| /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. |
| * |
| * Copyright (C) 2004 Sun Microsystems Inc. |
| * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| * |
| * This driver uses the sungem driver (c) David Miller |
| * (davem@redhat.com) as its basis. |
| * |
| * The cassini chip has a number of features that distinguish it from |
| * the gem chip: |
| * 4 transmit descriptor rings that are used for either QoS (VLAN) or |
| * load balancing (non-VLAN mode) |
| * batching of multiple packets |
| * multiple CPU dispatching |
| * page-based RX descriptor engine with separate completion rings |
| * Gigabit support (GMII and PCS interface) |
| * MIF link up/down detection works |
| * |
| * RX is handled by page sized buffers that are attached as fragments to |
| * the skb. here's what's done: |
| * -- driver allocates pages at a time and keeps reference counts |
| * on them. |
| * -- the upper protocol layers assume that the header is in the skb |
| * itself. as a result, cassini will copy a small amount (64 bytes) |
| * to make them happy. |
| * -- driver appends the rest of the data pages as frags to skbuffs |
| * and increments the reference count |
| * -- on page reclamation, the driver swaps the page with a spare page. |
| * if that page is still in use, it frees its reference to that page, |
| * and allocates a new page for use. otherwise, it just recycles the |
| * the page. |
| * |
| * NOTE: cassini can parse the header. however, it's not worth it |
| * as long as the network stack requires a header copy. |
| * |
| * TX has 4 queues. currently these queues are used in a round-robin |
| * fashion for load balancing. They can also be used for QoS. for that |
| * to work, however, QoS information needs to be exposed down to the driver |
| * level so that subqueues get targetted to particular transmit rings. |
| * alternatively, the queues can be configured via use of the all-purpose |
| * ioctl. |
| * |
| * RX DATA: the rx completion ring has all the info, but the rx desc |
| * ring has all of the data. RX can conceivably come in under multiple |
| * interrupts, but the INT# assignment needs to be set up properly by |
| * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do |
| * that. also, the two descriptor rings are designed to distinguish between |
| * encrypted and non-encrypted packets, but we use them for buffering |
| * instead. |
| * |
| * by default, the selective clear mask is set up to process rx packets. |
| */ |
| |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/compiler.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/list.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/ethtool.h> |
| #include <linux/crc32.h> |
| #include <linux/random.h> |
| #include <linux/mii.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/mutex.h> |
| #include <linux/firmware.h> |
| |
| #include <net/checksum.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| #include <asm/uaccess.h> |
| |
| #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) |
| #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) |
| #define CAS_NCPUS num_online_cpus() |
| |
| #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL) |
| #define USE_NAPI |
| #define cas_skb_release(x) netif_receive_skb(x) |
| #else |
| #define cas_skb_release(x) netif_rx(x) |
| #endif |
| |
| /* select which firmware to use */ |
| #define USE_HP_WORKAROUND |
| #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ |
| #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ |
| |
| #include "cassini.h" |
| |
| #define USE_TX_COMPWB /* use completion writeback registers */ |
| #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ |
| #define USE_RX_BLANK /* hw interrupt mitigation */ |
| #undef USE_ENTROPY_DEV /* don't test for entropy device */ |
| |
| /* NOTE: these aren't useable unless PCI interrupts can be assigned. |
| * also, we need to make cp->lock finer-grained. |
| */ |
| #undef USE_PCI_INTB |
| #undef USE_PCI_INTC |
| #undef USE_PCI_INTD |
| #undef USE_QOS |
| |
| #undef USE_VPD_DEBUG /* debug vpd information if defined */ |
| |
| /* rx processing options */ |
| #define USE_PAGE_ORDER /* specify to allocate large rx pages */ |
| #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ |
| #define RX_COPY_ALWAYS 0 /* if 0, use frags */ |
| #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ |
| #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ |
| |
| #define DRV_MODULE_NAME "cassini" |
| #define PFX DRV_MODULE_NAME ": " |
| #define DRV_MODULE_VERSION "1.6" |
| #define DRV_MODULE_RELDATE "21 May 2008" |
| |
| #define CAS_DEF_MSG_ENABLE \ |
| (NETIF_MSG_DRV | \ |
| NETIF_MSG_PROBE | \ |
| NETIF_MSG_LINK | \ |
| NETIF_MSG_TIMER | \ |
| NETIF_MSG_IFDOWN | \ |
| NETIF_MSG_IFUP | \ |
| NETIF_MSG_RX_ERR | \ |
| NETIF_MSG_TX_ERR) |
| |
| /* length of time before we decide the hardware is borked, |
| * and dev->tx_timeout() should be called to fix the problem |
| */ |
| #define CAS_TX_TIMEOUT (HZ) |
| #define CAS_LINK_TIMEOUT (22*HZ/10) |
| #define CAS_LINK_FAST_TIMEOUT (1) |
| |
| /* timeout values for state changing. these specify the number |
| * of 10us delays to be used before giving up. |
| */ |
| #define STOP_TRIES_PHY 1000 |
| #define STOP_TRIES 5000 |
| |
| /* specify a minimum frame size to deal with some fifo issues |
