);
if (ssid && ssid->SSID_len)
memcpy(&params->ssid, ssid, sizeof(wlc_ssid_t));
}
static s32
wl_run_iscan(struct wl_iscan_ctrl *iscan, struct wlc_ssid *ssid, u16 action)
{
s32 params_size =
(WL_SCAN_PARAMS_FIXED_SIZE + offsetof(wl_iscan_params_t, params));
struct wl_iscan_params *params;
s32 err = 0;
if (ssid && ssid->SSID_len)
params_size += sizeof(struct wlc_ssid);
params = (struct wl_iscan_params *)kzalloc(params_size, GFP_KERNEL);
if (unlikely(!params))
return -ENOMEM;
memset(params, 0, params_size);
BUG_ON(unlikely(params_size >= WLC_IOCTL_SMLEN));
wl_iscan_prep(&params->params, ssid);
params->version = htod32(ISCAN_REQ_VERSION);
params->action = htod16(action);
params->scan_duration = htod16(0);
/* params_size += offsetof(wl_iscan_params_t, params); */
err = wldev_iovar_setbuf(iscan->dev, "iscan", params, params_size,
iscan->ioctl_buf, WLC_IOCTL_SMLEN);
if (unlikely(err)) {
if (err == -EBUSY) {
WL_INFO(("system busy : iscan canceled\n"));
} else {
WL_ERR(("error (%d)\n", err));
}
}
kfree(params);
return err;
}
static s32 wl_do_iscan(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl_to_iscan(wl);
struct net_device *ndev = wl_to_prmry_ndev(wl);
struct wlc_ssid ssid;
s32 passive_scan;
s32 err = 0;
/* Broadcast scan by default */
memset(&ssid, 0, sizeof(ssid));
iscan->state = WL_ISCAN_STATE_SCANING;
passive_scan = wl->active_scan ? 0 : 1;
err = wldev_ioctl(ndev, WLC_SET_PASSIVE_SCAN,
&passive_scan, sizeof(passive_scan), FALSE);
if (unlikely(err)) {
WL_DBG(("error (%d)\n", err));
return err;
}
wl->iscan_kickstart = true;
wl_run_iscan(iscan, &ssid, WL_SCAN_ACTION_START);
mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000);
iscan->timer_on = 1;
return err;
}
static s32
wl_run_escan(struct wl_priv *wl, struct net_device *ndev, wlc_ssid_t *ssid, uint16 action)
{
s32 err = BCME_OK;
s32 params_size = (WL_SCAN_PARAMS_FIXED_SIZE + OFFSETOF(wl_escan_params_t, params));
wl_escan_params_t *params;
struct cfg80211_scan_request *scan_request = wl->scan_request;
u32 num_chans = 0;
s32 search_state = WL_P2P_DISC_ST_SCAN;
u32 i;
u16 *default_chan_list = NULL;
WL_DBG(("Enter \n"));
if ((ndev == wl_to_prmry_ndev(wl)) &&
!p2p_scan(wl)) {
/* LEGACY SCAN TRIGGER */
WL_DBG(("LEGACY SCAN START\n"));
if (ssid && ssid->SSID_len) {
params_size += sizeof(wlc_ssid_t);
}
params = (wl_escan_params_t *) kmalloc(params_size, GFP_KERNEL);
if (params == NULL)
return -ENOMEM;
memset(params, 0, params_size);
memcpy(&params->params.bssid, &ether_bcast, ETHER_ADDR_LEN);
params->params.bss_type = DOT11_BSSTYPE_ANY;
params->params.scan_type = 0;
params->params.nprobes = htod32(-1);
params->params.active_time = htod32(-1);
params->params.passive_time = htod32(-1);
params->params.home_time = htod32(-1);
params->params.channel_num = 0;
if (ssid && ssid->SSID_len) {
memcpy(params->params.ssid.SSID, ssid->SSID, ssid->SSID_len);
params->params.ssid.SSID_len = htod32(ssid->SSID_len);
}
params->version = htod32(ESCAN_REQ_VERSION);
params->action = htod16(action);
params->sync_id = htod16(0x1234);
wldev_iovar_setbuf(ndev, "escan", params, params_size,
wl->escan_ioctl_buf, WLC_IOCTL_MEDLEN);
kfree(params);
}
else if (p2p_on(wl) && p2p_scan(wl)) {
/* P2P SCAN TRIGGER */
if (scan_request && scan_request->n_channels) {
num_chans = scan_request->n_channels;
WL_INFO((" chann number : %d\n", num_chans));
default_chan_list = kzalloc(num_chans * sizeof(*default_chan_list),
GFP_KERNEL);
if (default_chan_list == NULL) {
WL_ERR(("channel list allocation failed \n"));
err = -ENOMEM;
goto exit;
}
for (i = 0; i < num_chans; i++)
{
default_chan_list[i] =
ieee80211_frequency_to_channel(
scan_request->channels[i]->center_freq);
}
if (num_chans == 3 && (
(default_chan_list[0] == SOCIAL_CHAN_1) &&
(default_chan_list[1] == SOCIAL_CHAN_2) &&
(default_chan_list[2] == SOCIAL_CHAN_3))) {
/* SOCIAL CHANNELS 1, 6, 11 */
search_state = WL_P2P_DISC_ST_SEARCH;
WL_INFO(("P2P SEARCH PHASE START \n"));
} else {
WL_INFO(("P2P SCAN STATE START \n"));
}
}
err = wl_cfgp2p_escan(wl, ndev, wl->active_scan, num_chans, default_chan_list,
search_state, action,
wl_to_p2p_bss_bssidx(wl, P2PAPI_BSSCFG_DEVICE));
kfree(default_chan_list);
}
exit:
return err;
}
static s32
wl_do_escan(struct wl_priv *wl, struct wiphy *wiphy, struct net_device *ndev, wlc_ssid_t *ssid)
{
s32 err = BCME_OK;
s32 passive_scan;
wl_scan_results_t *results;
WL_DBG(("Enter \n"));
wl->escan_info.wiphy = wiphy;
wl->escan_info.escan_state = WL_ESCAN_STATE_SCANING;
passive_scan = wl->active_scan ? 0 : 1;
err = wldev_ioctl(ndev, WLC_SET_PASSIVE_SCAN,
&passive_scan, sizeof(passive_scan), FALSE);
if (unlikely(err)) {
WL_DBG(("error (%d)\n", err));
return err;
}
results = (wl_scan_results_t *) wl->escan_info.escan_buf;
results->version = 0;
results->count = 0;
results->buflen = WL_SCAN_RESULTS_FIXED_SIZE;
wl_run_escan(wl, ndev, ssid, WL_SCAN_ACTION_START);
return err;
}
static s32
__wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request,
struct cfg80211_ssid *this_ssid)
{
struct wl_priv *wl = WL_PRIV_GET();
struct cfg80211_ssid *ssids;
struct wl_scan_req *sr = wl_to_sr(wl);
wlc_ssid_t ssid_info;
s32 passive_scan;
bool iscan_req;
bool escan_req;
bool spec_scan;
s32 err = 0;
if (unlikely(test_bit(WL_STATUS_SCANNING, &wl->status))) {
WL_ERR(("Scanning already : status (%d)\n", (int)wl->status));
return -EAGAIN;
}
if (unlikely(test_bit(WL_STATUS_SCAN_ABORTING, &wl->status))) {
WL_ERR(("Scanning being aborted : status (%d)\n",
(int)wl->status));
return -EAGAIN;
}
WL_DBG(("wiphy (%p)\n", wiphy));
iscan_req = false;
spec_scan = false;
if (request) { /* scan bss */
ssids = request->ssids;
if (wl->iscan_on && (!ssids || !ssids->ssid_len)) {
iscan_req = true;
} else if (wl->escan_on) {
escan_req = true;
if (ssids->ssid_len && IS_P2P_SSID(ssids->ssid)) {
/* p2p scan trigger */
if (p2p_on(wl) == false) {
/* p2p on at the first time */
p2p_on(wl) = true;
wl_cfgp2p_set_firm_p2p(wl);
}
p2p_scan(wl) = true;
} else {
/* legacy scan trigger
* So, we have to disable p2p discovery if p2p discovery is on
*/
p2p_scan(wl) = false;
/* If Netdevice is not equals to primary and p2p is on
* , we will do p2p scan using P2PAPI_BSSCFG_DEVICE.
*/
if (p2p_on(wl) && (ndev != wl_to_prmry_ndev(wl)))
p2p_scan(wl) = true;
if (p2p_scan(wl) == false) {
if (wl_get_p2p_status(wl, DISCOVERY_ON)) {
err = wl_cfgp2p_discover_enable_search(wl, FALSE);
if (unlikely(err)) {
goto scan_out;
}
}
}
}
}
} else { /* scan in ibss */
/* we don't do iscan in ibss */
ssids = this_ssid;
}
wl->scan_request = request;
set_bit(WL_STATUS_SCANNING, &wl->status);
if (iscan_req) {
err = wl_do_iscan(wl);
if (likely(!err))
return err;
else
goto scan_out;
} else if (escan_req) {
WL_DBG(("ssid \"%s\", ssid_len (%d)\n",
ssids->ssid, ssids->ssid_len));
memcpy(ssid_info.SSID, ssids->ssid, ssids->ssid_len);
ssid_info.SSID_len = ssids->ssid_len;
if (p2p_on(wl) && p2p_scan(wl)) {
err = wl_cfgp2p_enable_discovery(wl, ndev, request->ie, request->ie_len);
if (unlikely(err)) {
goto scan_out;
}
}
err = wl_do_escan(wl, wiphy, ndev, &ssid_info);
if (likely(!err))
return err;
else
goto scan_out;
} else {
memset(&sr->ssid, 0, sizeof(sr->ssid));
sr->ssid.SSID_len =
min_t(u8, sizeof(sr->ssid.SSID), ssids->ssid_len);
if (sr->ssid.SSID_len) {
memcpy(sr->ssid.SSID, ssids->ssid, sr->ssid.SSID_len);
sr->ssid.SSID_len = htod32(sr->ssid.SSID_len);
WL_DBG(("Specific scan ssid=\"%s\" len=%d\n",
sr->ssid.SSID, sr->ssid.SSID_len));
spec_scan = true;
} else {
WL_DBG(("Broadcast scan\n"));
}
WL_DBG(("sr->ssid.SSID_len (%d)\n", sr->ssid.SSID_len));
passive_scan = wl->active_scan ? 0 : 1;
err = wldev_ioctl(ndev, WLC_SET_PASSIVE_SCAN,
&passive_scan, sizeof(passive_scan), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_SET_PASSIVE_SCAN error (%d)\n", err));
goto scan_out;
}
err = wldev_ioctl(ndev, WLC_SCAN, &sr->ssid,
sizeof(sr->ssid), FALSE);
if (err) {
if (err == -EBUSY) {
WL_INFO(("system busy : scan for \"%s\" "
"canceled\n", sr->ssid.SSID));
} else {
WL_ERR(("WLC_SCAN error (%d)\n", err));
}
goto scan_out;
}
}
return 0;
scan_out:
clear_bit(WL_STATUS_SCANNING, &wl->status);
wl->scan_request = NULL;
return err;
}
static s32
wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request)
{
s32 err = 0;
WL_DBG(("Enter \n"));
CHECK_SYS_UP();
err = __wl_cfg80211_scan(wiphy, ndev, request, NULL);
if (unlikely(err)) {
WL_ERR(("scan error (%d)\n", err));
return err;
}
return err;
}
static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val)
{
s8 buf[WLC_IOCTL_SMLEN];
u32 len;
s32 err = 0;
val = htod32(val);
len = bcm_mkiovar(name, (char *)(&val), sizeof(val), buf, sizeof(buf));
BUG_ON(unlikely(!len));
err = wldev_ioctl(dev, WLC_SET_VAR, buf, len, FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
}
return err;
}
static s32
wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval)
{
union {
s8 buf[WLC_IOCTL_SMLEN];
s32 val;
} var;
u32 len;
u32 data_null;
s32 err = 0;
len = bcm_mkiovar(name, (char *)(&data_null), 0,
(char *)(&var), sizeof(var.buf));
BUG_ON(unlikely(!len));
err = wldev_ioctl(dev, WLC_GET_VAR, &var, len, FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
}
*retval = dtoh32(var.val);
return err;
}
static s32 wl_set_rts(struct net_device *dev, u32 rts_threshold)
{
s32 err = 0;
err = wl_dev_intvar_set(dev, "rtsthresh", rts_threshold);
if (unlikely(err)) {
WL_ERR(("Error (%d)\n", err));
return err;
}
return err;
}
static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold)
{
s32 err = 0;
err = wl_dev_intvar_set(dev, "fragthresh", frag_threshold);
if (unlikely(err)) {
WL_ERR(("Error (%d)\n", err));
return err;
}
return err;
}
static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l)
{
s32 err = 0;
u32 cmd = (l ? WLC_SET_LRL : WLC_SET_SRL);
retry = htod32(retry);
err = wldev_ioctl(dev, cmd, &retry, sizeof(retry), FALSE);
if (unlikely(err)) {
WL_ERR(("cmd (%d) , error (%d)\n", cmd, err));
return err;
}
return err;
}
static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct wl_priv *wl = wiphy_to_wl(wiphy);
struct net_device *ndev = wl_to_prmry_ndev(wl);
s32 err = 0;
CHECK_SYS_UP();
if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
(wl->conf->rts_threshold != wiphy->rts_threshold)) {
wl->conf->rts_threshold = wiphy->rts_threshold;
err = wl_set_rts(ndev, wl->conf->rts_threshold);
if (!err)
return err;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
(wl->conf->frag_threshold != wiphy->frag_threshold)) {
wl->conf->frag_threshold = wiphy->frag_threshold;
err = wl_set_frag(ndev, wl->conf->frag_threshold);
if (!err)
return err;
}
if (changed & WIPHY_PARAM_RETRY_LONG &&
(wl->conf->retry_long != wiphy->retry_long)) {
wl->conf->retry_long = wiphy->retry_long;
err = wl_set_retry(ndev, wl->conf->retry_long, true);
if (!err)
return err;
}
if (changed & WIPHY_PARAM_RETRY_SHORT &&
(wl->conf->retry_short != wiphy->retry_short)) {
wl->conf->retry_short = wiphy->retry_short;
err = wl_set_retry(ndev, wl->conf->retry_short, false);
if (!err) {
return err;
}
}
return err;
}
static s32
wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
struct wl_priv *wl = WL_PRIV_GET();
struct cfg80211_bss *bss;
struct ieee80211_channel *chan;
struct wl_join_params join_params;
struct cfg80211_ssid ssid;
s32 scan_retry = 0;
s32 err = 0;
WL_TRACE(("In\n"));
CHECK_SYS_UP();
if (params->bssid) {
WL_ERR(("Invalid bssid\n"));
return -EOPNOTSUPP;
}
bss = cfg80211_get_ibss(wiphy, NULL, params->ssid, params->ssid_len);
if (!bss) {
memcpy(ssid.ssid, params->ssid, params->ssid_len);
ssid.ssid_len = params->ssid_len;
do {
if (unlikely
(__wl_cfg80211_scan(wiphy, dev, NULL, &ssid) ==
-EBUSY)) {
wl_delay(150);
} else {
break;
}
} while (++scan_retry < WL_SCAN_RETRY_MAX);
/* to allow scan_inform to propagate to cfg80211 plane */
rtnl_unlock();
/* wait 4 secons till scan done.... */
schedule_timeout_interruptible(4 * HZ);
rtnl_lock();
bss = cfg80211_get_ibss(wiphy, NULL,
params->ssid, params->ssid_len);
}
if (bss) {
wl->ibss_starter = false;
WL_DBG(("Found IBSS\n"));
} else {
wl->ibss_starter = true;
}
chan = params->channel;
if (chan)
wl->channel = ieee80211_frequency_to_channel(chan->center_freq);
/*
* Join with specific BSSID and cached SSID
* If SSID is zero join based on BSSID only
*/
memset(&join_params, 0, sizeof(join_params));
memcpy((void *)join_params.ssid.SSID, (void *)params->ssid,
params->ssid_len);
join_params.ssid.SSID_len = htod32(params->ssid_len);
if (params->bssid)
memcpy(&join_params.params.bssid, params->bssid,
ETHER_ADDR_LEN);
else
memset(&join_params.params.bssid, 0, ETHER_ADDR_LEN);
err = wldev_ioctl(dev, WLC_SET_SSID, &join_params,
sizeof(join_params), FALSE);
if (unlikely(err)) {
WL_ERR(("Error (%d)\n", err));
return err;
}
return err;
}
static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
struct wl_priv *wl = WL_PRIV_GET();
s32 err = 0;
CHECK_SYS_UP();
wl_link_down(wl);
return err;
}
static s32
wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme)
{
struct wl_priv *wl = WL_PRIV_GET();
struct wl_security *sec;
s32 val = 0;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1)
val = WPA_AUTH_PSK; /* | WPA_AUTH_UNSPECIFIED; */
else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)
val = WPA2_AUTH_PSK; /* | WPA2_AUTH_UNSPECIFIED ; */
else
val = WPA_AUTH_DISABLED;
if (is_wps_conn(sme))
val = WPA_AUTH_DISABLED;
WL_DBG(("setting wpa_auth to 0x%0x\n", val));
err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", val, bssidx);
if (unlikely(err)) {
WL_ERR(("set wpa_auth failed (%d)\n", err));
return err;
}
sec = wl_read_prof(wl, WL_PROF_SEC);
sec->wpa_versions = sme->crypto.wpa_versions;
return err;
}
static s32
wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme)
{
struct wl_priv *wl = WL_PRIV_GET();
struct wl_security *sec;
s32 val = 0;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
switch (sme->auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
val = 0;
WL_DBG(("open system\n"));
break;
case NL80211_AUTHTYPE_SHARED_KEY:
val = 1;
WL_DBG(("shared key\n"));
break;
case NL80211_AUTHTYPE_AUTOMATIC:
val = 2;
WL_DBG(("automatic\n"));
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
WL_DBG(("network eap\n"));
default:
val = 2;
WL_ERR(("invalid auth type (%d)\n", sme->auth_type));
break;
}
err = wldev_iovar_setint_bsscfg(dev, "auth", val, bssidx);
if (unlikely(err)) {
WL_ERR(("set auth failed (%d)\n", err));
return err;
}
sec = wl_read_prof(wl, WL_PROF_SEC);
sec->auth_type = sme->auth_type;
return err;
}
static s32
wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme)
{
struct wl_priv *wl = WL_PRIV_GET();
struct wl_security *sec;
s32 pval = 0;
s32 gval = 0;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
if (sme->crypto.n_ciphers_pairwise) {
switch (sme->crypto.ciphers_pairwise[0]) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
pval = WEP_ENABLED;
break;
case WLAN_CIPHER_SUITE_TKIP:
pval = TKIP_ENABLED;
break;
case WLAN_CIPHER_SUITE_CCMP:
pval = AES_ENABLED;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
pval = AES_ENABLED;
break;
default:
WL_ERR(("invalid cipher pairwise (%d)\n",
sme->crypto.ciphers_pairwise[0]));
return -EINVAL;
}
}
if (sme->crypto.cipher_group) {
switch (sme->crypto.cipher_group) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
gval = WEP_ENABLED;
break;
case WLAN_CIPHER_SUITE_TKIP:
gval = TKIP_ENABLED;
break;
case WLAN_CIPHER_SUITE_CCMP:
gval = AES_ENABLED;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
gval = AES_ENABLED;
break;
default:
WL_ERR(("invalid cipher group (%d)\n",
sme->crypto.cipher_group));
return -EINVAL;
}
}
WL_DBG(("pval (%d) gval (%d)\n", pval, gval));
if (is_wps_conn(sme)) {
err = wldev_iovar_setint_bsscfg(dev, "wsec", 4, bssidx);
} else {
err = wldev_iovar_setint_bsscfg(dev, "wsec", pval | gval, bssidx);
}
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
sec = wl_read_prof(wl, WL_PROF_SEC);
sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0];
sec->cipher_group = sme->crypto.cipher_group;
return err;
}
static s32
wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme)
{
struct wl_priv *wl = WL_PRIV_GET();
struct wl_security *sec;
s32 val = 0;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
if (sme->crypto.n_akm_suites) {
err = wl_dev_intvar_get(dev, "wpa_auth", &val);
if (unlikely(err)) {
WL_ERR(("could not get wpa_auth (%d)\n", err));
return err;
}
if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
val = WPA_AUTH_UNSPECIFIED;
break;
case WLAN_AKM_SUITE_PSK:
val = WPA_AUTH_PSK;
break;
default:
WL_ERR(("invalid cipher group (%d)\n",
sme->crypto.cipher_group));
return -EINVAL;
}
} else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
val = WPA2_AUTH_UNSPECIFIED;
break;
case WLAN_AKM_SUITE_PSK:
val = WPA2_AUTH_PSK;
break;
default:
WL_ERR(("invalid cipher group (%d)\n",
sme->crypto.cipher_group));
return -EINVAL;
}
}
WL_DBG(("setting wpa_auth to %d\n", val));
err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", val, bssidx);
if (unlikely(err)) {
WL_ERR(("could not set wpa_auth (%d)\n", err));
return err;
}
}
sec = wl_read_prof(wl, WL_PROF_SEC);
sec->wpa_auth = sme->crypto.akm_suites[0];
return err;
}
static s32
wl_set_set_sharedkey(struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct wl_priv *wl = WL_PRIV_GET();
struct wl_security *sec;
struct wl_wsec_key key;
s32 val;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
WL_DBG(("key len (%d)\n", sme->key_len));
if (sme->key_len) {
sec = wl_read_prof(wl, WL_PROF_SEC);
WL_DBG(("wpa_versions 0x%x cipher_pairwise 0x%x\n",
sec->wpa_versions, sec->cipher_pairwise));
