| /****************************************************************************** |
| * |
| * Name: ski2c.c |
| * Project: Gigabit Ethernet Adapters, TWSI-Module |
| * Version: $Revision: 1.59 $ |
| * Date: $Date: 2003/10/20 09:07:25 $ |
| * Purpose: Functions to access Voltage and Temperature Sensor |
| * |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| * |
| * (C)Copyright 1998-2002 SysKonnect. |
| * (C)Copyright 2002-2003 Marvell. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * The information in this file is provided "AS IS" without warranty. |
| * |
| ******************************************************************************/ |
| |
| /* |
| * I2C Protocol |
| */ |
| #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) |
| static const char SysKonnectFileId[] = |
| "@(#) $Id: ski2c.c,v 1.59 2003/10/20 09:07:25 rschmidt Exp $ (C) Marvell. "; |
| #endif |
| |
| #include "h/skdrv1st.h" /* Driver Specific Definitions */ |
| #include "h/lm80.h" |
| #include "h/skdrv2nd.h" /* Adapter Control- and Driver specific Def. */ |
| |
| #ifdef __C2MAN__ |
| /* |
| I2C protocol implementation. |
| |
| General Description: |
| |
| The I2C protocol is used for the temperature sensors and for |
| the serial EEPROM which hold the configuration. |
| |
| This file covers functions that allow to read write and do |
| some bulk requests a specified I2C address. |
| |
| The Genesis has 2 I2C buses. One for the EEPROM which holds |
| the VPD Data and one for temperature and voltage sensor. |
| The following picture shows the I2C buses, I2C devices and |
| their control registers. |
| |
| Note: The VPD functions are in skvpd.c |
| . |
| . PCI Config I2C Bus for VPD Data: |
| . |
| . +------------+ |
| . | VPD EEPROM | |
| . +------------+ |
| . | |
| . | <-- I2C |
| . | |
| . +-----------+-----------+ |
| . | | |
| . +-----------------+ +-----------------+ |
| . | PCI_VPD_ADR_REG | | PCI_VPD_DAT_REG | |
| . +-----------------+ +-----------------+ |
| . |
| . |
| . I2C Bus for LM80 sensor: |
| . |
| . +-----------------+ |
| . | Temperature and | |
| . | Voltage Sensor | |
| . | LM80 | |
| . +-----------------+ |
| . | |
| . | |
| . I2C --> | |
| . | |
| . +----+ |
| . +-------------->| OR |<--+ |
| . | +----+ | |
| . +------+------+ | |
| . | | | |
| . +--------+ +--------+ +----------+ |
| . | B2_I2C | | B2_I2C | | B2_I2C | |
| . | _CTRL | | _DATA | | _SW | |
| . +--------+ +--------+ +----------+ |
| . |
| The I2C bus may be driven by the B2_I2C_SW or by the B2_I2C_CTRL |
| and B2_I2C_DATA registers. |
| For driver software it is recommended to use the I2C control and |
| data register, because I2C bus timing is done by the ASIC and |
| an interrupt may be received when the I2C request is completed. |
| |
| Clock Rate Timing: MIN MAX generated by |
| VPD EEPROM: 50 kHz 100 kHz HW |
| LM80 over I2C Ctrl/Data reg. 50 kHz 100 kHz HW |
| LM80 over B2_I2C_SW register 0 400 kHz SW |
| |
| Note: The clock generated by the hardware is dependend on the |
| PCI clock. If the PCI bus clock is 33 MHz, the I2C/VPD |
| clock is 50 kHz. |
| */ |
| intro() |
| {} |
| #endif |
| |
| #ifdef SK_DIAG |
| /* |
| * I2C Fast Mode timing values used by the LM80. |
| * If new devices are added to the I2C bus the timing values have to be checked. |
| */ |
| #ifndef I2C_SLOW_TIMING |
| #define T_CLK_LOW 1300L /* clock low time in ns */ |
| #define T_CLK_HIGH 600L /* clock high time in ns */ |
| #define T_DATA_IN_SETUP 100L /* data in Set-up Time */ |
| #define T_START_HOLD 600L /* start condition hold time */ |
| #define T_START_SETUP 600L /* start condition Set-up time */ |
| #define T_STOP_SETUP 600L /* stop condition Set-up time */ |
| #define T_BUS_IDLE 1300L /* time the bus must free after Tx */ |
| #define T_CLK_2_DATA_OUT 900L /* max. clock low to data output valid */ |
| #else /* I2C_SLOW_TIMING */ |
| /* I2C Standard Mode Timing */ |
| #define T_CLK_LOW 4700L /* clock low time in ns */ |
| #define T_CLK_HIGH 4000L /* clock high time in ns */ |
| #define T_DATA_IN_SETUP 250L /* data in Set-up Time */ |
| #define T_START_HOLD 4000L /* start condition hold time */ |
| #define T_START_SETUP 4700L /* start condition Set-up time */ |
| #define T_STOP_SETUP 4000L /* stop condition Set-up time */ |
| #define T_BUS_IDLE 4700L /* time the bus must free after Tx */ |
| #endif /* !I2C_SLOW_TIMING */ |
| |
