| /* |
| * fs/eventpoll.c (Efficient event retrieval implementation) |
| * Copyright (C) 2001,...,2009 Davide Libenzi |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * Davide Libenzi <davidel@xmailserver.org> |
| * |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/signal.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/poll.h> |
| #include <linux/string.h> |
| #include <linux/list.h> |
| #include <linux/hash.h> |
| #include <linux/spinlock.h> |
| #include <linux/syscalls.h> |
| #include <linux/rbtree.h> |
| #include <linux/wait.h> |
| #include <linux/eventpoll.h> |
| #include <linux/mount.h> |
| #include <linux/bitops.h> |
| #include <linux/mutex.h> |
| #include <linux/anon_inodes.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/mman.h> |
| #include <linux/atomic.h> |
| |
| /* |
| * LOCKING: |
| * There are three level of locking required by epoll : |
| * |
| * 1) epmutex (mutex) |
| * 2) ep->mtx (mutex) |
| * 3) ep->lock (spinlock) |
| * |
| * The acquire order is the one listed above, from 1 to 3. |
| * We need a spinlock (ep->lock) because we manipulate objects |
| * from inside the poll callback, that might be triggered from |
| * a wake_up() that in turn might be called from IRQ context. |
| * So we can't sleep inside the poll callback and hence we need |
| * a spinlock. During the event transfer loop (from kernel to |
| * user space) we could end up sleeping due a copy_to_user(), so |
| * we need a lock that will allow us to sleep. This lock is a |
| * mutex (ep->mtx). It is acquired during the event transfer loop, |
| * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). |
| * Then we also need a global mutex to serialize eventpoll_release_file() |
| * and ep_free(). |
| * This mutex is acquired by ep_free() during the epoll file |
| * cleanup path and it is also acquired by eventpoll_release_file() |
| * if a file has been pushed inside an epoll set and it is then |
| * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). |
| * It is also acquired when inserting an epoll fd onto another epoll |
| * fd. We do this so that we walk the epoll tree and ensure that this |
| * insertion does not create a cycle of epoll file descriptors, which |
| * could lead to deadlock. We need a global mutex to prevent two |
| * simultaneous inserts (A into B and B into A) from racing and |
| * constructing a cycle without either insert observing that it is |
| * going to. |
| * It is necessary to acquire multiple "ep->mtx"es at once in the |
| * case when one epoll fd is added to another. In this case, we |
| * always acquire the locks in the order of nesting (i.e. after |
| * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired |
| * before e2->mtx). Since we disallow cycles of epoll file |
| * descriptors, this ensures that the mutexes are well-ordered. In |
| * order to communicate this nesting to lockdep, when walking a tree |
| * of epoll file descriptors, we use the current recursion depth as |
| * the lockdep subkey. |
| * It is possible to drop the "ep->mtx" and to use the global |
| * mutex "epmutex" (together with "ep->lock") to have it working, |
| * but having "ep->mtx" will make the interface more scalable. |
| * Events that require holding "epmutex" are very rare, while for |
| * normal operations the epoll private "ep->mtx" will guarantee |
| * a better scalability. |
| */ |
| |
| /* Epoll private bits inside the event mask */ |
| #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) |
| |
| /* Maximum number of nesting allowed inside epoll sets */ |
| #define EP_MAX_NESTS 4 |
| |
| #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) |
| |
| #define EP_UNACTIVE_PTR ((void *) -1L) |
| |
| #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) |
| |
| struct epoll_filefd { |
| struct file *file; |
| int fd; |
| }; |
| |
| /* |
| * Structure used to track possible nested calls, for too deep recursions |
| * and loop cycles. |
| */ |
| struct nested_call_node { |
| struct list_head llink; |
| void *cookie; |
| void *ctx; |
| }; |
| |
| /* |
| * This structure is used as collector for nested calls, to check for |
| * maximum recursion dept and loop cycles. |
| */ |
| struct nested_calls { |
| struct list_head tasks_call_list; |
| spinlock_t lock; |
| }; |
| |
| /* |
| * Each file descriptor added to the eventpoll interface will |
| * have an entry of this type linked to the "rbr" RB tree. |
| */ |
| struct epitem { |
| /* RB tree node used to link this structure to the eventpoll RB tree */ |
| struct rb_node rbn; |
| |
| /* List header used to link this structure to the eventpoll ready list */ |
| struct list_head rdllink; |
| |
| /* |
| * Works together "struct eventpoll"->ovflist in keeping the |
| * single linked chain of items. |
| */ |
| struct epitem *next; |
| |
| /* The file descriptor information this item refers to */ |
| struct epoll_filefd ffd; |
| |
| /* Number of active wait queue attached to poll operations */ |
| int nwait; |
| |
| /* List containing poll wait queues */ |
| struct list_head pwqlist; |
| |
| /* The "container" of this item */ |
| struct eventpoll *ep; |
| |
| /* List header used to link this item to the "struct file" items list */ |
| struct list_head fllink; |
| |
| /* The structure that describe the interested events and the source fd */ |
| struct epoll_event event; |
| }; |
| |
| /* |
| * This structure is stored inside the "private_data" member of the file |
| * structure and represents the main data structure for the eventpoll |
| * interface. |
| */ |
| struct eventpoll { |
| /* Protect the access to this structure */ |
| spinlock_t lock; |
| |
| /* |
| * This mutex is used to ensure that files are not removed |
| * while epoll is using them. This is held during the event |
| * collection loop, the file cleanup path, the epoll file exit |
| * code and the ctl operations. |
| */ |
| struct mutex mtx; |
| |
| /* Wait queue used by sys_epoll_wait() */ |
| wait_queue_head_t wq; |
| |
| /* Wait queue used by file->poll() */ |
| wait_queue_head_t poll_wait; |
| |
| /* List of ready file descriptors */ |
| struct list_head rdllist; |
| |
| /* RB tree root used to store monitored fd structs */ |
| struct rb_root rbr; |
| |
| /* |
| * This is a single linked list that chains all the "struct epitem" that |
| * happened while transferring ready events to userspace w/out |
| * holding ->lock. |
| */ |
| struct epitem *ovflist; |
| |
| /* The user that created the eventpoll descriptor */ |
| struct user_struct *user; |
| |
| struct file *file; |
| |
| /* used to optimize loop detection check */ |
| int visited; |
| struct list_head visited_list_link; |
| }; |
| |
| /* Wait structure used by the poll hooks */ |
| struct eppoll_entry { |
| /* List header used to link this structure to the "struct epitem" */ |
| struct list_head llink; |
| |
| /* The "base" pointer is set to the container "struct epitem" */ |
| struct epitem *base; |
| |
| /* |
| * Wait queue item that will be linked to the target file wait |
