blob: 8bd54e30b9f51edb140686ebf841f5702f73e4ce [file] [log] [blame]
/*
* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/regulator/consumer.h>
#include <asm/mach-types.h>
#include <asm/cpu.h>
#include <mach/board.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
#include <mach/msm-krait-l2-accessors.h>
#include <mach/rpm-regulator.h>
#include <mach/rpm-regulator-smd.h>
#include <mach/msm_bus.h>
#include "acpuclock.h"
#include "acpuclock-krait.h"
/* MUX source selects. */
#define PRI_SRC_SEL_SEC_SRC 0
#define PRI_SRC_SEL_HFPLL 1
#define PRI_SRC_SEL_HFPLL_DIV2 2
#define SEC_SRC_SEL_QSB 0
#define SEC_SRC_SEL_L2PLL 1
#define SEC_SRC_SEL_AUX 2
/* PTE EFUSE register offset. */
#define PTE_EFUSE 0xC0
static DEFINE_MUTEX(driver_lock);
static DEFINE_SPINLOCK(l2_lock);
static struct drv_data {
struct acpu_level *acpu_freq_tbl;
const struct acpu_level *max_acpu_lvl;
const struct l2_level *l2_freq_tbl;
struct scalable *scalable;
u32 bus_perf_client;
struct device *dev;
} drv;
static unsigned long acpuclk_krait_get_rate(int cpu)
{
return drv.scalable[cpu].cur_speed->khz;
}
/* Select a source on the primary MUX. */
static void set_pri_clk_src(struct scalable *sc, u32 pri_src_sel)
{
u32 regval;
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
regval &= ~0x3;
regval |= (pri_src_sel & 0x3);
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Wait for switch to complete. */
mb();
udelay(1);
}
/* Select a source on the secondary MUX. */
static void set_sec_clk_src(struct scalable *sc, u32 sec_src_sel)
{
u32 regval;
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
regval &= ~(0x3 << 2);
regval |= ((sec_src_sel & 0x3) << 2);
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Wait for switch to complete. */
mb();
udelay(1);
}
static int enable_rpm_vreg(struct vreg *vreg)
{
int ret = 0;
if (vreg->rpm_reg) {
ret = rpm_regulator_enable(vreg->rpm_reg);
if (ret)
dev_err(drv.dev, "%s regulator enable failed (%d)\n",
vreg->name, ret);
}
return ret;
}
static void disable_rpm_vreg(struct vreg *vreg)
{
int rc;
if (vreg->rpm_reg) {
rc = rpm_regulator_disable(vreg->rpm_reg);
if (rc)
dev_err(drv.dev, "%s regulator disable failed (%d)\n",
vreg->name, rc);
}
}
/* Enable an already-configured HFPLL. */
static void hfpll_enable(struct scalable *sc, bool skip_regulators)
{
if (!skip_regulators) {
/* Enable regulators required by the HFPLL. */
enable_rpm_vreg(&sc->vreg[VREG_HFPLL_A]);
enable_rpm_vreg(&sc->vreg[VREG_HFPLL_B]);
}
/* Disable PLL bypass mode. */
writel_relaxed(0x2, sc->hfpll_base + sc->hfpll_data->mode_offset);
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset. Delay 10us just to be safe.
*/
mb();
udelay(10);
/* De-assert active-low PLL reset. */
writel_relaxed(0x6, sc->hfpll_base + sc->hfpll_data->mode_offset);
/* Wait for PLL to lock. */
mb();
udelay(60);
/* Enable PLL output. */
writel_relaxed(0x7, sc->hfpll_base + sc->hfpll_data->mode_offset);
}
/* Disable a HFPLL for power-savings or while it's being reprogrammed. */
static void hfpll_disable(struct scalable *sc, bool skip_regulators)
{
/*
* Disable the PLL output, disable test mode, enable the bypass mode,
* and assert the reset.