if (!(sec->wpa_versions & (NL80211_WPA_VERSION_1 |
NL80211_WPA_VERSION_2)) &&
(sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 |
WLAN_CIPHER_SUITE_WEP104))) {
memset(&key, 0, sizeof(key));
key.len = (u32) sme->key_len;
key.index = (u32) sme->key_idx;
if (unlikely(key.len > sizeof(key.data))) {
WL_ERR(("Too long key length (%u)\n", key.len));
return -EINVAL;
}
memcpy(key.data, sme->key, key.len);
key.flags = WL_PRIMARY_KEY;
switch (sec->cipher_pairwise) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
break;
default:
WL_ERR(("Invalid algorithm (%d)\n",
sme->crypto.ciphers_pairwise[0]));
return -EINVAL;
}
/* Set the new key/index */
WL_DBG(("key length (%d) key index (%d) algo (%d)\n",
key.len, key.index, key.algo));
WL_DBG(("key \"%s\"\n", key.data));
swap_key_from_BE(&key);
err = wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key),
ioctlbuf, sizeof(ioctlbuf), bssidx);
if (unlikely(err)) {
WL_ERR(("WLC_SET_KEY error (%d)\n", err));
return err;
}
if (sec->auth_type == NL80211_AUTHTYPE_OPEN_SYSTEM) {
WL_DBG(("set auth_type to shared key\n"));
val = 1; /* shared key */
err = wldev_iovar_setint_bsscfg(dev, "auth", val, bssidx);
if (unlikely(err)) {
WL_ERR(("set auth failed (%d)\n", err));
return err;
}
}
}
}
return err;
}
static s32
wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct wl_priv *wl = WL_PRIV_GET();
struct ieee80211_channel *chan = sme->channel;
struct wl_join_params join_params;
size_t join_params_size;
s32 err = 0;
WL_TRACE(("In\n"));
CHECK_SYS_UP();
if (IS_P2P_SSID(sme->ssid) && (dev != wl_to_prmry_ndev(wl))) {
/* we only allow to connect using virtual interface in case of P2P */
if (p2p_on(wl) && is_wps_conn(sme)) {
WL_DBG(("p2p index : %d\n", wl_cfgp2p_find_idx(wl, dev)));
/* Have to apply WPS IE + P2P IE in assoc req frame */
wl_cfgp2p_set_managment_ie(wl, dev,
wl_cfgp2p_find_idx(wl, dev), VNDR_IE_PRBREQ_FLAG,
wl_to_p2p_bss_saved_ie(wl, P2PAPI_BSSCFG_DEVICE).p2p_probe_req_ie,
wl_to_p2p_bss_saved_ie(wl,
P2PAPI_BSSCFG_DEVICE).p2p_probe_req_ie_len);
wl_cfgp2p_set_managment_ie(wl, dev, wl_cfgp2p_find_idx(wl, dev),
VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len);
} else if (p2p_on(wl) && (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)) {
/* This is the connect req after WPS is done [credentials exchanged]
* currently identified with WPA_VERSION_2 .
* Update the previously set IEs with
* the newly received IEs from Supplicant. This will remove the WPS IE from
* the Assoc Req.
*/
wl_cfgp2p_set_managment_ie(wl, dev, wl_cfgp2p_find_idx(wl, dev),
VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len);
}
} else {
WL_ERR(("No P2PIE in beacon \n"));
}
if (unlikely(!sme->ssid)) {
WL_ERR(("Invalid ssid\n"));
return -EOPNOTSUPP;
}
if (chan) {
wl->channel = ieee80211_frequency_to_channel(chan->center_freq);
WL_DBG(("channel (%d), center_req (%d)\n", wl->channel,
chan->center_freq));
}
WL_DBG(("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len));
err = wl_set_wpa_version(dev, sme);
if (unlikely(err))
return err;
err = wl_set_auth_type(dev, sme);
if (unlikely(err))
return err;
err = wl_set_set_cipher(dev, sme);
if (unlikely(err))
return err;
err = wl_set_key_mgmt(dev, sme);
if (unlikely(err))
return err;
err = wl_set_set_sharedkey(dev, sme);
if (unlikely(err))
return err;
wl_update_prof(wl, NULL, sme->bssid, WL_PROF_BSSID);
/*
* Join with specific BSSID and cached SSID
* If SSID is zero join based on BSSID only
*/
memset(&join_params, 0, sizeof(join_params));
join_params_size = sizeof(join_params.ssid);
join_params.ssid.SSID_len = min(sizeof(join_params.ssid.SSID), sme->ssid_len);
memcpy(&join_params.ssid.SSID, sme->ssid, join_params.ssid.SSID_len);
join_params.ssid.SSID_len = htod32(join_params.ssid.SSID_len);
wl_update_prof(wl, NULL, &join_params.ssid, WL_PROF_SSID);
memcpy(&join_params.params.bssid, &ether_bcast, ETHER_ADDR_LEN);
wl_ch_to_chanspec(wl->channel, &join_params, &join_params_size);
WL_DBG(("join_param_size %d\n", join_params_size));
if (join_params.ssid.SSID_len < IEEE80211_MAX_SSID_LEN) {
WL_ERR(("ssid \"%s\", len (%d)\n", join_params.ssid.SSID,
join_params.ssid.SSID_len));
}
err = wldev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size, FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
set_bit(WL_STATUS_CONNECTING, &wl->status);
return err;
}
static s32
wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
u16 reason_code)
{
struct wl_priv *wl = WL_PRIV_GET();
scb_val_t scbval;
bool act = false;
s32 err = 0;
WL_ERR(("Reason %d\n\n\n", reason_code));
CHECK_SYS_UP();
act = *(bool *) wl_read_prof(wl, WL_PROF_ACT);
if (likely(act)) {
scbval.val = reason_code;
memcpy(&scbval.ea, &wl->bssid, ETHER_ADDR_LEN);
scbval.val = htod32(scbval.val);
err = wldev_ioctl(dev, WLC_DISASSOC, &scbval,
sizeof(scb_val_t), FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
}
return err;
}
static s32
wl_cfg80211_set_tx_power(struct wiphy *wiphy,
enum nl80211_tx_power_setting type, s32 dbm)
{
struct wl_priv *wl = WL_PRIV_GET();
struct net_device *ndev = wl_to_prmry_ndev(wl);
u16 txpwrmw;
s32 err = 0;
s32 disable = 0;
CHECK_SYS_UP();
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
break;
case NL80211_TX_POWER_LIMITED:
if (dbm < 0) {
WL_ERR(("TX_POWER_LIMITTED - dbm is negative\n"));
return -EINVAL;
}
break;
case NL80211_TX_POWER_FIXED:
if (dbm < 0) {
WL_ERR(("TX_POWER_FIXED - dbm is negative..\n"));
return -EINVAL;
}
break;
}
/* Make sure radio is off or on as far as software is concerned */
disable = WL_RADIO_SW_DISABLE << 16;
disable = htod32(disable);
err = wldev_ioctl(ndev, WLC_SET_RADIO, &disable, sizeof(disable), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_SET_RADIO error (%d)\n", err));
return err;
}
if (dbm > 0xffff)
txpwrmw = 0xffff;
else
txpwrmw = (u16) dbm;
err = wl_dev_intvar_set(ndev, "qtxpower",
(s32) (bcm_mw_to_qdbm(txpwrmw)));
if (unlikely(err)) {
WL_ERR(("qtxpower error (%d)\n", err));
return err;
}
wl->conf->tx_power = dbm;
return err;
}
static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm)
{
struct wl_priv *wl = WL_PRIV_GET();
struct net_device *ndev = wl_to_prmry_ndev(wl);
s32 txpwrdbm;
u8 result;
s32 err = 0;
CHECK_SYS_UP();
err = wl_dev_intvar_get(ndev, "qtxpower", &txpwrdbm);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE);
*dbm = (s32) bcm_qdbm_to_mw(result);
return err;
}
static s32
wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool unicast, bool multicast)
{
struct wl_priv *wl = WL_PRIV_GET();
u32 index;
s32 wsec;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
WL_DBG(("key index (%d)\n", key_idx));
CHECK_SYS_UP();
err = wldev_iovar_getint_bsscfg(dev, "wsec", &wsec, bssidx);
if (unlikely(err)) {
WL_ERR(("WLC_GET_WSEC error (%d)\n", err));
return err;
}
if (wsec & WEP_ENABLED) {
/* Just select a new current key */
index = (u32) key_idx;
index = htod32(index);
err = wldev_ioctl(dev, WLC_SET_KEY_PRIMARY, &index,
sizeof(index), FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
}
}
return err;
}
static s32
wl_add_keyext(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, const u8 *mac_addr, struct key_params *params)
{
struct wl_priv *wl = WL_PRIV_GET();
struct wl_wsec_key key;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
memset(&key, 0, sizeof(key));
key.index = (u32) key_idx;
if (!ETHER_ISMULTI(mac_addr))
memcpy((char *)&key.ea, (void *)mac_addr, ETHER_ADDR_LEN);
key.len = (u32) params->key_len;
/* check for key index change */
if (key.len == 0) {
/* key delete */
swap_key_from_BE(&key);
wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf,
sizeof(ioctlbuf), bssidx);
if (unlikely(err)) {
WL_ERR(("key delete error (%d)\n", err));
return err;
}
} else {
if (key.len > sizeof(key.data)) {
WL_ERR(("Invalid key length (%d)\n", key.len));
return -EINVAL;
}
WL_DBG(("Setting the key index %d\n", key.index));
memcpy(key.data, params->key, key.len);
if (params->cipher == WLAN_CIPHER_SUITE_TKIP) {
u8 keybuf[8];
memcpy(keybuf, &key.data[24], sizeof(keybuf));
memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
memcpy(&key.data[16], keybuf, sizeof(keybuf));
}
/* if IW_ENCODE_EXT_RX_SEQ_VALID set */
if (params->seq && params->seq_len == 6) {
/* rx iv */
u8 *ivptr;
ivptr = (u8 *) params->seq;
key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) |
(ivptr[3] << 8) | ivptr[2];
key.rxiv.lo = (ivptr[1] << 8) | ivptr[0];
key.iv_initialized = true;
}
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n"));
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n"));
break;
case WLAN_CIPHER_SUITE_TKIP:
key.algo = CRYPTO_ALGO_TKIP;
WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n"));
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
key.algo = CRYPTO_ALGO_AES_CCM;
WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n"));
break;
case WLAN_CIPHER_SUITE_CCMP:
key.algo = CRYPTO_ALGO_AES_CCM;
WL_DBG(("WLAN_CIPHER_SUITE_CCMP\n"));
break;
default:
WL_ERR(("Invalid cipher (0x%x)\n", params->cipher));
return -EINVAL;
}
swap_key_from_BE(&key);
#ifdef CONFIG_WIRELESS_EXT
dhd_wait_pend8021x(dev);
#endif
wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf,
sizeof(ioctlbuf), bssidx);
if (unlikely(err)) {
WL_ERR(("WLC_SET_KEY error (%d)\n", err));
return err;
}
}
return err;
}
static s32
wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params)
{
struct wl_wsec_key key;
s32 val = 0;
s32 wsec = 0;
s32 err = 0;
uint8 keybuf[8];
s32 bssidx = 0;
struct wl_priv *wl = WL_PRIV_GET();
WL_DBG(("key index (%d)\n", key_idx));
CHECK_SYS_UP();
bssidx = wl_cfgp2p_find_idx(wl, dev);
if (mac_addr) {
wl_add_keyext(wiphy, dev, key_idx, mac_addr, params);
goto exit;
}
memset(&key, 0, sizeof(key));
key.len = (u32) params->key_len;
key.index = (u32) key_idx;
if (unlikely(key.len > sizeof(key.data))) {
WL_ERR(("Too long key length (%u)\n", key.len));
return -EINVAL;
}
memcpy(key.data, params->key, key.len);
key.flags = WL_PRIMARY_KEY;
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
val = WEP_ENABLED;
WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n"));
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
val = WEP_ENABLED;
WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n"));
break;
case WLAN_CIPHER_SUITE_TKIP:
key.algo = CRYPTO_ALGO_TKIP;
val = TKIP_ENABLED;
/* wpa_supplicant switches the third and fourth quarters of the TKIP key, linm */
bcopy(&key.data[24], keybuf, sizeof(keybuf));
bcopy(&key.data[16], &key.data[24], sizeof(keybuf));
bcopy(keybuf, &key.data[16], sizeof(keybuf));
WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n"));
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
key.algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n"));
break;
case WLAN_CIPHER_SUITE_CCMP:
key.algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
WL_DBG(("WLAN_CIPHER_SUITE_CCMP\n"));
break;
default:
WL_ERR(("Invalid cipher (0x%x)\n", params->cipher));
return -EINVAL;
}
/* Set the new key/index */
swap_key_from_BE(&key);
err = wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf,
sizeof(ioctlbuf), bssidx);
if (unlikely(err)) {
WL_ERR(("WLC_SET_KEY error (%d)\n", err));
return err;
}
exit:
err = wldev_iovar_getint_bsscfg(dev, "wsec", &wsec, bssidx);
if (unlikely(err)) {
WL_ERR(("get wsec error (%d)\n", err));
return err;
}
wsec |= val;
err = wldev_iovar_setint_bsscfg(dev, "wsec", wsec, bssidx);
if (unlikely(err)) {
WL_ERR(("set wsec error (%d)\n", err));
return err;
}
#ifdef NOT_YET
/* TODO: Removed in P2P, check later --lm */
val = 1; /* assume shared key. otherwise 0 */
val = htod32(val);
err = wldev_ioctl(dev, WLC_SET_AUTH, &val, sizeof(val), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_SET_AUTH error (%d)\n", err));
return err;
}
#endif
return err;
}
static s32
wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr)
{
struct wl_wsec_key key;
struct wl_priv *wl = WL_PRIV_GET();
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
WL_DBG(("Enter\n"));
CHECK_SYS_UP();
memset(&key, 0, sizeof(key));
key.index = (u32) key_idx;
key.flags = WL_PRIMARY_KEY;
key.algo = CRYPTO_ALGO_OFF;
WL_DBG(("key index (%d)\n", key_idx));
/* Set the new key/index */
swap_key_from_BE(&key);
wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf,
sizeof(ioctlbuf), bssidx);
if (unlikely(err)) {
if (err == -EINVAL) {
if (key.index >= DOT11_MAX_DEFAULT_KEYS) {
/* we ignore this key index in this case */
WL_DBG(("invalid key index (%d)\n", key_idx));
}
} else {
WL_ERR(("WLC_SET_KEY error (%d)\n", err));
}
return err;
}
#ifdef NOT_YET
/* TODO: Removed in P2P twig, check later --lin */
val = 0; /* assume open key. otherwise 1 */
val = htod32(val);
err = wldev_ioctl(dev, WLC_SET_AUTH, &val, sizeof(val), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_SET_AUTH error (%d)\n", err));
return err;
}
#endif
return err;
}
static s32
wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie,
void (*callback) (void *cookie, struct key_params * params))
{
struct key_params params;
struct wl_wsec_key key;
struct wl_priv *wl = WL_PRIV_GET();
struct wl_security *sec;
s32 wsec;
s32 err = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
WL_DBG(("key index (%d)\n", key_idx));
CHECK_SYS_UP();
memset(&key, 0, sizeof(key));
key.index = key_idx;
swap_key_to_BE(&key);
memset(&params, 0, sizeof(params));
params.key_len = (u8) min_t(u8, DOT11_MAX_KEY_SIZE, key.len);
memcpy(params.key, key.data, params.key_len);
wldev_iovar_getint_bsscfg(dev, "wsec", &wsec, bssidx);
if (unlikely(err)) {
WL_ERR(("WLC_GET_WSEC error (%d)\n", err));
return err;
}
switch (wsec) {
case WEP_ENABLED:
sec = wl_read_prof(wl, WL_PROF_SEC);
if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) {
params.cipher = WLAN_CIPHER_SUITE_WEP40;
WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n"));
} else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) {
params.cipher = WLAN_CIPHER_SUITE_WEP104;
WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n"));
}
break;
case TKIP_ENABLED:
params.cipher = WLAN_CIPHER_SUITE_TKIP;
WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n"));
break;
case AES_ENABLED:
params.cipher = WLAN_CIPHER_SUITE_AES_CMAC;
WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n"));
break;
default:
WL_ERR(("Invalid algo (0x%x)\n", wsec));
return -EINVAL;
}
callback(cookie, &params);
return err;
}
static s32
wl_cfg80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *dev, u8 key_idx)
{
WL_INFO(("Not supported\n"));
CHECK_SYS_UP();
return -EOPNOTSUPP;
}
static s32
wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_info *sinfo)
{
struct wl_priv *wl = WL_PRIV_GET();
scb_val_t scb_val;
int rssi;
s32 rate;
s32 err = 0;
CHECK_SYS_UP();
if (unlikely
(memcmp(mac, wl_read_prof(wl, WL_PROF_BSSID), ETHER_ADDR_LEN))) {
WL_ERR(("Wrong Mac address\n"));
return -ENOENT;
}
/* Report the current tx rate */
err = wldev_ioctl(dev, WLC_GET_RATE, &rate, sizeof(rate), FALSE);
if (err) {
WL_ERR(("Could not get rate (%d)\n", err));
} else {
rate = dtoh32(rate);
sinfo->filled |= STATION_INFO_TX_BITRATE;
sinfo->txrate.legacy = rate * 5;
WL_DBG(("Rate %d Mbps\n", (rate / 2)));
}
if (test_bit(WL_STATUS_CONNECTED, &wl->status)) {
memset(&scb_val, 0, sizeof(scb_val));
scb_val.val = 0;
err = wldev_ioctl(dev, WLC_GET_RSSI, &scb_val,
sizeof(scb_val_t), FALSE);
if (unlikely(err)) {
WL_ERR(("Could not get rssi (%d)\n", err));
return err;
}
rssi = dtoh32(scb_val.val);
sinfo->filled |= STATION_INFO_SIGNAL;
sinfo->signal = rssi;
WL_DBG(("RSSI %d dBm\n", rssi));
}
#if defined(ANDROID_WIRELESS_PATCH)
err = wldev_ioctl(dev, WLC_GET_RATE, &sinfo->link_speed, sizeof(sinfo->link_speed), FALSE);
sinfo->link_speed = sinfo->link_speed / 2; /* Convert internal 500Kbps to Mpbs */
if (!err)
sinfo->filled |= STATION_LINK_SPEED;
else
WL_ERR(("WLC_GET_RATE failed\n"));
#endif
return err;
}
static s32
wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
bool enabled, s32 timeout)
{
s32 pm;
s32 err = 0;
CHECK_SYS_UP();
pm = enabled ? PM_FAST : PM_OFF;
pm = htod32(pm);
WL_DBG(("power save %s\n", (pm ? "enabled" : "disabled")));
err = wldev_ioctl(dev, WLC_SET_PM, &pm, sizeof(pm), FALSE);
if (unlikely(err)) {
if (err == -ENODEV)
WL_DBG(("net_device is not ready yet\n"));
else
WL_ERR(("error (%d)\n", err));
return err;
}
return err;
}
static __used u32 wl_find_msb(u16 bit16)
{
u32 ret = 0;
if (bit16 & 0xff00) {
ret += 8;
bit16 >>= 8;
}
if (bit16 & 0xf0) {
ret += 4;
bit16 >>= 4;
}
if (bit16 & 0xc) {
ret += 2;
bit16 >>= 2;
}
if (bit16 & 2)
ret += bit16 & 2;
else if (bit16)
ret += bit16;
return ret;
}
static s32
wl_cfg80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *dev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask)
{
struct wl_rateset rateset;
s32 rate;
s32 val;
s32 err_bg;
s32 err_a;
u32 legacy;
s32 err = 0;
CHECK_SYS_UP();
/* addr param is always NULL. ignore it */
/* Get current rateset */
err = wldev_ioctl(dev, WLC_GET_CURR_RATESET, &rateset,
sizeof(rateset), FALSE);
if (unlikely(err)) {
WL_ERR(("could not get current rateset (%d)\n", err));
return err;
}
rateset.count = dtoh32(rateset.count);
legacy = wl_find_msb(mask->control[IEEE80211_BAND_2GHZ].legacy);
if (!legacy)
legacy = wl_find_msb(mask->control[IEEE80211_BAND_5GHZ].legacy);
val = wl_g_rates[legacy - 1].bitrate * 100000;
if (val < rateset.count) {
/* Select rate by rateset index */
rate = rateset.rates[val] & 0x7f;
} else {
/* Specified rate in bps */
rate = val / 500000;
}
WL_DBG(("rate %d mbps\n", (rate / 2)));
/*
*
* Set rate override,
* Since the is a/b/g-blind, both a/bg_rate are enforced.