| * queue head. |
| */ |
| wait_queue_t wait; |
| |
| /* The wait queue head that linked the "wait" wait queue item */ |
| wait_queue_head_t *whead; |
| }; |
| |
| /* Wrapper struct used by poll queueing */ |
| struct ep_pqueue { |
| poll_table pt; |
| struct epitem *epi; |
| }; |
| |
| /* Used by the ep_send_events() function as callback private data */ |
| struct ep_send_events_data { |
| int maxevents; |
| struct epoll_event __user *events; |
| }; |
| |
| /* |
| * Configuration options available inside /proc/sys/fs/epoll/ |
| */ |
| /* Maximum number of epoll watched descriptors, per user */ |
| static long max_user_watches __read_mostly; |
| |
| /* |
| * This mutex is used to serialize ep_free() and eventpoll_release_file(). |
| */ |
| static DEFINE_MUTEX(epmutex); |
| |
| /* Used to check for epoll file descriptor inclusion loops */ |
| static struct nested_calls poll_loop_ncalls; |
| |
| /* Used for safe wake up implementation */ |
| static struct nested_calls poll_safewake_ncalls; |
| |
| /* Used to call file's f_op->poll() under the nested calls boundaries */ |
| static struct nested_calls poll_readywalk_ncalls; |
| |
| /* Slab cache used to allocate "struct epitem" */ |
| static struct kmem_cache *epi_cache __read_mostly; |
| |
| /* Slab cache used to allocate "struct eppoll_entry" */ |
| static struct kmem_cache *pwq_cache __read_mostly; |
| |
| /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ |
| static LIST_HEAD(visited_list); |
| |
| /* |
| * List of files with newly added links, where we may need to limit the number |
| * of emanating paths. Protected by the epmutex. |
| */ |
| static LIST_HEAD(tfile_check_list); |
| |
| #ifdef CONFIG_SYSCTL |
| |
| #include <linux/sysctl.h> |
| |
| static long zero; |
| static long long_max = LONG_MAX; |
| |
| ctl_table epoll_table[] = { |
| { |
| .procname = "max_user_watches", |
| .data = &max_user_watches, |
| .maxlen = sizeof(max_user_watches), |
| .mode = 0644, |
| .proc_handler = proc_doulongvec_minmax, |
| .extra1 = &zero, |
| .extra2 = &long_max, |
| }, |
| { } |
| }; |
| #endif /* CONFIG_SYSCTL */ |
| |
| static const struct file_operations eventpoll_fops; |
| |
| static inline int is_file_epoll(struct file *f) |
| { |
| return f->f_op == &eventpoll_fops; |
| } |
| |
| /* Setup the structure that is used as key for the RB tree */ |
| static inline void ep_set_ffd(struct epoll_filefd *ffd, |
| struct file *file, int fd) |
| { |
| ffd->file = file; |
| ffd->fd = fd; |
| } |
| |
| /* Compare RB tree keys */ |
| static inline int ep_cmp_ffd(struct epoll_filefd *p1, |
| struct epoll_filefd *p2) |
| { |
| return (p1->file > p2->file ? +1: |
| (p1->file < p2->file ? -1 : p1->fd - p2->fd)); |
| } |
| |
| /* Tells us if the item is currently linked */ |
| static inline int ep_is_linked(struct list_head *p) |
| { |
| return !list_empty(p); |
| } |
| |
| static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) |
| { |
| return container_of(p, struct eppoll_entry, wait); |
| } |
| |
| /* Get the "struct epitem" from a wait queue pointer */ |
| static inline struct epitem *ep_item_from_wait(wait_queue_t *p) |
| { |
| return container_of(p, struct eppoll_entry, wait)->base; |
| } |
| |
| /* Get the "struct epitem" from an epoll queue wrapper */ |
| static inline struct epitem *ep_item_from_epqueue(poll_table *p) |
| { |
| return container_of(p, struct ep_pqueue, pt)->epi; |
| } |
| |
| /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ |
| static inline int ep_op_has_event(int op) |
| { |
| return op != EPOLL_CTL_DEL; |
| } |
| |
| /* Initialize the poll safe wake up structure */ |
| static void ep_nested_calls_init(struct nested_calls *ncalls) |
| { |
| INIT_LIST_HEAD(&ncalls->tasks_call_list); |
| spin_lock_init(&ncalls->lock); |
| } |
| |
| /** |
| * ep_events_available - Checks if ready events might be available. |
| * |
| * @ep: Pointer to the eventpoll context. |
| * |
| * Returns: Returns a value different than zero if ready events are available, |
| * or zero otherwise. |
| */ |
| static inline int ep_events_available(struct eventpoll *ep) |
| { |
| return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; |
| } |
| |
| /** |
| * ep_call_nested - Perform a bound (possibly) nested call, by checking |
| * that the recursion limit is not exceeded, and that |
| * the same nested call (by the meaning of same cookie) is |
| * no re-entered. |
| * |
| * @ncalls: Pointer to the nested_calls structure to be used for this call. |
| * @max_nests: Maximum number of allowed nesting calls. |
| * @nproc: Nested call core function pointer. |
| * @priv: Opaque data to be passed to the @nproc callback. |
| * @cookie: Cookie to be used to identify this nested call. |
| * @ctx: This instance context. |
| * |
| * Returns: Returns the code returned by the @nproc callback, or -1 if |
| * the maximum recursion limit has been exceeded. |
| */ |
| static int ep_call_nested(struct nested_calls *ncalls, int max_nests, |
| int (*nproc)(void *, void *, int), void *priv, |
| void *cookie, void *ctx) |
| { |
| int error, call_nests = 0; |
| unsigned long flags; |
| struct list_head *lsthead = &ncalls->tasks_call_list; |
| struct nested_call_node *tncur; |
| struct nested_call_node tnode; |
| |
| spin_lock_irqsave(&ncalls->lock, flags); |
| |
| /* |
| * Try to see if the current task is already inside this wakeup call. |
| * We use a list here, since the population inside this set is always |
| * very much limited. |
| */ |
| list_for_each_entry(tncur, lsthead, llink) { |
| if (tncur->ctx == ctx && |
| (tncur->cookie == cookie || ++call_nests > max_nests)) { |
| /* |
| * Ops ... loop detected or maximum nest level reached. |
| * We abort this wake by breaking the cycle itself. |
| */ |
| error = -1; |
| goto out_unlock; |
| } |
| } |
| |
| /* Add the current task and cookie to the list */ |
| tnode.ctx = ctx; |
| tnode.cookie = cookie; |
| list_add(&tnode.llink, lsthead); |
| |
| spin_unlock_irqrestore(&ncalls->lock, flags); |
| |
| /* Call the nested function */ |
| error = (*nproc)(priv, cookie, call_nests); |
| |
| /* Remove the current task from the list */ |
| spin_lock_irqsave(&ncalls->lock, flags); |
| list_del(&tnode.llink); |
| out_unlock: |
| spin_unlock_irqrestore(&ncalls->lock, flags); |
| |
| return error; |
| } |
| |
| /* |
| * As described in commit 0ccf831cb lockdep: annotate epoll |
| * the use of wait queues used by epoll is done in a very controlled |
| * manner. Wake ups can nest inside each other, but are never done |
| * with the same locking. For example: |
| * |
| * dfd = socket(...); |
| * efd1 = epoll_create(); |
| * efd2 = epoll_create(); |
| * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); |
| * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); |
| * |
| * When a packet arrives to the device underneath "dfd", the net code will |
| * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a |
| * callback wakeup entry on that queue, and the wake_up() performed by the |
