blob: c3496e2b5a7106e581a7f862687951ab8f08b974 [file] [log] [blame]
/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <linux/acpi.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#include <asm/amd_nb.h>
struct numa_memblk {
u64 start;
u64 end;
int nid;
};
struct numa_meminfo {
int nr_blks;
struct numa_memblk blk[NR_NODE_MEMBLKS];
};
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
nodemask_t cpu_nodes_parsed __initdata;
nodemask_t mem_nodes_parsed __initdata;
struct memnode memnode;
static unsigned long __initdata nodemap_addr;
static unsigned long __initdata nodemap_size;
static struct numa_meminfo numa_meminfo __initdata;
struct bootnode numa_nodes[MAX_NUMNODES] __initdata;
/*
* Given a shift value, try to populate memnodemap[]
* Returns :
* 1 if OK
* 0 if memnodmap[] too small (of shift too small)
* -1 if node overlap or lost ram (shift too big)
*/
static int __init populate_memnodemap(const struct numa_meminfo *mi, int shift)
{
unsigned long addr, end;
int i, res = -1;
memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
for (i = 0; i < mi->nr_blks; i++) {
addr = mi->blk[i].start;
end = mi->blk[i].end;
if (addr >= end)
continue;
if ((end >> shift) >= memnodemapsize)
return 0;
do {
if (memnodemap[addr >> shift] != NUMA_NO_NODE)
return -1;
memnodemap[addr >> shift] = mi->blk[i].nid;
addr += (1UL << shift);
} while (addr < end);
res = 1;
}
return res;
}
static int __init allocate_cachealigned_memnodemap(void)
{
unsigned long addr;
memnodemap = memnode.embedded_map;
if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
return 0;
addr = 0x8000;
nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
nodemap_addr = memblock_find_in_range(addr, get_max_mapped(),
nodemap_size, L1_CACHE_BYTES);
if (nodemap_addr == MEMBLOCK_ERROR) {
printk(KERN_ERR
"NUMA: Unable to allocate Memory to Node hash map\n");
nodemap_addr = nodemap_size = 0;
return -1;
}
memnodemap = phys_to_virt(nodemap_addr);
memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
nodemap_addr, nodemap_addr + nodemap_size);
return 0;
}
/*
* The LSB of all start and end addresses in the node map is the value of the
* maximum possible shift.
*/
static int __init extract_lsb_from_nodes(const struct numa_meminfo *mi)
{
int i, nodes_used = 0;
unsigned long start, end;
unsigned long bitfield = 0, memtop = 0;
for (i = 0; i < mi->nr_blks; i++) {
start = mi->blk[i].start;
end = mi->blk[i].end;
if (start >= end)
continue;
bitfield |= start;
nodes_used++;
if (end > memtop)
memtop = end;
}
if (nodes_used <= 1)
i = 63;
else
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
memnodemapsize = (memtop >> i)+1;
return i;
}
static int __init compute_hash_shift(const struct numa_meminfo *mi)
{
int shift;
shift = extract_lsb_from_nodes(mi);
if (allocate_cachealigned_memnodemap())
return -1;
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
shift);
if (populate_memnodemap(mi, shift) != 1) {
printk(KERN_INFO "Your memory is not aligned you need to "
"rebuild your kernel with a bigger NODEMAPSIZE "
"shift=%d\n", shift);
return -1;
}
return shift;
}
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
static void * __init early_node_mem(int nodeid, unsigned long start,
unsigned long end, unsigned long size,
unsigned long align)
{
unsigned long mem;
/*
* put it on high as possible
* something will go with NODE_DATA
*/
if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
start = MAX_DMA_PFN<<PAGE_SHIFT;
if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
end > (MAX_DMA32_PFN<<PAGE_SHIFT))
start = MAX_DMA32_PFN<<PAGE_SHIFT;
mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
if (mem != MEMBLOCK_ERROR)