*/
err_bg = wl_dev_intvar_set(dev, "bg_rate", rate);
err_a = wl_dev_intvar_set(dev, "a_rate", rate);
if (unlikely(err_bg && err_a)) {
WL_ERR(("could not set fixed rate (%d) (%d)\n", err_bg, err_a));
return err_bg | err_a;
}
return err;
}
static s32 wl_cfg80211_resume(struct wiphy *wiphy)
{
struct wl_priv *wl = WL_PRIV_GET();
s32 err = 0;
if (unlikely(!test_bit(WL_STATUS_READY, &wl->status))) {
WL_INFO(("device is not ready : status (%d)\n",
(int)wl->status));
return 0;
}
wl_invoke_iscan(wl);
return err;
}
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39)
static s32 wl_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow)
#else
static s32 wl_cfg80211_suspend(struct wiphy *wiphy)
#endif
{
struct wl_priv *wl = WL_PRIV_GET();
s32 err = 0;
if (unlikely(!test_bit(WL_STATUS_READY, &wl->status))) {
WL_INFO(("device is not ready : status (%d)\n",
(int)wl->status));
return 0;
}
set_bit(WL_STATUS_SCAN_ABORTING, &wl->status);
wl_term_iscan(wl);
if (wl->scan_request) {
cfg80211_scan_done(wl->scan_request, true);
wl->scan_request = NULL;
}
clear_bit(WL_STATUS_SCANNING, &wl->status);
clear_bit(WL_STATUS_SCAN_ABORTING, &wl->status);
return err;
}
static __used s32
wl_update_pmklist(struct net_device *dev, struct wl_pmk_list *pmk_list,
s32 err)
{
int i, j;
WL_DBG(("No of elements %d\n", pmk_list->pmkids.npmkid));
for (i = 0; i < pmk_list->pmkids.npmkid; i++) {
WL_DBG(("PMKID[%d]: %pM =\n", i,
&pmk_list->pmkids.pmkid[i].BSSID));
for (j = 0; j < WPA2_PMKID_LEN; j++) {
WL_DBG(("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j]));
}
}
if (likely(!err)) {
err = wl_dev_bufvar_set(dev, "pmkid_info", (char *)pmk_list,
sizeof(*pmk_list));
}
return err;
}
static s32
wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_pmksa *pmksa)
{
struct wl_priv *wl = WL_PRIV_GET();
s32 err = 0;
int i;
CHECK_SYS_UP();
for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++)
if (!memcmp(pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID,
ETHER_ADDR_LEN))
break;
if (i < WL_NUM_PMKIDS_MAX) {
memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, pmksa->bssid,
ETHER_ADDR_LEN);
memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, pmksa->pmkid,
WPA2_PMKID_LEN);
if (i == wl->pmk_list->pmkids.npmkid)
wl->pmk_list->pmkids.npmkid++;
} else {
err = -EINVAL;
}
WL_DBG(("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n",
&wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid].BSSID));
for (i = 0; i < WPA2_PMKID_LEN; i++) {
WL_DBG(("%02x\n",
wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid].
PMKID[i]));
}
err = wl_update_pmklist(dev, wl->pmk_list, err);
return err;
}
static s32
wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_pmksa *pmksa)
{
struct wl_priv *wl = WL_PRIV_GET();
struct _pmkid_list pmkid;
s32 err = 0;
int i;
CHECK_SYS_UP();
memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETHER_ADDR_LEN);
memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WPA2_PMKID_LEN);
WL_DBG(("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n",
&pmkid.pmkid[0].BSSID));
for (i = 0; i < WPA2_PMKID_LEN; i++) {
WL_DBG(("%02x\n", pmkid.pmkid[0].PMKID[i]));
}
for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++)
if (!memcmp
(pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID,
ETHER_ADDR_LEN))
break;
if ((wl->pmk_list->pmkids.npmkid > 0) &&
(i < wl->pmk_list->pmkids.npmkid)) {
memset(&wl->pmk_list->pmkids.pmkid[i], 0, sizeof(pmkid_t));
for (; i < (wl->pmk_list->pmkids.npmkid - 1); i++) {
memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID,
&wl->pmk_list->pmkids.pmkid[i + 1].BSSID,
ETHER_ADDR_LEN);
memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID,
&wl->pmk_list->pmkids.pmkid[i + 1].PMKID,
WPA2_PMKID_LEN);
}
wl->pmk_list->pmkids.npmkid--;
} else {
err = -EINVAL;
}
err = wl_update_pmklist(dev, wl->pmk_list, err);
return err;
}
static s32
wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev)
{
struct wl_priv *wl = WL_PRIV_GET();
s32 err = 0;
CHECK_SYS_UP();
memset(wl->pmk_list, 0, sizeof(*wl->pmk_list));
err = wl_update_pmklist(dev, wl->pmk_list, err);
return err;
}
wl_scan_params_t *
wl_cfg80211_scan_alloc_params(int channel, int nprobes, int *out_params_size)
{
wl_scan_params_t *params;
int params_size;
int num_chans;
*out_params_size = 0;
/* Our scan params only need space for 1 channel and 0 ssids */
params_size = WL_SCAN_PARAMS_FIXED_SIZE + 1 * sizeof(uint16);
params = (wl_scan_params_t*) kzalloc(params_size, GFP_KERNEL);
if (params == NULL) {
WL_ERR(("%s: mem alloc failed (%d bytes)\n", __func__, params_size));
return params;
}
memset(params, 0, params_size);
params->nprobes = nprobes;
num_chans = (channel == 0) ? 0 : 1;
memcpy(&params->bssid, &ether_bcast, ETHER_ADDR_LEN);
params->bss_type = DOT11_BSSTYPE_ANY;
params->scan_type = DOT11_SCANTYPE_ACTIVE;
params->nprobes = htod32(1);
params->active_time = htod32(-1);
params->passive_time = htod32(-1);
params->home_time = htod32(10);
params->channel_list[0] = htodchanspec(channel);
/* Our scan params have 1 channel and 0 ssids */
params->channel_num = htod32((0 << WL_SCAN_PARAMS_NSSID_SHIFT) |
(num_chans & WL_SCAN_PARAMS_COUNT_MASK));
*out_params_size = params_size; /* rtn size to the caller */
return params;
}
s32
wl_cfg80211_scan_abort(struct wl_priv *wl, struct net_device *ndev)
{
wl_scan_params_t *params;
s32 params_size;
s32 err = BCME_OK;
WL_DBG(("Enter\n"));
/* Our scan params only need space for 1 channel and 0 ssids */
params = wl_cfg80211_scan_alloc_params(-1, 0, &params_size);
if (params == NULL) {
WL_ERR(("scan params allocation failed \n"));
err = -ENOMEM;
}
/* Do a scan abort to stop the driver's scan engine */
err = wldev_ioctl(ndev, WLC_SCAN, params, params_size, FALSE);
if (err < 0) {
WL_ERR(("scan abort failed \n"));
}
/* Report the scan abort to CFG driver too
* We will report it from the thread context, not from this context.
*/
{
wl_event_msg_t msg;
msg.event_type = hton32(WLC_E_ESCAN_RESULT);
msg.status = WLC_E_STATUS_ABORT;
wl_cfg80211_event(ndev, &msg, NULL);
}
return err;
}
static s32
wl_cfg80211_remain_on_channel(struct wiphy *wiphy, struct net_device *dev,
struct ieee80211_channel * channel,
enum nl80211_channel_type channel_type,
unsigned int duration, u64 *cookie)
{
s32 target_channel;
s32 err = BCME_OK;
struct wl_priv *wl = WL_PRIV_GET();
dhd_pub_t *dhd = (dhd_pub_t *)(wl->pub);
WL_DBG(("Enter, netdev_ifidx: %d \n", dev->ifindex));
if (likely(test_bit(WL_STATUS_SCANNING, &wl->status))) {
wl_cfg80211_scan_abort(wl, dev);
}
target_channel = ieee80211_frequency_to_channel(channel->center_freq);
memcpy(&wl->remain_on_chan, channel, sizeof(struct ieee80211_channel));
wl->remain_on_chan_type = channel_type;
wl->cache_cookie = *cookie;
cfg80211_ready_on_channel(dev, *cookie, channel,
channel_type, duration, GFP_KERNEL);
if (!p2p_on(wl)) {
wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p.dev_addr, &wl->p2p.int_addr);
/* In case of p2p_listen command, supplicant send remain_on_channel
* without turning on P2P
*/
err = wl_cfgp2p_enable_discovery(wl, dev, NULL, 0);
if (unlikely(err)) {
goto exit;
}
p2p_on(wl) = true;
}
if (p2p_on(wl))
wl_cfgp2p_discover_listen(wl, target_channel, duration);
exit:
return err;
}
static s32
wl_cfg80211_cancel_remain_on_channel(struct wiphy *wiphy, struct net_device *dev, u64 cookie)
{
s32 err = 0;
WL_DBG((" enter ) netdev_ifidx: %d \n", dev->ifindex));
return err;
}
static s32
wl_cfg80211_mgmt_tx(struct wiphy *wiphy, struct net_device *dev,
struct ieee80211_channel *channel, bool offchan,
enum nl80211_channel_type channel_type,
bool channel_type_valid, unsigned int wait,
const u8* buf, size_t len, u64 *cookie)
{
wl_action_frame_t *action_frame;
wl_af_params_t *af_params;
wifi_p2p_ie_t *p2p_ie;
wpa_ie_fixed_t *wps_ie;
const struct ieee80211_mgmt *mgmt;
struct wl_priv *wl = WL_PRIV_GET();
dhd_pub_t *dhd = (dhd_pub_t *)(wl->pub);
s32 err = BCME_OK;
s32 bssidx = 0;
u32 p2pie_len = 0;
u32 wpsie_len = 0;
u16 fc;
bool ack = FALSE;
WL_DBG(("Enter \n"));
/* find bssidx based on ndev */
bssidx = wl_cfgp2p_find_idx(wl, dev);
/* cookie generation */
*cookie = (unsigned long) buf;
if (bssidx == -1) {
WL_ERR(("Can not find the bssidx for dev( %p )\n", dev));
return -ENODEV;
}
if (p2p_on(wl)) {
wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p.dev_addr, &wl->p2p.int_addr);
/* Suspend P2P discovery search-listen to prevent it from changing the
* channel.
*/
wl_cfgp2p_discover_enable_search(wl, FALSE);
/* Abort the dwell time of any previous off-channel action frame that may
* be still in effect. Sending off-channel action frames relies on the
* driver's scan engine. If a previous off-channel action frame tx is
* still in progress (including the dwell time), then this new action
* frame will not be sent out.
