| /* |
| * JFFS2 -- Journalling Flash File System, Version 2. |
| * |
| * Copyright (C) 2001-2003 Red Hat, Inc. |
| * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> |
| * |
| * Created by David Woodhouse <dwmw2@infradead.org> |
| * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> |
| * |
| * For licensing information, see the file 'LICENCE' in this directory. |
| * |
| * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/crc32.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/jiffies.h> |
| |
| #include "nodelist.h" |
| |
| /* For testing write failures */ |
| #undef BREAKME |
| #undef BREAKMEHEADER |
| |
| #ifdef BREAKME |
| static unsigned char *brokenbuf; |
| #endif |
| |
| #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) |
| #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) |
| |
| /* max. erase failures before we mark a block bad */ |
| #define MAX_ERASE_FAILURES 2 |
| |
| struct jffs2_inodirty { |
| uint32_t ino; |
| struct jffs2_inodirty *next; |
| }; |
| |
| static struct jffs2_inodirty inodirty_nomem; |
| |
| static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) |
| { |
| struct jffs2_inodirty *this = c->wbuf_inodes; |
| |
| /* If a malloc failed, consider _everything_ dirty */ |
| if (this == &inodirty_nomem) |
| return 1; |
| |
| /* If ino == 0, _any_ non-GC writes mean 'yes' */ |
| if (this && !ino) |
| return 1; |
| |
| /* Look to see if the inode in question is pending in the wbuf */ |
| while (this) { |
| if (this->ino == ino) |
| return 1; |
| this = this->next; |
| } |
| return 0; |
| } |
| |
| static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) |
| { |
| struct jffs2_inodirty *this; |
| |
| this = c->wbuf_inodes; |
| |
| if (this != &inodirty_nomem) { |
| while (this) { |
| struct jffs2_inodirty *next = this->next; |
| kfree(this); |
| this = next; |
| } |
| } |
| c->wbuf_inodes = NULL; |
| } |
| |
| static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) |
| { |
| struct jffs2_inodirty *new; |
| |
| /* Mark the superblock dirty so that kupdated will flush... */ |
| jffs2_erase_pending_trigger(c); |
| |
| if (jffs2_wbuf_pending_for_ino(c, ino)) |
| return; |
| |
| new = kmalloc(sizeof(*new), GFP_KERNEL); |
| if (!new) { |
| D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); |
| jffs2_clear_wbuf_ino_list(c); |
| c->wbuf_inodes = &inodirty_nomem; |
| return; |
| } |
| new->ino = ino; |
| new->next = c->wbuf_inodes; |
| c->wbuf_inodes = new; |
| return; |
| } |
| |
| static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) |
| { |
| struct list_head *this, *next; |
| static int n; |
| |
| if (list_empty(&c->erasable_pending_wbuf_list)) |
| return; |
| |
| list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { |
| struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| |
| D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); |
| list_del(this); |
| if ((jiffies + (n++)) & 127) { |
| /* Most of the time, we just erase it immediately. Otherwise we |
| spend ages scanning it on mount, etc. */ |
| D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); |
| list_add_tail(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| jffs2_erase_pending_trigger(c); |
| } else { |
| /* Sometimes, however, we leave it elsewhere so it doesn't get |
| immediately reused, and we spread the load a bit. */ |
| D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); |
| list_add_tail(&jeb->list, &c->erasable_list); |
| } |
| } |
| } |
| |
| #define REFILE_NOTEMPTY 0 |
| #define REFILE_ANYWAY 1 |
| |
| static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) |
| { |
| D1(printk("About to refile bad block at %08x\n", jeb->offset)); |
| |
| /* File the existing block on the bad_used_list.... */ |
| if (c->nextblock == jeb) |
| c->nextblock = NULL; |
| else /* Not sure this should ever happen... need more coffee */ |
| list_del(&jeb->list); |
| if (jeb->first_node) { |
| D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); |
| list_add(&jeb->list, &c->bad_used_list); |
| } else { |
| BUG_ON(allow_empty == REFILE_NOTEMPTY); |
| /* It has to have had some nodes or we couldn't be here */ |
| D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); |