return __va(mem);
/* extend the search scope */
end = max_pfn_mapped << PAGE_SHIFT;
start = MAX_DMA_PFN << PAGE_SHIFT;
mem = memblock_find_in_range(start, end, size, align);
if (mem != MEMBLOCK_ERROR)
return __va(mem);
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
size, nodeid);
return NULL;
}
static __init int conflicting_memblks(unsigned long start, unsigned long end)
{
struct numa_meminfo *mi = &numa_meminfo;
int i;
for (i = 0; i < mi->nr_blks; i++) {
struct numa_memblk *blk = &mi->blk[i];
if (blk->start == blk->end)
continue;
if (blk->end > start && blk->start < end)
return blk->nid;
if (blk->end == end && blk->start == start)
return blk->nid;
}
return -1;
}
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
struct numa_meminfo *mi = &numa_meminfo;
int i;
i = conflicting_memblks(start, end);
if (i == nid) {
printk(KERN_WARNING "NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
nid, start, end, numa_nodes[i].start, numa_nodes[i].end);
} else if (i >= 0) {
printk(KERN_ERR "NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
nid, start, end, i,
numa_nodes[i].start, numa_nodes[i].end);
return -EINVAL;
}
mi->blk[mi->nr_blks].start = start;
mi->blk[mi->nr_blks].end = end;
mi->blk[mi->nr_blks].nid = nid;
mi->nr_blks++;
return 0;
}
static __init void cutoff_node(int i, unsigned long start, unsigned long end)
{
struct bootnode *nd = &numa_nodes[i];
if (nd->start < start) {
nd->start = start;
if (nd->end < nd->start)
nd->start = nd->end;
}
if (nd->end > end) {
nd->end = end;
if (nd->start > nd->end)
nd->start = nd->end;
}
}
/* Initialize bootmem allocator for a node */
void __init
setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
{
unsigned long start_pfn, last_pfn, nodedata_phys;
const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
int nid;
if (!end)
return;
/*
* Don't confuse VM with a node that doesn't have the
* minimum amount of memory:
*/
if (end && (end - start) < NODE_MIN_SIZE)
return;
start = roundup(start, ZONE_ALIGN);
printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
start, end);
start_pfn = start >> PAGE_SHIFT;
last_pfn = end >> PAGE_SHIFT;
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
SMP_CACHE_BYTES);
if (node_data[nodeid] == NULL)
return;
nodedata_phys = __pa(node_data[nodeid]);
memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
nodedata_phys + pgdat_size - 1);
nid = phys_to_nid(nodedata_phys);
if (nid != nodeid)
printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->node_id = nodeid;
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
node_set_online(nodeid);
}
/*
* Sanity check to catch more bad NUMA configurations (they are amazingly
* common). Make sure the nodes cover all memory.
*/
static int __init nodes_cover_memory(const struct bootnode *nodes)
{
unsigned long numaram, e820ram;
int i;
numaram = 0;
for_each_node_mask(i, mem_nodes_parsed) {
unsigned long s = nodes[i].start >> PAGE_SHIFT;
unsigned long e = nodes[i].end >> PAGE_SHIFT;
numaram += e - s;
numaram -= __absent_pages_in_range(i, s, e);
if ((long)numaram < 0)
numaram = 0;
}
e820ram = max_pfn -
(memblock_x86_hole_size(0, max_pfn<<PAGE_SHIFT) >> PAGE_SHIFT);
/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
if ((long)(e820ram - numaram) >= (1<<(20 - PAGE_SHIFT))) {
printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n",
(numaram << PAGE_SHIFT) >> 20,
(e820ram << PAGE_SHIFT) >> 20);
return 0;
}
return 1;
}
static int __init numa_register_memblks(void)
{
struct numa_meminfo *mi = &numa_meminfo;
int i;
/*
* Join together blocks on the same node, holes between
* which don't overlap with memory on other nodes.