*/
wl_cfg80211_scan_abort(wl, dev);
}
mgmt = (const struct ieee80211_mgmt *) buf;
fc = mgmt->frame_control;
if (fc != IEEE80211_STYPE_ACTION) {
if (p2p_on(wl) && (fc == IEEE80211_STYPE_PROBE_RESP)) {
s32 ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN;
s32 ie_len = len - ie_offset;
if ((p2p_ie = wl_cfgp2p_find_p2pie((u8 *)(buf + ie_offset), ie_len))
!= NULL) {
/* Total length of P2P Information Element */
p2pie_len = p2p_ie->len + sizeof(p2p_ie->len) + sizeof(p2p_ie->id);
/* Have to change p2p device address in dev_info attribute
* because Supplicant use primary eth0 address
*/
#ifdef ENABLE_DRIVER_CHANGE_IFADDR /* We are now doing this in supplicant */
wl_cfg80211_change_ifaddr((u8 *)p2p_ie,
&wl->p2p_dev_addr, P2P_SEID_DEV_INFO);
#endif
}
if ((wps_ie = wl_cfgp2p_find_wpsie((u8 *)(buf + ie_offset), ie_len))
!= NULL) {
/* Order of Vendor IE is 1) WPS IE +
* 2) P2P IE created by supplicant
* So, it is ok to find start address of WPS IE
* to save IEs to firmware
*/
wpsie_len = wps_ie->length + sizeof(wps_ie->length) +
sizeof(wps_ie->tag);
wl_cfgp2p_set_managment_ie(wl, dev, bssidx,
VNDR_IE_PRBRSP_FLAG,
(u8 *)wps_ie, wpsie_len + p2pie_len);
}
}
cfg80211_mgmt_tx_status(dev, *cookie, buf, len, true, GFP_KERNEL);
goto exit;
}
af_params = (wl_af_params_t *) kzalloc(WL_WIFI_AF_PARAMS_SIZE, GFP_KERNEL);
if (af_params == NULL)
{
WL_ERR(("unable to allocate frame\n"));
return -ENOMEM;
}
action_frame = &af_params->action_frame;
/* Add the packet Id */
action_frame->packetId = (u32) action_frame;
WL_DBG(("action frame %d\n", action_frame->packetId));
/* Add BSSID */
memcpy(&action_frame->da, &mgmt->da[0], ETHER_ADDR_LEN);
memcpy(&af_params->BSSID, &mgmt->bssid[0], ETHER_ADDR_LEN);
/* Add the length exepted for 802.11 header */
action_frame->len = len - DOT11_MGMT_HDR_LEN;
WL_DBG(("action_frame->len: %d\n", action_frame->len));
/* Add the channel */
af_params->channel =
ieee80211_frequency_to_channel(channel->center_freq);
/* Add the dwell time
* Dwell time to stay off-channel to wait for a response action frame
* after transmitting an GO Negotiation action frame
*/
af_params->dwell_time = WL_DWELL_TIME;
memcpy(action_frame->data, &buf[DOT11_MGMT_HDR_LEN], action_frame->len);
if (wl->p2p.vif_created) {
wifi_p2p_pub_act_frame_t *act_frm =
(wifi_p2p_pub_act_frame_t *) (action_frame->data);
/*
* Have to change intented address from GO REQ or GO RSP and INVITE REQ
* because wpa-supplicant use eth0 primary address
*/
if ((act_frm->subtype == P2P_PAF_GON_REQ)||
(act_frm->subtype == P2P_PAF_GON_RSP)||
(act_frm->subtype == P2P_PAF_GON_CONF)||
(act_frm->subtype == P2P_PAF_INVITE_REQ)) {
p2p_ie = wl_cfgp2p_find_p2pie(act_frm->elts,
action_frame->len - P2P_PUB_AF_FIXED_LEN);
#ifdef ENABLE_DRIVER_CHANGE_IFADDR /* We are now doing this in supplicant */
wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p.int_addr,
P2P_SEID_INTINTADDR);
wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p.dev_addr,
P2P_SEID_DEV_INFO);
wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p.dev_addr,
P2P_SEID_GROUP_ID);
#endif
}
}
ack = (wl_cfgp2p_tx_action_frame(wl, dev, af_params, bssidx)) ? FALSE : TRUE;
cfg80211_mgmt_tx_status(dev, *cookie, buf, len, ack, GFP_KERNEL);
kfree(af_params);
exit:
return err;
}
static void
wl_cfg80211_mgmt_frame_register(struct wiphy *wiphy, struct net_device *dev,
u16 frame_type, bool reg)
{
WL_DBG(("%s: frame_type: %x, reg: %d\n", __func__, frame_type, reg));
if (frame_type != (IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ))
return;
return;
}
static s32
wl_cfg80211_change_bss(struct wiphy *wiphy,
struct net_device *dev,
struct bss_parameters *params)
{
if (params->use_cts_prot >= 0) {
}
if (params->use_short_preamble >= 0) {
}
if (params->use_short_slot_time >= 0) {
}
if (params->basic_rates) {
}
if (params->ap_isolate >= 0) {
}
if (params->ht_opmode >= 0) {
}
return 0;
}
static s32
wl_cfg80211_set_channel(struct wiphy *wiphy, struct net_device *dev,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type)
{
s32 channel;
s32 err = BCME_OK;
channel = ieee80211_frequency_to_channel(chan->center_freq);
WL_DBG(("netdev_ifidx(%d), chan_type(%d) target channel(%d) \n",
dev->ifindex, channel_type, channel));
wldev_ioctl(dev, WLC_SET_CHANNEL, &channel, sizeof(channel), FALSE);
return err;
}
static s32
wl_check_wpa2ie(struct net_device *dev, bcm_tlv_t *wpa2ie, s32 bssidx)
{
s32 len = wpa2ie->len;
s32 err = BCME_OK;
u16 auth = 0; /* d11 open authentication */
u16 wpa_auth = 0;
u16 count;
u32 wsec;
u32 pval = 0;
u32 gval = 0;
u8* tmp;
wpa_suite_mcast_t *mcast;
wpa_suite_ucast_t *ucast;
wpa_suite_auth_key_mgmt_t *mgmt;
if (wpa2ie == NULL)
goto exit;
/* check the mcast cipher */
mcast = (wpa_suite_mcast_t *)&wpa2ie->data[WPA2_VERSION_LEN];
tmp = mcast->oui;
switch (tmp[DOT11_OUI_LEN]) {
case WPA_CIPHER_NONE:
gval = 0;
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
gval = WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
gval = TKIP_ENABLED;
break;
case WPA_CIPHER_AES_CCM:
gval = AES_ENABLED;
break;
default:
WL_ERR(("No Security Info\n"));
break;
}
len -= WPA_SUITE_LEN;
/* check the unicast cipher */
ucast = (wpa_suite_ucast_t *)&mcast[1];
count = ltoh16_ua(&ucast->count);
tmp = ucast->list[0].oui;
switch (tmp[DOT11_OUI_LEN]) {
case WPA_CIPHER_NONE:
pval = 0;
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
pval = WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
pval = TKIP_ENABLED;
break;
case WPA_CIPHER_AES_CCM:
pval = AES_ENABLED;
break;
default:
WL_ERR(("No Security Info\n"));
break;
}
/* FOR WPS , set SEC_OW_ENABLED */
wsec = (pval | gval | SES_OW_ENABLED);
/* check the AKM */
mgmt = (wpa_suite_auth_key_mgmt_t *)&ucast->list[1];
count = ltoh16_ua(&mgmt->count);
tmp = (u8 *)&mgmt->list[0];
switch (tmp[DOT11_OUI_LEN]) {
case RSN_AKM_NONE:
wpa_auth = WPA_AUTH_NONE;
break;
case RSN_AKM_UNSPECIFIED:
wpa_auth = WPA2_AUTH_UNSPECIFIED;
break;
case RSN_AKM_PSK:
wpa_auth = WPA2_AUTH_PSK;
break;
default:
WL_ERR(("No Key Mgmt Info\n"));
break;
}
/* set auth */
err = wldev_iovar_setint_bsscfg(dev, "auth", auth, bssidx);
if (err < 0) {
WL_ERR(("auth error %d\n", err));
}
/* set wsec */
err = wldev_iovar_setint_bsscfg(dev, "wsec", wsec, bssidx);
if (err < 0) {
WL_ERR(("wsec error %d\n", err));
}
/* set upper-layer auth */
err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", wpa_auth, bssidx);
if (err < 0) {
WL_ERR(("wpa_auth error %d\n", err));
}
exit:
return 0;
}
static s32
wl_check_wpaie(struct net_device *dev, bcm_tlv_t *wpaie, s32 bssidx)
{
if (wpaie == NULL)
goto exit;
exit:
return 0;
}
static s32
wl_cfg80211_set_beacon(struct wiphy *wiphy, struct net_device *dev,
struct beacon_parameters *info)
{
s32 err = BCME_OK;
bcm_tlv_t *ssid_ie;
wpa_ie_fixed_t *wps_ie;
wpa_ie_fixed_t *wpa_ie;
bcm_tlv_t *wpa2_ie;
wifi_p2p_ie_t *p2p_ie;
struct wl_priv *wl = WL_PRIV_GET();
bool is_bssup = false;
u16 wpsie_len = 0;
u16 p2pie_len = 0;
u8 beacon_ie[IE_MAX_LEN];
s32 ie_offset = 0;
s32 bssidx = wl_cfgp2p_find_idx(wl, dev);
s32 infra = 1;
memset(beacon_ie, 0, sizeof(beacon_ie));
WL_DBG(("interval (%d) dtim_period (%d) head_len (%d) tail_len (%d)\n",
info->interval, info->dtim_period, info->head_len, info->tail_len));
if (p2p_on(wl) && (bssidx >= wl_to_p2p_bss_bssidx(wl,
P2PAPI_BSSCFG_CONNECTION))) {
/* We don't need to set beacon for P2P_GO,
* but need to parse ssid from beacon_parameters
* because there is no way to set ssid
*/
ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN;
/* find the SSID */
if ((ssid_ie = bcm_parse_tlvs((u8 *)&info->head[ie_offset],
info->head_len - ie_offset,
DOT11_MNG_SSID_ID)) != NULL) {
memcpy(wl->p2p.ssid.SSID, ssid_ie->data, ssid_ie->len);
wl->p2p.ssid.SSID_len = ssid_ie->len;
WL_DBG(("SSID (%s) in Head \n", ssid_ie->data));
} else {
WL_ERR(("No SSID in beacon \n"));
}
/* find the WPSIE */
if ((wps_ie = wl_cfgp2p_find_wpsie((u8 *)info->tail, info->tail_len)) != NULL) {
wpsie_len = wps_ie->length + sizeof(wps_ie->tag) + sizeof(wps_ie->length);
/*
* Should be compared with saved ie before saving it
*/
if (wl_dbg_level & WL_DBG_INFO)
wl_dbg_dump_wps_ie((char *) wps_ie);
memcpy(beacon_ie, wps_ie, wpsie_len);
} else {
WL_ERR(("No WPSIE in beacon \n"));
}
/* find the P2PIE */
if ((p2p_ie = wl_cfgp2p_find_p2pie((u8 *)info->tail, info->tail_len)) != NULL) {
/* Total length of P2P Information Element */
p2pie_len = p2p_ie->len + sizeof(p2p_ie->len) + sizeof(p2p_ie->id);
#ifdef ENABLE_DRIVER_CHANGE_IFADDR /* We are now doing this in supplicant */
/* Have to change device address in dev_id attribute because Supplicant
* use primary eth0 address
*/
wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p_dev_addr, P2P_SEID_DEV_ID);
#endif
memcpy(&beacon_ie[wpsie_len], p2p_ie, p2pie_len);
} else {
WL_ERR(("No P2PIE in beacon \n"));
}
wl_cfgp2p_set_managment_ie(wl, dev, bssidx, VNDR_IE_BEACON_FLAG,
beacon_ie, wpsie_len + p2pie_len);
wl_cfgp2p_set_managment_ie(wl, dev, bssidx, VNDR_IE_ASSOCRSP_FLAG,
beacon_ie, wpsie_len + p2pie_len);
/* find the WPA_IE */
if ((wpa_ie = wl_cfgp2p_find_wpaie((u8 *)info->tail, info->tail_len)) != NULL) {
WL_DBG((" WPA IE is found\n"));
}
/* find the RSN_IE */
if ((wpa2_ie = bcm_parse_tlvs((u8 *)info->tail, info->tail_len,
DOT11_MNG_RSN_ID)) != NULL) {
WL_DBG((" WPA2 IE is found\n"));
}
is_bssup = wl_cfgp2p_bss_isup(dev, bssidx);
if (!is_bssup && (wpa_ie != NULL || wpa2_ie != NULL)) {
wl_check_wpa2ie(dev, wpa2_ie, bssidx);
wl_check_wpaie(dev, (bcm_tlv_t *)wpa_ie, bssidx);
err = wldev_ioctl(dev, WLC_SET_INFRA, &infra, sizeof(s32), FALSE);
if (err < 0) {
WL_ERR(("SET INFRA error %d\n", err));
}
err = wldev_iovar_setbuf_bsscfg(dev, "ssid", &wl->p2p.ssid,
sizeof(wl->p2p.ssid), ioctlbuf, sizeof(ioctlbuf), bssidx);
wl_cfgp2p_bss(dev, bssidx, 1);
}
}
return 0;
}
#if defined(ANDROID_WIRELESS_PATCH)
static s32
wl_cfg80211_drv_start(struct wiphy *wiphy, struct net_device *dev)
{
/* struct wl_priv *wl = wiphy_to_wl(wiphy); */
s32 err = 0;
printk("Android driver start command\n");
return err;
}
static s32
wl_cfg80211_drv_stop(struct wiphy *wiphy, struct net_device *dev)
{
/* struct wl_priv *wl = wiphy_to_wl(wiphy); */
s32 err = 0;
printk("Android driver stop command\n");
return err;
}
#endif /* defined(ANDROID_WIRELESS_PATCH) */
static struct cfg80211_ops wl_cfg80211_ops = {
.add_virtual_intf = wl_cfg80211_add_virtual_iface,
.del_virtual_intf = wl_cfg80211_del_virtual_iface,
.change_virtual_intf = wl_cfg80211_change_virtual_iface,
.scan = wl_cfg80211_scan,
.set_wiphy_params = wl_cfg80211_set_wiphy_params,
.join_ibss = wl_cfg80211_join_ibss,
.leave_ibss = wl_cfg80211_leave_ibss,
.get_station = wl_cfg80211_get_station,
.set_tx_power = wl_cfg80211_set_tx_power,
.get_tx_power = wl_cfg80211_get_tx_power,
.add_key = wl_cfg80211_add_key,
.del_key = wl_cfg80211_del_key,
.get_key = wl_cfg80211_get_key,
.set_default_key = wl_cfg80211_config_default_key,
.set_default_mgmt_key = wl_cfg80211_config_default_mgmt_key,
.set_power_mgmt = wl_cfg80211_set_power_mgmt,
.set_bitrate_mask = wl_cfg80211_set_bitrate_mask,
.connect = wl_cfg80211_connect,
.disconnect = wl_cfg80211_disconnect,
.suspend = wl_cfg80211_suspend,
.resume = wl_cfg80211_resume,
.set_pmksa = wl_cfg80211_set_pmksa,
.del_pmksa = wl_cfg80211_del_pmksa,
.flush_pmksa = wl_cfg80211_flush_pmksa,
.remain_on_channel = wl_cfg80211_remain_on_channel,
.cancel_remain_on_channel = wl_cfg80211_cancel_remain_on_channel,
.mgmt_tx = wl_cfg80211_mgmt_tx,
.mgmt_frame_register = wl_cfg80211_mgmt_frame_register,
.change_bss = wl_cfg80211_change_bss,
.set_channel = wl_cfg80211_set_channel,
.set_beacon = wl_cfg80211_set_beacon,
#if defined(ANDROID_WIRELESS_PATCH)
.drv_start = wl_cfg80211_drv_start,
.drv_stop = wl_cfg80211_drv_stop
#endif
};
static s32 wl_mode_to_nl80211_iftype(s32 mode)
{
s32 err = 0;
switch (mode) {
case WL_MODE_BSS:
return NL80211_IFTYPE_STATION;
case WL_MODE_IBSS:
return NL80211_IFTYPE_ADHOC;
case WL_MODE_AP:
return NL80211_IFTYPE_AP;
default:
return NL80211_IFTYPE_UNSPECIFIED;
}
return err;
}
static struct wireless_dev *wl_alloc_wdev(s32 sizeof_iface,
struct device *dev)
{
struct wireless_dev *wdev;
s32 err = 0;
struct wl_priv *wl;
wdev = kzalloc(sizeof(*wdev), GFP_KERNEL);
if (unlikely(!wdev)) {
WL_ERR(("Could not allocate wireless device\n"));
return ERR_PTR(-ENOMEM);
}
wdev->wiphy =
wiphy_new(&wl_cfg80211_ops, sizeof(struct wl_priv) + sizeof_iface);
if (unlikely(!wdev->wiphy)) {
WL_ERR(("Couldn not allocate wiphy device\n"));
err = -ENOMEM;
goto wiphy_new_out;
}
set_wiphy_dev(wdev->wiphy, dev);
wl = wiphy_to_wl(wdev->wiphy);
wdev->wiphy->max_scan_ie_len = WL_SCAN_IE_LEN_MAX;
wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX;
wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX;
wdev->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP);
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz;
wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->cipher_suites = __wl_cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites);
wdev->wiphy->max_remain_on_channel_duration = 5000;
wdev->wiphy->mgmt_stypes = wl_cfg80211_default_mgmt_stypes;
#ifndef WL_POWERSAVE_DISABLED
wdev->wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT;
#else
wdev->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
#endif /* !WL_POWERSAVE_DISABLED */
wdev->wiphy->flags |= WIPHY_FLAG_NETNS_OK |
WIPHY_FLAG_4ADDR_AP |
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 39)
WIPHY_FLAG_SUPPORTS_SEPARATE_DEFAULT_KEYS |
#endif
WIPHY_FLAG_4ADDR_STATION;
err = wiphy_register(wdev->wiphy);
if (unlikely(err < 0)) {
WL_ERR(("Couldn not register wiphy device (%d)\n", err));
goto wiphy_register_out;
}
return wdev;
wiphy_register_out:
wiphy_free(wdev->wiphy);
wiphy_new_out:
kfree(wdev);
return ERR_PTR(err);
}
static void wl_free_wdev(struct wl_priv *wl)
{
int i;
struct wireless_dev *wdev = wl_to_wdev(wl);
if (unlikely(!wdev)) {
WL_ERR(("wdev is invalid\n"));
return;
}
for (i = 0; i < VWDEV_CNT; i++) {
if ((wl->vwdev[i] != NULL)) {
kfree(wl->vwdev[i]);
wl->vwdev[i] = NULL;
}
}
wiphy_unregister(wdev->wiphy);
wiphy_free(wdev->wiphy);
kfree(wdev);
}
static s32 wl_inform_bss(struct wl_priv *wl)
{
struct wl_scan_results *bss_list;
struct wl_bss_info *bi = NULL; /* must be initialized */
s32 err = 0;
s32 i;
bss_list = wl->bss_list;
/*
if (unlikely(bss_list->version != WL_BSS_INFO_VERSION)) {
WL_ERR(("Version %d != %d\n",
bss_list->version, WL_BSS_INFO_VERSION));
return -EOPNOTSUPP;
}
*/
WL_DBG(("scanned AP count (%d)\n", bss_list->count));
bi = next_bss(bss_list, bi);
for_each_bss(bss_list, bi, i) {
err = wl_inform_single_bss(wl, bi);
if (unlikely(err))
break;
}
return err;
}
static s32 wl_inform_single_bss(struct wl_priv *wl, struct wl_bss_info *bi)
{
struct wiphy *wiphy = wiphy_from_scan(wl);
struct ieee80211_mgmt *mgmt;
struct ieee80211_channel *channel;
struct ieee80211_supported_band *band;
struct wl_cfg80211_bss_info *notif_bss_info;
struct wl_scan_req *sr = wl_to_sr(wl);
struct beacon_proberesp *beacon_proberesp;
s32 mgmt_type;
u32 signal;
u32 freq;
s32 err = 0;
if (unlikely(dtoh32(bi->length) > WL_BSS_INFO_MAX)) {
WL_DBG(("Beacon is larger than buffer. Discarding\n"));
return err;
}
notif_bss_info = kzalloc(sizeof(*notif_bss_info) + sizeof(*mgmt)
- sizeof(u8) + WL_BSS_INFO_MAX, GFP_KERNEL);
if (unlikely(!notif_bss_info)) {
WL_ERR(("notif_bss_info alloc failed\n"));
return -ENOMEM;
}
mgmt = (struct ieee80211_mgmt *)notif_bss_info->frame_buf;
notif_bss_info->channel =
bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(bi->chanspec);
if (notif_bss_info->channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
notif_bss_info->rssi = bi->RSSI;
memcpy(mgmt->bssid, &bi->BSSID, ETHER_ADDR_LEN);
mgmt_type = wl->active_scan ?
IEEE80211_STYPE_PROBE_RESP : IEEE80211_STYPE_BEACON;
if (!memcmp(bi->SSID, sr->ssid.SSID, bi->SSID_len)) {
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | mgmt_type);
}
beacon_proberesp = wl->active_scan ?