| list_add(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| jffs2_erase_pending_trigger(c); |
| } |
| |
| /* Adjust its size counts accordingly */ |
| c->wasted_size += jeb->free_size; |
| c->free_size -= jeb->free_size; |
| jeb->wasted_size += jeb->free_size; |
| jeb->free_size = 0; |
| |
| jffs2_dbg_dump_block_lists_nolock(c); |
| jffs2_dbg_acct_sanity_check_nolock(c,jeb); |
| jffs2_dbg_acct_paranoia_check_nolock(c, jeb); |
| } |
| |
| /* Recover from failure to write wbuf. Recover the nodes up to the |
| * wbuf, not the one which we were starting to try to write. */ |
| |
| static void jffs2_wbuf_recover(struct jffs2_sb_info *c) |
| { |
| struct jffs2_eraseblock *jeb, *new_jeb; |
| struct jffs2_raw_node_ref **first_raw, **raw; |
| size_t retlen; |
| int ret; |
| unsigned char *buf; |
| uint32_t start, end, ofs, len; |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; |
| |
| jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); |
| |
| /* Find the first node to be recovered, by skipping over every |
| node which ends before the wbuf starts, or which is obsolete. */ |
| first_raw = &jeb->first_node; |
| while (*first_raw && |
| (ref_obsolete(*first_raw) || |
| (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { |
| D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", |
| ref_offset(*first_raw), ref_flags(*first_raw), |
| (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), |
| c->wbuf_ofs)); |
| first_raw = &(*first_raw)->next_phys; |
| } |
| |
| if (!*first_raw) { |
| /* All nodes were obsolete. Nothing to recover. */ |
| D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); |
| spin_unlock(&c->erase_completion_lock); |
| return; |
| } |
| |
| start = ref_offset(*first_raw); |
| end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); |
| |
| /* Find the last node to be recovered */ |
| raw = first_raw; |
| while ((*raw)) { |
| if (!ref_obsolete(*raw)) |
| end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); |
| |
| raw = &(*raw)->next_phys; |
| } |
| spin_unlock(&c->erase_completion_lock); |
| |
| D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); |
| |
| buf = NULL; |
| if (start < c->wbuf_ofs) { |
| /* First affected node was already partially written. |
| * Attempt to reread the old data into our buffer. */ |
| |
| buf = kmalloc(end - start, GFP_KERNEL); |
| if (!buf) { |
| printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); |
| |
| goto read_failed; |
| } |
| |
| /* Do the read... */ |
| ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); |
| |
| if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { |
| /* ECC recovered */ |
| ret = 0; |
| } |
| if (ret || retlen != c->wbuf_ofs - start) { |
| printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); |
| |
| kfree(buf); |
| buf = NULL; |
| read_failed: |
| first_raw = &(*first_raw)->next_phys; |
| /* If this was the only node to be recovered, give up */ |
| if (!(*first_raw)) |
| return; |
| |
| /* It wasn't. Go on and try to recover nodes complete in the wbuf */ |
| start = ref_offset(*first_raw); |
| } else { |
| /* Read succeeded. Copy the remaining data from the wbuf */ |
| memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); |
| } |
| } |
| /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. |
| Either 'buf' contains the data, or we find it in the wbuf */ |
| |
| |
| /* ... and get an allocation of space from a shiny new block instead */ |
| ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); |
| if (ret) { |
| printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); |
| kfree(buf); |
| return; |
| } |
| ofs = write_ofs(c); |
| |
| if (end-start >= c->wbuf_pagesize) { |
| /* Need to do another write immediately, but it's possible |
| that this is just because the wbuf itself is completely |
| full, and there's nothing earlier read back from the |
| flash. Hence 'buf' isn't necessarily what we're writing |
| from. */ |
| unsigned char *rewrite_buf = buf?:c->wbuf; |
| uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); |
| |
| D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", |
| towrite, ofs)); |
| |
| #ifdef BREAKMEHEADER |
| static int breakme; |