| * "dfd" net code will end up in ep_poll_callback(). At this point epoll |
| * (efd1) notices that it may have some event ready, so it needs to wake up |
| * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() |
| * that ends up in another wake_up(), after having checked about the |
| * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to |
| * avoid stack blasting. |
| * |
| * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle |
| * this special case of epoll. |
| */ |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, |
| unsigned long events, int subclass) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); |
| wake_up_locked_poll(wqueue, events); |
| spin_unlock_irqrestore(&wqueue->lock, flags); |
| } |
| #else |
| static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, |
| unsigned long events, int subclass) |
| { |
| wake_up_poll(wqueue, events); |
| } |
| #endif |
| |
| static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) |
| { |
| ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, |
| 1 + call_nests); |
| return 0; |
| } |
| |
| /* |
| * Perform a safe wake up of the poll wait list. The problem is that |
| * with the new callback'd wake up system, it is possible that the |
| * poll callback is reentered from inside the call to wake_up() done |
| * on the poll wait queue head. The rule is that we cannot reenter the |
| * wake up code from the same task more than EP_MAX_NESTS times, |
| * and we cannot reenter the same wait queue head at all. This will |
| * enable to have a hierarchy of epoll file descriptor of no more than |
| * EP_MAX_NESTS deep. |
| */ |
| static void ep_poll_safewake(wait_queue_head_t *wq) |
| { |
| int this_cpu = get_cpu(); |
| |
| ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, |
| ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); |
| |
| put_cpu(); |
| } |
| |
| static void ep_remove_wait_queue(struct eppoll_entry *pwq) |
| { |
| wait_queue_head_t *whead; |
| |
| rcu_read_lock(); |
| /* If it is cleared by POLLFREE, it should be rcu-safe */ |
| whead = rcu_dereference(pwq->whead); |
| if (whead) |
| remove_wait_queue(whead, &pwq->wait); |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * This function unregisters poll callbacks from the associated file |
| * descriptor. Must be called with "mtx" held (or "epmutex" if called from |
| * ep_free). |
| */ |
| static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) |
| { |
| struct list_head *lsthead = &epi->pwqlist; |
| struct eppoll_entry *pwq; |
| |
| while (!list_empty(lsthead)) { |
| pwq = list_first_entry(lsthead, struct eppoll_entry, llink); |
| |
| list_del(&pwq->llink); |
| ep_remove_wait_queue(pwq); |
| kmem_cache_free(pwq_cache, pwq); |
| } |
| } |
| |
| /** |
| * ep_scan_ready_list - Scans the ready list in a way that makes possible for |
| * the scan code, to call f_op->poll(). Also allows for |
| * O(NumReady) performance. |
| * |
| * @ep: Pointer to the epoll private data structure. |
| * @sproc: Pointer to the scan callback. |
| * @priv: Private opaque data passed to the @sproc callback. |
| * @depth: The current depth of recursive f_op->poll calls. |
| * |
| * Returns: The same integer error code returned by the @sproc callback. |
| */ |
| static int ep_scan_ready_list(struct eventpoll *ep, |
| int (*sproc)(struct eventpoll *, |
| struct list_head *, void *), |
| void *priv, |
| int depth) |
| { |
| int error, pwake = 0; |
| unsigned long flags; |
| struct epitem *epi, *nepi; |
| LIST_HEAD(txlist); |
| |
| /* |
| * We need to lock this because we could be hit by |
| * eventpoll_release_file() and epoll_ctl(). |
| */ |
| mutex_lock_nested(&ep->mtx, depth); |
| |
| /* |
| * Steal the ready list, and re-init the original one to the |
| * empty list. Also, set ep->ovflist to NULL so that events |
| * happening while looping w/out locks, are not lost. We cannot |
| * have the poll callback to queue directly on ep->rdllist, |
| * because we want the "sproc" callback to be able to do it |
| * in a lockless way. |
| */ |
| spin_lock_irqsave(&ep->lock, flags); |
| list_splice_init(&ep->rdllist, &txlist); |
| ep->ovflist = NULL; |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| /* |
| * Now call the callback function. |
| */ |
| error = (*sproc)(ep, &txlist, priv); |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| /* |
| * During the time we spent inside the "sproc" callback, some |
| * other events might have been queued by the poll callback. |
| * We re-insert them inside the main ready-list here. |
| */ |
| for (nepi = ep->ovflist; (epi = nepi) != NULL; |
| nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { |
| /* |
| * We need to check if the item is already in the list. |
| * During the "sproc" callback execution time, items are |
| * queued into ->ovflist but the "txlist" might already |
| * contain them, and the list_splice() below takes care of them. |
| */ |
| if (!ep_is_linked(&epi->rdllink)) |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| } |
| /* |
| * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after |
| * releasing the lock, events will be queued in the normal way inside |
| * ep->rdllist. |
| */ |
| ep->ovflist = EP_UNACTIVE_PTR; |
| |
| /* |
| * Quickly re-inject items left on "txlist". |
| */ |
| list_splice(&txlist, &ep->rdllist); |
| |
| if (!list_empty(&ep->rdllist)) { |
| /* |
| * Wake up (if active) both the eventpoll wait list and |
| * the ->poll() wait list (delayed after we release the lock). |
| */ |
| if (waitqueue_active(&ep->wq)) |
| wake_up_locked(&ep->wq); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| } |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| mutex_unlock(&ep->mtx); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&ep->poll_wait); |
| |
| return error; |
| } |
| |
| /* |
| * Removes a "struct epitem" from the eventpoll RB tree and deallocates |
| * all the associated resources. Must be called with "mtx" held. |
| */ |
| static int ep_remove(struct eventpoll *ep, struct epitem *epi) |
| { |
| unsigned long flags; |
| struct file *file = epi->ffd.file; |
| |
| /* |
| * Removes poll wait queue hooks. We _have_ to do this without holding |
| * the "ep->lock" otherwise a deadlock might occur. This because of the |
| * sequence of the lock acquisition. Here we do "ep->lock" then the wait |
| * queue head lock when unregistering the wait queue. The wakeup callback |
| * will run by holding the wait queue head lock and will call our callback |
| * that will try to get "ep->lock". |
| */ |
| ep_unregister_pollwait(ep, epi); |
| |
| /* Remove the current item from the list of epoll hooks */ |
| spin_lock(&file->f_lock); |
| if (ep_is_linked(&epi->fllink)) |
| list_del_init(&epi->fllink); |
| spin_unlock(&file->f_lock); |
| |
| rb_erase(&epi->rbn, &ep->rbr); |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| if (ep_is_linked(&epi->rdllink)) |