| #define NS2BCLK(x) (((x)*125)/10000) |
| |
| /* |
| * I2C Wire Operations |
| * |
| * About I2C_CLK_LOW(): |
| * |
| * The Data Direction bit (I2C_DATA_DIR) has to be set to input when setting |
| * clock to low, to prevent the ASIC and the I2C data client from driving the |
| * serial data line simultaneously (ASIC: last bit of a byte = '1', I2C client |
| * send an 'ACK'). See also Concentrator Bugreport No. 10192. |
| */ |
| #define I2C_DATA_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA) |
| #define I2C_DATA_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA) |
| #define I2C_DATA_OUT(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA_DIR) |
| #define I2C_DATA_IN(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA) |
| #define I2C_CLK_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_CLK) |
| #define I2C_CLK_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK | I2C_DATA_DIR) |
| #define I2C_START_COND(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK) |
| |
| #define NS2CLKT(x) ((x*125L)/10000) |
| |
| /*--------------- I2C Interface Register Functions --------------- */ |
| |
| /* |
| * sending one bit |
| */ |
| void SkI2cSndBit( |
| SK_IOC IoC, /* I/O Context */ |
| SK_U8 Bit) /* Bit to send */ |
| { |
| I2C_DATA_OUT(IoC); |
| if (Bit) { |
| I2C_DATA_HIGH(IoC); |
| } |
| else { |
| I2C_DATA_LOW(IoC); |
| } |
| SkDgWaitTime(IoC, NS2BCLK(T_DATA_IN_SETUP)); |
| I2C_CLK_HIGH(IoC); |
| SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); |
| I2C_CLK_LOW(IoC); |
| } /* SkI2cSndBit*/ |
| |
| |
| /* |
| * Signal a start to the I2C Bus. |
| * |
| * A start is signaled when data goes to low in a high clock cycle. |
| * |
| * Ends with Clock Low. |
| * |
| * Status: not tested |
| */ |
| void SkI2cStart( |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* Init data and Clock to output lines */ |
| /* Set Data high */ |
| I2C_DATA_OUT(IoC); |
| I2C_DATA_HIGH(IoC); |
| /* Set Clock high */ |
| I2C_CLK_HIGH(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_START_SETUP)); |
| |
| /* Set Data Low */ |
| I2C_DATA_LOW(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_START_HOLD)); |
| |
| /* Clock low without Data to Input */ |
| I2C_START_COND(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW)); |
| } /* SkI2cStart */ |
| |
| |
| void SkI2cStop( |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* Init data and Clock to output lines */ |
| /* Set Data low */ |
| I2C_DATA_OUT(IoC); |
| I2C_DATA_LOW(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); |
| |
| /* Set Clock high */ |
| I2C_CLK_HIGH(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_STOP_SETUP)); |
| |
| /* |
| * Set Data High: Do it by setting the Data Line to Input. |
| * Because of a pull up resistor the Data Line |
| * floods to high. |
| */ |
| I2C_DATA_IN(IoC); |
| |
| /* |
| * When I2C activity is stopped |
| * o DATA should be set to input and |
| * o CLOCK should be set to high! |
| */ |
| SkDgWaitTime(IoC, NS2BCLK(T_BUS_IDLE)); |
| } /* SkI2cStop */ |
| |
| |
| /* |
| * Receive just one bit via the I2C bus. |
| * |
| * Note: Clock must be set to LOW before calling this function. |
| * |
| * Returns The received bit. |
| */ |
| int SkI2cRcvBit( |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int Bit; |
| SK_U8 I2cSwCtrl; |
| |
| /* Init data as input line */ |
| I2C_DATA_IN(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); |
| |
| I2C_CLK_HIGH(IoC); |
| |
| SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); |
| |
| SK_I2C_GET_SW(IoC, &I2cSwCtrl); |
| |
| Bit = (I2cSwCtrl & I2C_DATA) ? 1 : 0; |
| |
| I2C_CLK_LOW(IoC); |
| SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW-T_CLK_2_DATA_OUT)); |
| |
| return(Bit); |
| } /* SkI2cRcvBit */ |
| |
| |
| /* |
| * Receive an ACK. |
| * |
| * returns 0 If acknowledged |
| * 1 in case of an error |
| */ |
| int SkI2cRcvAck( |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* |
| * Received bit must be zero. |
| */ |
| return(SkI2cRcvBit(IoC) != 0); |
| } /* SkI2cRcvAck */ |
| |
| |
| /* |
| * Send an NACK. |
| */ |
| void SkI2cSndNAck( |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* |
| * Received bit must be zero. |
| */ |
| SkI2cSndBit(IoC, 1); |
| } /* SkI2cSndNAck */ |
| |
| |
| /* |
| * Send an ACK. |
| */ |
| void SkI2cSndAck( |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* |
| * Received bit must be zero. |