| if (breakme++ == 20) { |
| printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); |
| breakme = 0; |
| c->mtd->write(c->mtd, ofs, towrite, &retlen, |
| brokenbuf); |
| ret = -EIO; |
| } else |
| #endif |
| ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, |
| rewrite_buf); |
| |
| if (ret || retlen != towrite) { |
| /* Argh. We tried. Really we did. */ |
| printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); |
| kfree(buf); |
| |
| if (retlen) { |
| struct jffs2_raw_node_ref *raw2; |
| |
| raw2 = jffs2_alloc_raw_node_ref(); |
| if (!raw2) |
| return; |
| |
| raw2->flash_offset = ofs | REF_OBSOLETE; |
| |
| jffs2_add_physical_node_ref(c, raw2, ref_totlen(c, jeb, *first_raw), NULL); |
| } |
| return; |
| } |
| printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); |
| |
| c->wbuf_len = (end - start) - towrite; |
| c->wbuf_ofs = ofs + towrite; |
| memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); |
| /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ |
| kfree(buf); |
| } else { |
| /* OK, now we're left with the dregs in whichever buffer we're using */ |
| if (buf) { |
| memcpy(c->wbuf, buf, end-start); |
| kfree(buf); |
| } else { |
| memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); |
| } |
| c->wbuf_ofs = ofs; |
| c->wbuf_len = end - start; |
| } |
| |
| /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ |
| new_jeb = &c->blocks[ofs / c->sector_size]; |
| |
| spin_lock(&c->erase_completion_lock); |
| if (new_jeb->first_node) { |
| /* Odd, but possible with ST flash later maybe */ |
| new_jeb->last_node->next_phys = *first_raw; |
| } else { |
| new_jeb->first_node = *first_raw; |
| } |
| |
| raw = first_raw; |
| while (*raw) { |
| uint32_t rawlen = ref_totlen(c, jeb, *raw); |
| |
| D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", |
| rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); |
| |
| if (ref_obsolete(*raw)) { |
| /* Shouldn't really happen much */ |
| new_jeb->dirty_size += rawlen; |
| new_jeb->free_size -= rawlen; |
| c->dirty_size += rawlen; |
| } else { |
| new_jeb->used_size += rawlen; |
| new_jeb->free_size -= rawlen; |
| jeb->dirty_size += rawlen; |
| jeb->used_size -= rawlen; |
| c->dirty_size += rawlen; |
| } |
| c->free_size -= rawlen; |
| (*raw)->flash_offset = ofs | ref_flags(*raw); |
| ofs += rawlen; |
| new_jeb->last_node = *raw; |
| |
| raw = &(*raw)->next_phys; |
| } |
| |
| /* Fix up the original jeb now it's on the bad_list */ |
| *first_raw = NULL; |
| if (first_raw == &jeb->first_node) { |
| jeb->last_node = NULL; |
| D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); |
| list_del(&jeb->list); |
| list_add(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| jffs2_erase_pending_trigger(c); |
| } |
| else |
| jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); |
| |
| jffs2_dbg_acct_sanity_check_nolock(c, jeb); |
| jffs2_dbg_acct_paranoia_check_nolock(c, jeb); |
| |
| jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); |
| jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); |
| |
| spin_unlock(&c->erase_completion_lock); |
| |
| D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); |
| } |
| |
| /* Meaning of pad argument: |
| 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. |
| 1: Pad, do not adjust nextblock free_size |
| 2: Pad, adjust nextblock free_size |
| */ |
| #define NOPAD 0 |
| #define PAD_NOACCOUNT 1 |
| #define PAD_ACCOUNTING 2 |
| |
| static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) |
| { |
| int ret; |
| size_t retlen; |
| |
| /* Nothing to do if not write-buffering the flash. In particular, we shouldn't |
| del_timer() the timer we never initialised. */ |
| if (!jffs2_is_writebuffered(c)) |
| return 0; |
| |
| if (!down_trylock(&c->alloc_sem)) { |
| up(&c->alloc_sem); |
| printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); |
| BUG(); |
| } |
| |
| if (!c->wbuf_len) /* already checked c->wbuf above */ |
| return 0; |
| |
| /* claim remaining space on the page |
| this happens, if we have a change to a new block, |
| or if fsync forces us to flush the writebuffer. |
| if we have a switch to next page, we will not have |
| enough remaining space for this. |