*/
for (i = 0; i < mi->nr_blks; ++i) {
struct numa_memblk *bi = &mi->blk[i];
int j, k;
for (j = i + 1; j < mi->nr_blks; ++j) {
struct numa_memblk *bj = &mi->blk[j];
unsigned long start, end;
if (bi->nid != bj->nid)
continue;
start = min(bi->end, bj->end);
end = max(bi->start, bj->start);
for (k = 0; k < mi->nr_blks; ++k) {
struct numa_memblk *bk = &mi->blk[k];
if (bi->nid == bk->nid)
continue;
if (start < bk->end && end > bk->start)
break;
}
if (k < mi->nr_blks)
continue;
start = min(bi->start, bj->start);
end = max(bi->end, bj->end);
printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n",
bi->nid, bi->start, bi->end, bj->start, bj->end,
start, end);
bi->start = start;
bi->end = end;
k = --mi->nr_blks - j;
memmove(mi->blk + j, mi->blk + j + 1,
k * sizeof(mi->blk[0]));
--j;
}
}
memnode_shift = compute_hash_shift(mi);
if (memnode_shift < 0) {
printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n");
return -EINVAL;
}
for (i = 0; i < mi->nr_blks; i++)
memblock_x86_register_active_regions(mi->blk[i].nid,
mi->blk[i].start >> PAGE_SHIFT,
mi->blk[i].end >> PAGE_SHIFT);
/* for out of order entries */
sort_node_map();
if (!nodes_cover_memory(numa_nodes))
return -EINVAL;
init_memory_mapping_high();
/* Finally register nodes. */
for_each_node_mask(i, node_possible_map)
setup_node_bootmem(i, numa_nodes[i].start, numa_nodes[i].end);
/*
* Try again in case setup_node_bootmem missed one due to missing
* bootmem.
*/
for_each_node_mask(i, node_possible_map)
if (!node_online(i))
setup_node_bootmem(i, numa_nodes[i].start,
numa_nodes[i].end);
return 0;
}
#ifdef CONFIG_NUMA_EMU
/* Numa emulation */
static struct bootnode nodes[MAX_NUMNODES] __initdata;
static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
static char *cmdline __initdata;
void __init numa_emu_cmdline(char *str)
{
cmdline = str;
}
static int __init setup_physnodes(unsigned long start, unsigned long end)
{
int ret = 0;
int i;
memset(physnodes, 0, sizeof(physnodes));
for_each_node_mask(i, mem_nodes_parsed) {
physnodes[i].start = numa_nodes[i].start;
physnodes[i].end = numa_nodes[i].end;
}
/*
* Basic sanity checking on the physical node map: there may be errors
* if the SRAT or AMD code incorrectly reported the topology or the mem=
* kernel parameter is used.
*/
for (i = 0; i < MAX_NUMNODES; i++) {
if (physnodes[i].start == physnodes[i].end)
continue;
if (physnodes[i].start > end) {
physnodes[i].end = physnodes[i].start;
continue;
}
if (physnodes[i].end < start) {
physnodes[i].start = physnodes[i].end;
continue;
}
if (physnodes[i].start < start)
physnodes[i].start = start;
if (physnodes[i].end > end)
physnodes[i].end = end;
ret++;
}
/*
* If no physical topology was detected, a single node is faked to cover
* the entire address space.
*/
if (!ret) {
physnodes[ret].start = start;
physnodes[ret].end = end;
ret = 1;
}
return ret;
}
static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
{
int i;
BUG_ON(acpi && amd);
#ifdef CONFIG_ACPI_NUMA
if (acpi)
acpi_fake_nodes(nodes, nr_nodes);
#endif
#ifdef CONFIG_AMD_NUMA
if (amd)
amd_fake_nodes(nodes, nr_nodes);
#endif
if (!acpi && !amd)
for (i = 0; i < nr_cpu_ids; i++)
numa_set_node(i, 0);
}
/*
* Setups up nid to range from addr to addr + size. If the end
* boundary is greater than max_addr, then max_addr is used instead.
* The return value is 0 if there is additional memory left for
* allocation past addr and -1 otherwise. addr is adjusted to be at
* the end of the node.
*/
static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
{
int ret = 0;
nodes[nid].start = *addr;
*addr += size;
if (*addr >= max_addr) {
*addr = max_addr;
ret = -1;
}
nodes[nid].end = *addr;
node_set(nid, node_possible_map);
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
nodes[nid].start, nodes[nid].end,
(nodes[nid].end - nodes[nid].start) >> 20);
return ret;
}
/*
* Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
* to max_addr. The return value is the number of nodes allocated.