*/
writel_relaxed(0, sc->hfpll_base + sc->hfpll_data->mode_offset);
if (!skip_regulators) {
/* Remove voltage votes required by the HFPLL. */
disable_rpm_vreg(&sc->vreg[VREG_HFPLL_B]);
disable_rpm_vreg(&sc->vreg[VREG_HFPLL_A]);
}
}
/* Program the HFPLL rate. Assumes HFPLL is already disabled. */
static void hfpll_set_rate(struct scalable *sc, const struct core_speed *tgt_s)
{
writel_relaxed(tgt_s->pll_l_val,
sc->hfpll_base + sc->hfpll_data->l_offset);
}
/* Return the L2 speed that should be applied. */
static const struct l2_level *compute_l2_level(struct scalable *sc,
const struct l2_level *vote_l)
{
const struct l2_level *new_l;
int cpu;
/* Find max L2 speed vote. */
sc->l2_vote = vote_l;
new_l = drv.l2_freq_tbl;
for_each_present_cpu(cpu)
new_l = max(new_l, drv.scalable[cpu].l2_vote);
return new_l;
}
/* Update the bus bandwidth request. */
static void set_bus_bw(unsigned int bw)
{
int ret;
/* Update bandwidth if request has changed. This may sleep. */
ret = msm_bus_scale_client_update_request(drv.bus_perf_client, bw);
if (ret)
dev_err(drv.dev, "bandwidth request failed (%d)\n", ret);
}
/* Set the CPU or L2 clock speed. */
static void set_speed(struct scalable *sc, const struct core_speed *tgt_s)
{
const struct core_speed *strt_s = sc->cur_speed;
if (strt_s->src == HFPLL && tgt_s->src == HFPLL) {
/*
* Move to an always-on source running at a frequency
* that does not require an elevated CPU voltage.
*/
set_sec_clk_src(sc, SEC_SRC_SEL_AUX);
set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC);
/* Re-program HFPLL. */
hfpll_disable(sc, true);
hfpll_set_rate(sc, tgt_s);
hfpll_enable(sc, true);
/* Move to HFPLL. */
set_pri_clk_src(sc, tgt_s->pri_src_sel);
} else if (strt_s->src == HFPLL && tgt_s->src != HFPLL) {
set_sec_clk_src(sc, tgt_s->sec_src_sel);
set_pri_clk_src(sc, tgt_s->pri_src_sel);
hfpll_disable(sc, false);
} else if (strt_s->src != HFPLL && tgt_s->src == HFPLL) {
hfpll_set_rate(sc, tgt_s);
hfpll_enable(sc, false);
set_pri_clk_src(sc, tgt_s->pri_src_sel);
} else {
set_sec_clk_src(sc, tgt_s->sec_src_sel);
}
sc->cur_speed = tgt_s;
}
/* Apply any per-cpu voltage increases. */
static int increase_vdd(int cpu, int vdd_core, int vdd_mem, int vdd_dig,
enum setrate_reason reason)
{
struct scalable *sc = &drv.scalable[cpu];
int rc = 0;
/*
* Increase vdd_mem active-set before vdd_dig.
* vdd_mem should be >= vdd_dig.
*/
if (vdd_mem > sc->vreg[VREG_MEM].cur_vdd) {
rc = rpm_regulator_set_voltage(sc->vreg[VREG_MEM].rpm_reg,
vdd_mem, sc->vreg[VREG_MEM].max_vdd);
if (rc) {
dev_err(drv.dev,
"vdd_mem (cpu%d) increase failed (%d)\n",
cpu, rc);
return rc;
}
sc->vreg[VREG_MEM].cur_vdd = vdd_mem;
}
/* Increase vdd_dig active-set vote. */
if (vdd_dig > sc->vreg[VREG_DIG].cur_vdd) {
rc = rpm_regulator_set_voltage(sc->vreg[VREG_DIG].rpm_reg,
vdd_dig, sc->vreg[VREG_DIG].max_vdd);
if (rc) {
dev_err(drv.dev,
"vdd_dig (cpu%d) increase failed (%d)\n",
cpu, rc);
return rc;
}
sc->vreg[VREG_DIG].cur_vdd = vdd_dig;
}
/*
* Update per-CPU core voltage. Don't do this for the hotplug path for
* which it should already be correct. Attempting to set it is bad
* because we don't know what CPU we are running on at this point, but
* the CPU regulator API requires we call it from the affected CPU.