| */ |
| if (pad ) { |
| c->wbuf_len = PAD(c->wbuf_len); |
| |
| /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR |
| with 8 byte page size */ |
| memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); |
| |
| if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { |
| struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); |
| padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); |
| padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); |
| padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); |
| } |
| } |
| /* else jffs2_flash_writev has actually filled in the rest of the |
| buffer for us, and will deal with the node refs etc. later. */ |
| |
| #ifdef BREAKME |
| static int breakme; |
| if (breakme++ == 20) { |
| printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); |
| breakme = 0; |
| c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, |
| brokenbuf); |
| ret = -EIO; |
| } else |
| #endif |
| |
| ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); |
| |
| if (ret || retlen != c->wbuf_pagesize) { |
| if (ret) |
| printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); |
| else { |
| printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", |
| retlen, c->wbuf_pagesize); |
| ret = -EIO; |
| } |
| |
| jffs2_wbuf_recover(c); |
| |
| return ret; |
| } |
| |
| /* Adjust free size of the block if we padded. */ |
| if (pad) { |
| struct jffs2_eraseblock *jeb; |
| struct jffs2_raw_node_ref *ref; |
| uint32_t waste = c->wbuf_pagesize - c->wbuf_len; |
| |
| jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; |
| |
| D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", |
| (jeb==c->nextblock)?"next":"", jeb->offset)); |
| |
| /* wbuf_pagesize - wbuf_len is the amount of space that's to be |
| padded. If there is less free space in the block than that, |
| something screwed up */ |
| if (jeb->free_size < waste) { |
| printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", |
| c->wbuf_ofs, c->wbuf_len, waste); |
| printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", |
| jeb->offset, jeb->free_size); |
| BUG(); |
| } |
| ref = jffs2_alloc_raw_node_ref(); |
| if (!ref) |
| return -ENOMEM; |
| ref->flash_offset = c->wbuf_ofs + c->wbuf_len; |
| ref->flash_offset |= REF_OBSOLETE; |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| jffs2_link_node_ref(c, jeb, ref, waste, NULL); |
| /* FIXME: that made it count as dirty. Convert to wasted */ |
| jeb->dirty_size -= waste; |
| c->dirty_size -= waste; |
| jeb->wasted_size += waste; |
| c->wasted_size += waste; |
| } else |
| spin_lock(&c->erase_completion_lock); |
| |
| /* Stick any now-obsoleted blocks on the erase_pending_list */ |
| jffs2_refile_wbuf_blocks(c); |
| jffs2_clear_wbuf_ino_list(c); |
| spin_unlock(&c->erase_completion_lock); |
| |
| memset(c->wbuf,0xff,c->wbuf_pagesize); |
| /* adjust write buffer offset, else we get a non contiguous write bug */ |
| c->wbuf_ofs += c->wbuf_pagesize; |
| c->wbuf_len = 0; |
| return 0; |
| } |
| |
| /* Trigger garbage collection to flush the write-buffer. |
| If ino arg is zero, do it if _any_ real (i.e. not GC) writes are |
| outstanding. If ino arg non-zero, do it only if a write for the |
| given inode is outstanding. */ |
| int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) |
| { |
| uint32_t old_wbuf_ofs; |
| uint32_t old_wbuf_len; |
| int ret = 0; |
| |
| D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); |
| |
| if (!c->wbuf) |
| return 0; |
| |
| down(&c->alloc_sem); |
| if (!jffs2_wbuf_pending_for_ino(c, ino)) { |
| D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); |
| up(&c->alloc_sem); |
| return 0; |
| } |
| |
| old_wbuf_ofs = c->wbuf_ofs; |
| old_wbuf_len = c->wbuf_len; |
| |
| if (c->unchecked_size) { |
| /* GC won't make any progress for a while */ |
| D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); |
| down_write(&c->wbuf_sem); |
| ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| /* retry flushing wbuf in case jffs2_wbuf_recover |
| left some data in the wbuf */ |
| if (ret) |
| ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| up_write(&c->wbuf_sem); |
| } else while (old_wbuf_len && |