| list_del_init(&epi->rdllink); |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| /* At this point it is safe to free the eventpoll item */ |
| kmem_cache_free(epi_cache, epi); |
| |
| atomic_long_dec(&ep->user->epoll_watches); |
| |
| return 0; |
| } |
| |
| static void ep_free(struct eventpoll *ep) |
| { |
| struct rb_node *rbp; |
| struct epitem *epi; |
| |
| /* We need to release all tasks waiting for these file */ |
| if (waitqueue_active(&ep->poll_wait)) |
| ep_poll_safewake(&ep->poll_wait); |
| |
| /* |
| * We need to lock this because we could be hit by |
| * eventpoll_release_file() while we're freeing the "struct eventpoll". |
| * We do not need to hold "ep->mtx" here because the epoll file |
| * is on the way to be removed and no one has references to it |
| * anymore. The only hit might come from eventpoll_release_file() but |
| * holding "epmutex" is sufficient here. |
| */ |
| mutex_lock(&epmutex); |
| |
| /* |
| * Walks through the whole tree by unregistering poll callbacks. |
| */ |
| for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| |
| ep_unregister_pollwait(ep, epi); |
| } |
| |
| /* |
| * Walks through the whole tree by freeing each "struct epitem". At this |
| * point we are sure no poll callbacks will be lingering around, and also by |
| * holding "epmutex" we can be sure that no file cleanup code will hit |
| * us during this operation. So we can avoid the lock on "ep->lock". |
| */ |
| while ((rbp = rb_first(&ep->rbr)) != NULL) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| ep_remove(ep, epi); |
| } |
| |
| mutex_unlock(&epmutex); |
| mutex_destroy(&ep->mtx); |
| free_uid(ep->user); |
| kfree(ep); |
| } |
| |
| static int ep_eventpoll_release(struct inode *inode, struct file *file) |
| { |
| struct eventpoll *ep = file->private_data; |
| |
| if (ep) |
| ep_free(ep); |
| |
| return 0; |
| } |
| |
| static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, |
| void *priv) |
| { |
| struct epitem *epi, *tmp; |
| poll_table pt; |
| |
| init_poll_funcptr(&pt, NULL); |
| list_for_each_entry_safe(epi, tmp, head, rdllink) { |
| pt._key = epi->event.events; |
| if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & |
| epi->event.events) |
| return POLLIN | POLLRDNORM; |
| else { |
| /* |
| * Item has been dropped into the ready list by the poll |
| * callback, but it's not actually ready, as far as |
| * caller requested events goes. We can remove it here. |
| */ |
| list_del_init(&epi->rdllink); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) |
| { |
| return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); |
| } |
| |
| static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) |
| { |
| int pollflags; |
| struct eventpoll *ep = file->private_data; |
| |
| /* Insert inside our poll wait queue */ |
| poll_wait(file, &ep->poll_wait, wait); |
| |
| /* |
| * Proceed to find out if wanted events are really available inside |
| * the ready list. This need to be done under ep_call_nested() |
| * supervision, since the call to f_op->poll() done on listed files |
| * could re-enter here. |
| */ |
| pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, |
| ep_poll_readyevents_proc, ep, ep, current); |
| |
| return pollflags != -1 ? pollflags : 0; |
| } |
| |
| /* File callbacks that implement the eventpoll file behaviour */ |
| static const struct file_operations eventpoll_fops = { |
| .release = ep_eventpoll_release, |
| .poll = ep_eventpoll_poll, |
| .llseek = noop_llseek, |
| }; |
| |
| /* |
| * This is called from eventpoll_release() to unlink files from the eventpoll |
| * interface. We need to have this facility to cleanup correctly files that are |
| * closed without being removed from the eventpoll interface. |
| */ |
| void eventpoll_release_file(struct file *file) |
| { |
| struct list_head *lsthead = &file->f_ep_links; |
| struct eventpoll *ep; |
| struct epitem *epi; |
| |
| /* |
| * We don't want to get "file->f_lock" because it is not |
| * necessary. It is not necessary because we're in the "struct file" |
| * cleanup path, and this means that no one is using this file anymore. |
| * So, for example, epoll_ctl() cannot hit here since if we reach this |
| * point, the file counter already went to zero and fget() would fail. |
| * The only hit might come from ep_free() but by holding the mutex |
| * will correctly serialize the operation. We do need to acquire |
| * "ep->mtx" after "epmutex" because ep_remove() requires it when called |
| * from anywhere but ep_free(). |
| * |
| * Besides, ep_remove() acquires the lock, so we can't hold it here. |
| */ |
| mutex_lock(&epmutex); |
| |
| while (!list_empty(lsthead)) { |
| epi = list_first_entry(lsthead, struct epitem, fllink); |
| |
| ep = epi->ep; |
| list_del_init(&epi->fllink); |
| mutex_lock_nested(&ep->mtx, 0); |
| ep_remove(ep, epi); |
| mutex_unlock(&ep->mtx); |
| } |
| |
| mutex_unlock(&epmutex); |
| } |
| |
| static int ep_alloc(struct eventpoll **pep) |
| { |
| int error; |
| struct user_struct *user; |
| struct eventpoll *ep; |
| |
| user = get_current_user(); |
| error = -ENOMEM; |
| ep = kzalloc(sizeof(*ep), GFP_KERNEL); |
| if (unlikely(!ep)) |
| goto free_uid; |
| |
| spin_lock_init(&ep->lock); |
| mutex_init(&ep->mtx); |
| init_waitqueue_head(&ep->wq); |
| init_waitqueue_head(&ep->poll_wait); |
| INIT_LIST_HEAD(&ep->rdllist); |
| ep->rbr = RB_ROOT; |
| ep->ovflist = EP_UNACTIVE_PTR; |
| ep->user = user; |
| |
| *pep = ep; |
| |
| return 0; |
| |
| free_uid: |
| free_uid(user); |
| return error; |
| } |
| |
| /* |
| * Search the file inside the eventpoll tree. The RB tree operations |
| * are protected by the "mtx" mutex, and ep_find() must be called with |
| * "mtx" held. |
| */ |
| static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) |
| { |
| int kcmp; |
| struct rb_node *rbp; |
| struct epitem *epi, *epir = NULL; |
| struct epoll_filefd ffd; |
| |
| ep_set_ffd(&ffd, file, fd); |
| for (rbp = ep->rbr.rb_node; rbp; ) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| kcmp = ep_cmp_ffd(&ffd, &epi->ffd); |
| if (kcmp > 0) |
| rbp = rbp->rb_right; |
| else if (kcmp < 0) |
| rbp = rbp->rb_left; |
| else { |
| epir = epi; |
| break; |
| } |
| } |
| |
| return epir; |
| } |
| |
| /* |
| * This is the callback that is passed to the wait queue wakeup |
| * mechanism. It is called by the stored file descriptors when they |
| * have events to report. |
| */ |
| static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) |
| { |
| int pwake = 0; |
| unsigned long flags; |
| struct epitem *epi = ep_item_from_wait(wait); |
| struct eventpoll *ep = epi->ep; |
| |
| if ((unsigned long)key & POLLFREE) { |
| ep_pwq_from_wait(wait)->whead = NULL; |
| /* |
| * whead = NULL above can race with ep_remove_wait_queue() |
| * which can do another remove_wait_queue() after us, so we |
| * can't use __remove_wait_queue(). whead->lock is held by |
| * the caller. |
| */ |
| list_del_init(&wait->task_list); |
| } |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| |
| /* |