*/
if (vdd_core > sc->vreg[VREG_CORE].cur_vdd
&& reason != SETRATE_HOTPLUG) {
rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core,
sc->vreg[VREG_CORE].max_vdd);
if (rc) {
dev_err(drv.dev,
"vdd_core (cpu%d) increase failed (%d)\n",
cpu, rc);
return rc;
}
sc->vreg[VREG_CORE].cur_vdd = vdd_core;
}
return rc;
}
/* Apply any per-cpu voltage decreases. */
static void decrease_vdd(int cpu, int vdd_core, int vdd_mem, int vdd_dig,
enum setrate_reason reason)
{
struct scalable *sc = &drv.scalable[cpu];
int ret;
/*
* Update per-CPU core voltage. This must be called on the CPU
* that's being affected. Don't do this in the hotplug remove path,
* where the rail is off and we're executing on the other CPU.
*/
if (vdd_core < sc->vreg[VREG_CORE].cur_vdd
&& reason != SETRATE_HOTPLUG) {
ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core,
sc->vreg[VREG_CORE].max_vdd);
if (ret) {
dev_err(drv.dev,
"vdd_core (cpu%d) decrease failed (%d)\n",
cpu, ret);
return;
}
sc->vreg[VREG_CORE].cur_vdd = vdd_core;
}
/* Decrease vdd_dig active-set vote. */
if (vdd_dig < sc->vreg[VREG_DIG].cur_vdd) {
ret = rpm_regulator_set_voltage(sc->vreg[VREG_DIG].rpm_reg,
vdd_dig, sc->vreg[VREG_DIG].max_vdd);
if (ret) {
dev_err(drv.dev,
"vdd_dig (cpu%d) decrease failed (%d)\n",
cpu, ret);
return;
}
sc->vreg[VREG_DIG].cur_vdd = vdd_dig;
}
/*
* Decrease vdd_mem active-set after vdd_dig.
* vdd_mem should be >= vdd_dig.
*/
if (vdd_mem < sc->vreg[VREG_MEM].cur_vdd) {
ret = rpm_regulator_set_voltage(sc->vreg[VREG_MEM].rpm_reg,
vdd_mem, sc->vreg[VREG_MEM].max_vdd);
if (ret) {
dev_err(drv.dev,
"vdd_mem (cpu%d) decrease failed (%d)\n",
cpu, ret);
return;
}
sc->vreg[VREG_MEM].cur_vdd = vdd_mem;
}
}
static int calculate_vdd_mem(const struct acpu_level *tgt)
{
return tgt->l2_level->vdd_mem;
}
static int calculate_vdd_dig(const struct acpu_level *tgt)
{
int pll_vdd_dig;
const int *hfpll_vdd = drv.scalable[L2].hfpll_data->vdd;
const u32 low_vdd_l_max = drv.scalable[L2].hfpll_data->low_vdd_l_max;
if (tgt->l2_level->speed.src != HFPLL)
pll_vdd_dig = hfpll_vdd[HFPLL_VDD_NONE];
else if (tgt->l2_level->speed.pll_l_val > low_vdd_l_max)
pll_vdd_dig = hfpll_vdd[HFPLL_VDD_NOM];
else
pll_vdd_dig = hfpll_vdd[HFPLL_VDD_LOW];
return max(tgt->l2_level->vdd_dig, pll_vdd_dig);
}
static int calculate_vdd_core(const struct acpu_level *tgt)
{
return tgt->vdd_core;
}
/* Set the CPU's clock rate and adjust the L2 rate, voltage and BW requests. */
static int acpuclk_krait_set_rate(int cpu, unsigned long rate,
enum setrate_reason reason)
{
const struct core_speed *strt_acpu_s, *tgt_acpu_s;
const struct l2_level *tgt_l2_l;
const struct acpu_level *tgt;
int vdd_mem, vdd_dig, vdd_core;
unsigned long flags;
int rc = 0;
if (cpu > num_possible_cpus())
return -EINVAL;
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG)
mutex_lock(&driver_lock);
strt_acpu_s = drv.scalable[cpu].cur_speed;
/* Return early if rate didn't change. */
if (rate == strt_acpu_s->khz)
goto out;
/* Find target frequency. */
for (tgt = drv.acpu_freq_tbl; tgt->speed.khz != 0; tgt++) {
if (tgt->speed.khz == rate) {
tgt_acpu_s = &tgt->speed;
break;
}
}
if (tgt->speed.khz == 0) {
rc = -EINVAL;
goto out;
}
/* Calculate voltage requirements for the current CPU. */
vdd_mem = calculate_vdd_mem(tgt);
vdd_dig = calculate_vdd_dig(tgt);
vdd_core = calculate_vdd_core(tgt);
/* Increase VDD levels if needed. */
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) {
rc = increase_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason);
if (rc)
goto out;
}
pr_debug("Switching from ACPU%d rate %lu KHz -> %lu KHz\n",
cpu, strt_acpu_s->khz, tgt_acpu_s->khz);
/* Set the new CPU speed. */
set_speed(&drv.scalable[cpu], tgt_acpu_s);
/*
* Update the L2 vote and apply the rate change. A spinlock is
* necessary to ensure L2 rate is calculated and set atomically
* with the CPU frequency, even if acpuclk_krait_set_rate() is
* called from an atomic context and the driver_lock mutex is not
* acquired.