| old_wbuf_ofs == c->wbuf_ofs) { |
| |
| up(&c->alloc_sem); |
| |
| D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); |
| |
| ret = jffs2_garbage_collect_pass(c); |
| if (ret) { |
| /* GC failed. Flush it with padding instead */ |
| down(&c->alloc_sem); |
| down_write(&c->wbuf_sem); |
| ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| /* retry flushing wbuf in case jffs2_wbuf_recover |
| left some data in the wbuf */ |
| if (ret) |
| ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| up_write(&c->wbuf_sem); |
| break; |
| } |
| down(&c->alloc_sem); |
| } |
| |
| D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); |
| |
| up(&c->alloc_sem); |
| return ret; |
| } |
| |
| /* Pad write-buffer to end and write it, wasting space. */ |
| int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) |
| { |
| int ret; |
| |
| if (!c->wbuf) |
| return 0; |
| |
| down_write(&c->wbuf_sem); |
| ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| /* retry - maybe wbuf recover left some data in wbuf. */ |
| if (ret) |
| ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| up_write(&c->wbuf_sem); |
| |
| return ret; |
| } |
| |
| static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, |
| size_t len) |
| { |
| if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) |
| return 0; |
| |
| if (len > (c->wbuf_pagesize - c->wbuf_len)) |
| len = c->wbuf_pagesize - c->wbuf_len; |
| memcpy(c->wbuf + c->wbuf_len, buf, len); |
| c->wbuf_len += (uint32_t) len; |
| return len; |
| } |
| |
| int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, |
| unsigned long count, loff_t to, size_t *retlen, |
| uint32_t ino) |
| { |
| struct jffs2_eraseblock *jeb; |
| size_t wbuf_retlen, donelen = 0; |
| uint32_t outvec_to = to; |
| int ret, invec; |
| |
| /* If not writebuffered flash, don't bother */ |
| if (!jffs2_is_writebuffered(c)) |
| return jffs2_flash_direct_writev(c, invecs, count, to, retlen); |
| |
| down_write(&c->wbuf_sem); |
| |
| /* If wbuf_ofs is not initialized, set it to target address */ |
| if (c->wbuf_ofs == 0xFFFFFFFF) { |
| c->wbuf_ofs = PAGE_DIV(to); |
| c->wbuf_len = PAGE_MOD(to); |
| memset(c->wbuf,0xff,c->wbuf_pagesize); |
| } |
| |
| /* |
| * Sanity checks on target address. It's permitted to write |
| * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to |
| * write at the beginning of a new erase block. Anything else, |
| * and you die. New block starts at xxx000c (0-b = block |
| * header) |
| */ |
| if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { |
| /* It's a write to a new block */ |
| if (c->wbuf_len) { |
| D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " |
| "causes flush of wbuf at 0x%08x\n", |
| (unsigned long)to, c->wbuf_ofs)); |
| ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| if (ret) |
| goto outerr; |
| } |
| /* set pointer to new block */ |
| c->wbuf_ofs = PAGE_DIV(to); |
| c->wbuf_len = PAGE_MOD(to); |
| } |
| |
| if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { |
| /* We're not writing immediately after the writebuffer. Bad. */ |
| printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " |
| "to %08lx\n", (unsigned long)to); |
| if (c->wbuf_len) |
| printk(KERN_CRIT "wbuf was previously %08x-%08x\n", |
| c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); |
| BUG(); |
| } |
| |
| /* adjust alignment offset */ |
| if (c->wbuf_len != PAGE_MOD(to)) { |
| c->wbuf_len = PAGE_MOD(to); |
| /* take care of alignment to next page */ |
| if (!c->wbuf_len) { |
| c->wbuf_len = c->wbuf_pagesize; |
| ret = __jffs2_flush_wbuf(c, NOPAD); |
| if (ret) |
| goto outerr; |
| } |
| } |
| |
| for (invec = 0; invec < count; invec++) { |
| int vlen = invecs[invec].iov_len; |
| uint8_t *v = invecs[invec].iov_base; |
| |
| wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); |
| |
| if (c->wbuf_len == c->wbuf_pagesize) { |
| ret = __jffs2_flush_wbuf(c, NOPAD); |
| if (ret) |
| goto outerr; |
| } |
| vlen -= wbuf_retlen; |
| outvec_to += wbuf_retlen; |
| donelen += wbuf_retlen; |
| v += wbuf_retlen; |
| |
| if (vlen >= c->wbuf_pagesize) { |
| ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen), |
| &wbuf_retlen, v); |
| if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) |