| */ |
| SkI2cSndBit(IoC, 0); |
| } /* SkI2cSndAck */ |
| |
| |
| /* |
| * Send one byte to the I2C device and wait for ACK. |
| * |
| * Return acknowleged status. |
| */ |
| int SkI2cSndByte( |
| SK_IOC IoC, /* I/O Context */ |
| int Byte) /* byte to send */ |
| { |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| if (Byte & (1<<(7-i))) { |
| SkI2cSndBit(IoC, 1); |
| } |
| else { |
| SkI2cSndBit(IoC, 0); |
| } |
| } |
| |
| return(SkI2cRcvAck(IoC)); |
| } /* SkI2cSndByte */ |
| |
| |
| /* |
| * Receive one byte and ack it. |
| * |
| * Return byte. |
| */ |
| int SkI2cRcvByte( |
| SK_IOC IoC, /* I/O Context */ |
| int Last) /* Last Byte Flag */ |
| { |
| int i; |
| int Byte = 0; |
| |
| for (i = 0; i < 8; i++) { |
| Byte <<= 1; |
| Byte |= SkI2cRcvBit(IoC); |
| } |
| |
| if (Last) { |
| SkI2cSndNAck(IoC); |
| } |
| else { |
| SkI2cSndAck(IoC); |
| } |
| |
| return(Byte); |
| } /* SkI2cRcvByte */ |
| |
| |
| /* |
| * Start dialog and send device address |
| * |
| * Return 0 if acknowleged, 1 in case of an error |
| */ |
| int SkI2cSndDev( |
| SK_IOC IoC, /* I/O Context */ |
| int Addr, /* Device Address */ |
| int Rw) /* Read / Write Flag */ |
| { |
| SkI2cStart(IoC); |
| Rw = ~Rw; |
| Rw &= I2C_WRITE; |
| return(SkI2cSndByte(IoC, (Addr<<1) | Rw)); |
| } /* SkI2cSndDev */ |
| |
| #endif /* SK_DIAG */ |
| |
| /*----------------- I2C CTRL Register Functions ----------*/ |
| |
| /* |
| * waits for a completion of an I2C transfer |
| * |
| * returns 0: success, transfer completes |
| * 1: error, transfer does not complete, I2C transfer |
| * killed, wait loop terminated. |
| */ |
| static int SkI2cWait( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Event) /* complete event to wait for (I2C_READ or I2C_WRITE) */ |
| { |
| SK_U64 StartTime; |
| SK_U64 CurrentTime; |
| SK_U32 I2cCtrl; |
| |
| StartTime = SkOsGetTime(pAC); |
| |
| do { |
| CurrentTime = SkOsGetTime(pAC); |
| |
| if (CurrentTime - StartTime > SK_TICKS_PER_SEC / 8) { |
| |
| SK_I2C_STOP(IoC); |
| #ifndef SK_DIAG |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E002, SKERR_I2C_E002MSG); |
| #endif /* !SK_DIAG */ |
| return(1); |
| } |
| |
| SK_I2C_GET_CTL(IoC, &I2cCtrl); |
| |
| #ifdef xYUKON_DBG |
| printf("StartTime=%lu, CurrentTime=%lu\n", |
| StartTime, CurrentTime); |
| if (kbhit()) { |
| return(1); |
| } |
| #endif /* YUKON_DBG */ |
| |
| } while ((I2cCtrl & I2C_FLAG) == (SK_U32)Event << 31); |
| |
| return(0); |
| } /* SkI2cWait */ |
| |
| |
| /* |
| * waits for a completion of an I2C transfer |
| * |
| * Returns |
| * Nothing |
| */ |
| void SkI2cWaitIrq( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| SK_SENSOR *pSen; |
| SK_U64 StartTime; |
| SK_U32 IrqSrc; |
| |
| pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| |
| if (pSen->SenState == SK_SEN_IDLE) { |
| return; |
| } |
| |
| StartTime = SkOsGetTime(pAC); |
| |
| do { |
| if (SkOsGetTime(pAC) - StartTime > SK_TICKS_PER_SEC / 8) { |
| |
| SK_I2C_STOP(IoC); |
| #ifndef SK_DIAG |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E016, SKERR_I2C_E016MSG); |
| #endif /* !SK_DIAG */ |
| return; |
| } |
| |
| SK_IN32(IoC, B0_ISRC, &IrqSrc); |
| |
| } while ((IrqSrc & IS_I2C_READY) == 0); |
| |
| pSen->SenState = SK_SEN_IDLE; |
| return; |
| } /* SkI2cWaitIrq */ |
| |
| /* |
| * writes a single byte or 4 bytes into the I2C device |
| * |
| * returns 0: success |
| * 1: error |
| */ |
| static int SkI2cWrite( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| SK_U32 I2cData, /* I2C Data to write */ |
| int I2cDev, /* I2C Device Address */ |
| int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ |
| int I2cReg, /* I2C Device Register Address */ |
| int I2cBurst) /* I2C Burst Flag */ |
| { |
| SK_OUT32(IoC, B2_I2C_DATA, I2cData); |
| |
| SK_I2C_CTL(IoC, I2C_WRITE, I2cDev, I2cDevSize, I2cReg, I2cBurst); |
| |
| return(SkI2cWait(pAC, IoC, I2C_WRITE)); |
| } /* SkI2cWrite*/ |
| |
| |
| #ifdef SK_DIAG |
| /* |
| * reads a single byte or 4 bytes from the I2C device |
| * |
| * returns the word read |
| */ |
| SK_U32 SkI2cRead( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int I2cDev, /* I2C Device Address */ |
| int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ |
| int I2cReg, /* I2C Device Register Address */ |
| int I2cBurst) /* I2C Burst Flag */ |
| { |
| SK_U32 Data; |
| |
| SK_OUT32(IoC, B2_I2C_DATA, 0); |