| * max mtu == 2 * page size - ethernet header - 64 - swivel = |
| * 2 * page_size - 0x50 |
| */ |
| #define CAS_MIN_FRAME 97 |
| #define CAS_1000MB_MIN_FRAME 255 |
| #define CAS_MIN_MTU 60 |
| #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) |
| |
| #if 1 |
| /* |
| * Eliminate these and use separate atomic counters for each, to |
| * avoid a race condition. |
| */ |
| #else |
| #define CAS_RESET_MTU 1 |
| #define CAS_RESET_ALL 2 |
| #define CAS_RESET_SPARE 3 |
| #endif |
| |
| static char version[] __devinitdata = |
| DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| |
| static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ |
| static int link_mode; |
| |
| MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); |
| MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_FIRMWARE("sun/cassini.bin"); |
| module_param(cassini_debug, int, 0); |
| MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); |
| module_param(link_mode, int, 0); |
| MODULE_PARM_DESC(link_mode, "default link mode"); |
| |
| /* |
| * Work around for a PCS bug in which the link goes down due to the chip |
| * being confused and never showing a link status of "up." |
| */ |
| #define DEFAULT_LINKDOWN_TIMEOUT 5 |
| /* |
| * Value in seconds, for user input. |
| */ |
| static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; |
| module_param(linkdown_timeout, int, 0); |
| MODULE_PARM_DESC(linkdown_timeout, |
| "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); |
| |
| /* |
| * value in 'ticks' (units used by jiffies). Set when we init the |
| * module because 'HZ' in actually a function call on some flavors of |
| * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. |
| */ |
| static int link_transition_timeout; |
| |
| |
| |
| static u16 link_modes[] __devinitdata = { |
| BMCR_ANENABLE, /* 0 : autoneg */ |
| 0, /* 1 : 10bt half duplex */ |
| BMCR_SPEED100, /* 2 : 100bt half duplex */ |
| BMCR_FULLDPLX, /* 3 : 10bt full duplex */ |
| BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ |
| CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ |
| }; |
| |
| static struct pci_device_id cas_pci_tbl[] __devinitdata = { |
| { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cas_pci_tbl); |
| |
| static void cas_set_link_modes(struct cas *cp); |
| |
| static inline void cas_lock_tx(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_TX_RINGS; i++) |
| spin_lock(&cp->tx_lock[i]); |
| } |
| |
| static inline void cas_lock_all(struct cas *cp) |
| { |
| spin_lock_irq(&cp->lock); |
| cas_lock_tx(cp); |
| } |
| |
| /* WTZ: QA was finding deadlock problems with the previous |
| * versions after long test runs with multiple cards per machine. |
| * See if replacing cas_lock_all with safer versions helps. The |
| * symptoms QA is reporting match those we'd expect if interrupts |
| * aren't being properly restored, and we fixed a previous deadlock |
| * with similar symptoms by using save/restore versions in other |
| * places. |
| */ |
| #define cas_lock_all_save(cp, flags) \ |
| do { \ |
| struct cas *xxxcp = (cp); \ |
| spin_lock_irqsave(&xxxcp->lock, flags); \ |
| cas_lock_tx(xxxcp); \ |
| } while (0) |
| |
| static inline void cas_unlock_tx(struct cas *cp) |
| { |
| int i; |
| |
| for (i = N_TX_RINGS; i > 0; i--) |
| spin_unlock(&cp->tx_lock[i - 1]); |
| } |
| |
| static inline void cas_unlock_all(struct cas *cp) |
| { |
| cas_unlock_tx(cp); |
| spin_unlock_irq(&cp->lock); |
| } |
| |
| #define cas_unlock_all_restore(cp, flags) \ |
| do { \ |
| struct cas *xxxcp = (cp); \ |
| cas_unlock_tx(xxxcp); \ |
| spin_unlock_irqrestore(&xxxcp->lock, flags); \ |
| } while (0) |
| |
| static void cas_disable_irq(struct cas *cp, const int ring) |
| { |
| /* Make sure we won't get any more interrupts */ |
| if (ring == 0) { |
| writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); |
| return; |
| } |
| |
| /* disable completion interrupts and selectively mask */ |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| switch (ring) { |
| #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| #ifdef USE_PCI_INTB |
| case 1: |
| #endif |
| #ifdef USE_PCI_INTC |
| case 2: |
| #endif |
| #ifdef USE_PCI_INTD |
| case 3: |
| #endif |
| writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, |
| cp->regs + REG_PLUS_INTRN_MASK(ring)); |
| break; |
| #endif |
| default: |
| writel(INTRN_MASK_CLEAR_ALL, cp->regs + |
| REG_PLUS_INTRN_MASK(ring)); |
| break; |
| } |
| } |
| } |
| |
| static inline void cas_mask_intr(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_RX_COMP_RINGS; i++) |
| cas_disable_irq(cp, i); |
| } |
| |
| static void cas_enable_irq(struct cas *cp, const int ring) |
| { |
| if (ring == 0) { /* all but TX_DONE */ |
| writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); |
| return; |
| } |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| switch (ring) { |
| #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| #ifdef USE_PCI_INTB |
| case 1: |
| #endif |
| #ifdef USE_PCI_INTC |
| case 2: |
| #endif |
| #ifdef USE_PCI_INTD |
| case 3: |
| #endif |
| writel(INTRN_MASK_RX_EN, cp->regs + |
| REG_PLUS_INTRN_MASK(ring)); |
| break; |
| #endif |
| default: |
| break; |
| } |
| } |
| } |
| |
| static inline void cas_unmask_intr(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_RX_COMP_RINGS; i++) |
| cas_enable_irq(cp, i); |
| } |
| |
| static inline void cas_entropy_gather(struct cas *cp) |