| * If the event mask does not contain any poll(2) event, we consider the |
| * descriptor to be disabled. This condition is likely the effect of the |
| * EPOLLONESHOT bit that disables the descriptor when an event is received, |
| * until the next EPOLL_CTL_MOD will be issued. |
| */ |
| if (!(epi->event.events & ~EP_PRIVATE_BITS)) |
| goto out_unlock; |
| |
| /* |
| * Check the events coming with the callback. At this stage, not |
| * every device reports the events in the "key" parameter of the |
| * callback. We need to be able to handle both cases here, hence the |
| * test for "key" != NULL before the event match test. |
| */ |
| if (key && !((unsigned long) key & epi->event.events)) |
| goto out_unlock; |
| |
| /* |
| * If we are transferring events to userspace, we can hold no locks |
| * (because we're accessing user memory, and because of linux f_op->poll() |
| * semantics). All the events that happen during that period of time are |
| * chained in ep->ovflist and requeued later on. |
| */ |
| if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { |
| if (epi->next == EP_UNACTIVE_PTR) { |
| epi->next = ep->ovflist; |
| ep->ovflist = epi; |
| } |
| goto out_unlock; |
| } |
| |
| /* If this file is already in the ready list we exit soon */ |
| if (!ep_is_linked(&epi->rdllink)) |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| |
| /* |
| * Wake up ( if active ) both the eventpoll wait list and the ->poll() |
| * wait list. |
| */ |
| if (waitqueue_active(&ep->wq)) |
| wake_up_locked(&ep->wq); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| |
| out_unlock: |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&ep->poll_wait); |
| |
| return 1; |
| } |
| |
| /* |
| * This is the callback that is used to add our wait queue to the |
| * target file wakeup lists. |
| */ |
| static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, |
| poll_table *pt) |
| { |
| struct epitem *epi = ep_item_from_epqueue(pt); |
| struct eppoll_entry *pwq; |
| |
| if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { |
| init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); |
| pwq->whead = whead; |
| pwq->base = epi; |
| add_wait_queue(whead, &pwq->wait); |
| list_add_tail(&pwq->llink, &epi->pwqlist); |
| epi->nwait++; |
| } else { |
| /* We have to signal that an error occurred */ |
| epi->nwait = -1; |
| } |
| } |
| |
| static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) |
| { |
| int kcmp; |
| struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; |
| struct epitem *epic; |
| |
| while (*p) { |
| parent = *p; |
| epic = rb_entry(parent, struct epitem, rbn); |
| kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); |
| if (kcmp > 0) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&epi->rbn, parent, p); |
| rb_insert_color(&epi->rbn, &ep->rbr); |
| } |
| |
| |
| |
| #define PATH_ARR_SIZE 5 |
| /* |
| * These are the number paths of length 1 to 5, that we are allowing to emanate |
| * from a single file of interest. For example, we allow 1000 paths of length |
| * 1, to emanate from each file of interest. This essentially represents the |
| * potential wakeup paths, which need to be limited in order to avoid massive |
| * uncontrolled wakeup storms. The common use case should be a single ep which |
| * is connected to n file sources. In this case each file source has 1 path |
| * of length 1. Thus, the numbers below should be more than sufficient. These |
| * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify |
| * and delete can't add additional paths. Protected by the epmutex. |
| */ |
| static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; |
| static int path_count[PATH_ARR_SIZE]; |
| |
| static int path_count_inc(int nests) |
| { |
| /* Allow an arbitrary number of depth 1 paths */ |
| if (nests == 0) |
| return 0; |
| |
| if (++path_count[nests] > path_limits[nests]) |
| return -1; |
| return 0; |
| } |
| |
| static void path_count_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < PATH_ARR_SIZE; i++) |
| path_count[i] = 0; |
| } |
| |
| static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) |
| { |
| int error = 0; |
| struct file *file = priv; |
| struct file *child_file; |
| struct epitem *epi; |
| |
| list_for_each_entry(epi, &file->f_ep_links, fllink) { |
| child_file = epi->ep->file; |
| if (is_file_epoll(child_file)) { |
| if (list_empty(&child_file->f_ep_links)) { |
| if (path_count_inc(call_nests)) { |
| error = -1; |
| break; |
| } |
| } else { |
| error = ep_call_nested(&poll_loop_ncalls, |
| EP_MAX_NESTS, |
| reverse_path_check_proc, |
| child_file, child_file, |
| current); |
| } |
| if (error != 0) |
| break; |
| } else { |
| printk(KERN_ERR "reverse_path_check_proc: " |
| "file is not an ep!\n"); |
| } |
| } |
| return error; |
| } |
| |
| /** |
| * reverse_path_check - The tfile_check_list is list of file *, which have |
| * links that are proposed to be newly added. We need to |
| * make sure that those added links don't add too many |
| * paths such that we will spend all our time waking up |
| * eventpoll objects. |
| * |
| * Returns: Returns zero if the proposed links don't create too many paths, |
| * -1 otherwise. |
| */ |
| static int reverse_path_check(void) |
| { |
| int error = 0; |
| struct file *current_file; |
| |
| /* let's call this for all tfiles */ |
| list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { |
| path_count_init(); |
| error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, |
| reverse_path_check_proc, current_file, |
| current_file, current); |
| if (error) |
| break; |
| } |
| return error; |
| } |
| |
| /* |
| * Must be called with "mtx" held. |
| */ |
| static int ep_insert(struct eventpoll *ep, struct epoll_event *event, |
| struct file *tfile, int fd) |
| { |
| int error, revents, pwake = 0; |
| unsigned long flags; |
| long user_watches; |
| struct epitem *epi; |
| struct ep_pqueue epq; |
| |
| user_watches = atomic_long_read(&ep->user->epoll_watches); |
| if (unlikely(user_watches >= max_user_watches)) |
| return -ENOSPC; |
| if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) |
| return -ENOMEM; |
| |
| /* Item initialization follow here ... */ |
| INIT_LIST_HEAD(&epi->rdllink); |
| INIT_LIST_HEAD(&epi->fllink); |
| INIT_LIST_HEAD(&epi->pwqlist); |
| epi->ep = ep; |
| ep_set_ffd(&epi->ffd, tfile, fd); |
| epi->event = *event; |
| epi->nwait = 0; |
| epi->next = EP_UNACTIVE_PTR; |
| |
| /* Initialize the poll table using the queue callback */ |
| epq.epi = epi; |
| init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); |
| epq.pt._key = event->events; |
| |
| /* |
| * Attach the item to the poll hooks and get current event bits. |
| * We can safely use the file* here because its usage count has |
| * been increased by the caller of this function. Note that after |
| * this operation completes, the poll callback can start hitting |
| * the new item. |
| */ |
| revents = tfile->f_op->poll(tfile, &epq.pt); |
| |
| /* |