| SK_I2C_CTL(IoC, I2C_READ, I2cDev, I2cDevSize, I2cReg, I2cBurst); |
| |
| if (SkI2cWait(pAC, IoC, I2C_READ) != 0) { |
| w_print("%s\n", SKERR_I2C_E002MSG); |
| } |
| |
| SK_IN32(IoC, B2_I2C_DATA, &Data); |
| |
| return(Data); |
| } /* SkI2cRead */ |
| #endif /* SK_DIAG */ |
| |
| |
| /* |
| * read a sensor's value |
| * |
| * This function reads a sensor's value from the I2C sensor chip. The sensor |
| * is defined by its index into the sensors database in the struct pAC points |
| * to. |
| * Returns |
| * 1 if the read is completed |
| * 0 if the read must be continued (I2C Bus still allocated) |
| */ |
| static int SkI2cReadSensor( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| SK_SENSOR *pSen) /* Sensor to be read */ |
| { |
| if (pSen->SenRead != NULL) { |
| return((*pSen->SenRead)(pAC, IoC, pSen)); |
| } |
| else { |
| return(0); /* no success */ |
| } |
| } /* SkI2cReadSensor */ |
| |
| /* |
| * Do the Init state 0 initialization |
| */ |
| static int SkI2cInit0( |
| SK_AC *pAC) /* Adapter Context */ |
| { |
| int i; |
| |
| /* Begin with first sensor */ |
| pAC->I2c.CurrSens = 0; |
| |
| /* Begin with timeout control for state machine */ |
| pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; |
| |
| /* Set sensor number to zero */ |
| pAC->I2c.MaxSens = 0; |
| |
| #ifndef SK_DIAG |
| /* Initialize Number of Dummy Reads */ |
| pAC->I2c.DummyReads = SK_MAX_SENSORS; |
| #endif |
| |
| for (i = 0; i < SK_MAX_SENSORS; i++) { |
| pAC->I2c.SenTable[i].SenDesc = "unknown"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_UNKNOWN; |
| pAC->I2c.SenTable[i].SenThreErrHigh = 0; |
| pAC->I2c.SenTable[i].SenThreErrLow = 0; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = 0; |
| pAC->I2c.SenTable[i].SenThreWarnLow = 0; |
| pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; |
| pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_NONE; |
| pAC->I2c.SenTable[i].SenValue = 0; |
| pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_NOT_PRESENT; |
| pAC->I2c.SenTable[i].SenErrCts = 0; |
| pAC->I2c.SenTable[i].SenBegErrTS = 0; |
| pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; |
| pAC->I2c.SenTable[i].SenRead = NULL; |
| pAC->I2c.SenTable[i].SenDev = 0; |
| } |
| |
| /* Now we are "INIT data"ed */ |
| pAC->I2c.InitLevel = SK_INIT_DATA; |
| return(0); |
| } /* SkI2cInit0*/ |
| |
| |
| /* |
| * Do the init state 1 initialization |
| * |
| * initialize the following register of the LM80: |
| * Configuration register: |
| * - START, noINT, activeLOW, noINT#Clear, noRESET, noCI, noGPO#, noINIT |
| * |
| * Interrupt Mask Register 1: |
| * - all interrupts are Disabled (0xff) |
| * |
| * Interrupt Mask Register 2: |
| * - all interrupts are Disabled (0xff) Interrupt modi doesn't matter. |
| * |
| * Fan Divisor/RST_OUT register: |
| * - Divisors set to 1 (bits 00), all others 0s. |
| * |
| * OS# Configuration/Temperature resolution Register: |
| * - all 0s |
| * |
| */ |
| static int SkI2cInit1( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int i; |
| SK_U8 I2cSwCtrl; |
| SK_GEPORT *pPrt; /* GIni Port struct pointer */ |
| |
| if (pAC->I2c.InitLevel != SK_INIT_DATA) { |
| /* ReInit not needed in I2C module */ |
| return(0); |
| } |
| |
| /* Set the Direction of I2C-Data Pin to IN */ |
| SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA); |
| /* Check for 32-Bit Yukon with Low at I2C-Data Pin */ |
| SK_I2C_GET_SW(IoC, &I2cSwCtrl); |
| |
| if ((I2cSwCtrl & I2C_DATA) == 0) { |
| /* this is a 32-Bit board */ |
| pAC->GIni.GIYukon32Bit = SK_TRUE; |
| return(0); |
| } |
| |
| /* Check for 64 Bit Yukon without sensors */ |
| if (SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_CFG, 0) != 0) { |
| return(0); |
| } |
| |
| (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_1, 0); |
| |
| (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_2, 0); |
| |
| (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_FAN_CTRL, 0); |
| |
| (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_TEMP_CTRL, 0); |
| |
| (void)SkI2cWrite(pAC, IoC, (SK_U32)LM80_CFG_START, LM80_ADDR, I2C_025K_DEV, |
| LM80_CFG, 0); |
| |
| /* |
| * MaxSens has to be updated here, because PhyType is not |
| * set when performing Init Level 0 |
| */ |
| pAC->I2c.MaxSens = 5; |
| |
| pPrt = &pAC->GIni.GP[0]; |
| |
| if (pAC->GIni.GIGenesis) { |
| if (pPrt->PhyType == SK_PHY_BCOM) { |
| if (pAC->GIni.GIMacsFound == 1) { |