*/
static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
{
nodemask_t physnode_mask = NODE_MASK_NONE;
u64 size;
int big;
int ret = 0;
int i;
if (nr_nodes <= 0)
return -1;
if (nr_nodes > MAX_NUMNODES) {
pr_info("numa=fake=%d too large, reducing to %d\n",
nr_nodes, MAX_NUMNODES);
nr_nodes = MAX_NUMNODES;
}
size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
/*
* Calculate the number of big nodes that can be allocated as a result
* of consolidating the remainder.
*/
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
FAKE_NODE_MIN_SIZE;
size &= FAKE_NODE_MIN_HASH_MASK;
if (!size) {
pr_err("Not enough memory for each node. "
"NUMA emulation disabled.\n");
return -1;
}
for (i = 0; i < MAX_NUMNODES; i++)
if (physnodes[i].start != physnodes[i].end)
node_set(i, physnode_mask);
/*
* Continue to fill physical nodes with fake nodes until there is no
* memory left on any of them.
*/
while (nodes_weight(physnode_mask)) {
for_each_node_mask(i, physnode_mask) {
u64 end = physnodes[i].start + size;
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
if (ret < big)
end += FAKE_NODE_MIN_SIZE;
/*
* Continue to add memory to this fake node if its
* non-reserved memory is less than the per-node size.
*/
while (end - physnodes[i].start -
memblock_x86_hole_size(physnodes[i].start, end) < size) {
end += FAKE_NODE_MIN_SIZE;
if (end > physnodes[i].end) {
end = physnodes[i].end;
break;
}
}
/*
* If there won't be at least FAKE_NODE_MIN_SIZE of
* non-reserved memory in ZONE_DMA32 for the next node,
* this one must extend to the boundary.
*/
if (end < dma32_end && dma32_end - end -
memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
end = dma32_end;
/*
* If there won't be enough non-reserved memory for the
* next node, this one must extend to the end of the
* physical node.
*/
if (physnodes[i].end - end -
memblock_x86_hole_size(end, physnodes[i].end) < size)
end = physnodes[i].end;
/*
* Avoid allocating more nodes than requested, which can
* happen as a result of rounding down each node's size
* to FAKE_NODE_MIN_SIZE.
*/
if (nodes_weight(physnode_mask) + ret >= nr_nodes)
end = physnodes[i].end;
if (setup_node_range(ret++, &physnodes[i].start,
end - physnodes[i].start,
physnodes[i].end) < 0)
node_clear(i, physnode_mask);
}
}
return ret;
}
/*
* Returns the end address of a node so that there is at least `size' amount of
* non-reserved memory or `max_addr' is reached.
*/
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
{
u64 end = start + size;
while (end - start - memblock_x86_hole_size(start, end) < size) {
end += FAKE_NODE_MIN_SIZE;
if (end > max_addr) {
end = max_addr;
break;
}
}
return end;
}
/*
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
* `addr' to `max_addr'. The return value is the number of nodes allocated.
*/
static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
{
nodemask_t physnode_mask = NODE_MASK_NONE;
u64 min_size;
int ret = 0;
int i;
if (!size)
return -1;
/*
* The limit on emulated nodes is MAX_NUMNODES, so the size per node is
* increased accordingly if the requested size is too small. This
* creates a uniform distribution of node sizes across the entire
* machine (but not necessarily over physical nodes).
*/
min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
MAX_NUMNODES;
min_size = max(min_size, FAKE_NODE_MIN_SIZE);
if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
min_size = (min_size + FAKE_NODE_MIN_SIZE) &
FAKE_NODE_MIN_HASH_MASK;
if (size < min_size) {
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
size >> 20, min_size >> 20);
size = min_size;
}
size &= FAKE_NODE_MIN_HASH_MASK;
for (i = 0; i < MAX_NUMNODES; i++)
if (physnodes[i].start != physnodes[i].end)
node_set(i, physnode_mask);
/*
* Fill physical nodes with fake nodes of size until there is no memory
* left on any of them.