(struct beacon_proberesp *)&mgmt->u.probe_resp :
(struct beacon_proberesp *)&mgmt->u.beacon;
beacon_proberesp->timestamp = 0;
beacon_proberesp->beacon_int = cpu_to_le16(bi->beacon_period);
beacon_proberesp->capab_info = cpu_to_le16(bi->capability);
wl_rst_ie(wl);
/*
* wl_add_ie is not necessary because it can only add duplicated
* SSID, rate information to frame_buf
*/
/*
* wl_add_ie(wl, WLAN_EID_SSID, bi->SSID_len, bi->SSID);
* wl_add_ie(wl, WLAN_EID_SUPP_RATES, bi->rateset.count,
* bi->rateset.rates);
*/
wl_mrg_ie(wl, ((u8 *) bi) + bi->ie_offset, bi->ie_length);
wl_cp_ie(wl, beacon_proberesp->variable, WL_BSS_INFO_MAX -
offsetof(struct wl_cfg80211_bss_info, frame_buf));
notif_bss_info->frame_len = offsetof(struct ieee80211_mgmt,
u.beacon.variable) + wl_get_ielen(wl);
#if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 38) && !defined(WL_COMPAT_WIRELESS)
freq = ieee80211_channel_to_frequency(notif_bss_info->channel);
#else
freq = ieee80211_channel_to_frequency(notif_bss_info->channel, band->band);
#endif
channel = ieee80211_get_channel(wiphy, freq);
WL_DBG(("SSID : \"%s\", rssi %d, channel %d, capability : 0x04%x, bssid %pM\n",
bi->SSID,
notif_bss_info->rssi, notif_bss_info->channel,
mgmt->u.beacon.capab_info, &bi->BSSID));
signal = notif_bss_info->rssi * 100;
if (unlikely(!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
le16_to_cpu
(notif_bss_info->frame_len),
signal, GFP_KERNEL))) {
WL_ERR(("cfg80211_inform_bss_frame error\n"));
kfree(notif_bss_info);
return -EINVAL;
}
kfree(notif_bss_info);
return err;
}
static bool wl_is_linkup(struct wl_priv *wl, const wl_event_msg_t *e, struct net_device *ndev)
{
u32 event = ntoh32(e->event_type);
uint32 status = ntoh32(e->status);
WL_DBG(("event %d, status %d\n", event, status));
if (event == WLC_E_SET_SSID) {
if (status == WLC_E_STATUS_SUCCESS) {
if (!wl_is_ibssmode(wl, ndev))
return true;
}
}
WL_DBG(("wl_is_linkup false\n"));
return false;
}
static bool wl_is_linkdown(struct wl_priv *wl, const wl_event_msg_t *e)
{
u32 event = ntoh32(e->event_type);
u16 flags = ntoh16(e->flags);
if (event == WLC_E_DEAUTH_IND || event == WLC_E_DISASSOC_IND) {
return true;
} else if (event == WLC_E_LINK) {
if (!(flags & WLC_EVENT_MSG_LINK))
return true;
}
return false;
}
static bool wl_is_nonetwork(struct wl_priv *wl, const wl_event_msg_t *e)
{
u32 event = ntoh32(e->event_type);
u32 status = ntoh32(e->status);
if (event == WLC_E_LINK && status == WLC_E_STATUS_NO_NETWORKS)
return true;
if (event == WLC_E_SET_SSID && status != WLC_E_STATUS_SUCCESS)
return true;
return false;
}
static s32
wl_notify_connect_status(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
bool act;
bool isfree = FALSE;
s32 err = 0;
s32 freq;
s32 channel;
u8 body[200];
u32 event = ntoh32(e->event_type);
u32 reason = ntoh32(e->reason);
u32 len = ntoh32(e->datalen);
u16 fc = 0;
u8 *mgmt_frame;
u8 bsscfgidx = e->bsscfgidx;
struct ieee80211_supported_band *band;
struct ether_addr da;
struct ether_addr bssid;
struct wiphy *wiphy = wl_to_wiphy(wl);
channel_info_t ci;
memset(body, 0, sizeof(body));
WL_DBG(("Enter \n"));
if (get_mode_by_netdev(wl, ndev) == WL_MODE_AP) {
memcpy(body, data, len);
wldev_iovar_getbuf_bsscfg(ndev, "cur_etheraddr",
&da, sizeof(struct ether_addr), ioctlbuf, sizeof(ioctlbuf), bsscfgidx);
wldev_ioctl(ndev, WLC_GET_BSSID, &bssid, ETHER_ADDR_LEN, FALSE);
switch (event) {
case WLC_E_ASSOC_IND:
fc = FC_ASSOC_REQ;
break;
case WLC_E_REASSOC_IND:
fc = FC_REASSOC_REQ;
break;
case WLC_E_DISASSOC_IND:
fc = FC_DISASSOC;
break;
case WLC_E_DEAUTH_IND:
fc = FC_DEAUTH;
break;
case WLC_E_DEAUTH:
fc = FC_DEAUTH;
break;
default:
fc = 0;
goto exit;
}
if ((err = wldev_ioctl(ndev, WLC_GET_CHANNEL, &ci, sizeof(ci), FALSE)))
return err;
channel = dtoh32(ci.hw_channel);
if (channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
#if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 38) && !defined(WL_COMPAT_WIRELESS)
freq = ieee80211_channel_to_frequency(channel);
#else
freq = ieee80211_channel_to_frequency(channel, band->band);
#endif
err = wl_frame_get_mgmt(fc, &da, &e->addr, &bssid,
&mgmt_frame, &len, body);
if (err < 0)
goto exit;
isfree = TRUE;
if (event == WLC_E_ASSOC_IND && reason == DOT11_SC_SUCCESS) {
cfg80211_rx_mgmt(ndev, freq, mgmt_frame, len, GFP_ATOMIC);
} else if (event == WLC_E_DISASSOC_IND) {
cfg80211_rx_mgmt(ndev, freq, mgmt_frame, len, GFP_ATOMIC);
} else if ((event == WLC_E_DEAUTH_IND) || (event == WLC_E_DEAUTH)) {
cfg80211_rx_mgmt(ndev, freq, mgmt_frame, len, GFP_ATOMIC);
}
} else {
WL_DBG(("wl_notify_connect_status : event %d status : %d \n",
ntoh32(e->event_type), ntoh32(e->status)));
if (wl_is_linkup(wl, e, ndev)) {
wl_link_up(wl);
if (wl_is_ibssmode(wl, ndev)) {
printk("cfg80211_ibss_joined");
cfg80211_ibss_joined(ndev, (s8 *)&e->addr,
GFP_KERNEL);
WL_DBG(("joined in IBSS network\n"));
} else {
printk("wl_bss_connect_done succeeded");
wl_bss_connect_done(wl, ndev, e, data, true);
WL_DBG(("joined in BSS network \"%s\"\n",
((struct wlc_ssid *)
wl_read_prof(wl, WL_PROF_SSID))->SSID));
}
act = true;
wl_update_prof(wl, e, &act, WL_PROF_ACT);
} else if (wl_is_linkdown(wl, e)) {
if (test_bit(WL_STATUS_CONNECTED, &wl->status)) {
printk("link down, call cfg80211_disconnected ");
cfg80211_disconnected(ndev, 0, NULL, 0, GFP_KERNEL);
clear_bit(WL_STATUS_CONNECTED, &wl->status);
wl_link_down(wl);
wl_init_prof(wl->profile);
}
} else if (wl_is_nonetwork(wl, e)) {
printk("connect failed e->status 0x%x", (int)ntoh32(e->status));
if (test_bit(WL_STATUS_CONNECTING, &wl->status))
wl_bss_connect_done(wl, ndev, e, data, false);
} else {
printk("%s nothing\n", __FUNCTION__);
}
printk("\n");
}
exit:
if (isfree)
kfree(mgmt_frame);
return err;
}
static s32
wl_notify_roaming_status(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
bool act;
s32 err = 0;
WL_DBG(("Enter \n"));
wl_bss_roaming_done(wl, ndev, e, data);
act = true;
wl_update_prof(wl, e, &act, WL_PROF_ACT);
return err;
}
static __used s32
wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len)
{
struct wl_priv *wl = WL_PRIV_GET();
u32 buflen;
buflen = bcm_mkiovar(name, buf, len, wl->ioctl_buf, WL_IOCTL_LEN_MAX);
BUG_ON(unlikely(!buflen));
return wldev_ioctl(dev, WLC_SET_VAR, wl->ioctl_buf, buflen, FALSE);
}
static s32
wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf,
s32 buf_len)
{
struct wl_priv *wl = WL_PRIV_GET();
u32 len;
s32 err = 0;
len = bcm_mkiovar(name, NULL, 0, wl->ioctl_buf, WL_IOCTL_LEN_MAX);
BUG_ON(unlikely(!len));
err = wldev_ioctl(dev, WLC_GET_VAR, (void *)wl->ioctl_buf,
WL_IOCTL_LEN_MAX, FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
memcpy(buf, wl->ioctl_buf, buf_len);
return err;
}
static s32 wl_get_assoc_ies(struct wl_priv *wl, struct net_device *ndev)
{
wl_assoc_info_t assoc_info;
struct wl_connect_info *conn_info = wl_to_conn(wl);
s32 err = 0;
WL_DBG(("Enter \n"));
err = wl_dev_bufvar_get(ndev, "assoc_info", wl->extra_buf,
WL_ASSOC_INFO_MAX);
if (unlikely(err)) {
WL_ERR(("could not get assoc info (%d)\n", err));
return err;
}
memcpy(&assoc_info, wl->extra_buf, sizeof(wl_assoc_info_t));
assoc_info.req_len = htod32(assoc_info.req_len);
assoc_info.resp_len = htod32(assoc_info.resp_len);
assoc_info.flags = htod32(assoc_info.flags);
if (assoc_info.req_len) {
err = wl_dev_bufvar_get(ndev, "assoc_req_ies", wl->extra_buf,
WL_ASSOC_INFO_MAX);
if (unlikely(err)) {
WL_ERR(("could not get assoc req (%d)\n", err));
return err;
}
conn_info->req_ie_len = assoc_info.req_len - sizeof(struct dot11_assoc_req);
if (assoc_info.flags & WLC_ASSOC_REQ_IS_REASSOC) {
conn_info->req_ie_len -= ETHER_ADDR_LEN;
}
conn_info->req_ie =
kmemdup(wl->extra_buf, conn_info->req_ie_len, GFP_KERNEL);
} else {
conn_info->req_ie_len = 0;
conn_info->req_ie = NULL;
}
if (assoc_info.resp_len) {
err = wl_dev_bufvar_get(ndev, "assoc_resp_ies", wl->extra_buf,
WL_ASSOC_INFO_MAX);
if (unlikely(err)) {
WL_ERR(("could not get assoc resp (%d)\n", err));
return err;
}
conn_info->resp_ie_len = assoc_info.resp_len -sizeof(struct dot11_assoc_resp);
conn_info->resp_ie =
kmemdup(wl->extra_buf, conn_info->resp_ie_len, GFP_KERNEL);
} else {
conn_info->resp_ie_len = 0;
conn_info->resp_ie = NULL;
}
WL_DBG(("req len (%d) resp len (%d)\n", conn_info->req_ie_len,
conn_info->resp_ie_len));
return err;
}
static void wl_ch_to_chanspec(int ch, struct wl_join_params *join_params,
size_t *join_params_size)
{
chanspec_t chanspec = 0;
if (ch != 0) {
join_params->params.chanspec_num = 1;
join_params->params.chanspec_list[0] = ch;
if (join_params->params.chanspec_list[0])
chanspec |= WL_CHANSPEC_BAND_2G;
else
chanspec |= WL_CHANSPEC_BAND_5G;
chanspec |= WL_CHANSPEC_BW_20;
chanspec |= WL_CHANSPEC_CTL_SB_NONE;
*join_params_size += WL_ASSOC_PARAMS_FIXED_SIZE +
join_params->params.chanspec_num * sizeof(chanspec_t);
join_params->params.chanspec_list[0] &= WL_CHANSPEC_CHAN_MASK;
join_params->params.chanspec_list[0] |= chanspec;
join_params->params.chanspec_list[0] =
htodchanspec(join_params->params.chanspec_list[0]);
join_params->params.chanspec_num =
htod32(join_params->params.chanspec_num);
WL_DBG(("%s join_params->params.chanspec_list[0]= %X\n",
__FUNCTION__, join_params->params.chanspec_list[0]));
}
}
static s32 wl_update_bss_info(struct wl_priv *wl, struct net_device *ndev)
{
struct cfg80211_bss *bss;
struct wl_bss_info *bi;
struct wlc_ssid *ssid;
struct bcm_tlv *tim;
u16 beacon_interval;
u8 dtim_period;
size_t ie_len;
u8 *ie;
s32 err = 0;
struct wiphy *wiphy;
wiphy = wl_to_wiphy(wl);
if (wl_is_ibssmode(wl, ndev))
return err;
ssid = (struct wlc_ssid *)wl_read_prof(wl, WL_PROF_SSID);
bss = cfg80211_get_bss(wiphy, NULL, (s8 *)&wl->bssid,
ssid->SSID, ssid->SSID_len, WLAN_CAPABILITY_ESS,
WLAN_CAPABILITY_ESS);
rtnl_lock();
if (unlikely(!bss)) {
WL_DBG(("Could not find the AP\n"));
*(u32 *) wl->extra_buf = htod32(WL_EXTRA_BUF_MAX);
err = wldev_ioctl(wl_to_prmry_ndev(wl), WLC_GET_BSS_INFO,
wl->extra_buf, WL_EXTRA_BUF_MAX, FALSE);
if (unlikely(err)) {
WL_ERR(("Could not get bss info %d\n", err));
goto update_bss_info_out;
}
bi = (struct wl_bss_info *)(wl->extra_buf + 4);
if (unlikely(memcmp(&bi->BSSID, &wl->bssid, ETHER_ADDR_LEN))) {
err = -EIO;
goto update_bss_info_out;
}
err = wl_inform_single_bss(wl, bi);
if (unlikely(err))
goto update_bss_info_out;
ie = ((u8 *)bi) + bi->ie_offset;
ie_len = bi->ie_length;
beacon_interval = cpu_to_le16(bi->beacon_period);
} else {
WL_DBG(("Found the AP in the list - BSSID %pM\n", bss->bssid));
ie = bss->information_elements;
ie_len = bss->len_information_elements;
beacon_interval = bss->beacon_interval;
cfg80211_put_bss(bss);
}
tim = bcm_parse_tlvs(ie, ie_len, WLAN_EID_TIM);
if (tim) {
dtim_period = tim->data[1];
} else {
/*
* active scan was done so we could not get dtim
* information out of probe response.
* so we speficially query dtim information to dongle.