| goto outfile; |
| |
| vlen -= wbuf_retlen; |
| outvec_to += wbuf_retlen; |
| c->wbuf_ofs = outvec_to; |
| donelen += wbuf_retlen; |
| v += wbuf_retlen; |
| } |
| |
| wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); |
| if (c->wbuf_len == c->wbuf_pagesize) { |
| ret = __jffs2_flush_wbuf(c, NOPAD); |
| if (ret) |
| goto outerr; |
| } |
| |
| outvec_to += wbuf_retlen; |
| donelen += wbuf_retlen; |
| } |
| |
| /* |
| * If there's a remainder in the wbuf and it's a non-GC write, |
| * remember that the wbuf affects this ino |
| */ |
| *retlen = donelen; |
| |
| if (jffs2_sum_active()) { |
| int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); |
| if (res) |
| return res; |
| } |
| |
| if (c->wbuf_len && ino) |
| jffs2_wbuf_dirties_inode(c, ino); |
| |
| ret = 0; |
| up_write(&c->wbuf_sem); |
| return ret; |
| |
| outfile: |
| /* |
| * At this point we have no problem, c->wbuf is empty. However |
| * refile nextblock to avoid writing again to same address. |
| */ |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| jeb = &c->blocks[outvec_to / c->sector_size]; |
| jffs2_block_refile(c, jeb, REFILE_ANYWAY); |
| |
| spin_unlock(&c->erase_completion_lock); |
| |
| outerr: |
| *retlen = 0; |
| up_write(&c->wbuf_sem); |
| return ret; |
| } |
| |
| /* |
| * This is the entry for flash write. |
| * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev |
| */ |
| int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) |
| { |
| struct kvec vecs[1]; |
| |
| if (!jffs2_is_writebuffered(c)) |
| return jffs2_flash_direct_write(c, ofs, len, retlen, buf); |
| |
| vecs[0].iov_base = (unsigned char *) buf; |
| vecs[0].iov_len = len; |
| return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); |
| } |
| |
| /* |
| Handle readback from writebuffer and ECC failure return |
| */ |
| int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) |
| { |
| loff_t orbf = 0, owbf = 0, lwbf = 0; |
| int ret; |
| |
| if (!jffs2_is_writebuffered(c)) |
| return c->mtd->read(c->mtd, ofs, len, retlen, buf); |
| |
| /* Read flash */ |
| down_read(&c->wbuf_sem); |
| ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); |
| |
| if ( (ret == -EBADMSG) && (*retlen == len) ) { |
| printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", |
| len, ofs); |
| /* |
| * We have the raw data without ECC correction in the buffer, maybe |
| * we are lucky and all data or parts are correct. We check the node. |
| * If data are corrupted node check will sort it out. |
| * We keep this block, it will fail on write or erase and the we |
| * mark it bad. Or should we do that now? But we should give him a chance. |
| * Maybe we had a system crash or power loss before the ecc write or |
| * a erase was completed. |
| * So we return success. :) |
| */ |
| ret = 0; |
| } |
| |
| /* if no writebuffer available or write buffer empty, return */ |
| if (!c->wbuf_pagesize || !c->wbuf_len) |
| goto exit; |
| |
| /* if we read in a different block, return */ |
| if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) |
| goto exit; |
| |
| if (ofs >= c->wbuf_ofs) { |
| owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ |
| if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ |
| goto exit; |
| lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ |
| if (lwbf > len) |
| lwbf = len; |
| } else { |
| orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ |
| if (orbf > len) /* is write beyond write buffer ? */ |
| goto exit; |
| lwbf = len - orbf; /* number of bytes to copy */ |
| if (lwbf > c->wbuf_len) |
| lwbf = c->wbuf_len; |
| } |
| if (lwbf > 0) |
| memcpy(buf+orbf,c->wbuf+owbf,lwbf); |
| |
| exit: |
| up_read(&c->wbuf_sem); |
| return ret; |
| } |
| |
| /* |
| * Check, if the out of band area is empty |
| */ |
| int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) |
| { |
| unsigned char *buf; |
| int ret = 0; |
| int i,len,page; |
| size_t retlen; |
| int oob_size; |
| |
| /* allocate a buffer for all oob data in this sector */ |
| oob_size = c->mtd->oobsize; |
| len = 4 * oob_size; |
| buf = kmalloc(len, GFP_KERNEL); |
| if (!buf) { |
| printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); |