*/
spin_lock_irqsave(&l2_lock, flags);
tgt_l2_l = compute_l2_level(&drv.scalable[cpu], tgt->l2_level);
set_speed(&drv.scalable[L2], &tgt_l2_l->speed);
spin_unlock_irqrestore(&l2_lock, flags);
/* Nothing else to do for power collapse or SWFI. */
if (reason == SETRATE_PC || reason == SETRATE_SWFI)
goto out;
/* Update bus bandwith request. */
set_bus_bw(tgt_l2_l->bw_level);
/* Drop VDD levels if we can. */
decrease_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason);
pr_debug("ACPU%d speed change complete\n", cpu);
out:
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG)
mutex_unlock(&driver_lock);
return rc;
}
/* Initialize a HFPLL at a given rate and enable it. */
static void __init hfpll_init(struct scalable *sc,
const struct core_speed *tgt_s)
{
pr_debug("Initializing HFPLL%d\n", sc - drv.scalable);
/* Disable the PLL for re-programming. */
hfpll_disable(sc, true);
/* Configure PLL parameters for integer mode. */
writel_relaxed(sc->hfpll_data->config_val,
sc->hfpll_base + sc->hfpll_data->config_offset);
writel_relaxed(0, sc->hfpll_base + sc->hfpll_data->m_offset);
writel_relaxed(1, sc->hfpll_base + sc->hfpll_data->n_offset);
/* Program droop controller, if supported */
if (sc->hfpll_data->has_droop_ctl)
writel_relaxed(sc->hfpll_data->droop_val,
sc->hfpll_base + sc->hfpll_data->droop_offset);
/* Set an initial rate and enable the PLL. */
hfpll_set_rate(sc, tgt_s);
hfpll_enable(sc, false);
}
static int __cpuinit rpm_regulator_init(struct scalable *sc, enum vregs vreg,
int vdd, bool enable)
{
int ret;
if (!sc->vreg[vreg].name)
return 0;
sc->vreg[vreg].rpm_reg = rpm_regulator_get(drv.dev,
sc->vreg[vreg].name);
if (IS_ERR(sc->vreg[vreg].rpm_reg)) {
ret = PTR_ERR(sc->vreg[vreg].rpm_reg);
dev_err(drv.dev, "rpm_regulator_get(%s) failed (%d)\n",
sc->vreg[vreg].name, ret);
goto err_get;
}
ret = rpm_regulator_set_voltage(sc->vreg[vreg].rpm_reg, vdd,
sc->vreg[vreg].max_vdd);
if (ret) {
dev_err(drv.dev, "%s initialization failed (%d)\n",
sc->vreg[vreg].name, ret);
goto err_conf;
}
sc->vreg[vreg].cur_vdd = vdd;
if (enable) {
ret = enable_rpm_vreg(&sc->vreg[vreg]);
if (ret)
goto err_conf;
}
return 0;
err_conf:
rpm_regulator_put(sc->vreg[vreg].rpm_reg);
err_get:
return ret;
}
static void __cpuinit rpm_regulator_cleanup(struct scalable *sc,
enum vregs vreg)
{
if (!sc->vreg[vreg].rpm_reg)
return;
disable_rpm_vreg(&sc->vreg[vreg]);
rpm_regulator_put(sc->vreg[vreg].rpm_reg);
}
/* Voltage regulator initialization. */
static int __cpuinit regulator_init(struct scalable *sc)
{
int ret, vdd_mem, vdd_dig, vdd_core;
vdd_mem = calculate_vdd_mem(drv.max_acpu_lvl);
vdd_dig = calculate_vdd_dig(drv.max_acpu_lvl);
ret = rpm_regulator_init(sc, VREG_MEM, vdd_mem, true);
if (ret)
goto err_mem;