*/
err = wldev_ioctl(wl_to_prmry_ndev(wl), WLC_GET_DTIMPRD,
&dtim_period, sizeof(dtim_period), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_GET_DTIMPRD error (%d)\n", err));
goto update_bss_info_out;
}
}
wl_update_prof(wl, NULL, &beacon_interval, WL_PROF_BEACONINT);
wl_update_prof(wl, NULL, &dtim_period, WL_PROF_DTIMPERIOD);
update_bss_info_out:
rtnl_unlock();
return err;
}
static s32
wl_bss_roaming_done(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
struct wl_connect_info *conn_info = wl_to_conn(wl);
s32 err = 0;
wl_get_assoc_ies(wl, ndev);
memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN);
wl_update_bss_info(wl, ndev);
cfg80211_roamed(ndev,
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39)
NULL,
#endif
(u8 *)&wl->bssid,
conn_info->req_ie, conn_info->req_ie_len,
conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL);
WL_DBG(("Report roaming result\n"));
set_bit(WL_STATUS_CONNECTED, &wl->status);
return err;
}
static s32
wl_bss_connect_done(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data, bool completed)
{
struct wl_connect_info *conn_info = wl_to_conn(wl);
s32 err = 0;
WL_DBG((" enter\n"));
wl_get_assoc_ies(wl, ndev);
memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN);
wl_update_bss_info(wl, ndev);
if (test_and_clear_bit(WL_STATUS_CONNECTING, &wl->status)) {
cfg80211_connect_result(ndev,
(u8 *)&wl->bssid,
conn_info->req_ie,
conn_info->req_ie_len,
conn_info->resp_ie,
conn_info->resp_ie_len,
completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT,
GFP_KERNEL);
WL_DBG(("Report connect result - connection %s\n",
completed ? "succeeded" : "failed"));
} else {
cfg80211_roamed(ndev,
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39)
NULL,
#endif
(u8 *)&wl->bssid,
conn_info->req_ie, conn_info->req_ie_len,
conn_info->resp_ie, conn_info->resp_ie_len,
GFP_KERNEL);
WL_DBG(("Report roaming result\n"));
}
set_bit(WL_STATUS_CONNECTED, &wl->status);
return err;
}
static s32
wl_notify_mic_status(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
u16 flags = ntoh16(e->flags);
enum nl80211_key_type key_type;
rtnl_lock();
if (flags & WLC_EVENT_MSG_GROUP)
key_type = NL80211_KEYTYPE_GROUP;
else
key_type = NL80211_KEYTYPE_PAIRWISE;
cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1,
NULL, GFP_KERNEL);
rtnl_unlock();
return 0;
}
static s32
wl_notify_scan_status(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
struct channel_info channel_inform;
struct wl_scan_results *bss_list;
u32 len = WL_SCAN_BUF_MAX;
s32 err = 0;
WL_DBG(("Enter \n"));
if (wl->iscan_on && wl->iscan_kickstart)
return wl_wakeup_iscan(wl_to_iscan(wl));
if (unlikely(!test_and_clear_bit(WL_STATUS_SCANNING, &wl->status))) {
WL_DBG(("Scan complete while device not scanning\n"));
return -EINVAL;
}
if (unlikely(!wl->scan_request)) {
}
rtnl_lock();
err = wldev_ioctl(ndev, WLC_GET_CHANNEL, &channel_inform,
sizeof(channel_inform), FALSE);
if (unlikely(err)) {
WL_ERR(("scan busy (%d)\n", err));
goto scan_done_out;
}
channel_inform.scan_channel = dtoh32(channel_inform.scan_channel);
if (unlikely(channel_inform.scan_channel)) {
WL_DBG(("channel_inform.scan_channel (%d)\n",
channel_inform.scan_channel));
}
wl->bss_list = wl->scan_results;
bss_list = wl->bss_list;
memset(bss_list, 0, len);
bss_list->buflen = htod32(len);
err = wldev_ioctl(ndev, WLC_SCAN_RESULTS, bss_list, len, FALSE);
if (unlikely(err)) {
WL_ERR(("%s Scan_results error (%d)\n", ndev->name, err));
err = -EINVAL;
goto scan_done_out;
}
bss_list->buflen = dtoh32(bss_list->buflen);
bss_list->version = dtoh32(bss_list->version);
bss_list->count = dtoh32(bss_list->count);
err = wl_inform_bss(wl);
if (err)
goto scan_done_out;
scan_done_out:
if (wl->scan_request) {
WL_ERR(("cfg80211_scan_done\n"));
cfg80211_scan_done(wl->scan_request, false);
wl->scan_request = NULL;
}
rtnl_unlock();
return err;
}
static s32
wl_frame_get_mgmt(u16 fc, const struct ether_addr *da,
const struct ether_addr *sa, const struct ether_addr *bssid,
u8 **pheader, u32 *body_len, u8 *pbody)
{
struct dot11_management_header *hdr;
u32 totlen = 0;
s32 err = 0;
u8 *offset;
u32 prebody_len = *body_len;
switch (fc) {
case FC_ASSOC_REQ:
/* capability , listen interval */
totlen = DOT11_ASSOC_REQ_FIXED_LEN;
*body_len += DOT11_ASSOC_REQ_FIXED_LEN;
break;
case FC_REASSOC_REQ:
/* capability, listen inteval, ap address */
totlen = DOT11_REASSOC_REQ_FIXED_LEN;
*body_len += DOT11_REASSOC_REQ_FIXED_LEN;
break;
}
totlen += DOT11_MGMT_HDR_LEN + prebody_len;
*pheader = kzalloc(totlen, GFP_KERNEL);
if (*pheader == NULL) {
WL_ERR(("memory alloc failed \n"));
return -ENOMEM;
}
hdr = (struct dot11_management_header *) (*pheader);
hdr->fc = htol16(fc);
hdr->durid = 0;
hdr->seq = 0;
offset = (u8*)(hdr + 1) + (totlen - DOT11_MGMT_HDR_LEN - prebody_len);
bcopy((const char*)da, (u8*)&hdr->da, ETHER_ADDR_LEN);
bcopy((const char*)sa, (u8*)&hdr->sa, ETHER_ADDR_LEN);
bcopy((const char*)bssid, (u8*)&hdr->bssid, ETHER_ADDR_LEN);
bcopy((const char*)pbody, offset, prebody_len);
*body_len = totlen;
return err;
}
static s32
wl_notify_rx_mgmt_frame(struct wl_priv *wl, struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
struct ieee80211_supported_band *band;
struct wiphy *wiphy = wl_to_wiphy(wl);
struct ether_addr da;
struct ether_addr bssid;
bool isfree = FALSE;
s32 err = 0;
s32 freq;
wl_event_rx_frame_data_t *rxframe =
(wl_event_rx_frame_data_t*)data;
u32 event = ntoh32(e->event_type);
u8 *mgmt_frame;
u8 bsscfgidx = e->bsscfgidx;
u32 mgmt_frame_len = ntoh32(e->datalen) - sizeof(wl_event_rx_frame_data_t);
u16 channel = ((ntoh16(rxframe->channel) & WL_CHANSPEC_CHAN_MASK) & 0x0f);
if (channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
#if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 38) && !defined(WL_COMPAT_WIRELESS)
freq = ieee80211_channel_to_frequency(channel);
#else
freq = ieee80211_channel_to_frequency(channel, band->band);
#endif
if (event == WLC_E_ACTION_FRAME_RX) {
wldev_iovar_getbuf_bsscfg(ndev, "cur_etheraddr",
&da, sizeof(struct ether_addr), ioctlbuf, sizeof(ioctlbuf), bsscfgidx);
wldev_ioctl(ndev, WLC_GET_BSSID, &bssid, ETHER_ADDR_LEN, FALSE);
err = wl_frame_get_mgmt(FC_ACTION, &da, &e->addr, &bssid,
&mgmt_frame, &mgmt_frame_len,
(u8 *)((wl_event_rx_frame_data_t *)rxframe + 1));
if (err < 0) {
WL_ERR(("%s: Error in receiving action frame len %d channel %d freq %d\n",
__func__, mgmt_frame_len, channel, freq));
goto exit;
}
isfree = TRUE;
} else {
mgmt_frame = (u8 *)((wl_event_rx_frame_data_t *)rxframe + 1);
}
cfg80211_rx_mgmt(ndev, freq, mgmt_frame, mgmt_frame_len, GFP_ATOMIC);
WL_DBG(("%s: mgmt_frame_len (%d) , e->datalen (%d), channel (%d), freq (%d)\n", __func__,
mgmt_frame_len, ntoh32(e->datalen), channel, freq));
if (isfree)
kfree(mgmt_frame);
exit:
return 0;
}
static void wl_init_conf(struct wl_conf *conf)
{
s32 i = 0;
WL_DBG(("Enter \n"));
for (i = 0; i <= VWDEV_CNT; i++) {
conf->mode[i].type = -1;
conf->mode[i].ndev = NULL;
}
conf->frag_threshold = (u32)-1;
conf->rts_threshold = (u32)-1;
conf->retry_short = (u32)-1;
conf->retry_long = (u32)-1;
conf->tx_power = -1;
}
static void wl_init_prof(struct wl_profile *prof)
{
memset(prof, 0, sizeof(*prof));
}
static void wl_init_event_handler(struct wl_priv *wl)
{
memset(wl->evt_handler, 0, sizeof(wl->evt_handler));
wl->evt_handler[WLC_E_SCAN_COMPLETE] = wl_notify_scan_status;
/* wl->evt_handler[WLC_E_JOIN] = wl_notify_connect_status; */
wl->evt_handler[WLC_E_LINK] = wl_notify_connect_status;
wl->evt_handler[WLC_E_DEAUTH_IND] = wl_notify_connect_status;
wl->evt_handler[WLC_E_DEAUTH] = wl_notify_connect_status;
wl->evt_handler[WLC_E_DISASSOC_IND] = wl_notify_connect_status;
wl->evt_handler[WLC_E_ASSOC_IND] = wl_notify_connect_status;
wl->evt_handler[WLC_E_REASSOC_IND] = wl_notify_connect_status;
wl->evt_handler[WLC_E_ROAM] = wl_notify_roaming_status;
wl->evt_handler[WLC_E_MIC_ERROR] = wl_notify_mic_status;
wl->evt_handler[WLC_E_SET_SSID] = wl_notify_connect_status;
wl->evt_handler[WLC_E_ACTION_FRAME_RX] = wl_notify_rx_mgmt_frame;
wl->evt_handler[WLC_E_P2P_PROBREQ_MSG] = wl_notify_rx_mgmt_frame;
wl->evt_handler[WLC_E_P2P_DISC_LISTEN_COMPLETE] = wl_cfgp2p_listen_complete;
wl->evt_handler[WLC_E_ACTION_FRAME_COMPLETE] = wl_cfgp2p_action_tx_complete;
wl->evt_handler[WLC_E_ACTION_FRAME_OFF_CHAN_COMPLETE] = wl_cfgp2p_action_tx_complete;
}
static s32 wl_init_priv_mem(struct wl_priv *wl)
{
WL_DBG(("Enter \n"));
wl->scan_results = (void *)kzalloc(WL_SCAN_BUF_MAX, GFP_KERNEL);
if (unlikely(!wl->scan_results)) {
WL_ERR(("Scan results alloc failed\n"));
goto init_priv_mem_out;
}
wl->conf = (void *)kzalloc(sizeof(*wl->conf), GFP_KERNEL);
if (unlikely(!wl->conf)) {
WL_ERR(("wl_conf alloc failed\n"));
goto init_priv_mem_out;
}
wl->profile = (void *)kzalloc(sizeof(*wl->profile), GFP_KERNEL);
if (unlikely(!wl->profile)) {
WL_ERR(("wl_profile alloc failed\n"));
goto init_priv_mem_out;
}
wl->bss_info = (void *)kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
if (unlikely(!wl->bss_info)) {
WL_ERR(("Bss information alloc failed\n"));
goto init_priv_mem_out;
}
wl->scan_req_int =
(void *)kzalloc(sizeof(*wl->scan_req_int), GFP_KERNEL);
if (unlikely(!wl->scan_req_int)) {
WL_ERR(("Scan req alloc failed\n"));
goto init_priv_mem_out;
}
wl->ioctl_buf = (void *)kzalloc(WL_IOCTL_LEN_MAX, GFP_KERNEL);
if (unlikely(!wl->ioctl_buf)) {
WL_ERR(("Ioctl buf alloc failed\n"));
goto init_priv_mem_out;
}
wl->escan_ioctl_buf = (void *)kzalloc(WL_IOCTL_LEN_MAX, GFP_KERNEL);
if (unlikely(!wl->escan_ioctl_buf)) {
WL_ERR(("Ioctl buf alloc failed\n"));
goto init_priv_mem_out;
}
wl->extra_buf = (void *)kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL);
if (unlikely(!wl->extra_buf)) {
WL_ERR(("Extra buf alloc failed\n"));
goto init_priv_mem_out;
}
wl->iscan = (void *)kzalloc(sizeof(*wl->iscan), GFP_KERNEL);
if (unlikely(!wl->iscan)) {
WL_ERR(("Iscan buf alloc failed\n"));
goto init_priv_mem_out;
}
wl->fw = (void *)kzalloc(sizeof(*wl->fw), GFP_KERNEL);
if (unlikely(!wl->fw)) {
WL_ERR(("fw object alloc failed\n"));
goto init_priv_mem_out;
}
wl->pmk_list = (void *)kzalloc(sizeof(*wl->pmk_list), GFP_KERNEL);
if (unlikely(!wl->pmk_list)) {
WL_ERR(("pmk list alloc failed\n"));
goto init_priv_mem_out;
}
return 0;
init_priv_mem_out:
wl_deinit_priv_mem(wl);
return -ENOMEM;
}
static void wl_deinit_priv_mem(struct wl_priv *wl)
{
kfree(wl->scan_results);
wl->scan_results = NULL;
kfree(wl->bss_info);
wl->bss_info = NULL;
kfree(wl->conf);
wl->conf = NULL;
kfree(wl->profile);
wl->profile = NULL;
kfree(wl->scan_req_int);
wl->scan_req_int = NULL;
kfree(wl->ioctl_buf);
wl->ioctl_buf = NULL;
kfree(wl->escan_ioctl_buf);
wl->escan_ioctl_buf = NULL;
kfree(wl->extra_buf);
wl->extra_buf = NULL;
kfree(wl->iscan);
wl->iscan = NULL;
kfree(wl->fw);
wl->fw = NULL;
kfree(wl->pmk_list);
wl->pmk_list = NULL;
}
static s32 wl_create_event_handler(struct wl_priv *wl)
{
WL_DBG(("Enter \n"));
sema_init(&wl->event_sync, 0);
wl->event_tsk = kthread_run(wl_event_handler, wl, "wl_event_handler");
if (IS_ERR(wl->event_tsk)) {
wl->event_tsk = NULL;
WL_ERR(("failed to create event thread\n"));
return -ENOMEM;
}
return 0;
}
static void wl_destroy_event_handler(struct wl_priv *wl)
{
if (wl->event_tsk) {
send_sig(SIGTERM, wl->event_tsk, 1);
kthread_stop(wl->event_tsk);
wl->event_tsk = NULL;
}
}
static void wl_term_iscan(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl_to_iscan(wl);
WL_TRACE(("In\n"));
if (wl->iscan_on && iscan->tsk) {
iscan->state = WL_ISCAN_STATE_IDLE;
WL_INFO(("SIGTERM\n"));
send_sig(SIGTERM, iscan->tsk, 1);
printk("kthread_stop\n");
kthread_stop(iscan->tsk);
iscan->tsk = NULL;
}
}
static void wl_notify_iscan_complete(struct wl_iscan_ctrl *iscan, bool aborted)
{
struct wl_priv *wl = iscan_to_wl(iscan);
WL_DBG(("Enter \n"));
if (unlikely(!test_and_clear_bit(WL_STATUS_SCANNING, &wl->status))) {
WL_ERR(("Scan complete while device not scanning\n"));
return;
}
if (likely(wl->scan_request)) {
cfg80211_scan_done(wl->scan_request, aborted);
wl->scan_request = NULL;
}
wl->iscan_kickstart = false;
}
static s32 wl_wakeup_iscan(struct wl_iscan_ctrl *iscan)
{
if (likely(iscan->state != WL_ISCAN_STATE_IDLE)) {
WL_DBG(("wake up iscan\n"));
up(&iscan->sync);
return 0;
}
return -EIO;
}
static s32
wl_get_iscan_results(struct wl_iscan_ctrl *iscan, u32 *status,
struct wl_scan_results **bss_list)
{
struct wl_iscan_results list;
struct wl_scan_results *results;
struct wl_iscan_results *list_buf;
s32 err = 0;
WL_DBG(("Enter \n"));
memset(iscan->scan_buf, 0, WL_ISCAN_BUF_MAX);
list_buf = (struct wl_iscan_results *)iscan->scan_buf;
results = &list_buf->results;
results->buflen = WL_ISCAN_RESULTS_FIXED_SIZE;
results->version = 0;
results->count = 0;
memset(&list, 0, sizeof(list));
list.results.buflen = htod32(WL_ISCAN_BUF_MAX);
err = wldev_iovar_getbuf(iscan->dev, "iscanresults", &list,
WL_ISCAN_RESULTS_FIXED_SIZE, iscan->scan_buf,
WL_ISCAN_BUF_MAX);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
results->buflen = dtoh32(results->buflen);
results->version = dtoh32(results->version);
results->count = dtoh32(results->count);
WL_DBG(("results->count = %d\n", results->count));
WL_DBG(("results->buflen = %d\n", results->buflen));
*status = dtoh32(list_buf->status);
*bss_list = results;
return err;
}
static s32 wl_iscan_done(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl->iscan;
s32 err = 0;
iscan->state = WL_ISCAN_STATE_IDLE;
rtnl_lock();
wl_inform_bss(wl);
wl_notify_iscan_complete(iscan, false);
rtnl_unlock();
return err;
}
static s32 wl_iscan_pending(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl->iscan;
s32 err = 0;
/* Reschedule the timer */
mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000);
iscan->timer_on = 1;
return err;
}
static s32 wl_iscan_inprogress(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl->iscan;
s32 err = 0;
rtnl_lock();
wl_inform_bss(wl);
wl_run_iscan(iscan, NULL, WL_SCAN_ACTION_CONTINUE);
rtnl_unlock();
/* Reschedule the timer */
mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000);
iscan->timer_on = 1;
return err;
}
static s32 wl_iscan_aborted(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl->iscan;
s32 err = 0;
iscan->state = WL_ISCAN_STATE_IDLE;
rtnl_lock();
wl_notify_iscan_complete(iscan, true);
rtnl_unlock();
return err;
}
static s32 wl_iscan_thread(void *data)
{
struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 };
struct wl_iscan_ctrl *iscan = (struct wl_iscan_ctrl *)data;
struct wl_priv *wl = iscan_to_wl(iscan);
u32 status;
int err = 0;
sched_setscheduler(current, SCHED_FIFO, &param);
allow_signal(SIGTERM);
status = WL_SCAN_RESULTS_PARTIAL;
while (likely(!down_interruptible(&iscan->sync))) {
if (kthread_should_stop())
break;
if (iscan->timer_on) {
del_timer_sync(&iscan->timer);
iscan->timer_on = 0;
}
rtnl_lock();
err = wl_get_iscan_results(iscan, &status, &wl->bss_list);
if (unlikely(err)) {
status = WL_SCAN_RESULTS_ABORTED;
WL_ERR(("Abort iscan\n"));
}
rtnl_unlock();
iscan->iscan_handler[status] (wl);
}
if (iscan->timer_on) {
del_timer_sync(&iscan->timer);
iscan->timer_on = 0;
}
WL_DBG(("%s was terminated\n", __func__));
return 0;
}
static void wl_iscan_timer(unsigned long data)
{
struct wl_iscan_ctrl *iscan = (struct wl_iscan_ctrl *)data;
if (iscan) {
iscan->timer_on = 0;
WL_DBG(("timer expired\n"));
wl_wakeup_iscan(iscan);
}
}
static s32 wl_invoke_iscan(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl_to_iscan(wl);
int err = 0;
if (wl->iscan_on && !iscan->tsk) {
iscan->state = WL_ISCAN_STATE_IDLE;
sema_init(&iscan->sync, 0);
iscan->tsk = kthread_run(wl_iscan_thread, iscan, "wl_iscan");
if (IS_ERR(iscan->tsk)) {
WL_ERR(("Could not create iscan thread\n"));
iscan->tsk = NULL;
return -ENOMEM;
}
}
return err;
}
static void wl_init_iscan_handler(struct wl_iscan_ctrl *iscan)
{
memset(iscan->iscan_handler, 0, sizeof(iscan->iscan_handler));
iscan->iscan_handler[WL_SCAN_RESULTS_SUCCESS] = wl_iscan_done;
iscan->iscan_handler[WL_SCAN_RESULTS_PARTIAL] = wl_iscan_inprogress;
iscan->iscan_handler[WL_SCAN_RESULTS_PENDING] = wl_iscan_pending;
iscan->iscan_handler[WL_SCAN_RESULTS_ABORTED] = wl_iscan_aborted;
iscan->iscan_handler[WL_SCAN_RESULTS_NO_MEM] = wl_iscan_aborted;
}
static void wl_notify_escan_complete(struct wl_priv *wl, bool aborted)
{
WL_DBG(("Enter \n"));
if (unlikely(!test_and_clear_bit(WL_STATUS_SCANNING, &wl->status))) {
WL_ERR(("Scan complete while device not scanning\n"));
return;
}
if (p2p_on(wl))
wl_clr_p2p_status(wl, SCANNING);
if (likely(wl->scan_request)) {
cfg80211_scan_done(wl->scan_request, aborted);
wl->scan_request = NULL;
}
}
static s32 wl_escan_handler(struct wl_priv *wl,
struct net_device *ndev,
const wl_event_msg_t *e, void *data)
{
s32 err = BCME_OK;
s32 status = ntoh32(e->status);
wl_bss_info_t *bi;
wl_escan_result_t *escan_result;
wl_bss_info_t *bss = NULL;
wl_scan_results_t *list;
u32 bi_length;
u32 i;
WL_DBG((" enter event type : %d, status : %d \n",
ntoh32(e->event_type), ntoh32(e->status)));
if (!wl->escan_on &&
!test_bit(WL_STATUS_SCANNING, &wl->status)) {
WL_ERR(("escan is not ready \n"));
return err;
}
if (status == WLC_E_STATUS_PARTIAL) {
WL_INFO(("WLC_E_STATUS_PARTIAL \n"));