| * We have to check if something went wrong during the poll wait queue |
| * install process. Namely an allocation for a wait queue failed due |
| * high memory pressure. |
| */ |
| error = -ENOMEM; |
| if (epi->nwait < 0) |
| goto error_unregister; |
| |
| /* Add the current item to the list of active epoll hook for this file */ |
| spin_lock(&tfile->f_lock); |
| list_add_tail(&epi->fllink, &tfile->f_ep_links); |
| spin_unlock(&tfile->f_lock); |
| |
| /* |
| * Add the current item to the RB tree. All RB tree operations are |
| * protected by "mtx", and ep_insert() is called with "mtx" held. |
| */ |
| ep_rbtree_insert(ep, epi); |
| |
| /* now check if we've created too many backpaths */ |
| error = -EINVAL; |
| if (reverse_path_check()) |
| goto error_remove_epi; |
| |
| /* We have to drop the new item inside our item list to keep track of it */ |
| spin_lock_irqsave(&ep->lock, flags); |
| |
| /* If the file is already "ready" we drop it inside the ready list */ |
| if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| |
| /* Notify waiting tasks that events are available */ |
| if (waitqueue_active(&ep->wq)) |
| wake_up_locked(&ep->wq); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| } |
| |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| atomic_long_inc(&ep->user->epoll_watches); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&ep->poll_wait); |
| |
| return 0; |
| |
| error_remove_epi: |
| spin_lock(&tfile->f_lock); |
| if (ep_is_linked(&epi->fllink)) |
| list_del_init(&epi->fllink); |
| spin_unlock(&tfile->f_lock); |
| |
| rb_erase(&epi->rbn, &ep->rbr); |
| |
| error_unregister: |
| ep_unregister_pollwait(ep, epi); |
| |
| /* |
| * We need to do this because an event could have been arrived on some |
| * allocated wait queue. Note that we don't care about the ep->ovflist |
| * list, since that is used/cleaned only inside a section bound by "mtx". |
| * And ep_insert() is called with "mtx" held. |
| */ |
| spin_lock_irqsave(&ep->lock, flags); |
| if (ep_is_linked(&epi->rdllink)) |
| list_del_init(&epi->rdllink); |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| kmem_cache_free(epi_cache, epi); |
| |
| return error; |
| } |
| |
| /* |
| * Modify the interest event mask by dropping an event if the new mask |
| * has a match in the current file status. Must be called with "mtx" held. |
| */ |
| static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) |
| { |
| int pwake = 0; |
| unsigned int revents; |
| poll_table pt; |
| |
| init_poll_funcptr(&pt, NULL); |
| |
| /* |
| * Set the new event interest mask before calling f_op->poll(); |
| * otherwise we might miss an event that happens between the |
| * f_op->poll() call and the new event set registering. |
| */ |
| epi->event.events = event->events; |
| pt._key = event->events; |
| epi->event.data = event->data; /* protected by mtx */ |
| |
| /* |
| * Get current event bits. We can safely use the file* here because |
| * its usage count has been increased by the caller of this function. |
| */ |
| revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt); |
| |
| /* |
| * If the item is "hot" and it is not registered inside the ready |
| * list, push it inside. |
| */ |
| if (revents & event->events) { |
| spin_lock_irq(&ep->lock); |
| if (!ep_is_linked(&epi->rdllink)) { |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| |
| /* Notify waiting tasks that events are available */ |
| if (waitqueue_active(&ep->wq)) |
| wake_up_locked(&ep->wq); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| } |
| spin_unlock_irq(&ep->lock); |
| } |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&ep->poll_wait); |
| |
| return 0; |
| } |
| |
| static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, |
| void *priv) |
| { |
| struct ep_send_events_data *esed = priv; |
| int eventcnt; |
| unsigned int revents; |
| struct epitem *epi; |
| struct epoll_event __user *uevent; |
| poll_table pt; |
| |
| init_poll_funcptr(&pt, NULL); |
| |
| /* |
| * We can loop without lock because we are passed a task private list. |
| * Items cannot vanish during the loop because ep_scan_ready_list() is |
| * holding "mtx" during this call. |
| */ |
| for (eventcnt = 0, uevent = esed->events; |
| !list_empty(head) && eventcnt < esed->maxevents;) { |
| epi = list_first_entry(head, struct epitem, rdllink); |
| |
| list_del_init(&epi->rdllink); |
| |
| pt._key = epi->event.events; |
| revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & |
| epi->event.events; |
| |
| /* |
| * If the event mask intersect the caller-requested one, |
| * deliver the event to userspace. Again, ep_scan_ready_list() |
| * is holding "mtx", so no operations coming from userspace |
| * can change the item. |
| */ |
| if (revents) { |
| if (__put_user(revents, &uevent->events) || |
| __put_user(epi->event.data, &uevent->data)) { |
| list_add(&epi->rdllink, head); |
| return eventcnt ? eventcnt : -EFAULT; |
| } |
| eventcnt++; |
| uevent++; |
| if (epi->event.events & EPOLLONESHOT) |
| epi->event.events &= EP_PRIVATE_BITS; |
| else if (!(epi->event.events & EPOLLET)) { |
| /* |
| * If this file has been added with Level |
| * Trigger mode, we need to insert back inside |
| * the ready list, so that the next call to |
| * epoll_wait() will check again the events |
| * availability. At this point, no one can insert |
| * into ep->rdllist besides us. The epoll_ctl() |
| * callers are locked out by |
| * ep_scan_ready_list() holding "mtx" and the |
| * poll callback will queue them in ep->ovflist. |
| */ |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| } |
| } |
| } |
| |
| return eventcnt; |
| } |
| |
| static int ep_send_events(struct eventpoll *ep, |
| struct epoll_event __user *events, int maxevents) |
| { |
| struct ep_send_events_data esed; |
| |
| esed.maxevents = maxevents; |
| esed.events = events; |
| |
| return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); |
| } |
| |
| static inline struct timespec ep_set_mstimeout(long ms) |
| { |
| struct timespec now, ts = { |
| .tv_sec = ms / MSEC_PER_SEC, |
| .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), |
| }; |
| |
| ktime_get_ts(&now); |
| return timespec_add_safe(now, ts); |
| } |
| |
| /** |
| * ep_poll - Retrieves ready events, and delivers them to the caller supplied |
| * event buffer. |
| * |
| * @ep: Pointer to the eventpoll context. |
| * @events: Pointer to the userspace buffer where the ready events should be |
| * stored. |
| * @maxevents: Size (in terms of number of events) of the caller event buffer. |
| * @timeout: Maximum timeout for the ready events fetch operation, in |
| * milliseconds. If the @timeout is zero, the function will not block, |
| * while if the @timeout is less than zero, the function will block |
| * until at least one event has been retrieved (or an error |
| * occurred). |
| * |
| * Returns: Returns the number of ready events which have been fetched, or an |
| * error code, in case of error. |
| */ |