| { |
| #ifdef USE_ENTROPY_DEV |
| if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) |
| return; |
| |
| batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), |
| readl(cp->regs + REG_ENTROPY_IV), |
| sizeof(uint64_t)*8); |
| #endif |
| } |
| |
| static inline void cas_entropy_reset(struct cas *cp) |
| { |
| #ifdef USE_ENTROPY_DEV |
| if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) |
| return; |
| |
| writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, |
| cp->regs + REG_BIM_LOCAL_DEV_EN); |
| writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); |
| writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); |
| |
| /* if we read back 0x0, we don't have an entropy device */ |
| if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) |
| cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; |
| #endif |
| } |
| |
| /* access to the phy. the following assumes that we've initialized the MIF to |
| * be in frame rather than bit-bang mode |
| */ |
| static u16 cas_phy_read(struct cas *cp, int reg) |
| { |
| u32 cmd; |
| int limit = STOP_TRIES_PHY; |
| |
| cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; |
| cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); |
| cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); |
| cmd |= MIF_FRAME_TURN_AROUND_MSB; |
| writel(cmd, cp->regs + REG_MIF_FRAME); |
| |
| /* poll for completion */ |
| while (limit-- > 0) { |
| udelay(10); |
| cmd = readl(cp->regs + REG_MIF_FRAME); |
| if (cmd & MIF_FRAME_TURN_AROUND_LSB) |
| return (cmd & MIF_FRAME_DATA_MASK); |
| } |
| return 0xFFFF; /* -1 */ |
| } |
| |
| static int cas_phy_write(struct cas *cp, int reg, u16 val) |
| { |
| int limit = STOP_TRIES_PHY; |
| u32 cmd; |
| |
| cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; |
| cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); |
| cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); |
| cmd |= MIF_FRAME_TURN_AROUND_MSB; |
| cmd |= val & MIF_FRAME_DATA_MASK; |
| writel(cmd, cp->regs + REG_MIF_FRAME); |
| |
| /* poll for completion */ |
| while (limit-- > 0) { |
| udelay(10); |
| cmd = readl(cp->regs + REG_MIF_FRAME); |
| if (cmd & MIF_FRAME_TURN_AROUND_LSB) |
| return 0; |
| } |
| return -1; |
| } |
| |
| static void cas_phy_powerup(struct cas *cp) |
| { |
| u16 ctl = cas_phy_read(cp, MII_BMCR); |
| |
| if ((ctl & BMCR_PDOWN) == 0) |
| return; |
| ctl &= ~BMCR_PDOWN; |
| cas_phy_write(cp, MII_BMCR, ctl); |
| } |
| |
| static void cas_phy_powerdown(struct cas *cp) |
| { |
| u16 ctl = cas_phy_read(cp, MII_BMCR); |
| |
| if (ctl & BMCR_PDOWN) |
| return; |
| ctl |= BMCR_PDOWN; |
| cas_phy_write(cp, MII_BMCR, ctl); |
| } |
| |
| /* cp->lock held. note: the last put_page will free the buffer */ |
| static int cas_page_free(struct cas *cp, cas_page_t *page) |
| { |
| pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, |
| PCI_DMA_FROMDEVICE); |
| __free_pages(page->buffer, cp->page_order); |
| kfree(page); |
| return 0; |
| } |
| |
| #ifdef RX_COUNT_BUFFERS |
| #define RX_USED_ADD(x, y) ((x)->used += (y)) |
| #define RX_USED_SET(x, y) ((x)->used = (y)) |
| #else |
| #define RX_USED_ADD(x, y) |
| #define RX_USED_SET(x, y) |
| #endif |
| |
| /* local page allocation routines for the receive buffers. jumbo pages |
| * require at least 8K contiguous and 8K aligned buffers. |
| */ |
| static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) |
| { |
| cas_page_t *page; |
| |
| page = kmalloc(sizeof(cas_page_t), flags); |
| if (!page) |
| return NULL; |
| |
| INIT_LIST_HEAD(&page->list); |
| RX_USED_SET(page, 0); |
| page->buffer = alloc_pages(flags, cp->page_order); |
| if (!page->buffer) |
| goto page_err; |
| page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, |
| cp->page_size, PCI_DMA_FROMDEVICE); |
| return page; |
| |
| page_err: |
| kfree(page); |
| return NULL; |
| } |
| |
| /* initialize spare pool of rx buffers, but allocate during the open */ |
| static void cas_spare_init(struct cas *cp) |
| { |
| spin_lock(&cp->rx_inuse_lock); |
| INIT_LIST_HEAD(&cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| |
| spin_lock(&cp->rx_spare_lock); |
| INIT_LIST_HEAD(&cp->rx_spare_list); |
| cp->rx_spares_needed = RX_SPARE_COUNT; |
| spin_unlock(&cp->rx_spare_lock); |
| } |
| |
| /* used on close. free all the spare buffers. */ |
| static void cas_spare_free(struct cas *cp) |
| { |
| struct list_head list, *elem, *tmp; |
| |
| /* free spare buffers */ |
| INIT_LIST_HEAD(&list); |
| spin_lock(&cp->rx_spare_lock); |
| list_splice_init(&cp->rx_spare_list, &list); |
| spin_unlock(&cp->rx_spare_lock); |
| list_for_each_safe(elem, tmp, &list) { |
| cas_page_free(cp, list_entry(elem, cas_page_t, list)); |
| } |
| |
| INIT_LIST_HEAD(&list); |
| #if 1 |
| /* |
| * Looks like Adrian had protected this with a different |
| * lock than used everywhere else to manipulate this list. |
| */ |
| spin_lock(&cp->rx_inuse_lock); |
| list_splice_init(&cp->rx_inuse_list, &list); |
| spin_unlock(&cp->rx_inuse_lock); |
| #else |
| spin_lock(&cp->rx_spare_lock); |
| list_splice_init(&cp->rx_inuse_list, &list); |
| spin_unlock(&cp->rx_spare_lock); |
| #endif |
| list_for_each_safe(elem, tmp, &list) { |
| cas_page_free(cp, list_entry(elem, cas_page_t, list)); |
| } |
| } |
| |
| /* replenish spares if needed */ |
| static void cas_spare_recover(struct cas *cp, const gfp_t flags) |