escan_result = (wl_escan_result_t *) data;
if (dtoh16(escan_result->bss_count) != 1) {
WL_ERR(("Invalid bss_count %d: ignoring\n", escan_result->bss_count));
goto exit;
}
bi = escan_result->bss_info;
bi_length = dtoh32(bi->length);
if (bi_length != (dtoh32(escan_result->buflen) - WL_ESCAN_RESULTS_FIXED_SIZE)) {
WL_ERR(("Invalid bss_info length %d: ignoring\n", bi_length));
goto exit;
}
list = (wl_scan_results_t *)wl->escan_info.escan_buf;
if (bi_length > ESCAN_BUF_SIZE - list->buflen) {
WL_ERR(("Buffer is too small: ignoring\n"));
goto exit;
}
#define WLC_BSS_RSSI_ON_CHANNEL 0x0002
for (i = 0; i < list->count; i++) {
bss = bss ? (wl_bss_info_t *)((uintptr)bss + dtoh32(bss->length))
: list->bss_info;
if (!bcmp(&bi->BSSID, &bss->BSSID, ETHER_ADDR_LEN) &&
CHSPEC_BAND(bi->chanspec) == CHSPEC_BAND(bss->chanspec) &&
bi->SSID_len == bss->SSID_len &&
!bcmp(bi->SSID, bss->SSID, bi->SSID_len)) {
if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) ==
(bi->flags & WLC_BSS_RSSI_ON_CHANNEL)) {
/* preserve max RSSI if the measurements are
* both on-channel or both off-channel
*/
bss->RSSI = MAX(bss->RSSI, bi->RSSI);
} else if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) &&
(bi->flags & WLC_BSS_RSSI_ON_CHANNEL) == 0) {
/* preserve the on-channel rssi measurement
* if the new measurement is off channel
*/
bss->RSSI = bi->RSSI;
bss->flags |= WLC_BSS_RSSI_ON_CHANNEL;
}
goto exit;
}
}
memcpy(&(wl->escan_info.escan_buf[list->buflen]), bi, bi_length);
list->version = dtoh32(bi->version);
list->buflen += bi_length;
list->count++;
}
else if (status == WLC_E_STATUS_SUCCESS) {
wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
if (likely(wl->scan_request)) {
rtnl_lock();
WL_INFO(("ESCAN COMPLETED\n"));
wl->bss_list = (wl_scan_results_t *)wl->escan_info.escan_buf;
wl_inform_bss(wl);
wl_notify_escan_complete(wl, false);
rtnl_unlock();
}
}
else if (status == WLC_E_STATUS_ABORT) {
wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
if (likely(wl->scan_request)) {
rtnl_lock();
WL_INFO(("ESCAN COMPLETED\n"));
wl_notify_escan_complete(wl, true);
rtnl_unlock();
}
}
exit:
return err;
}
static s32 wl_init_iscan(struct wl_priv *wl)
{
struct wl_iscan_ctrl *iscan = wl_to_iscan(wl);
int err = 0;
if (wl->iscan_on) {
iscan->dev = wl_to_prmry_ndev(wl);
iscan->state = WL_ISCAN_STATE_IDLE;
wl_init_iscan_handler(iscan);
iscan->timer_ms = WL_ISCAN_TIMER_INTERVAL_MS;
init_timer(&iscan->timer);
iscan->timer.data = (unsigned long) iscan;
iscan->timer.function = wl_iscan_timer;
sema_init(&iscan->sync, 0);
iscan->tsk = kthread_run(wl_iscan_thread, iscan, "wl_iscan");
if (IS_ERR(iscan->tsk)) {
WL_ERR(("Could not create iscan thread\n"));
iscan->tsk = NULL;
return -ENOMEM;
}
iscan->data = wl;
} else if (wl->escan_on) {
wl->evt_handler[WLC_E_ESCAN_RESULT] = wl_escan_handler;
wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
}
return err;
}
static void wl_init_fw(struct wl_fw_ctrl *fw)
{
fw->status = 0;
}
static s32 wl_init_priv(struct wl_priv *wl)
{
struct wiphy *wiphy = wl_to_wiphy(wl);
s32 err = 0;
s32 i = 0;
wl->scan_request = NULL;
wl->pwr_save = !!(wiphy->flags & WIPHY_FLAG_PS_ON_BY_DEFAULT);
wl->iscan_on = false;
wl->escan_on = true;
wl->roam_on = false;
wl->iscan_kickstart = false;
wl->active_scan = true;
wl->dongle_up = false;
wl->rf_blocked = false;
for (i = 0; i < VWDEV_CNT; i++)
wl->vwdev[i] = NULL;
init_waitqueue_head(&wl->dongle_event_wait);
wl_init_eq(wl);
err = wl_init_priv_mem(wl);
if (unlikely(err))
return err;
if (unlikely(wl_create_event_handler(wl)))
return -ENOMEM;
wl_init_event_handler(wl);
mutex_init(&wl->usr_sync);
err = wl_init_iscan(wl);
if (unlikely(err))
return err;
wl_init_fw(wl->fw);
wl_init_conf(wl->conf);
wl_init_prof(wl->profile);
wl_link_down(wl);
wl_cfgp2p_init_priv(wl);
return err;
}
static void wl_deinit_priv(struct wl_priv *wl)
{
wl_destroy_event_handler(wl);
wl->dongle_up = false; /* dongle down */
wl_flush_eq(wl);
wl_link_down(wl);
wl_term_iscan(wl);
wl_deinit_priv_mem(wl);
}
#ifdef CONFIG_SYSCTL
s32 wl_cfg80211_sysctl_export_devaddr(void *data)
{
/* Export the p2p_dev_addr via sysctl interface
* so that wpa_supplicant can access it
*/
dhd_pub_t *dhd = (dhd_pub_t *)data;
struct wl_priv *wl = WL_PRIV_GET();
wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p.dev_addr, &wl->p2p.int_addr);
sprintf((char *)&wl_sysctl_macstring[0], MACSTR, MAC2STR(wl->p2p.dev_addr.octet));
sprintf((char *)&wl_sysctl_macstring[1], MACSTR, MAC2STR(wl->p2p.int_addr.octet));
return 0;
}
#endif /* CONFIG_SYSCTL */
s32 wl_cfg80211_attach_post(struct net_device *ndev)
{
struct wl_priv * wl = NULL;
s32 err = 0;
WL_TRACE(("In\n"));
if (unlikely(!ndev)) {
WL_ERR(("ndev is invaild\n"));
return -ENODEV;
}
wl = WL_PRIV_GET();
if (wl && !test_bit(WL_STATUS_READY, &wl->status)) {
if (wl->wdev &&
wl_cfgp2p_supported(wl, ndev)) {
WL_INFO(("P2P is supported on Firmware \n"));
wl->wdev->wiphy->interface_modes |=
(BIT(NL80211_IFTYPE_P2P_CLIENT)|
BIT(NL80211_IFTYPE_P2P_GO));
}
} else
return -ENODEV;
set_bit(WL_STATUS_READY, &wl->status);
return err;
}
s32 wl_cfg80211_attach(struct net_device *ndev, void *data)
{
struct wireless_dev *wdev;
struct wl_priv *wl;
struct wl_iface *ci;
s32 err = 0;
WL_TRACE(("In\n"));
if (unlikely(!ndev)) {
WL_ERR(("ndev is invaild\n"));
return -ENODEV;
}
wl_cfg80211_dev = kzalloc(sizeof(struct wl_dev), GFP_KERNEL);
if (unlikely(!wl_cfg80211_dev)) {
WL_ERR(("wl_cfg80211_dev is invalid\n"));
return -ENOMEM;
}
WL_DBG(("func %p\n", wl_cfg80211_get_sdio_func()));
wdev = wl_alloc_wdev(sizeof(struct wl_iface), &wl_cfg80211_get_sdio_func()->dev);
if (unlikely(IS_ERR(wdev)))
return -ENOMEM;
wdev->iftype = wl_mode_to_nl80211_iftype(WL_MODE_BSS);
wl = wdev_to_wl(wdev);
wl->wdev = wdev;
wl->pub = data;
ci = (struct wl_iface *)wl_to_ci(wl);
ci->wl = wl;
ndev->ieee80211_ptr = wdev;
SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy));
wdev->netdev = ndev;
err = wl_init_priv(wl);
if (unlikely(err)) {
WL_ERR(("Failed to init iwm_priv (%d)\n", err));
goto cfg80211_attach_out;
}
err = wl_setup_rfkill(wl);
if (unlikely(err)) {
WL_ERR(("Failed to setup rfkill %d\n", err));
goto cfg80211_attach_out;
}
#ifdef CONFIG_SYSCTL
if (!(wl_sysctl_hdr = register_sysctl_table(wl_sysctl_table))) {
WL_ERR(("%s: sysctl register failed!! \n", __func__));
goto cfg80211_attach_out;
}
#endif
wl_set_drvdata(wl_cfg80211_dev, ci);
return err;
cfg80211_attach_out:
err = wl_setup_rfkill(wl);
wl_free_wdev(wl);
return err;
}
void wl_cfg80211_detach(void)
{
struct wl_priv *wl;
wl = WL_PRIV_GET();
WL_TRACE(("In\n"));
#ifdef CONFIG_SYSCTL
if (wl_sysctl_hdr)
unregister_sysctl_table(wl_sysctl_hdr);
#endif
rfkill_unregister(wl->rfkill);
rfkill_destroy(wl->rfkill);
wl_deinit_priv(wl);
wl_free_wdev(wl);
wl_set_drvdata(wl_cfg80211_dev, NULL);
kfree(wl_cfg80211_dev);
wl_cfg80211_dev = NULL;
wl_clear_sdio_func();
}
static void wl_wakeup_event(struct wl_priv *wl)
{
up(&wl->event_sync);
}
static s32 wl_event_handler(void *data)
{
struct net_device *netdev;
struct wl_priv *wl = (struct wl_priv *)data;
struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 };
struct wl_event_q *e;
sched_setscheduler(current, SCHED_FIFO, &param);
allow_signal(SIGTERM);
while (likely(!down_interruptible(&wl->event_sync))) {
if (kthread_should_stop())
break;
e = wl_deq_event(wl);
if (unlikely(!e)) {
WL_ERR(("equeue empty..\n"));
return 0;
}
WL_DBG(("event type (%d), if idx: %d\n", e->etype, e->emsg.ifidx));
netdev = dhd_idx2net((struct dhd_pub *)(wl->pub), e->emsg.ifidx);
if (!netdev)
netdev = wl_to_prmry_ndev(wl);
if (wl->evt_handler[e->etype]) {
wl->evt_handler[e->etype] (wl, netdev, &e->emsg, e->edata);
} else {
WL_DBG(("Unknown Event (%d): ignoring\n", e->etype));
}
wl_put_event(e);
}
WL_DBG(("%s was terminated\n", __func__));
return 0;
}
void
wl_cfg80211_event(struct net_device *ndev, const wl_event_msg_t * e, void *data)
{
u32 event_type = ntoh32(e->event_type);
struct wl_priv *wl = WL_PRIV_GET();
#if (WL_DBG_LEVEL > 0)
s8 *estr = (event_type <= sizeof(wl_dbg_estr) / WL_DBG_ESTR_MAX - 1) ?
wl_dbg_estr[event_type] : (s8 *) "Unknown";
WL_DBG(("event_type (%d):" "WLC_E_" "%s\n", event_type, estr));
#endif /* (WL_DBG_LEVEL > 0) */
if (likely(!wl_enq_event(wl, ndev, event_type, e, data)))
wl_wakeup_event(wl);
}
static void wl_init_eq(struct wl_priv *wl)
{
wl_init_eq_lock(wl);
INIT_LIST_HEAD(&wl->eq_list);
}
static void wl_flush_eq(struct wl_priv *wl)
{
struct wl_event_q *e;
wl_lock_eq(wl);
while (!list_empty(&wl->eq_list)) {
e = list_first_entry(&wl->eq_list, struct wl_event_q, eq_list);
list_del(&e->eq_list);
kfree(e);
}
wl_unlock_eq(wl);
}
/*
* retrieve first queued event from head
*/
static struct wl_event_q *wl_deq_event(struct wl_priv *wl)
{
struct wl_event_q *e = NULL;
wl_lock_eq(wl);
if (likely(!list_empty(&wl->eq_list))) {
e = list_first_entry(&wl->eq_list, struct wl_event_q, eq_list);
list_del(&e->eq_list);
}
wl_unlock_eq(wl);
return e;
}
/*
* push event to tail of the queue
*/
static s32
wl_enq_event(struct wl_priv *wl, struct net_device *ndev, u32 event, const wl_event_msg_t *msg,
void *data)
{
struct wl_event_q *e;
s32 err = 0;
uint32 evtq_size;
uint32 data_len;
data_len = 0;
if (data)
data_len = ntoh32(msg->datalen);
evtq_size = sizeof(struct wl_event_q) + data_len;
e = kzalloc(evtq_size, GFP_ATOMIC);
if (unlikely(!e)) {
WL_ERR(("event alloc failed\n"));
return -ENOMEM;
}
e->etype = event;
memcpy(&e->emsg, msg, sizeof(wl_event_msg_t));
if (data)
memcpy(e->edata, data, data_len);
wl_lock_eq(wl);
list_add_tail(&e->eq_list, &wl->eq_list);
wl_unlock_eq(wl);
return err;
}
static void wl_put_event(struct wl_event_q *e)
{
kfree(e);
}
/* TODO: this has been changed to wl_cfg80211_set_sdio_func in FALCON
* Keep is as-is in P2P Twig
*/
void wl_cfg80211_set_sdio_func(void *func)
{
cfg80211_sdio_func = (struct sdio_func *)func;
}
static void wl_clear_sdio_func(void)
{
cfg80211_sdio_func = NULL;
}
struct sdio_func *wl_cfg80211_get_sdio_func(void)
{
return cfg80211_sdio_func;
}
static s32 wl_dongle_mode(struct wl_priv *wl, struct net_device *ndev, s32 iftype)
{
s32 infra = 0;
s32 err = 0;
s32 mode = 0;
switch (iftype) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_WDS:
WL_ERR(("type (%d) : currently we do not support this mode\n",
iftype));
err = -EINVAL;
return err;
case NL80211_IFTYPE_ADHOC:
mode = WL_MODE_IBSS;
break;
case NL80211_IFTYPE_STATION:
mode = WL_MODE_BSS;
infra = 1;
break;
default:
err = -EINVAL;
WL_ERR(("invalid type (%d)\n", iftype));
return err;
}
infra = htod32(infra);
err = wldev_ioctl(ndev, WLC_SET_INFRA, &infra, sizeof(infra), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_SET_INFRA error (%d)\n", err));
return err;
}
set_mode_by_netdev(wl, ndev, mode);
return 0;
}
static s32 wl_dongle_eventmsg(struct net_device *ndev)
{
s8 iovbuf[WL_EVENTING_MASK_LEN + 12];
s8 eventmask[WL_EVENTING_MASK_LEN];
s32 err = 0;
/* Setup event_msgs */
bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf,
sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_GET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (unlikely(err)) {
WL_ERR(("Get event_msgs error (%d)\n", err));
goto dongle_eventmsg_out;
}
memcpy(eventmask, iovbuf, WL_EVENTING_MASK_LEN);
setbit(eventmask, WLC_E_SET_SSID);
setbit(eventmask, WLC_E_PRUNE);
setbit(eventmask, WLC_E_AUTH);
setbit(eventmask, WLC_E_REASSOC);
setbit(eventmask, WLC_E_REASSOC_IND);
setbit(eventmask, WLC_E_DEAUTH_IND);
setbit(eventmask, WLC_E_DEAUTH);
setbit(eventmask, WLC_E_DISASSOC_IND);
setbit(eventmask, WLC_E_DISASSOC);
setbit(eventmask, WLC_E_JOIN);
setbit(eventmask, WLC_E_ASSOC_IND);
setbit(eventmask, WLC_E_PSK_SUP);
setbit(eventmask, WLC_E_LINK);
setbit(eventmask, WLC_E_NDIS_LINK);
setbit(eventmask, WLC_E_MIC_ERROR);
setbit(eventmask, WLC_E_PMKID_CACHE);
setbit(eventmask, WLC_E_TXFAIL);
setbit(eventmask, WLC_E_JOIN_START);
setbit(eventmask, WLC_E_SCAN_COMPLETE);
setbit(eventmask, WLC_E_ACTION_FRAME_RX);
setbit(eventmask, WLC_E_ACTION_FRAME_COMPLETE);
setbit(eventmask, WLC_E_ACTION_FRAME_OFF_CHAN_COMPLETE);
setbit(eventmask, WLC_E_P2P_PROBREQ_MSG);
setbit(eventmask, WLC_E_P2P_DISC_LISTEN_COMPLETE);
setbit(eventmask, WLC_E_ESCAN_RESULT);
bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf,
sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (unlikely(err)) {
WL_ERR(("Set event_msgs error (%d)\n", err));
goto dongle_eventmsg_out;
}
dongle_eventmsg_out:
return err;
}
#ifndef EMBEDDED_PLATFORM
static s32 wl_dongle_country(struct net_device *ndev, u8 ccode)
{
s32 err = 0;
return err;
}
static s32 wl_dongle_up(struct net_device *ndev, u32 up)
{
s32 err = 0;
err = wldev_ioctl(ndev, WLC_UP, &up, sizeof(up), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_UP error (%d)\n", err));
}
return err;
}
static s32 wl_dongle_power(struct net_device *ndev, u32 power_mode)
{
s32 err = 0;
WL_TRACE(("In\n"));
err = wldev_ioctl(ndev, WLC_SET_PM, &power_mode, sizeof(power_mode), FALSE);
if (unlikely(err)) {
WL_ERR(("WLC_SET_PM error (%d)\n", err));
}
return err;
}
static s32
wl_dongle_glom(struct net_device *ndev, u32 glom, u32 dongle_align)
{
s8 iovbuf[WL_EVENTING_MASK_LEN + 12];
s32 err = 0;
/* Match Host and Dongle rx alignment */
bcm_mkiovar("bus:txglomalign", (char *)&dongle_align, 4, iovbuf,
sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (unlikely(err)) {
WL_ERR(("txglomalign error (%d)\n", err));
goto dongle_glom_out;
}
/* disable glom option per default */
bcm_mkiovar("bus:txglom", (char *)&glom, 4, iovbuf, sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (unlikely(err)) {
WL_ERR(("txglom error (%d)\n", err));
goto dongle_glom_out;
}
dongle_glom_out:
return err;
}
static s32
wl_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout)
{
s8 iovbuf[WL_EVENTING_MASK_LEN + 12];
s32 err = 0;
/* Setup timeout if Beacons are lost and roam is off to report link down */
if (roamvar) {
bcm_mkiovar("bcn_timeout", (char *)&bcn_timeout, 4, iovbuf,
sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (unlikely(err)) {
WL_ERR(("bcn_timeout error (%d)\n", err));
goto dongle_rom_out;
}
}
/* Enable/Disable built-in roaming to allow supplicant to take care of roaming */
bcm_mkiovar("roam_off", (char *)&roamvar, 4, iovbuf, sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (unlikely(err)) {
WL_ERR(("roam_off error (%d)\n", err));
goto dongle_rom_out;
}
dongle_rom_out:
return err;
}
static s32
wl_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time,
s32 scan_unassoc_time)
{
s32 err = 0;
err = wldev_ioctl(ndev, WLC_SET_SCAN_CHANNEL_TIME, &scan_assoc_time,
sizeof(scan_assoc_time), FALSE);
if (err) {
if (err == -EOPNOTSUPP) {
WL_INFO(("Scan assoc time is not supported\n"));
} else {
WL_ERR(("Scan assoc time error (%d)\n", err));
}
goto dongle_scantime_out;
}
err = wldev_ioctl(ndev, WLC_SET_SCAN_UNASSOC_TIME, &scan_unassoc_time,
sizeof(scan_unassoc_time), FALSE);
if (err) {
if (err == -EOPNOTSUPP) {
WL_INFO(("Scan unassoc time is not supported\n"));
} else {
WL_ERR(("Scan unassoc time error (%d)\n", err));
}
goto dongle_scantime_out;
}
dongle_scantime_out:
return err;
}
static s32
wl_dongle_offload(struct net_device *ndev, s32 arpoe, s32 arp_ol)
{
/* Room for "event_msgs" + '\0' + bitvec */
s8 iovbuf[WL_EVENTING_MASK_LEN + 12];
s32 err = 0;
/* Set ARP offload */
bcm_mkiovar("arpoe", (char *)&arpoe, 4, iovbuf, sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (err) {
if (err == -EOPNOTSUPP)
WL_INFO(("arpoe is not supported\n"));
else
WL_ERR(("arpoe error (%d)\n", err));
goto dongle_offload_out;
}
bcm_mkiovar("arp_ol", (char *)&arp_ol, 4, iovbuf, sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (err) {
if (err == -EOPNOTSUPP)
WL_INFO(("arp_ol is not supported\n"));
else
WL_ERR(("arp_ol error (%d)\n", err));
goto dongle_offload_out;
}
dongle_offload_out:
return err;
}
static s32 wl_pattern_atoh(s8 *src, s8 *dst)
{
int i;
if (strncmp(src, "0x", 2) != 0 && strncmp(src, "0X", 2) != 0) {
WL_ERR(("Mask invalid format. Needs to start with 0x\n"));
return -1;
}
src = src + 2; /* Skip past 0x */
if (strlen(src) % 2 != 0) {
WL_ERR(("Mask invalid format. Needs to be of even length\n"));
return -1;
}
for (i = 0; *src != '\0'; i++) {
char num[3];
strncpy(num, src, 2);
num[2] = '\0';
dst[i] = (u8) simple_strtoul(num, NULL, 16);
src += 2;
}
return i;
}
static s32 wl_dongle_filter(struct net_device *ndev, u32 filter_mode)
{
/* Room for "event_msgs" + '\0' + bitvec */
s8 iovbuf[WL_EVENTING_MASK_LEN + 12];
const s8 *str;
struct wl_pkt_filter pkt_filter;
struct wl_pkt_filter *pkt_filterp;
s32 buf_len;
s32 str_len;
u32 mask_size;
u32 pattern_size;
s8 buf[256];
s32 err = 0;
/* add a default packet filter pattern */
str = "pkt_filter_add";
str_len = strlen(str);
strncpy(buf, str, str_len);
buf[str_len] = '\0';
buf_len = str_len + 1;
pkt_filterp = (struct wl_pkt_filter *)(buf + str_len + 1);
/* Parse packet filter id. */
pkt_filter.id = htod32(100);
/* Parse filter polarity. */
pkt_filter.negate_match = htod32(0);
/* Parse filter type. */
pkt_filter.type = htod32(0);
/* Parse pattern filter offset. */
pkt_filter.u.pattern.offset = htod32(0);
/* Parse pattern filter mask. */
mask_size = htod32(wl_pattern_atoh("0xff",
(char *)pkt_filterp->u.pattern.