| static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, |
| int maxevents, long timeout) |
| { |
| int res = 0, eavail, timed_out = 0; |
| unsigned long flags; |
| long slack = 0; |
| wait_queue_t wait; |
| ktime_t expires, *to = NULL; |
| |
| if (timeout > 0) { |
| struct timespec end_time = ep_set_mstimeout(timeout); |
| |
| slack = select_estimate_accuracy(&end_time); |
| to = &expires; |
| *to = timespec_to_ktime(end_time); |
| } else if (timeout == 0) { |
| /* |
| * Avoid the unnecessary trip to the wait queue loop, if the |
| * caller specified a non blocking operation. |
| */ |
| timed_out = 1; |
| spin_lock_irqsave(&ep->lock, flags); |
| goto check_events; |
| } |
| |
| fetch_events: |
| spin_lock_irqsave(&ep->lock, flags); |
| |
| if (!ep_events_available(ep)) { |
| /* |
| * We don't have any available event to return to the caller. |
| * We need to sleep here, and we will be wake up by |
| * ep_poll_callback() when events will become available. |
| */ |
| init_waitqueue_entry(&wait, current); |
| __add_wait_queue_exclusive(&ep->wq, &wait); |
| |
| for (;;) { |
| /* |
| * We don't want to sleep if the ep_poll_callback() sends us |
| * a wakeup in between. That's why we set the task state |
| * to TASK_INTERRUPTIBLE before doing the checks. |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (ep_events_available(ep) || timed_out) |
| break; |
| if (signal_pending(current)) { |
| res = -EINTR; |
| break; |
| } |
| |
| spin_unlock_irqrestore(&ep->lock, flags); |
| if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) |
| timed_out = 1; |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| } |
| __remove_wait_queue(&ep->wq, &wait); |
| |
| set_current_state(TASK_RUNNING); |
| } |
| check_events: |
| /* Is it worth to try to dig for events ? */ |
| eavail = ep_events_available(ep); |
| |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| /* |
| * Try to transfer events to user space. In case we get 0 events and |
| * there's still timeout left over, we go trying again in search of |
| * more luck. |
| */ |
| if (!res && eavail && |
| !(res = ep_send_events(ep, events, maxevents)) && !timed_out) |
| goto fetch_events; |
| |
| return res; |
| } |
| |
| /** |
| * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() |
| * API, to verify that adding an epoll file inside another |
| * epoll structure, does not violate the constraints, in |
| * terms of closed loops, or too deep chains (which can |
| * result in excessive stack usage). |
| * |
| * @priv: Pointer to the epoll file to be currently checked. |
| * @cookie: Original cookie for this call. This is the top-of-the-chain epoll |
| * data structure pointer. |
| * @call_nests: Current dept of the @ep_call_nested() call stack. |
| * |
| * Returns: Returns zero if adding the epoll @file inside current epoll |
| * structure @ep does not violate the constraints, or -1 otherwise. |
| */ |
| static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) |
| { |
| int error = 0; |
| struct file *file = priv; |
| struct eventpoll *ep = file->private_data; |
| struct eventpoll *ep_tovisit; |
| struct rb_node *rbp; |
| struct epitem *epi; |
| |
| mutex_lock_nested(&ep->mtx, call_nests + 1); |
| ep->visited = 1; |
| list_add(&ep->visited_list_link, &visited_list); |
| for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| if (unlikely(is_file_epoll(epi->ffd.file))) { |
| ep_tovisit = epi->ffd.file->private_data; |
| if (ep_tovisit->visited) |
| continue; |
| error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, |
| ep_loop_check_proc, epi->ffd.file, |
| ep_tovisit, current); |
| if (error != 0) |
| break; |
| } else { |
| /* |
| * If we've reached a file that is not associated with |
| * an ep, then we need to check if the newly added |
| * links are going to add too many wakeup paths. We do |
| * this by adding it to the tfile_check_list, if it's |
| * not already there, and calling reverse_path_check() |
| * during ep_insert(). |
| */ |
| if (list_empty(&epi->ffd.file->f_tfile_llink)) |
| list_add(&epi->ffd.file->f_tfile_llink, |
| &tfile_check_list); |
| } |
| } |
| mutex_unlock(&ep->mtx); |
| |
| return error; |
| } |
| |
| /** |
| * ep_loop_check - Performs a check to verify that adding an epoll file (@file) |
| * another epoll file (represented by @ep) does not create |
| * closed loops or too deep chains. |
| * |
| * @ep: Pointer to the epoll private data structure. |
| * @file: Pointer to the epoll file to be checked. |
| * |
| * Returns: Returns zero if adding the epoll @file inside current epoll |
| * structure @ep does not violate the constraints, or -1 otherwise. |
| */ |
| static int ep_loop_check(struct eventpoll *ep, struct file *file) |
| { |
| int ret; |
| struct eventpoll *ep_cur, *ep_next; |
| |
| ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, |
| ep_loop_check_proc, file, ep, current); |
| /* clear visited list */ |
| list_for_each_entry_safe(ep_cur, ep_next, &visited_list, |
| visited_list_link) { |
| ep_cur->visited = 0; |
| list_del(&ep_cur->visited_list_link); |
| } |
| return ret; |
| } |
| |
| static void clear_tfile_check_list(void) |
| { |
| struct file *file; |
| |
| /* first clear the tfile_check_list */ |
| while (!list_empty(&tfile_check_list)) { |
| file = list_first_entry(&tfile_check_list, struct file, |
| f_tfile_llink); |
| list_del_init(&file->f_tfile_llink); |
| } |
| INIT_LIST_HEAD(&tfile_check_list); |
| } |
| |
| /* |
| * Open an eventpoll file descriptor. |
| */ |
| SYSCALL_DEFINE1(epoll_create1, int, flags) |
| { |
| int error, fd; |
| struct eventpoll *ep = NULL; |
| struct file *file; |
| |
| /* Check the EPOLL_* constant for consistency. */ |
| BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); |
| |
| if (flags & ~EPOLL_CLOEXEC) |
| return -EINVAL; |
| /* |
| * Create the internal data structure ("struct eventpoll"). |
| */ |
| error = ep_alloc(&ep); |
| if (error < 0) |
| return error; |
| /* |
| * Creates all the items needed to setup an eventpoll file. That is, |
| * a file structure and a free file descriptor. |
| */ |
| fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); |
| if (fd < 0) { |
| error = fd; |
| goto out_free_ep; |
| } |
| file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, |
| O_RDWR | (flags & O_CLOEXEC)); |
| if (IS_ERR(file)) { |
| error = PTR_ERR(file); |
| goto out_free_fd; |
| } |
| fd_install(fd, file); |
| ep->file = file; |
| return fd; |
| |
| out_free_fd: |
| put_unused_fd(fd); |
| out_free_ep: |
| ep_free(ep); |
| return error; |
| } |
| |
| SYSCALL_DEFINE1(epoll_create, int, size) |
| { |
| if (size <= 0) |
| return -EINVAL; |
| |
| return sys_epoll_create1(0); |
| } |
| |
| /* |
| * The following function implements the controller interface for |
| * the eventpoll file that enables the insertion/removal/change of |
| * file descriptors inside the interest set. |
| */ |
| SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, |
| struct epoll_event __user *, event) |