| return -ENOMEM; |
| } |
| /* |
| * if mode = 0, we scan for a total empty oob area, else we have |
| * to take care of the cleanmarker in the first page of the block |
| */ |
| ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); |
| if (ret) { |
| D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); |
| goto out; |
| } |
| |
| if (retlen < len) { |
| D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " |
| "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Special check for first page */ |
| for(i = 0; i < oob_size ; i++) { |
| /* Yeah, we know about the cleanmarker. */ |
| if (mode && i >= c->fsdata_pos && |
| i < c->fsdata_pos + c->fsdata_len) |
| continue; |
| |
| if (buf[i] != 0xFF) { |
| D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", |
| buf[i], i, jeb->offset)); |
| ret = 1; |
| goto out; |
| } |
| } |
| |
| /* we know, we are aligned :) */ |
| for (page = oob_size; page < len; page += sizeof(long)) { |
| unsigned long dat = *(unsigned long *)(&buf[page]); |
| if(dat != -1) { |
| ret = 1; |
| goto out; |
| } |
| } |
| |
| out: |
| kfree(buf); |
| |
| return ret; |
| } |
| |
| /* |
| * Scan for a valid cleanmarker and for bad blocks |
| * For virtual blocks (concatenated physical blocks) check the cleanmarker |
| * only in the first page of the first physical block, but scan for bad blocks in all |
| * physical blocks |
| */ |
| int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) |
| { |
| struct jffs2_unknown_node n; |
| unsigned char buf[2 * NAND_MAX_OOBSIZE]; |
| unsigned char *p; |
| int ret, i, cnt, retval = 0; |
| size_t retlen, offset; |
| int oob_size; |
| |
| offset = jeb->offset; |
| oob_size = c->mtd->oobsize; |
| |
| /* Loop through the physical blocks */ |
| for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { |
| /* Check first if the block is bad. */ |
| if (c->mtd->block_isbad (c->mtd, offset)) { |
| D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); |
| return 2; |
| } |
| /* |
| * We read oob data from page 0 and 1 of the block. |
| * page 0 contains cleanmarker and badblock info |
| * page 1 contains failure count of this block |
| */ |
| ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); |
| |
| if (ret) { |
| D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); |
| return ret; |
| } |
| if (retlen < (oob_size << 1)) { |
| D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); |
| return -EIO; |
| } |
| |
| /* Check cleanmarker only on the first physical block */ |
| if (!cnt) { |
| n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); |
| n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); |
| n.totlen = cpu_to_je32 (8); |
| p = (unsigned char *) &n; |
| |
| for (i = 0; i < c->fsdata_len; i++) { |
| if (buf[c->fsdata_pos + i] != p[i]) { |
| retval = 1; |
| } |
| } |
| D1(if (retval == 1) { |
| printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); |
| printk(KERN_WARNING "OOB at %08x was ", offset); |
| for (i=0; i < oob_size; i++) { |
| printk("%02x ", buf[i]); |
| } |
| printk("\n"); |
| }) |
| } |
| offset += c->mtd->erasesize; |
| } |
| return retval; |
| } |
| |
| int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) |
| { |
| struct jffs2_unknown_node n; |
| int ret; |
| size_t retlen; |
| |
| n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); |
| n.totlen = cpu_to_je32(8); |
| |
| ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); |
| |
| if (ret) { |
| D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); |
| return ret; |
| } |
| if (retlen != c->fsdata_len) { |
| D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* |
| * On NAND we try to mark this block bad. If the block was erased more |
| * than MAX_ERASE_FAILURES we mark it finaly bad. |
| * Don't care about failures. This block remains on the erase-pending |
| * or badblock list as long as nobody manipulates the flash with |
| * a bootloader or something like that. |
| */ |
| |
| int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) |
| { |
| int ret; |
| |
| /* if the count is < max, we try to write the counter to the 2nd page oob area */ |
| if( ++jeb->bad_count < MAX_ERASE_FAILURES) |
| return 0; |
| |
| if (!c->mtd->block_markbad) |