mask_and_pattern));
/* Parse pattern filter pattern. */
pattern_size = htod32(wl_pattern_atoh("0x00",
(char *)&pkt_filterp->u.pattern.mask_and_pattern[mask_size]));
if (mask_size != pattern_size) {
WL_ERR(("Mask and pattern not the same size\n"));
err = -EINVAL;
goto dongle_filter_out;
}
pkt_filter.u.pattern.size_bytes = mask_size;
buf_len += WL_PKT_FILTER_FIXED_LEN;
buf_len += (WL_PKT_FILTER_PATTERN_FIXED_LEN + 2 * mask_size);
/* Keep-alive attributes are set in local
* variable (keep_alive_pkt), and
* then memcpy'ed into buffer (keep_alive_pktp) since there is no
* guarantee that the buffer is properly aligned.
*/
memcpy((char *)pkt_filterp, &pkt_filter,
WL_PKT_FILTER_FIXED_LEN + WL_PKT_FILTER_PATTERN_FIXED_LEN);
err = wldev_ioctl(ndev, WLC_SET_VAR, buf, buf_len, FALSE);
if (err) {
if (err == -EOPNOTSUPP) {
WL_INFO(("filter not supported\n"));
} else {
WL_ERR(("filter (%d)\n", err));
}
goto dongle_filter_out;
}
/* set mode to allow pattern */
bcm_mkiovar("pkt_filter_mode", (char *)&filter_mode, 4, iovbuf,
sizeof(iovbuf));
err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), FALSE);
if (err) {
if (err == -EOPNOTSUPP) {
WL_INFO(("filter_mode not supported\n"));
} else {
WL_ERR(("filter_mode (%d)\n", err));
}
goto dongle_filter_out;
}
dongle_filter_out:
return err;
}
#endif /* !EMBEDDED_PLATFORM */
s32 wl_config_dongle(struct wl_priv *wl, bool need_lock)
{
#ifndef DHD_SDALIGN
#define DHD_SDALIGN 32
#endif
struct net_device *ndev;
struct wireless_dev *wdev;
s32 err = 0;
WL_TRACE(("In\n"));
if (wl->dongle_up)
return err;
ndev = wl_to_prmry_ndev(wl);
wdev = ndev->ieee80211_ptr;
if (need_lock)
rtnl_lock();
err = wl_dongle_eventmsg(ndev);
if (unlikely(err))
goto default_conf_out;
#ifndef EMBEDDED_PLATFORM
err = wl_dongle_up(ndev, 0);
if (unlikely(err))
goto default_conf_out;
err = wl_dongle_country(ndev, 0);
if (unlikely(err))
goto default_conf_out;
err = wl_dongle_power(ndev, PM_FAST);
if (unlikely(err))
goto default_conf_out;
err = wl_dongle_glom(ndev, 0, DHD_SDALIGN);
if (unlikely(err))
goto default_conf_out;
err = wl_dongle_roam(ndev, (wl->roam_on ? 0 : 1), 3);
if (unlikely(err))
goto default_conf_out;
err = wl_dongle_eventmsg(ndev);
if (unlikely(err))
goto default_conf_out;
wl_dongle_scantime(ndev, 40, 80);
wl_dongle_offload(ndev, 1, 0xf);
wl_dongle_filter(ndev, 1);
#endif /* !EMBEDDED_PLATFORM */
err = wl_dongle_mode(wl, ndev, wdev->iftype);
if (unlikely(err && err != -EINPROGRESS))
goto default_conf_out;
err = wl_dongle_probecap(wl);
if (unlikely(err))
goto default_conf_out;
/* -EINPROGRESS: Call commit handler */
default_conf_out:
if (need_lock)
rtnl_unlock();
wl->dongle_up = true;
return err;
}
static s32 wl_update_wiphybands(struct wl_priv *wl)
{
struct wiphy *wiphy;
s32 phy_list;
s8 phy;
s32 err = 0;
err = wldev_ioctl(wl_to_prmry_ndev(wl), WLC_GET_PHYLIST, &phy_list,
sizeof(phy_list), FALSE);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
phy = ((char *)&phy_list)[1];
WL_DBG(("%c phy\n", phy));
if (phy == 'n' || phy == 'a') {
wiphy = wl_to_wiphy(wl);
wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n;
}
return err;
}
static s32 __wl_cfg80211_up(struct wl_priv *wl)
{
s32 err = 0;
WL_TRACE(("In\n"));
wl_debugfs_add_netdev_params(wl);
err = wl_config_dongle(wl, false);
if (unlikely(err))
return err;
wl_invoke_iscan(wl);
set_bit(WL_STATUS_READY, &wl->status);
return err;
}
static s32 __wl_cfg80211_down(struct wl_priv *wl)
{
s32 err = 0;
WL_TRACE(("In\n"));
/* Check if cfg80211 interface is already down */
if (!test_bit(WL_STATUS_READY, &wl->status))
return err; /* it is even not ready */
set_bit(WL_STATUS_SCAN_ABORTING, &wl->status);
wl_term_iscan(wl);
if (wl->scan_request) {
cfg80211_scan_done(wl->scan_request, true);
wl->scan_request = NULL;
}
clear_bit(WL_STATUS_READY, &wl->status);
clear_bit(WL_STATUS_SCANNING, &wl->status);
clear_bit(WL_STATUS_SCAN_ABORTING, &wl->status);
clear_bit(WL_STATUS_CONNECTED, &wl->status);
wl->dongle_up = false;
wl_flush_eq(wl);
wl_link_down(wl);
wl_cfgp2p_down(wl);
wl_debugfs_remove_netdev(wl);
return err;
}
s32 wl_cfg80211_up(void)
{
struct wl_priv *wl;
s32 err = 0;
WL_TRACE(("In\n"));
wl = WL_PRIV_GET();
mutex_lock(&wl->usr_sync);
wl_cfg80211_attach_post(wl_to_prmry_ndev(wl));
err = __wl_cfg80211_up(wl);
mutex_unlock(&wl->usr_sync);
return err;
}
s32 wl_cfg80211_down(void)
{
struct wl_priv *wl;
s32 err = 0;
WL_TRACE(("In\n"));
wl = WL_PRIV_GET();
mutex_lock(&wl->usr_sync);
err = __wl_cfg80211_down(wl);
mutex_unlock(&wl->usr_sync);
return err;
}
static s32 wl_dongle_probecap(struct wl_priv *wl)
{
s32 err = 0;
err = wl_update_wiphybands(wl);
if (unlikely(err))
return err;
return err;
}
static void *wl_read_prof(struct wl_priv *wl, s32 item)
{
switch (item) {
case WL_PROF_SEC:
return &wl->profile->sec;
case WL_PROF_ACT:
return &wl->profile->active;
case WL_PROF_BSSID:
return &wl->profile->bssid;
case WL_PROF_SSID:
return &wl->profile->ssid;
}
WL_ERR(("invalid item (%d)\n", item));
return NULL;
}
static s32
wl_update_prof(struct wl_priv *wl, const wl_event_msg_t *e, void *data,
s32 item)
{
s32 err = 0;
struct wlc_ssid *ssid;
switch (item) {
case WL_PROF_SSID:
ssid = (wlc_ssid_t *) data;
memset(wl->profile->ssid.SSID, 0,
sizeof(wl->profile->ssid.SSID));
memcpy(wl->profile->ssid.SSID, ssid->SSID, ssid->SSID_len);
wl->profile->ssid.SSID_len = ssid->SSID_len;
break;
case WL_PROF_BSSID:
if (data)
memcpy(wl->profile->bssid, data, ETHER_ADDR_LEN);
else
memset(wl->profile->bssid, 0, ETHER_ADDR_LEN);
break;
case WL_PROF_SEC:
memcpy(&wl->profile->sec, data, sizeof(wl->profile->sec));
break;
case WL_PROF_ACT:
wl->profile->active = *(bool *)data;
break;
case WL_PROF_BEACONINT:
wl->profile->beacon_interval = *(u16 *)data;
break;
case WL_PROF_DTIMPERIOD:
wl->profile->dtim_period = *(u8 *)data;
break;
default:
WL_ERR(("unsupported item (%d)\n", item));
err = -EOPNOTSUPP;
break;
}
return err;
}
void wl_cfg80211_dbg_level(u32 level)
{
/*
* prohibit to change debug level
* by insmod parameter.
* eventually debug level will be configured
* in compile time by using CONFIG_XXX
*/
/* wl_dbg_level = level; */
}
static bool wl_is_ibssmode(struct wl_priv *wl, struct net_device *ndev)
{
return get_mode_by_netdev(wl, ndev) == WL_MODE_IBSS;
}
static __used bool wl_is_ibssstarter(struct wl_priv *wl)
{
return wl->ibss_starter;
}
static void wl_rst_ie(struct wl_priv *wl)
{
struct wl_ie *ie = wl_to_ie(wl);
ie->offset = 0;
}
static __used s32 wl_add_ie(struct wl_priv *wl, u8 t, u8 l, u8 *v)
{
struct wl_ie *ie = wl_to_ie(wl);
s32 err = 0;
if (unlikely(ie->offset + l + 2 > WL_TLV_INFO_MAX)) {
WL_ERR(("ei crosses buffer boundary\n"));
return -ENOSPC;
}
ie->buf[ie->offset] = t;
ie->buf[ie->offset + 1] = l;
memcpy(&ie->buf[ie->offset + 2], v, l);
ie->offset += l + 2;
return err;
}
static s32 wl_mrg_ie(struct wl_priv *wl, u8 *ie_stream, u16 ie_size)
{
struct wl_ie *ie = wl_to_ie(wl);
s32 err = 0;
if (unlikely(ie->offset + ie_size > WL_TLV_INFO_MAX)) {
WL_ERR(("ei_stream crosses buffer boundary\n"));
return -ENOSPC;
}
memcpy(&ie->buf[ie->offset], ie_stream, ie_size);
ie->offset += ie_size;
return err;
}
static s32 wl_cp_ie(struct wl_priv *wl, u8 *dst, u16 dst_size)
{
struct wl_ie *ie = wl_to_ie(wl);
s32 err = 0;
if (unlikely(ie->offset > dst_size)) {
WL_ERR(("dst_size is not enough\n"));
return -ENOSPC;
}
memcpy(dst, &ie->buf[0], ie->offset);
return err;
}
static u32 wl_get_ielen(struct wl_priv *wl)
{
struct wl_ie *ie = wl_to_ie(wl);
return ie->offset;
}
static void wl_link_up(struct wl_priv *wl)
{
wl->link_up = true;
}
static void wl_link_down(struct wl_priv *wl)
{
struct wl_connect_info *conn_info = wl_to_conn(wl);
WL_DBG(("In\n"));
wl->link_up = false;
kfree(conn_info->req_ie);
conn_info->req_ie = NULL;
conn_info->req_ie_len = 0;
kfree(conn_info->resp_ie);
conn_info->resp_ie = NULL;
conn_info->resp_ie_len = 0;
}
static void wl_lock_eq(struct wl_priv *wl)
{
spin_lock_irq(&wl->eq_lock);
}
static void wl_unlock_eq(struct wl_priv *wl)
{
spin_unlock_irq(&wl->eq_lock);
}
static void wl_init_eq_lock(struct wl_priv *wl)
{
spin_lock_init(&wl->eq_lock);
}
static void wl_delay(u32 ms)
{
if (ms < 1000 / HZ) {
cond_resched();
mdelay(ms);
} else {
msleep(ms);
}
}
static void wl_set_drvdata(struct wl_dev *dev, void *data)
{
dev->driver_data = data;
}
static void *wl_get_drvdata(struct wl_dev *dev)
{
return dev->driver_data;
}
s32 wl_cfg80211_read_fw(s8 *buf, u32 size)
{
const struct firmware *fw_entry;
struct wl_priv *wl;
wl = WL_PRIV_GET();
fw_entry = wl->fw->fw_entry;
if (fw_entry->size < wl->fw->ptr + size)
size = fw_entry->size - wl->fw->ptr;
memcpy(buf, &fw_entry->data[wl->fw->ptr], size);
wl->fw->ptr += size;
return size;
}
void wl_cfg80211_release_fw(void)
{
struct wl_priv *wl;
wl = WL_PRIV_GET();
release_firmware(wl->fw->fw_entry);
wl->fw->ptr = 0;
}
void *wl_cfg80211_request_fw(s8 *file_name)
{
struct wl_priv *wl;
const struct firmware *fw_entry = NULL;
s32 err = 0;
WL_TRACE(("In\n"));
WL_DBG(("file name : \"%s\"\n", file_name));
wl = WL_PRIV_GET();
if (!test_bit(WL_FW_LOADING_DONE, &wl->fw->status)) {
err = request_firmware(&wl->fw->fw_entry, file_name,
&wl_cfg80211_get_sdio_func()->dev);
if (unlikely(err)) {
WL_ERR(("Could not download fw (%d)\n", err));
goto req_fw_out;
}
set_bit(WL_FW_LOADING_DONE, &wl->fw->status);
fw_entry = wl->fw->fw_entry;
if (fw_entry) {
WL_DBG(("fw size (%zd), data (%p)\n", fw_entry->size,
fw_entry->data));
}
} else if (!test_bit(WL_NVRAM_LOADING_DONE, &wl->fw->status)) {
err = request_firmware(&wl->fw->fw_entry, file_name,
&wl_cfg80211_get_sdio_func()->dev);
if (unlikely(err)) {
WL_ERR(("Could not download nvram (%d)\n", err));
goto req_fw_out;
}
set_bit(WL_NVRAM_LOADING_DONE, &wl->fw->status);
fw_entry = wl->fw->fw_entry;
if (fw_entry) {
WL_DBG(("nvram size (%zd), data (%p)\n", fw_entry->size,
fw_entry->data));
}
} else {
WL_DBG(("Downloading already done. Nothing to do more\n"));
err = -EPERM;
}
req_fw_out:
if (unlikely(err)) {
return NULL;
}
wl->fw->ptr = 0;
return (void *)fw_entry->data;
}
s8 *wl_cfg80211_get_fwname(void)
{
struct wl_priv *wl;
wl = WL_PRIV_GET();
strcpy(wl->fw->fw_name, WL_4329_FW_FILE);
return wl->fw->fw_name;
}
s8 *wl_cfg80211_get_nvramname(void)
{
struct wl_priv *wl;
wl = WL_PRIV_GET();
strcpy(wl->fw->nvram_name, WL_4329_NVRAM_FILE);
return wl->fw->nvram_name;
}
static int wl_debugfs_add_netdev_params(struct wl_priv *wl)
{
char buf[10+IFNAMSIZ];
struct dentry *fd;
s32 err = 0;
WL_TRACE(("In\n"));
sprintf(buf, "netdev:%s", wl_to_prmry_ndev(wl)->name);
wl->debugfsdir = debugfs_create_dir(buf, wl_to_wiphy(wl)->debugfsdir);
fd = debugfs_create_u16("beacon_int", S_IRUGO, wl->debugfsdir,
(u16 *)&wl->profile->beacon_interval);
if (!fd) {
err = -ENOMEM;
goto err_out;
}
fd = debugfs_create_u8("dtim_period", S_IRUGO, wl->debugfsdir,
(u8 *)&wl->profile->dtim_period);
if (!fd) {
err = -ENOMEM;
goto err_out;
}
err_out:
return err;
}
static void wl_debugfs_remove_netdev(struct wl_priv *wl)
{
WL_DBG(("Enter \n"));
}
static const struct rfkill_ops wl_rfkill_ops = {
.set_block = wl_rfkill_set
};
static int wl_rfkill_set(void *data, bool blocked)
{
return 0;
}
static int wl_setup_rfkill(struct wl_priv *wl)
{
s32 err;
WL_DBG(("Enter \n"));
wl->rfkill = rfkill_alloc("brcmfmac-wifi",
&wl_cfg80211_get_sdio_func()->dev,
RFKILL_TYPE_WLAN, &wl_rfkill_ops, (void *)wl);
if (!wl->rfkill) {
err = -ENOMEM;
goto err_out;
}
err = rfkill_register(wl->rfkill);
if (err)
rfkill_destroy(wl->rfkill);
err_out:
return err;
}