| pAC->I2c.MaxSens += 1; |
| } |
| else { |
| pAC->I2c.MaxSens += 3; |
| } |
| } |
| } |
| else { |
| pAC->I2c.MaxSens += 3; |
| } |
| |
| for (i = 0; i < pAC->I2c.MaxSens; i++) { |
| switch (i) { |
| case 0: |
| pAC->I2c.SenTable[i].SenDesc = "Temperature"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_TEMP; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_TEMP_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_TEMP_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_TEMP_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_TEMP_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_TEMP_IN; |
| break; |
| case 1: |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PCI"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_5V_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_5V_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_5V_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_5V_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT0_IN; |
| break; |
| case 2: |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PCI-IO"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_IO_5V_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_IO_5V_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_IO_3V3_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_IO_3V3_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT1_IN; |
| pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_PCI_IO; |
| break; |
| case 3: |
| pAC->I2c.SenTable[i].SenDesc = "Voltage ASIC"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VDD_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VDD_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VDD_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VDD_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT2_IN; |
| break; |
| case 4: |
| if (pAC->GIni.GIGenesis) { |
| if (pPrt->PhyType == SK_PHY_BCOM) { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PHY A PLL"; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; |
| } |
| else { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PMA"; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; |
| } |
| } |
| else { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage VAUX"; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VAUX_3V3_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VAUX_3V3_HIGH_WARN; |
| if (pAC->GIni.GIVauxAvail) { |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; |
| } |
| else { |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_0V_WARN_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_0V_WARN_ERR; |
| } |
| } |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT3_IN; |
| break; |
| case 5: |
| if (pAC->GIni.GIGenesis) { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; |
| } |
| else { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage Core 1V5"; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_CORE_1V5_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_CORE_1V5_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_CORE_1V5_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_CORE_1V5_LOW_ERR; |
| } |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT4_IN; |
| break; |
| case 6: |
| if (pAC->GIni.GIGenesis) { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PHY B PLL"; |
| } |
| else { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 3V3"; |
| } |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT5_IN; |
| break; |
| case 7: |
| if (pAC->GIni.GIGenesis) { |
| pAC->I2c.SenTable[i].SenDesc = "Speed Fan"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_FAN; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_FAN_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_FAN_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_FAN_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_FAN_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; |
| } |
| else { |
| pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; |
| pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; |
| pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; |
| pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; |
| pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; |
| pAC->I2c.SenTable[i].SenReg = LM80_VT6_IN; |
| } |
| break; |
| default: |
| SK_ERR_LOG(pAC, SK_ERRCL_INIT | SK_ERRCL_SW, |
| SKERR_I2C_E001, SKERR_I2C_E001MSG); |