| return 1; // What else can we do? |
| |
| D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); |
| ret = c->mtd->block_markbad(c->mtd, bad_offset); |
| |
| if (ret) { |
| D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); |
| return ret; |
| } |
| return 1; |
| } |
| |
| #define NAND_JFFS2_OOB16_FSDALEN 8 |
| |
| static struct nand_oobinfo jffs2_oobinfo_docecc = { |
| .useecc = MTD_NANDECC_PLACE, |
| .eccbytes = 6, |
| .eccpos = {0,1,2,3,4,5} |
| }; |
| |
| |
| static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) |
| { |
| struct nand_oobinfo *oinfo = &c->mtd->oobinfo; |
| |
| /* Do this only, if we have an oob buffer */ |
| if (!c->mtd->oobsize) |
| return 0; |
| |
| /* Cleanmarker is out-of-band, so inline size zero */ |
| c->cleanmarker_size = 0; |
| |
| /* Should we use autoplacement ? */ |
| if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { |
| D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); |
| /* Get the position of the free bytes */ |
| if (!oinfo->oobfree[0][1]) { |
| printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); |
| return -ENOSPC; |
| } |
| c->fsdata_pos = oinfo->oobfree[0][0]; |
| c->fsdata_len = oinfo->oobfree[0][1]; |
| if (c->fsdata_len > 8) |
| c->fsdata_len = 8; |
| } else { |
| /* This is just a legacy fallback and should go away soon */ |
| switch(c->mtd->ecctype) { |
| case MTD_ECC_RS_DiskOnChip: |
| printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); |
| c->oobinfo = &jffs2_oobinfo_docecc; |
| c->fsdata_pos = 6; |
| c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; |
| c->badblock_pos = 15; |
| break; |
| |
| default: |
| D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| int jffs2_nand_flash_setup(struct jffs2_sb_info *c) |
| { |
| int res; |
| |
| /* Initialise write buffer */ |
| init_rwsem(&c->wbuf_sem); |
| c->wbuf_pagesize = c->mtd->writesize; |
| c->wbuf_ofs = 0xFFFFFFFF; |
| |
| c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| if (!c->wbuf) |
| return -ENOMEM; |
| |
| res = jffs2_nand_set_oobinfo(c); |
| |
| #ifdef BREAKME |
| if (!brokenbuf) |
| brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| if (!brokenbuf) { |
| kfree(c->wbuf); |
| return -ENOMEM; |
| } |
| memset(brokenbuf, 0xdb, c->wbuf_pagesize); |
| #endif |
| return res; |
| } |
| |
| void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) |
| { |
| kfree(c->wbuf); |
| } |
| |
| int jffs2_dataflash_setup(struct jffs2_sb_info *c) { |
| c->cleanmarker_size = 0; /* No cleanmarkers needed */ |
| |
| /* Initialize write buffer */ |
| init_rwsem(&c->wbuf_sem); |
| |
| |
| c->wbuf_pagesize = c->mtd->erasesize; |
| |
| /* Find a suitable c->sector_size |
| * - Not too much sectors |
| * - Sectors have to be at least 4 K + some bytes |
| * - All known dataflashes have erase sizes of 528 or 1056 |
| * - we take at least 8 eraseblocks and want to have at least 8K size |
| * - The concatenation should be a power of 2 |
| */ |
| |
| c->sector_size = 8 * c->mtd->erasesize; |
| |
| while (c->sector_size < 8192) { |
| c->sector_size *= 2; |
| } |
| |
| /* It may be necessary to adjust the flash size */ |
| c->flash_size = c->mtd->size; |
| |
| if ((c->flash_size % c->sector_size) != 0) { |
| c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; |
| printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); |
| }; |
| |
| c->wbuf_ofs = 0xFFFFFFFF; |
| c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| if (!c->wbuf) |
| return -ENOMEM; |
| |
| printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); |
| |
| return 0; |
| } |
| |
| void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { |
| kfree(c->wbuf); |
| } |
| |
| int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { |
| /* Cleanmarker currently occupies whole programming regions, |
| * either one or 2 for 8Byte STMicro flashes. */ |
| c->cleanmarker_size = max(16u, c->mtd->writesize); |
| |
| /* Initialize write buffer */ |
| init_rwsem(&c->wbuf_sem); |
| c->wbuf_pagesize = c->mtd->writesize; |
| c->wbuf_ofs = 0xFFFFFFFF; |
| |
| c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| if (!c->wbuf) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { |
| kfree(c->wbuf); |
| } |