*/
while (nodes_weight(physnode_mask)) {
for_each_node_mask(i, physnode_mask) {
u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
u64 end;
end = find_end_of_node(physnodes[i].start,
physnodes[i].end, size);
/*
* If there won't be at least FAKE_NODE_MIN_SIZE of
* non-reserved memory in ZONE_DMA32 for the next node,
* this one must extend to the boundary.
*/
if (end < dma32_end && dma32_end - end -
memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
end = dma32_end;
/*
* If there won't be enough non-reserved memory for the
* next node, this one must extend to the end of the
* physical node.
*/
if (physnodes[i].end - end -
memblock_x86_hole_size(end, physnodes[i].end) < size)
end = physnodes[i].end;
/*
* Setup the fake node that will be allocated as bootmem
* later. If setup_node_range() returns non-zero, there
* is no more memory available on this physical node.
*/
if (setup_node_range(ret++, &physnodes[i].start,
end - physnodes[i].start,
physnodes[i].end) < 0)
node_clear(i, physnode_mask);
}
}
return ret;
}
/*
* Sets up the system RAM area from start_pfn to last_pfn according to the
* numa=fake command-line option.
*/
static int __init numa_emulation(unsigned long start_pfn,
unsigned long last_pfn, int acpi, int amd)
{
static struct numa_meminfo ei __initdata;
u64 addr = start_pfn << PAGE_SHIFT;
u64 max_addr = last_pfn << PAGE_SHIFT;
int num_nodes;
int i;
/*
* If the numa=fake command-line contains a 'M' or 'G', it represents
* the fixed node size. Otherwise, if it is just a single number N,
* split the system RAM into N fake nodes.
*/
if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
u64 size;
size = memparse(cmdline, &cmdline);
num_nodes = split_nodes_size_interleave(addr, max_addr, size);
} else {
unsigned long n;
n = simple_strtoul(cmdline, NULL, 0);
num_nodes = split_nodes_interleave(addr, max_addr, n);
}
if (num_nodes < 0)
return num_nodes;
ei.nr_blks = num_nodes;
for (i = 0; i < ei.nr_blks; i++) {
ei.blk[i].start = nodes[i].start;
ei.blk[i].end = nodes[i].end;
ei.blk[i].nid = i;
}
memnode_shift = compute_hash_shift(&ei);
if (memnode_shift < 0) {
memnode_shift = 0;
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
"disabled.\n");
return -1;
}
/*
* We need to vacate all active ranges that may have been registered for
* the e820 memory map.
*/
remove_all_active_ranges();
for_each_node_mask(i, node_possible_map)
memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
nodes[i].end >> PAGE_SHIFT);
init_memory_mapping_high();
for_each_node_mask(i, node_possible_map)
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
setup_physnodes(addr, max_addr);
fake_physnodes(acpi, amd, num_nodes);
numa_init_array();
return 0;
}
#endif /* CONFIG_NUMA_EMU */
static int dummy_numa_init(void)
{
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
0LU, max_pfn << PAGE_SHIFT);
node_set(0, cpu_nodes_parsed);
node_set(0, mem_nodes_parsed);
numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT);
numa_nodes[0].start = 0;
numa_nodes[0].end = (u64)max_pfn << PAGE_SHIFT;
return 0;
}
void __init initmem_init(void)
{
int (*numa_init[])(void) = { [2] = dummy_numa_init };
int i, j;
if (!numa_off) {
#ifdef CONFIG_ACPI_NUMA
numa_init[0] = x86_acpi_numa_init;
#endif
#ifdef CONFIG_AMD_NUMA
numa_init[1] = amd_numa_init;
#endif
}
for (i = 0; i < ARRAY_SIZE(numa_init); i++) {
if (!numa_init[i])
continue;
for (j = 0; j < MAX_LOCAL_APIC; j++)
set_apicid_to_node(j, NUMA_NO_NODE);
nodes_clear(cpu_nodes_parsed);
nodes_clear(mem_nodes_parsed);