| break; |
| } |
| |
| pAC->I2c.SenTable[i].SenValue = 0; |
| pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; |
| pAC->I2c.SenTable[i].SenErrCts = 0; |
| pAC->I2c.SenTable[i].SenBegErrTS = 0; |
| pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; |
| pAC->I2c.SenTable[i].SenRead = SkLm80ReadSensor; |
| pAC->I2c.SenTable[i].SenDev = LM80_ADDR; |
| } |
| |
| #ifndef SK_DIAG |
| pAC->I2c.DummyReads = pAC->I2c.MaxSens; |
| #endif /* !SK_DIAG */ |
| |
| /* Clear I2C IRQ */ |
| SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); |
| |
| /* Now we are I/O initialized */ |
| pAC->I2c.InitLevel = SK_INIT_IO; |
| return(0); |
| } /* SkI2cInit1 */ |
| |
| |
| /* |
| * Init level 2: Start first sensor read. |
| */ |
| static int SkI2cInit2( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int ReadComplete; |
| SK_SENSOR *pSen; |
| |
| if (pAC->I2c.InitLevel != SK_INIT_IO) { |
| /* ReInit not needed in I2C module */ |
| /* Init0 and Init2 not permitted */ |
| return(0); |
| } |
| |
| pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); |
| |
| if (ReadComplete) { |
| SK_ERR_LOG(pAC, SK_ERRCL_INIT, SKERR_I2C_E008, SKERR_I2C_E008MSG); |
| } |
| |
| /* Now we are correctly initialized */ |
| pAC->I2c.InitLevel = SK_INIT_RUN; |
| |
| return(0); |
| } /* SkI2cInit2*/ |
| |
| |
| /* |
| * Initialize I2C devices |
| * |
| * Get the first voltage value and discard it. |
| * Go into temperature read mode. A default pointer is not set. |
| * |
| * The things to be done depend on the init level in the parameter list: |
| * Level 0: |
| * Initialize only the data structures. Do NOT access hardware. |
| * Level 1: |
| * Initialize hardware through SK_IN / SK_OUT commands. Do NOT use interrupts. |
| * Level 2: |
| * Everything is possible. Interrupts may be used from now on. |
| * |
| * return: |
| * 0 = success |
| * other = error. |
| */ |
| int SkI2cInit( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context needed in levels 1 and 2 */ |
| int Level) /* Init Level */ |
| { |
| |
| switch (Level) { |
| case SK_INIT_DATA: |
| return(SkI2cInit0(pAC)); |
| case SK_INIT_IO: |
| return(SkI2cInit1(pAC, IoC)); |
| case SK_INIT_RUN: |
| return(SkI2cInit2(pAC, IoC)); |
| default: |
| break; |
| } |
| |
| return(0); |
| } /* SkI2cInit */ |
| |
| |
| #ifndef SK_DIAG |
| |
| /* |
| * Interrupt service function for the I2C Interface |
| * |
| * Clears the Interrupt source |
| * |
| * Reads the register and check it for sending a trap. |
| * |
| * Starts the timer if necessary. |
| */ |
| void SkI2cIsr( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| SK_EVPARA Para; |
| |
| /* Clear I2C IRQ */ |
| SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); |
| |
| Para.Para64 = 0; |
| SkEventQueue(pAC, SKGE_I2C, SK_I2CEV_IRQ, Para); |
| } /* SkI2cIsr */ |
| |
| |
| /* |
| * Check this sensors Value against the threshold and send events. |
| */ |
| static void SkI2cCheckSensor( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_SENSOR *pSen) |
| { |
| SK_EVPARA ParaLocal; |
| SK_BOOL TooHigh; /* Is sensor too high? */ |
| SK_BOOL TooLow; /* Is sensor too low? */ |
| SK_U64 CurrTime; /* Current Time */ |
| SK_BOOL DoTrapSend; /* We need to send a trap */ |
| SK_BOOL DoErrLog; /* We need to log the error */ |
| SK_BOOL IsError; /* We need to log the error */ |
| |
| /* Check Dummy Reads first */ |
| if (pAC->I2c.DummyReads > 0) { |
| pAC->I2c.DummyReads--; |
| return; |
| } |
| |
| /* Get the current time */ |
| CurrTime = SkOsGetTime(pAC); |
| |
| /* Set para to the most useful setting: The current sensor. */ |
| ParaLocal.Para64 = (SK_U64)pAC->I2c.CurrSens; |
| |
| /* Check the Value against the thresholds. First: Error Thresholds */ |
| TooHigh = (pSen->SenValue > pSen->SenThreErrHigh); |
| TooLow = (pSen->SenValue < pSen->SenThreErrLow); |
| |
| IsError = SK_FALSE; |
| if (TooHigh || TooLow) { |
| /* Error condition is satisfied */ |
| DoTrapSend = SK_TRUE; |
| DoErrLog = SK_TRUE; |
| |
| /* Now error condition is satisfied */ |
| IsError = SK_TRUE; |
| |
| if (pSen->SenErrFlag == SK_SEN_ERR_ERR) { |
| /* This state is the former one */ |
| |
| /* So check first whether we have to send a trap */ |
| if (pSen->SenLastErrTrapTS + SK_SEN_ERR_TR_HOLD > |
| CurrTime) { |
| /* |
| * Do NOT send the Trap. The hold back time |
| * has to run out first. |
| */ |
| DoTrapSend = SK_FALSE; |
| } |
| |