| { |
| struct list_head list, *elem, *tmp; |
| int needed, i; |
| |
| /* check inuse list. if we don't need any more free buffers, |
| * just free it |
| */ |
| |
| /* make a local copy of the list */ |
| INIT_LIST_HEAD(&list); |
| spin_lock(&cp->rx_inuse_lock); |
| list_splice_init(&cp->rx_inuse_list, &list); |
| spin_unlock(&cp->rx_inuse_lock); |
| |
| list_for_each_safe(elem, tmp, &list) { |
| cas_page_t *page = list_entry(elem, cas_page_t, list); |
| |
| /* |
| * With the lockless pagecache, cassini buffering scheme gets |
| * slightly less accurate: we might find that a page has an |
| * elevated reference count here, due to a speculative ref, |
| * and skip it as in-use. Ideally we would be able to reclaim |
| * it. However this would be such a rare case, it doesn't |
| * matter too much as we should pick it up the next time round. |
| * |
| * Importantly, if we find that the page has a refcount of 1 |
| * here (our refcount), then we know it is definitely not inuse |
| * so we can reuse it. |
| */ |
| if (page_count(page->buffer) > 1) |
| continue; |
| |
| list_del(elem); |
| spin_lock(&cp->rx_spare_lock); |
| if (cp->rx_spares_needed > 0) { |
| list_add(elem, &cp->rx_spare_list); |
| cp->rx_spares_needed--; |
| spin_unlock(&cp->rx_spare_lock); |
| } else { |
| spin_unlock(&cp->rx_spare_lock); |
| cas_page_free(cp, page); |
| } |
| } |
| |
| /* put any inuse buffers back on the list */ |
| if (!list_empty(&list)) { |
| spin_lock(&cp->rx_inuse_lock); |
| list_splice(&list, &cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| } |
| |
| spin_lock(&cp->rx_spare_lock); |
| needed = cp->rx_spares_needed; |
| spin_unlock(&cp->rx_spare_lock); |
| if (!needed) |
| return; |
| |
| /* we still need spares, so try to allocate some */ |
| INIT_LIST_HEAD(&list); |
| i = 0; |
| while (i < needed) { |
| cas_page_t *spare = cas_page_alloc(cp, flags); |
| if (!spare) |
| break; |
| list_add(&spare->list, &list); |
| i++; |
| } |
| |
| spin_lock(&cp->rx_spare_lock); |
| list_splice(&list, &cp->rx_spare_list); |
| cp->rx_spares_needed -= i; |
| spin_unlock(&cp->rx_spare_lock); |
| } |
| |
| /* pull a page from the list. */ |
| static cas_page_t *cas_page_dequeue(struct cas *cp) |
| { |
| struct list_head *entry; |
| int recover; |
| |
| spin_lock(&cp->rx_spare_lock); |
| if (list_empty(&cp->rx_spare_list)) { |
| /* try to do a quick recovery */ |
| spin_unlock(&cp->rx_spare_lock); |
| cas_spare_recover(cp, GFP_ATOMIC); |
| spin_lock(&cp->rx_spare_lock); |
| if (list_empty(&cp->rx_spare_list)) { |
| if (netif_msg_rx_err(cp)) |
| printk(KERN_ERR "%s: no spare buffers " |
| "available.\n", cp->dev->name); |
| spin_unlock(&cp->rx_spare_lock); |
| return NULL; |
| } |
| } |
| |
| entry = cp->rx_spare_list.next; |
| list_del(entry); |
| recover = ++cp->rx_spares_needed; |
| spin_unlock(&cp->rx_spare_lock); |
| |
| /* trigger the timer to do the recovery */ |
| if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_spare); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); |
| schedule_work(&cp->reset_task); |
| #endif |
| } |
| return list_entry(entry, cas_page_t, list); |
| } |
| |
| |
| static void cas_mif_poll(struct cas *cp, const int enable) |
| { |
| u32 cfg; |
| |
| cfg = readl(cp->regs + REG_MIF_CFG); |
| cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); |
| |
| if (cp->phy_type & CAS_PHY_MII_MDIO1) |
| cfg |= MIF_CFG_PHY_SELECT; |
| |
| /* poll and interrupt on link status change. */ |
| if (enable) { |
| cfg |= MIF_CFG_POLL_EN; |
| cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); |
| cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); |
| } |
| writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, |
| cp->regs + REG_MIF_MASK); |
| writel(cfg, cp->regs + REG_MIF_CFG); |
| } |
| |
| /* Must be invoked under cp->lock */ |
| static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) |
| { |
| u16 ctl; |
| #if 1 |
| int lcntl; |
| int changed = 0; |
| int oldstate = cp->lstate; |
| int link_was_not_down = !(oldstate == link_down); |
| #endif |
| /* Setup link parameters */ |
| if (!ep) |
| goto start_aneg; |
| lcntl = cp->link_cntl; |
| if (ep->autoneg == AUTONEG_ENABLE) |
| cp->link_cntl = BMCR_ANENABLE; |
| else { |
| cp->link_cntl = 0; |
| if (ep->speed == SPEED_100) |
| cp->link_cntl |= BMCR_SPEED100; |
| else if (ep->speed == SPEED_1000) |
| cp->link_cntl |= CAS_BMCR_SPEED1000; |
| if (ep->duplex == DUPLEX_FULL) |
| cp->link_cntl |= BMCR_FULLDPLX; |
| } |
| #if 1 |
| changed = (lcntl != cp->link_cntl); |
| #endif |
| start_aneg: |
| if (cp->lstate == link_up) { |
| printk(KERN_INFO "%s: PCS link down.\n", |
| cp->dev->name); |
| } else { |
| if (changed) { |
| printk(KERN_INFO "%s: link configuration changed\n", |
| cp->dev->name); |
| } |
| } |
| cp->lstate = link_down; |
| cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| if (!cp->hw_running) |
| return; |
| #if 1 |
| /* |
| * WTZ: If the old state was link_up, we turn off the carrier |
| * to replicate everything we do elsewhere on a link-down |
| * event when we were already in a link-up state.. |
| */ |
| if (oldstate == link_up) |
| netif_carrier_off(cp->dev); |
| if (changed && link_was_not_down) { |
| /* |
| * WTZ: This branch will simply schedule a full reset after |
| * we explicitly changed link modes in an ioctl. See if this |