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
memset(&numa_meminfo, 0, sizeof(numa_meminfo));
memset(numa_nodes, 0, sizeof(numa_nodes));
remove_all_active_ranges();
if (numa_init[i]() < 0)
continue;
/* clean up the node list */
for (j = 0; j < MAX_NUMNODES; j++)
cutoff_node(j, 0, max_pfn << PAGE_SHIFT);
#ifdef CONFIG_NUMA_EMU
setup_physnodes(0, max_pfn << PAGE_SHIFT);
if (cmdline && !numa_emulation(0, max_pfn, i == 0, i == 1))
return;
setup_physnodes(0, max_pfn << PAGE_SHIFT);
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
#endif
/* Account for nodes with cpus and no memory */
nodes_or(node_possible_map, mem_nodes_parsed, cpu_nodes_parsed);
if (WARN_ON(nodes_empty(node_possible_map)))
continue;
if (numa_register_memblks() < 0)
continue;
for (j = 0; j < nr_cpu_ids; j++) {
int nid = early_cpu_to_node(j);
if (nid == NUMA_NO_NODE)
continue;
if (!node_online(nid))
numa_clear_node(j);
}
numa_init_array();
return;
}
BUG();
}
unsigned long __init numa_free_all_bootmem(void)
{
unsigned long pages = 0;
int i;
for_each_online_node(i)
pages += free_all_bootmem_node(NODE_DATA(i));
pages += free_all_memory_core_early(MAX_NUMNODES);
return pages;
}
int __cpuinit numa_cpu_node(int cpu)
{
int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
if (apicid != BAD_APICID)
return __apicid_to_node[apicid];
return NUMA_NO_NODE;
}
/*
* UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use
* of 64bit specific data structures. The distinction is artificial and
* should be removed. numa_{add|remove}_cpu() are implemented in numa.c
* for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when
* enabled.
*
* NUMA emulation is planned to be made generic and the following and other
* related code should be moved to numa.c.
*/
#ifdef CONFIG_NUMA_EMU
# ifndef CONFIG_DEBUG_PER_CPU_MAPS
void __cpuinit numa_add_cpu(int cpu)
{
unsigned long addr;
int physnid, nid;
nid = numa_cpu_node(cpu);
if (nid == NUMA_NO_NODE)
nid = early_cpu_to_node(cpu);
BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
/*
* Use the starting address of the emulated node to find which physical
* node it is allocated on.
*/
addr = node_start_pfn(nid) << PAGE_SHIFT;
for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
if (addr >= physnodes[physnid].start &&
addr < physnodes[physnid].end)
break;
/*
* Map the cpu to each emulated node that is allocated on the physical
* node of the cpu's apic id.
*/
for_each_online_node(nid) {
addr = node_start_pfn(nid) << PAGE_SHIFT;
if (addr >= physnodes[physnid].start &&
addr < physnodes[physnid].end)
cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
}
}
void __cpuinit numa_remove_cpu(int cpu)
{
int i;
for_each_online_node(i)
cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
}
# else /* !CONFIG_DEBUG_PER_CPU_MAPS */
static void __cpuinit numa_set_cpumask(int cpu, int enable)
{
int node = early_cpu_to_node(cpu);
struct cpumask *mask;
int i;
if (node == NUMA_NO_NODE) {
/* early_cpu_to_node() already emits a warning and trace */
return;
}
for_each_online_node(i) {
unsigned long addr;
addr = node_start_pfn(i) << PAGE_SHIFT;
if (addr < physnodes[node].start ||
addr >= physnodes[node].end)
continue;
mask = debug_cpumask_set_cpu(cpu, enable);
if (!mask)
return;
if (enable)
cpumask_set_cpu(cpu, mask);
else
cpumask_clear_cpu(cpu, mask);
}
}
void __cpuinit numa_add_cpu(int cpu)
{
numa_set_cpumask(cpu, 1);
}
void __cpuinit numa_remove_cpu(int cpu)
{
numa_set_cpumask(cpu, 0);
}
# endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
#endif /* CONFIG_NUMA_EMU */