ret = rpm_regulator_init(sc, VREG_DIG, vdd_dig, true);
if (ret)
goto err_dig;
ret = rpm_regulator_init(sc, VREG_HFPLL_A,
sc->vreg[VREG_HFPLL_A].max_vdd, false);
if (ret)
goto err_hfpll_a;
ret = rpm_regulator_init(sc, VREG_HFPLL_B,
sc->vreg[VREG_HFPLL_B].max_vdd, false);
if (ret)
goto err_hfpll_b;
/* Setup Krait CPU regulators and initial core voltage. */
sc->vreg[VREG_CORE].reg = regulator_get(drv.dev,
sc->vreg[VREG_CORE].name);
if (IS_ERR(sc->vreg[VREG_CORE].reg)) {
ret = PTR_ERR(sc->vreg[VREG_CORE].reg);
dev_err(drv.dev, "regulator_get(%s) failed (%d)\n",
sc->vreg[VREG_CORE].name, ret);
goto err_core_get;
}
vdd_core = calculate_vdd_core(drv.max_acpu_lvl);
ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core,
sc->vreg[VREG_CORE].max_vdd);
if (ret) {
dev_err(drv.dev, "regulator_set_voltage(%s) (%d)\n",
sc->vreg[VREG_CORE].name, ret);
goto err_core_conf;
}
sc->vreg[VREG_CORE].cur_vdd = vdd_core;
ret = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg,
sc->vreg[VREG_CORE].peak_ua);
if (ret < 0) {
dev_err(drv.dev, "regulator_set_optimum_mode(%s) failed (%d)\n",
sc->vreg[VREG_CORE].name, ret);
goto err_core_conf;
}
ret = regulator_enable(sc->vreg[VREG_CORE].reg);
if (ret) {
dev_err(drv.dev, "regulator_enable(%s) failed (%d)\n",
sc->vreg[VREG_CORE].name, ret);
goto err_core_conf;
}
return 0;
err_core_conf:
regulator_put(sc->vreg[VREG_CORE].reg);
err_core_get:
rpm_regulator_cleanup(sc, VREG_HFPLL_B);
err_hfpll_b:
rpm_regulator_cleanup(sc, VREG_HFPLL_A);
err_hfpll_a:
rpm_regulator_cleanup(sc, VREG_DIG);
err_dig:
rpm_regulator_cleanup(sc, VREG_MEM);
err_mem:
return ret;
}
static void __cpuinit regulator_cleanup(struct scalable *sc)
{
regulator_disable(sc->vreg[VREG_CORE].reg);
regulator_put(sc->vreg[VREG_CORE].reg);
rpm_regulator_cleanup(sc, VREG_HFPLL_B);
rpm_regulator_cleanup(sc, VREG_HFPLL_A);
rpm_regulator_cleanup(sc, VREG_DIG);
rpm_regulator_cleanup(sc, VREG_MEM);
}
/* Set initial rate for a given core. */
static int __cpuinit init_clock_sources(struct scalable *sc,
const struct core_speed *tgt_s)
{
u32 regval;
void __iomem *aux_reg;
/* Program AUX source input to the secondary MUX. */
if (sc->aux_clk_sel_phys) {
aux_reg = ioremap(sc->aux_clk_sel_phys, 4);
if (!aux_reg)
return -ENOMEM;
writel_relaxed(sc->aux_clk_sel, aux_reg);
iounmap(aux_reg);
}
/* Switch away from the HFPLL while it's re-initialized. */
set_sec_clk_src(sc, SEC_SRC_SEL_AUX);
set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC);
hfpll_init(sc, tgt_s);
/* Set PRI_SRC_SEL_HFPLL_DIV2 divider to div-2. */
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
regval &= ~(0x3 << 6);
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Switch to the target clock source. */
set_sec_clk_src(sc, tgt_s->sec_src_sel);
set_pri_clk_src(sc, tgt_s->pri_src_sel);
