| /* |
| * include/asm-xtensa/bitops.h |
| * |
| * Atomic operations that C can't guarantee us.Useful for resource counting etc. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| */ |
| |
| #ifndef _XTENSA_BITOPS_H |
| #define _XTENSA_BITOPS_H |
| |
| #ifdef __KERNEL__ |
| |
| #include <asm/processor.h> |
| #include <asm/byteorder.h> |
| #include <asm/system.h> |
| |
| #ifdef CONFIG_SMP |
| # error SMP not supported on this architecture |
| #endif |
| |
| static __inline__ void set_bit(int nr, volatile void * addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| *a |= mask; |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __set_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| |
| *a |= mask; |
| } |
| |
| static __inline__ void clear_bit(int nr, volatile void * addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| *a &= ~mask; |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __clear_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| |
| *a &= ~mask; |
| } |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| static __inline__ void change_bit(int nr, volatile void * addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| *a ^= mask; |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __change_bit(int nr, volatile void * addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| |
| *a ^= mask; |
| } |
| |
| static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| { |
| unsigned long retval; |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| local_irq_restore(flags); |
| |
| return retval; |
| } |
| |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| unsigned long retval; |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| |
| return retval; |
| } |
| |
| static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| { |
| unsigned long retval; |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| local_irq_restore(flags); |
| |
| return retval; |
| } |
| |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long old = *a; |
| |
| *a = old & ~mask; |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| { |
| unsigned long retval; |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| local_irq_restore(flags); |
| |
| return retval; |
| } |
| |
| /* |
| * non-atomic version; can be reordered |
| */ |
| |
| static __inline__ int __test_and_change_bit(int nr, volatile void *addr) |
| { |
| unsigned long mask = 1 << (nr & 0x1f); |
| unsigned long *a = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long old = *a; |
| |
| *a = old ^ mask; |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ int test_bit(int nr, const volatile void *addr) |
| { |
| return 1UL & (((const volatile unsigned int *)addr)[nr>>5] >> (nr&31)); |
| } |
| |
| #if XCHAL_HAVE_NSAU |
| |
| static __inline__ int __cntlz (unsigned long x) |
| { |
| int lz; |
| asm ("nsau %0, %1" : "=r" (lz) : "r" (x)); |
| return 31 - lz; |
| } |
| |
| #else |
| |
| static __inline__ int __cntlz (unsigned long x) |
| { |
| unsigned long sum, x1, x2, x4, x8, x16; |
| x1 = x & 0xAAAAAAAA; |
| x2 = x & 0xCCCCCCCC; |
| x4 = x & 0xF0F0F0F0; |
| x8 = x & 0xFF00FF00; |
| x16 = x & 0xFFFF0000; |
| sum = x2 ? 2 : 0; |
| sum += (x16 != 0) * 16; |
| sum += (x8 != 0) * 8; |
| sum += (x4 != 0) * 4; |
| sum += (x1 != 0); |
| |
| return sum; |
| } |
| |
| #endif |
| |
| /* |
| * ffz: Find first zero in word. Undefined if no zero exists. |
| * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| */ |
| |
| static __inline__ int ffz(unsigned long x) |
| { |
| if ((x = ~x) == 0) |
| return 32; |
| return __cntlz(x & -x); |
| } |
| |
| /* |
| * __ffs: Find first bit set in word. Return 0 for bit 0 |
| */ |
| |
| static __inline__ int __ffs(unsigned long x) |
| { |
| return __cntlz(x & -x); |
| } |
| |
| /* |
| * ffs: Find first bit set in word. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| |
| static __inline__ int ffs(unsigned long x) |
| { |
| return __cntlz(x & -x) + 1; |
| } |
| |
| /* |
| * fls: Find last (most-significant) bit set in word. |
| * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. |
| */ |
| |
| static __inline__ int fls (unsigned int x) |
| { |
| return __cntlz(x); |
| } |
| |
| static __inline__ int |
| find_next_bit(const unsigned long *addr, int size, int offset) |
| { |
| const unsigned long *p = addr + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *p++; |
| tmp &= ~0UL << offset; |
| if (size < 32) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size >= 32) { |
| if ((tmp = *p++) != 0) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= ~0UL >> (32 - size); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| static __inline__ int |
| find_next_zero_bit(const unsigned long *addr, int size, int offset) |
| { |
| const unsigned long *p = addr + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *p++; |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *p++)) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| #ifdef __XTENSA_EL__ |
| # define ext2_set_bit(nr,addr) __test_and_set_bit((nr), (addr)) |
| # define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr),(addr)) |
| # define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr), (addr)) |
| # define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr),(addr)) |
| # define ext2_test_bit(nr,addr) test_bit((nr), (addr)) |
| # define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr),(size)) |
| # define ext2_find_next_zero_bit(addr, size, offset) \ |
| find_next_zero_bit((addr), (size), (offset)) |
| #elif defined(__XTENSA_EB__) |
| # define ext2_set_bit(nr,addr) __test_and_set_bit((nr) ^ 0x18, (addr)) |
| # define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr) ^ 0x18, (addr)) |
| # define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 18, (addr)) |
| # define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr)^0x18,(addr)) |
| # define ext2_test_bit(nr,addr) test_bit((nr) ^ 0x18, (addr)) |
| # define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| /* We hold the little endian value in tmp, but then the |
| * shift is illegal. So we could keep a big endian value |
| * in tmp, like this: |
| * |
| * tmp = __swab32(*(p++)); |
| * tmp |= ~0UL >> (32-offset); |
| * |
| * but this would decrease preformance, so we change the |
| * shift: |
| */ |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| /* tmp is little endian, so we would have to swab the shift, |
| * see above. But then we have to swab tmp below for ffz, so |
| * we might as well do this here. |
| */ |
| return result + ffz(__swab32(tmp) | (~0UL << size)); |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| |
| #else |
| # error processor byte order undefined! |
| #endif |
| |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /* |
| * Find the first bit set in a 140-bit bitmap. |
| * The first 100 bits are unlikely to be set. |
| */ |
| |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| |
| /* Bitmap functions for the minix filesystem. */ |
| |
| #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _XTENSA_BITOPS_H */ |