| /* Check now whether we have to log an Error */ |
| if (pSen->SenLastErrLogTS + SK_SEN_ERR_LOG_HOLD > |
| CurrTime) { |
| /* |
| * Do NOT log the error. The hold back time |
| * has to run out first. |
| */ |
| DoErrLog = SK_FALSE; |
| } |
| } |
| else { |
| /* We came from a different state -> Set Begin Time Stamp */ |
| pSen->SenBegErrTS = CurrTime; |
| pSen->SenErrFlag = SK_SEN_ERR_ERR; |
| } |
| |
| if (DoTrapSend) { |
| /* Set current Time */ |
| pSen->SenLastErrTrapTS = CurrTime; |
| pSen->SenErrCts++; |
| |
| /* Queue PNMI Event */ |
| SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? |
| SK_PNMI_EVT_SEN_ERR_UPP : |
| SK_PNMI_EVT_SEN_ERR_LOW), |
| ParaLocal); |
| } |
| |
| if (DoErrLog) { |
| /* Set current Time */ |
| pSen->SenLastErrLogTS = CurrTime; |
| |
| if (pSen->SenType == SK_SEN_TEMP) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E011, SKERR_I2C_E011MSG); |
| } |
| else if (pSen->SenType == SK_SEN_VOLT) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E012, SKERR_I2C_E012MSG); |
| } |
| else { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E015, SKERR_I2C_E015MSG); |
| } |
| } |
| } |
| |
| /* Check the Value against the thresholds */ |
| /* 2nd: Warning thresholds */ |
| TooHigh = (pSen->SenValue > pSen->SenThreWarnHigh); |
| TooLow = (pSen->SenValue < pSen->SenThreWarnLow); |
| |
| if (!IsError && (TooHigh || TooLow)) { |
| /* Error condition is satisfied */ |
| DoTrapSend = SK_TRUE; |
| DoErrLog = SK_TRUE; |
| |
| if (pSen->SenErrFlag == SK_SEN_ERR_WARN) { |
| /* This state is the former one */ |
| |
| /* So check first whether we have to send a trap */ |
| if (pSen->SenLastWarnTrapTS + SK_SEN_WARN_TR_HOLD > CurrTime) { |
| /* |
| * Do NOT send the Trap. The hold back time |
| * has to run out first. |
| */ |
| DoTrapSend = SK_FALSE; |
| } |
| |
| /* Check now whether we have to log an Error */ |
| if (pSen->SenLastWarnLogTS + SK_SEN_WARN_LOG_HOLD > CurrTime) { |
| /* |
| * Do NOT log the error. The hold back time |
| * has to run out first. |
| */ |
| DoErrLog = SK_FALSE; |
| } |
| } |
| else { |
| /* We came from a different state -> Set Begin Time Stamp */ |
| pSen->SenBegWarnTS = CurrTime; |
| pSen->SenErrFlag = SK_SEN_ERR_WARN; |
| } |
| |
| if (DoTrapSend) { |
| /* Set current Time */ |
| pSen->SenLastWarnTrapTS = CurrTime; |
| pSen->SenWarnCts++; |
| |
| /* Queue PNMI Event */ |
| SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? |
| SK_PNMI_EVT_SEN_WAR_UPP : |
| SK_PNMI_EVT_SEN_WAR_LOW), |
| ParaLocal); |
| } |
| |
| if (DoErrLog) { |
| /* Set current Time */ |
| pSen->SenLastWarnLogTS = CurrTime; |
| |
| if (pSen->SenType == SK_SEN_TEMP) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E009, SKERR_I2C_E009MSG); |
| } |
| else if (pSen->SenType == SK_SEN_VOLT) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E010, SKERR_I2C_E010MSG); |
| } |
| else { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E014, SKERR_I2C_E014MSG); |
| } |
| } |
| } |
| |
| /* Check for NO error at all */ |
| if (!IsError && !TooHigh && !TooLow) { |
| /* Set o.k. Status if no error and no warning condition */ |
| pSen->SenErrFlag = SK_SEN_ERR_OK; |
| } |
| |
| /* End of check against the thresholds */ |
| |
| /* Bug fix AF: 16.Aug.2001: Correct the init base |
| * of LM80 sensor. |
| */ |
| if (pSen->SenInit == SK_SEN_DYN_INIT_PCI_IO) { |
| |
| pSen->SenInit = SK_SEN_DYN_INIT_NONE; |
| |
| if (pSen->SenValue > SK_SEN_PCI_IO_RANGE_LIMITER) { |
| /* 5V PCI-IO Voltage */ |
| pSen->SenThreWarnLow = SK_SEN_PCI_IO_5V_LOW_WARN; |
| pSen->SenThreErrLow = SK_SEN_PCI_IO_5V_LOW_ERR; |
| } |
| else { |
| /* 3.3V PCI-IO Voltage */ |
| pSen->SenThreWarnHigh = SK_SEN_PCI_IO_3V3_HIGH_WARN; |
| pSen->SenThreErrHigh = SK_SEN_PCI_IO_3V3_HIGH_ERR; |
| } |
| } |
| |
| #ifdef TEST_ONLY |
| /* Dynamic thresholds also for VAUX of LM80 sensor */ |
| if (pSen->SenInit == SK_SEN_DYN_INIT_VAUX) { |
| |
| pSen->SenInit = SK_SEN_DYN_INIT_NONE; |
| |
| /* 3.3V VAUX Voltage */ |
| if (pSen->SenValue > SK_SEN_VAUX_RANGE_LIMITER) { |
| pSen->SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; |
| pSen->SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; |
| } |
| /* 0V VAUX Voltage */ |
| else { |
| pSen->SenThreWarnHigh = SK_SEN_VAUX_0V_WARN_ERR; |
| pSen->SenThreErrHigh = SK_SEN_VAUX_0V_WARN_ERR; |
| } |
| } |
| |
| /* |
| * Check initialization state: |
| * The VIO Thresholds need adaption |