sc->cur_speed = tgt_s;
return 0;
}
static int __cpuinit per_cpu_init(int cpu)
{
struct scalable *sc = &drv.scalable[cpu];
int ret;
sc->hfpll_base = ioremap(sc->hfpll_phys_base, SZ_32);
if (!sc->hfpll_base) {
ret = -ENOMEM;
goto err_ioremap;
}
ret = regulator_init(sc);
if (ret)
goto err_regulators;
ret = init_clock_sources(sc, &drv.max_acpu_lvl->speed);
if (ret)
goto err_clocks;
sc->l2_vote = drv.max_acpu_lvl->l2_level;
sc->initialized = true;
return 0;
err_clocks:
regulator_cleanup(sc);
err_regulators:
iounmap(sc->hfpll_base);
err_ioremap:
return ret;
}
/* Register with bus driver. */
static void __init bus_init(struct msm_bus_scale_pdata *bus_scale_data)
{
int ret;
drv.bus_perf_client = msm_bus_scale_register_client(bus_scale_data);
if (!drv.bus_perf_client) {
dev_err(drv.dev, "unable to register bus client\n");
BUG();
}
ret = msm_bus_scale_client_update_request(drv.bus_perf_client,
drv.max_acpu_lvl->l2_level->bw_level);
if (ret)
dev_err(drv.dev, "initial bandwidth req failed (%d)\n", ret);
}
#ifdef CONFIG_CPU_FREQ_MSM
static struct cpufreq_frequency_table freq_table[NR_CPUS][35];
static void __init cpufreq_table_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
int i, freq_cnt = 0;
/* Construct the freq_table tables from acpu_freq_tbl. */
for (i = 0; drv.acpu_freq_tbl[i].speed.khz != 0
&& freq_cnt < ARRAY_SIZE(*freq_table); i++) {
if (drv.acpu_freq_tbl[i].use_for_scaling) {
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency
= drv.acpu_freq_tbl[i].speed.khz;
freq_cnt++;
}
}
/* freq_table not big enough to store all usable freqs. */
BUG_ON(drv.acpu_freq_tbl[i].speed.khz != 0);
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END;
dev_info(drv.dev, "CPU%d: %d frequencies supported\n",
cpu, freq_cnt);
/* Register table with CPUFreq. */
cpufreq_frequency_table_get_attr(freq_table[cpu], cpu);
}
}
#else
static void __init cpufreq_table_init(void) {}
#endif
#define HOT_UNPLUG_KHZ STBY_KHZ
static int __cpuinit acpuclk_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
static int prev_khz[NR_CPUS];
int rc, cpu = (int)hcpu;
struct scalable *sc = &drv.scalable[cpu];
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DEAD:
prev_khz[cpu] = acpuclk_krait_get_rate(cpu);
/* Fall through. */
case CPU_UP_CANCELED:
acpuclk_krait_set_rate(cpu, HOT_UNPLUG_KHZ, SETRATE_HOTPLUG);
regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, 0);
break;
case CPU_UP_PREPARE:
if (!sc->initialized) {
rc = per_cpu_init(cpu);
if (rc)
return NOTIFY_BAD;
break;
}
if (WARN_ON(!prev_khz[cpu]))
return NOTIFY_BAD;
rc = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg,
sc->vreg[VREG_CORE].peak_ua);
if (rc < 0)
return NOTIFY_BAD;
acpuclk_krait_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata acpuclk_cpu_notifier = {