| * fixes the link-problems we were having for forced mode. |
| */ |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| schedule_work(&cp->reset_task); |
| cp->timer_ticks = 0; |
| mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| return; |
| } |
| #endif |
| if (cp->phy_type & CAS_PHY_SERDES) { |
| u32 val = readl(cp->regs + REG_PCS_MII_CTRL); |
| |
| if (cp->link_cntl & BMCR_ANENABLE) { |
| val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); |
| cp->lstate = link_aneg; |
| } else { |
| if (cp->link_cntl & BMCR_FULLDPLX) |
| val |= PCS_MII_CTRL_DUPLEX; |
| val &= ~PCS_MII_AUTONEG_EN; |
| cp->lstate = link_force_ok; |
| } |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| writel(val, cp->regs + REG_PCS_MII_CTRL); |
| |
| } else { |
| cas_mif_poll(cp, 0); |
| ctl = cas_phy_read(cp, MII_BMCR); |
| ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | |
| CAS_BMCR_SPEED1000 | BMCR_ANENABLE); |
| ctl |= cp->link_cntl; |
| if (ctl & BMCR_ANENABLE) { |
| ctl |= BMCR_ANRESTART; |
| cp->lstate = link_aneg; |
| } else { |
| cp->lstate = link_force_ok; |
| } |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| cas_phy_write(cp, MII_BMCR, ctl); |
| cas_mif_poll(cp, 1); |
| } |
| |
| cp->timer_ticks = 0; |
| mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static int cas_reset_mii_phy(struct cas *cp) |
| { |
| int limit = STOP_TRIES_PHY; |
| u16 val; |
| |
| cas_phy_write(cp, MII_BMCR, BMCR_RESET); |
| udelay(100); |
| while (limit--) { |
| val = cas_phy_read(cp, MII_BMCR); |
| if ((val & BMCR_RESET) == 0) |
| break; |
| udelay(10); |
| } |
| return (limit <= 0); |
| } |
| |
| static int cas_saturn_firmware_init(struct cas *cp) |
| { |
| const struct firmware *fw; |
| const char fw_name[] = "sun/cassini.bin"; |
| int err; |
| |
| if (PHY_NS_DP83065 != cp->phy_id) |
| return 0; |
| |
| err = request_firmware(&fw, fw_name, &cp->pdev->dev); |
| if (err) { |
| printk(KERN_ERR "cassini: Failed to load firmware \"%s\"\n", |
| fw_name); |
| return err; |
| } |
| if (fw->size < 2) { |
| printk(KERN_ERR "cassini: bogus length %zu in \"%s\"\n", |
| fw->size, fw_name); |
| err = -EINVAL; |
| goto out; |
| } |
| cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; |
| cp->fw_size = fw->size - 2; |
| cp->fw_data = vmalloc(cp->fw_size); |
| if (!cp->fw_data) { |
| err = -ENOMEM; |
| printk(KERN_ERR "cassini: \"%s\" Failed %d\n", fw_name, err); |
| goto out; |
| } |
| memcpy(cp->fw_data, &fw->data[2], cp->fw_size); |
| out: |
| release_firmware(fw); |
| return err; |
| } |
| |
| static void cas_saturn_firmware_load(struct cas *cp) |
| { |
| int i; |
| |
| cas_phy_powerdown(cp); |
| |
| /* expanded memory access mode */ |
| cas_phy_write(cp, DP83065_MII_MEM, 0x0); |
| |
| /* pointer configuration for new firmware */ |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); |
| cas_phy_write(cp, DP83065_MII_REGD, 0xbd); |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x82); |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x0); |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x39); |
| |
| /* download new firmware */ |
| cas_phy_write(cp, DP83065_MII_MEM, 0x1); |
| cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); |
| for (i = 0; i < cp->fw_size; i++) |
| cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); |
| |
| /* enable firmware */ |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x1); |
| } |
| |
| |
| /* phy initialization */ |
| static void cas_phy_init(struct cas *cp) |
| { |
| u16 val; |
| |
| /* if we're in MII/GMII mode, set up phy */ |
| if (CAS_PHY_MII(cp->phy_type)) { |
| writel(PCS_DATAPATH_MODE_MII, |
| cp->regs + REG_PCS_DATAPATH_MODE); |
| |
| cas_mif_poll(cp, 0); |
| cas_reset_mii_phy(cp); /* take out of isolate mode */ |
| |
| if (PHY_LUCENT_B0 == cp->phy_id) { |
| /* workaround link up/down issue with lucent */ |
| cas_phy_write(cp, LUCENT_MII_REG, 0x8000); |
| cas_phy_write(cp, MII_BMCR, 0x00f1); |
| cas_phy_write(cp, LUCENT_MII_REG, 0x0); |
| |
| } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { |
| /* workarounds for broadcom phy */ |
| cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); |
| |
| } else if (PHY_BROADCOM_5411 == cp->phy_id) { |
| val = cas_phy_read(cp, BROADCOM_MII_REG4); |
| val = cas_phy_read(cp, BROADCOM_MII_REG4); |
| if (val & 0x0080) { |
| /* link workaround */ |
| cas_phy_write(cp, BROADCOM_MII_REG4, |
| val & ~0x0080); |
| } |
| |
| } else if (cp->cas_flags & CAS_FLAG_SATURN) { |
| writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? |
| SATURN_PCFG_FSI : 0x0, |
| cp->regs + REG_SATURN_PCFG); |
| |
| /* load firmware to address 10Mbps auto-negotiation |
| * issue. NOTE: this will need to be changed if the |
| * default firmware gets fixed. |
| */ |
| if (PHY_NS_DP83065 == cp->phy_id) { |
| cas_saturn_firmware_load(cp); |
| } |
| cas_phy_powerup(cp); |
| } |
| |
| /* advertise capabilities */ |
| val = cas_phy_read(cp, MII_BMCR); |
| val &= ~BMCR_ANENABLE; |
| cas_phy_write(cp, MII_BMCR, val); |
| udelay(10); |
| |
| cas_phy_write(cp, MII_ADVERTISE, |
| cas_phy_read(cp, MII_ADVERTISE) | |
| (ADVERTISE_10HALF | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_100FULL | |
| CAS_ADVERTISE_PAUSE | |
| CAS_ADVERTISE_ASYM_PAUSE)); |
| |
| if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| /* make sure that we don't advertise half |
| * duplex to avoid a chip issue |
| */ |