| */ |
| if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && |
| pSen->SenValue > SK_SEN_WARNLOW2C && |
| pSen->SenValue < SK_SEN_WARNHIGH2) { |
| pSen->SenThreErrLow = SK_SEN_ERRLOW2C; |
| pSen->SenThreWarnLow = SK_SEN_WARNLOW2C; |
| pSen->SenInit = SK_TRUE; |
| } |
| |
| if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && |
| pSen->SenValue > SK_SEN_WARNLOW2 && |
| pSen->SenValue < SK_SEN_WARNHIGH2C) { |
| pSen->SenThreErrHigh = SK_SEN_ERRHIGH2C; |
| pSen->SenThreWarnHigh = SK_SEN_WARNHIGH2C; |
| pSen->SenInit = SK_TRUE; |
| } |
| #endif |
| |
| if (pSen->SenInit != SK_SEN_DYN_INIT_NONE) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E013, SKERR_I2C_E013MSG); |
| } |
| } /* SkI2cCheckSensor */ |
| |
| |
| /* |
| * The only Event to be served is the timeout event |
| * |
| */ |
| int SkI2cEvent( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| SK_U32 Event, /* Module specific Event */ |
| SK_EVPARA Para) /* Event specific Parameter */ |
| { |
| int ReadComplete; |
| SK_SENSOR *pSen; |
| SK_U32 Time; |
| SK_EVPARA ParaLocal; |
| int i; |
| |
| /* New case: no sensors */ |
| if (pAC->I2c.MaxSens == 0) { |
| return(0); |
| } |
| |
| switch (Event) { |
| case SK_I2CEV_IRQ: |
| pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); |
| |
| if (ReadComplete) { |
| /* Check sensor against defined thresholds */ |
| SkI2cCheckSensor(pAC, pSen); |
| |
| /* Increment Current sensor and set appropriate Timeout */ |
| pAC->I2c.CurrSens++; |
| if (pAC->I2c.CurrSens >= pAC->I2c.MaxSens) { |
| pAC->I2c.CurrSens = 0; |
| Time = SK_I2C_TIM_LONG; |
| } |
| else { |
| Time = SK_I2C_TIM_SHORT; |
| } |
| |
| /* Start Timer */ |
| ParaLocal.Para64 = (SK_U64)0; |
| |
| pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; |
| |
| SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, |
| SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| } |
| else { |
| /* Start Timer */ |
| ParaLocal.Para64 = (SK_U64)0; |
| |
| pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; |
| |
| SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, SK_I2C_TIM_WATCH, |
| SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| } |
| break; |
| case SK_I2CEV_TIM: |
| if (pAC->I2c.TimerMode == SK_TIMER_NEW_GAUGING) { |
| |
| ParaLocal.Para64 = (SK_U64)0; |
| SkTimerStop(pAC, IoC, &pAC->I2c.SenTimer); |
| |
| pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); |
| |
| if (ReadComplete) { |
| /* Check sensor against defined thresholds */ |
| SkI2cCheckSensor(pAC, pSen); |
| |
| /* Increment Current sensor and set appropriate Timeout */ |
| pAC->I2c.CurrSens++; |
| if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { |
| pAC->I2c.CurrSens = 0; |
| Time = SK_I2C_TIM_LONG; |
| } |
| else { |
| Time = SK_I2C_TIM_SHORT; |
| } |
| |
| /* Start Timer */ |
| ParaLocal.Para64 = (SK_U64)0; |
| |
| pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; |
| |
| SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, |
| SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| } |
| } |
| else { |
| pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| pSen->SenErrFlag = SK_SEN_ERR_FAULTY; |
| SK_I2C_STOP(IoC); |
| |
| /* Increment Current sensor and set appropriate Timeout */ |
| pAC->I2c.CurrSens++; |
| if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { |
| pAC->I2c.CurrSens = 0; |
| Time = SK_I2C_TIM_LONG; |
| } |
| else { |
| Time = SK_I2C_TIM_SHORT; |
| } |
| |
| /* Start Timer */ |
| ParaLocal.Para64 = (SK_U64)0; |
| |
| pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; |
| |
| SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, |
| SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| } |
| break; |
| case SK_I2CEV_CLEAR: |
| for (i = 0; i < SK_MAX_SENSORS; i++) { |
| pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; |
| pAC->I2c.SenTable[i].SenErrCts = 0; |
| pAC->I2c.SenTable[i].SenWarnCts = 0; |
| pAC->I2c.SenTable[i].SenBegErrTS = 0; |
| pAC->I2c.SenTable[i].SenBegWarnTS = 0; |
| pAC->I2c.SenTable[i].SenLastErrTrapTS = (SK_U64)0; |
| pAC->I2c.SenTable[i].SenLastErrLogTS = (SK_U64)0; |
| pAC->I2c.SenTable[i].SenLastWarnTrapTS = (SK_U64)0; |
| pAC->I2c.SenTable[i].SenLastWarnLogTS = (SK_U64)0; |
| } |
| break; |
| default: |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E006, SKERR_I2C_E006MSG); |
| } |
| |
| return(0); |
| } /* SkI2cEvent*/ |
| |
| #endif /* !SK_DIAG */ |