| { |
| int error; |
| int did_lock_epmutex = 0; |
| struct file *file, *tfile; |
| struct eventpoll *ep; |
| struct epitem *epi; |
| struct epoll_event epds; |
| |
| error = -EFAULT; |
| if (ep_op_has_event(op) && |
| copy_from_user(&epds, event, sizeof(struct epoll_event))) |
| goto error_return; |
| |
| /* Get the "struct file *" for the eventpoll file */ |
| error = -EBADF; |
| file = fget(epfd); |
| if (!file) |
| goto error_return; |
| |
| /* Get the "struct file *" for the target file */ |
| tfile = fget(fd); |
| if (!tfile) |
| goto error_fput; |
| |
| /* The target file descriptor must support poll */ |
| error = -EPERM; |
| if (!tfile->f_op || !tfile->f_op->poll) |
| goto error_tgt_fput; |
| |
| /* |
| * We have to check that the file structure underneath the file descriptor |
| * the user passed to us _is_ an eventpoll file. And also we do not permit |
| * adding an epoll file descriptor inside itself. |
| */ |
| error = -EINVAL; |
| if (file == tfile || !is_file_epoll(file)) |
| goto error_tgt_fput; |
| |
| /* |
| * At this point it is safe to assume that the "private_data" contains |
| * our own data structure. |
| */ |
| ep = file->private_data; |
| |
| /* |
| * When we insert an epoll file descriptor, inside another epoll file |
| * descriptor, there is the change of creating closed loops, which are |
| * better be handled here, than in more critical paths. While we are |
| * checking for loops we also determine the list of files reachable |
| * and hang them on the tfile_check_list, so we can check that we |
| * haven't created too many possible wakeup paths. |
| * |
| * We need to hold the epmutex across both ep_insert and ep_remove |
| * b/c we want to make sure we are looking at a coherent view of |
| * epoll network. |
| */ |
| if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { |
| mutex_lock(&epmutex); |
| did_lock_epmutex = 1; |
| } |
| if (op == EPOLL_CTL_ADD) { |
| if (is_file_epoll(tfile)) { |
| error = -ELOOP; |
| if (ep_loop_check(ep, tfile) != 0) |
| goto error_tgt_fput; |
| } else |
| list_add(&tfile->f_tfile_llink, &tfile_check_list); |
| } |
| |
| mutex_lock_nested(&ep->mtx, 0); |
| |
| /* |
| * Try to lookup the file inside our RB tree, Since we grabbed "mtx" |
| * above, we can be sure to be able to use the item looked up by |
| * ep_find() till we release the mutex. |
| */ |
| epi = ep_find(ep, tfile, fd); |
| |
| error = -EINVAL; |
| switch (op) { |
| case EPOLL_CTL_ADD: |
| if (!epi) { |
| epds.events |= POLLERR | POLLHUP; |
| error = ep_insert(ep, &epds, tfile, fd); |
| } else |
| error = -EEXIST; |
| clear_tfile_check_list(); |
| break; |
| case EPOLL_CTL_DEL: |
| if (epi) |
| error = ep_remove(ep, epi); |
| else |
| error = -ENOENT; |
| break; |
| case EPOLL_CTL_MOD: |
| if (epi) { |
| epds.events |= POLLERR | POLLHUP; |
| error = ep_modify(ep, epi, &epds); |
| } else |
| error = -ENOENT; |
| break; |
| } |
| mutex_unlock(&ep->mtx); |
| |
| error_tgt_fput: |
| if (did_lock_epmutex) |
| mutex_unlock(&epmutex); |
| |
| fput(tfile); |
| error_fput: |
| fput(file); |
| error_return: |
| |
| return error; |
| } |
| |
| /* |
| * Implement the event wait interface for the eventpoll file. It is the kernel |
| * part of the user space epoll_wait(2). |
| */ |
| SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, |
| int, maxevents, int, timeout) |
| { |
| int error; |
| struct file *file; |
| struct eventpoll *ep; |
| |
| /* The maximum number of event must be greater than zero */ |
| if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) |
| return -EINVAL; |
| |
| /* Verify that the area passed by the user is writeable */ |
| if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { |
| error = -EFAULT; |
| goto error_return; |
| } |
| |
| /* Get the "struct file *" for the eventpoll file */ |
| error = -EBADF; |
| file = fget(epfd); |
| if (!file) |
| goto error_return; |
| |
| /* |
| * We have to check that the file structure underneath the fd |
| * the user passed to us _is_ an eventpoll file. |
| */ |
| error = -EINVAL; |
| if (!is_file_epoll(file)) |
| goto error_fput; |
| |
| /* |
| * At this point it is safe to assume that the "private_data" contains |
| * our own data structure. |
| */ |
| ep = file->private_data; |
| |
| /* Time to fish for events ... */ |
| error = ep_poll(ep, events, maxevents, timeout); |
| |
| error_fput: |
| fput(file); |
| error_return: |
| |
| return error; |
| } |
| |
| #ifdef HAVE_SET_RESTORE_SIGMASK |
| |
| /* |
| * Implement the event wait interface for the eventpoll file. It is the kernel |
| * part of the user space epoll_pwait(2). |
| */ |
| SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, |
| int, maxevents, int, timeout, const sigset_t __user *, sigmask, |
| size_t, sigsetsize) |
| { |
| int error; |
| sigset_t ksigmask, sigsaved; |
| |
| /* |
| * If the caller wants a certain signal mask to be set during the wait, |
| * we apply it here. |
| */ |
| if (sigmask) { |
| if (sigsetsize != sizeof(sigset_t)) |
| return -EINVAL; |
| if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) |
| return -EFAULT; |
| sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); |
| } |
| |
| error = sys_epoll_wait(epfd, events, maxevents, timeout); |
| |
| /* |
| * If we changed the signal mask, we need to restore the original one. |
| * In case we've got a signal while waiting, we do not restore the |
| * signal mask yet, and we allow do_signal() to deliver the signal on |
| * the way back to userspace, before the signal mask is restored. |
| */ |
| if (sigmask) { |
| if (error == -EINTR) { |
| memcpy(¤t->saved_sigmask, &sigsaved, |
| sizeof(sigsaved)); |
| set_restore_sigmask(); |
| } else |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| } |
| |
| return error; |
| } |
| |
| #endif /* HAVE_SET_RESTORE_SIGMASK */ |
| |
| static int __init eventpoll_init(void) |
| { |
| struct sysinfo si; |
| |
| si_meminfo(&si); |
| /* |
| * Allows top 4% of lomem to be allocated for epoll watches (per user). |
| */ |
| max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / |
| EP_ITEM_COST; |
| BUG_ON(max_user_watches < 0); |
| |
| /* |
| * Initialize the structure used to perform epoll file descriptor |
| * inclusion loops checks. |
| */ |
| ep_nested_calls_init(&poll_loop_ncalls); |
| |
| /* Initialize the structure used to perform safe poll wait head wake ups */ |
| ep_nested_calls_init(&poll_safewake_ncalls); |
| |
| /* Initialize the structure used to perform file's f_op->poll() calls */ |
| ep_nested_calls_init(&poll_readywalk_ncalls); |
| |
| /* Allocates slab cache used to allocate "struct epitem" items */ |
| epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), |
| 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); |
| |
| /* Allocates slab cache used to allocate "struct eppoll_entry" */ |
| pwq_cache = kmem_cache_create("eventpoll_pwq", |
| sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); |
| |
| return 0; |
| } |
| fs_initcall(eventpoll_init); |