| val = cas_phy_read(cp, CAS_MII_1000_CTRL); |
| val &= ~CAS_ADVERTISE_1000HALF; |
| val |= CAS_ADVERTISE_1000FULL; |
| cas_phy_write(cp, CAS_MII_1000_CTRL, val); |
| } |
| |
| } else { |
| /* reset pcs for serdes */ |
| u32 val; |
| int limit; |
| |
| writel(PCS_DATAPATH_MODE_SERDES, |
| cp->regs + REG_PCS_DATAPATH_MODE); |
| |
| /* enable serdes pins on saturn */ |
| if (cp->cas_flags & CAS_FLAG_SATURN) |
| writel(0, cp->regs + REG_SATURN_PCFG); |
| |
| /* Reset PCS unit. */ |
| val = readl(cp->regs + REG_PCS_MII_CTRL); |
| val |= PCS_MII_RESET; |
| writel(val, cp->regs + REG_PCS_MII_CTRL); |
| |
| limit = STOP_TRIES; |
| while (limit-- > 0) { |
| udelay(10); |
| if ((readl(cp->regs + REG_PCS_MII_CTRL) & |
| PCS_MII_RESET) == 0) |
| break; |
| } |
| if (limit <= 0) |
| printk(KERN_WARNING "%s: PCS reset bit would not " |
| "clear [%08x].\n", cp->dev->name, |
| readl(cp->regs + REG_PCS_STATE_MACHINE)); |
| |
| /* Make sure PCS is disabled while changing advertisement |
| * configuration. |
| */ |
| writel(0x0, cp->regs + REG_PCS_CFG); |
| |
| /* Advertise all capabilities except half-duplex. */ |
| val = readl(cp->regs + REG_PCS_MII_ADVERT); |
| val &= ~PCS_MII_ADVERT_HD; |
| val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | |
| PCS_MII_ADVERT_ASYM_PAUSE); |
| writel(val, cp->regs + REG_PCS_MII_ADVERT); |
| |
| /* enable PCS */ |
| writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); |
| |
| /* pcs workaround: enable sync detect */ |
| writel(PCS_SERDES_CTRL_SYNCD_EN, |
| cp->regs + REG_PCS_SERDES_CTRL); |
| } |
| } |
| |
| |
| static int cas_pcs_link_check(struct cas *cp) |
| { |
| u32 stat, state_machine; |
| int retval = 0; |
| |
| /* The link status bit latches on zero, so you must |
| * read it twice in such a case to see a transition |
| * to the link being up. |
| */ |
| stat = readl(cp->regs + REG_PCS_MII_STATUS); |
| if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) |
| stat = readl(cp->regs + REG_PCS_MII_STATUS); |
| |
| /* The remote-fault indication is only valid |
| * when autoneg has completed. |
| */ |
| if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | |
| PCS_MII_STATUS_REMOTE_FAULT)) == |
| (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) { |
| if (netif_msg_link(cp)) |
| printk(KERN_INFO "%s: PCS RemoteFault\n", |
| cp->dev->name); |
| } |
| |
| /* work around link detection issue by querying the PCS state |
| * machine directly. |
| */ |
| state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); |
| if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { |
| stat &= ~PCS_MII_STATUS_LINK_STATUS; |
| } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { |
| stat |= PCS_MII_STATUS_LINK_STATUS; |
| } |
| |
| if (stat & PCS_MII_STATUS_LINK_STATUS) { |
| if (cp->lstate != link_up) { |
| if (cp->opened) { |
| cp->lstate = link_up; |
| cp->link_transition = LINK_TRANSITION_LINK_UP; |
| |
| cas_set_link_modes(cp); |
| netif_carrier_on(cp->dev); |
| } |
| } |
| } else if (cp->lstate == link_up) { |
| cp->lstate = link_down; |
| if (link_transition_timeout != 0 && |
| cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && |
| !cp->link_transition_jiffies_valid) { |
| /* |
| * force a reset, as a workaround for the |
| * link-failure problem. May want to move this to a |
| * point a bit earlier in the sequence. If we had |
| * generated a reset a short time ago, we'll wait for |
| * the link timer to check the status until a |
| * timer expires (link_transistion_jiffies_valid is |
| * true when the timer is running.) Instead of using |
| * a system timer, we just do a check whenever the |
| * link timer is running - this clears the flag after |
| * a suitable delay. |
| */ |
| retval = 1; |
| cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; |
| cp->link_transition_jiffies = jiffies; |
| cp->link_transition_jiffies_valid = 1; |
| } else { |
| cp->link_transition = LINK_TRANSITION_ON_FAILURE; |
| } |
| netif_carrier_off(cp->dev); |
| if (cp->opened && netif_msg_link(cp)) { |
| printk(KERN_INFO "%s: PCS link down.\n", |
| cp->dev->name); |
| } |
| |
| /* Cassini only: if you force a mode, there can be |
| * sync problems on link down. to fix that, the following |
| * things need to be checked: |
| * 1) read serialink state register |
| * 2) read pcs status register to verify link down. |
| * 3) if link down and serial link == 0x03, then you need |
| * to global reset the chip. |
| */ |
| if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { |
| /* should check to see if we're in a forced mode */ |
| stat = readl(cp->regs + REG_PCS_SERDES_STATE); |
| if (stat == 0x03) |
| return 1; |
| } |
| } else if (cp->lstate == link_down) { |
| if (link_transition_timeout != 0 && |
| cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && |
| !cp->link_transition_jiffies_valid) { |
| /* force a reset, as a workaround for the |
| * link-failure problem. May want to move |
| * this to a point a bit earlier in the |
| * sequence. |
| */ |
| retval = 1; |
| cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; |
| cp->link_transition_jiffies = jiffies; |
| cp->link_transition_jiffies_valid = 1; |
| } else { |
| cp->link_transition = LINK_TRANSITION_STILL_FAILED; |
| } |
| } |
| |
| return retval; |
| } |
| |
| static int cas_pcs_interrupt(struct net_device *dev, |
| struct cas *cp, u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); |