.notifier_call = acpuclk_cpu_callback,
};
static const int krait_needs_vmin(void)
{
switch (read_cpuid_id()) {
case 0x511F04D0: /* KR28M2A20 */
case 0x511F04D1: /* KR28M2A21 */
case 0x510F06F0: /* KR28M4A10 */
return 1;
default:
return 0;
};
}
static void krait_apply_vmin(struct acpu_level *tbl)
{
for (; tbl->speed.khz != 0; tbl++)
if (tbl->vdd_core < 1150000)
tbl->vdd_core = 1150000;
}
static void __init select_freq_plan(struct acpu_level *const *pvs_tbl,
u32 qfprom_phys)
{
const struct acpu_level *l;
void __iomem *qfprom_base;
u32 pte_efuse, pvs, tbl_idx;
char *pvs_names[] = { "Slow", "Nominal", "Fast", "Unknown" };
qfprom_base = ioremap(qfprom_phys, SZ_256);
/* Select frequency tables. */
if (qfprom_base) {
pte_efuse = readl_relaxed(qfprom_base + PTE_EFUSE);
pvs = (pte_efuse >> 10) & 0x7;
iounmap(qfprom_base);
if (pvs == 0x7)
pvs = (pte_efuse >> 13) & 0x7;
switch (pvs) {
case 0x0:
case 0x7:
tbl_idx = PVS_SLOW;
break;
case 0x1:
tbl_idx = PVS_NOMINAL;
break;
case 0x3:
tbl_idx = PVS_FAST;
break;
default:
tbl_idx = PVS_UNKNOWN;
break;
}
} else {
tbl_idx = PVS_UNKNOWN;
dev_err(drv.dev, "Unable to map QFPROM base\n");
}
dev_info(drv.dev, "ACPU PVS: %s\n", pvs_names[tbl_idx]);
if (tbl_idx == PVS_UNKNOWN) {
tbl_idx = PVS_SLOW;
dev_warn(drv.dev, "ACPU PVS: Defaulting to %s\n",
pvs_names[tbl_idx]);
}
drv.acpu_freq_tbl = pvs_tbl[tbl_idx];
if (krait_needs_vmin())
krait_apply_vmin(drv.acpu_freq_tbl);
/* Find the max supported scaling frequency. */
for (l = drv.acpu_freq_tbl; l->speed.khz != 0; l++)
if (l->use_for_scaling)
drv.max_acpu_lvl = l;
BUG_ON(!drv.max_acpu_lvl);
dev_info(drv.dev, "Max ACPU freq: %lu KHz\n",
drv.max_acpu_lvl->speed.khz);
}
static struct acpuclk_data acpuclk_krait_data = {
.set_rate = acpuclk_krait_set_rate,
.get_rate = acpuclk_krait_get_rate,
.power_collapse_khz = STBY_KHZ,
.wait_for_irq_khz = STBY_KHZ,
};
int __init acpuclk_krait_init(struct device *dev,
const struct acpuclk_krait_params *params)
{
struct scalable *l2;
int cpu, rc;
drv.scalable = params->scalable;
drv.l2_freq_tbl = params->l2_freq_tbl;
drv.dev = dev;
select_freq_plan(params->pvs_acpu_freq_tbl, params->qfprom_phys_base);
bus_init(params->bus_scale_data);
l2 = &drv.scalable[L2];
l2->hfpll_base = ioremap(l2->hfpll_phys_base, SZ_32);
BUG_ON(!l2->hfpll_base);
rc = rpm_regulator_init(l2, VREG_HFPLL_A,
l2->vreg[VREG_HFPLL_A].max_vdd, false);
BUG_ON(rc);
rc = rpm_regulator_init(l2, VREG_HFPLL_B,
l2->vreg[VREG_HFPLL_B].max_vdd, false);
BUG_ON(rc);
rc = init_clock_sources(l2, &drv.max_acpu_lvl->l2_level->speed);
BUG_ON(rc);
for_each_online_cpu(cpu) {
rc = per_cpu_init(cpu);
BUG_ON(rc);
}
cpufreq_table_init();
acpuclk_register(&acpuclk_krait_data);
register_hotcpu_notifier(&acpuclk_cpu_notifier);
return 0;
}