| |
| if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) |
| return 0; |
| return cas_pcs_link_check(cp); |
| } |
| |
| static int cas_txmac_interrupt(struct net_device *dev, |
| struct cas *cp, u32 status) |
| { |
| u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); |
| |
| if (!txmac_stat) |
| return 0; |
| |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", |
| cp->dev->name, txmac_stat); |
| |
| /* Defer timer expiration is quite normal, |
| * don't even log the event. |
| */ |
| if ((txmac_stat & MAC_TX_DEFER_TIMER) && |
| !(txmac_stat & ~MAC_TX_DEFER_TIMER)) |
| return 0; |
| |
| spin_lock(&cp->stat_lock[0]); |
| if (txmac_stat & MAC_TX_UNDERRUN) { |
| printk(KERN_ERR "%s: TX MAC xmit underrun.\n", |
| dev->name); |
| cp->net_stats[0].tx_fifo_errors++; |
| } |
| |
| if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { |
| printk(KERN_ERR "%s: TX MAC max packet size error.\n", |
| dev->name); |
| cp->net_stats[0].tx_errors++; |
| } |
| |
| /* The rest are all cases of one of the 16-bit TX |
| * counters expiring. |
| */ |
| if (txmac_stat & MAC_TX_COLL_NORMAL) |
| cp->net_stats[0].collisions += 0x10000; |
| |
| if (txmac_stat & MAC_TX_COLL_EXCESS) { |
| cp->net_stats[0].tx_aborted_errors += 0x10000; |
| cp->net_stats[0].collisions += 0x10000; |
| } |
| |
| if (txmac_stat & MAC_TX_COLL_LATE) { |
| cp->net_stats[0].tx_aborted_errors += 0x10000; |
| cp->net_stats[0].collisions += 0x10000; |
| } |
| spin_unlock(&cp->stat_lock[0]); |
| |
| /* We do not keep track of MAC_TX_COLL_FIRST and |
| * MAC_TX_PEAK_ATTEMPTS events. |
| */ |
| return 0; |
| } |
| |
| static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) |
| { |
| cas_hp_inst_t *inst; |
| u32 val; |
| int i; |
| |
| i = 0; |
| while ((inst = firmware) && inst->note) { |
| writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); |
| |
| val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); |
| val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); |
| writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); |
| |
| val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); |
| writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); |
| |
| val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); |
| val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); |
| val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); |
| val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); |
| writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); |
| ++firmware; |
| ++i; |
| } |
| } |
| |
| static void cas_init_rx_dma(struct cas *cp) |
| { |
| u64 desc_dma = cp->block_dvma; |
| u32 val; |
| int i, size; |
| |
| /* rx free descriptors */ |
| val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); |
| val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); |
| val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); |
| if ((N_RX_DESC_RINGS > 1) && |
| (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ |
| val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); |
| writel(val, cp->regs + REG_RX_CFG); |
| |
| val = (unsigned long) cp->init_rxds[0] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); |
| writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| /* rx desc 2 is for IPSEC packets. however, |
| * we don't it that for that purpose. |
| */ |
| val = (unsigned long) cp->init_rxds[1] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + |
| REG_PLUS_RX_DB1_LOW); |
| writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + |
| REG_PLUS_RX_KICK1); |
| } |
| |
| /* rx completion registers */ |
| val = (unsigned long) cp->init_rxcs[0] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| /* rx comp 2-4 */ |
| for (i = 1; i < MAX_RX_COMP_RINGS; i++) { |
| val = (unsigned long) cp->init_rxcs[i] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + |
| REG_PLUS_RX_CBN_HI(i)); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + |
| REG_PLUS_RX_CBN_LOW(i)); |
| } |
| } |
| |
| /* read selective clear regs to prevent spurious interrupts |
| * on reset because complete == kick. |
| * selective clear set up to prevent interrupts on resets |
| */ |
| readl(cp->regs + REG_INTR_STATUS_ALIAS); |
| writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| for (i = 1; i < N_RX_COMP_RINGS; i++) |
| readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); |
| |
| /* 2 is different from 3 and 4 */ |
| if (N_RX_COMP_RINGS > 1) |
| writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, |
| cp->regs + REG_PLUS_ALIASN_CLEAR(1)); |
| |
| for (i = 2; i < N_RX_COMP_RINGS; i++) |
| writel(INTR_RX_DONE_ALT, |
| cp->regs + REG_PLUS_ALIASN_CLEAR(i)); |
| } |
| |
| /* set up pause thresholds */ |
| val = CAS_BASE(RX_PAUSE_THRESH_OFF, |
| cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); |
| val |= CAS_BASE(RX_PAUSE_THRESH_ON, |
| cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); |
| writel(val, cp->regs + REG_RX_PAUSE_THRESH); |
| |
| /* zero out dma reassembly buffers */ |
| for (i = 0; i < 64; i++) { |
| writel(i, cp->regs + REG_RX_TABLE_ADDR); |
| writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); |
| writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); |
| writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); |
| } |
| |
| /* make sure address register is 0 for normal operation */ |
| writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); |
| writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); |
| |
| /* interrupt mitigation */ |
| #ifdef USE_RX_BLANK |
| val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); |
| val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); |
| writel(val, cp->regs + REG_RX_BLANK); |
| #else |
| writel(0x0, cp->regs + REG_RX_BLANK); |
| #endif |
| |
| /* interrupt generation as a function of low water marks for |
| * free desc and completion entries. these are used to trigger |
| * housekeeping for rx descs. we don't use the free interrupt |
| * as it's not very useful |
| */ |
| /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ |
| val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); |
| writel(val, cp->regs + REG_RX_AE_THRESH); |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); |
| writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); |
| } |
| |
| /* Random early detect registers. useful for congestion avoidance. |
| * this should be tunable. |
| */ |
| writel(0x0, cp->regs + REG_RX_RED); |
| |
| /* receive page sizes. default == 2K (0x800) */ |
| val = 0; |
| if (cp->page_size == 0x1000) |
| val = 0x1; |
| else if (cp->page_size == 0x2000) |
| val = 0x2; |
| else if (cp->page_size == 0x4000) |
| val = 0x3; |
| |
| /* round mtu + offset. constrain to page size. */ |
| size = cp->dev->mtu + 64; |
| if (size > cp->page_size) |
| size = cp->page_size; |
| |
| if (size <= 0x400) |
| i = 0x0; |
| else if (size <= 0x800) |
| i = 0x1; |
| else if (size <= 0x1000) |
| i = 0x2; |
| else |
| i = 0x3; |
| |
| cp->mtu_stride = 1 << (i + 10); |
| val = CAS_BASE(RX_PAGE_SIZE, val); |
| val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); |
| val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); |
| val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); |
| writel(val, cp->regs + REG_RX_PAGE_SIZE); |
| |
| /* enable the header parser if desired */ |
| if (CAS_HP_FIRMWARE == cas_prog_null) |
| return; |
| |
| val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); |
| val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; |
| val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); |
| writel(val, cp->regs + REG_HP_CFG); |
| } |
| |
| static inline void cas_rxc_init(struct cas_rx_comp *rxc) |
| { |
| memset(rxc, 0, sizeof(*rxc)); |
| rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); |
| } |
| |
| /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] |
| * flipping is protected by the fact that the chip will not |
| * hand back the same page index while it's being processed. |
| */ |
| static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) |
| { |
| cas_page_t *page = cp->rx_pages[1][index]; |
| cas_page_t *new; |
| |
| if (page_count(page->buffer) == 1) |
| return page; |
| |
| new = cas_page_dequeue(cp); |
| if (new) { |
| spin_lock(&cp->rx_inuse_lock); |
| list_add(&page->list, &cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| } |
| return new; |
| } |
| |
| /* this needs to be changed if we actually use the ENC RX DESC ring */ |
| static cas_page_t *cas_page_swap(struct cas *cp, const int ring, |
| const int index) |
| { |
| cas_page_t **page0 = cp->rx_pages[0]; |
| cas_page_t **page1 = cp->rx_pages[1]; |
| |
| /* swap if buffer is in use */ |
| if (page_count(page0[index]->buffer) > 1) { |
| cas_page_t *new = cas_page_spare(cp, index); |
| if (new) { |
| page1[index] = page0[index]; |
| page0[index] = new; |
| } |
| } |
| RX_USED_SET(page0[index], 0); |
| return page0[index]; |
| } |
| |
| static void cas_clean_rxds(struct cas *cp) |
| { |
| /* only clean ring 0 as ring 1 is used for spare buffers */ |
| struct cas_rx_desc *rxd = cp->init_rxds[0]; |
| int i, size; |
| |
| /* release all rx flows */ |
| for (i = 0; i < N_RX_FLOWS; i++) { |
| struct sk_buff *skb; |
| while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { |
| cas_skb_release(skb); |
| } |
| } |
| |
| /* initialize descriptors */ |
| size = RX_DESC_RINGN_SIZE(0); |
| for (i = 0; i < size; i++) { |
| cas_page_t *page = cas_page_swap(cp, 0, i); |
| rxd[i].buffer = cpu_to_le64(page->dma_addr); |
| rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | |
| CAS_BASE(RX_INDEX_RING, 0)); |
| } |
| |
| cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; |
| cp->rx_last[0] = 0; |
| cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); |
| } |
| |
| static void cas_clean_rxcs(struct cas *cp) |
| { |
| int i, j; |
| |
| /* take ownership of rx comp descriptors */ |
| memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); |
| memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); |
| for (i = 0; i < N_RX_COMP_RINGS; i++) { |
| struct cas_rx_comp *rxc = cp->init_rxcs[i]; |
| for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { |
| cas_rxc_init(rxc + j); |
| } |
| } |
| } |
| |
| #if 0 |
| /* When we get a RX fifo overflow, the RX unit is probably hung |
| * so we do the following. |
| * |
| * If any part of the reset goes wrong, we return 1 and that causes the |
| * whole chip to be reset. |
| */ |
| static int cas_rxmac_reset(struct cas *cp) |
| { |
| struct net_device *dev = cp->dev; |
| int limit; |
| u32 val; |
| |
| /* First, reset MAC RX. */ |
| writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| for (limit = 0; limit < STOP_TRIES; limit++) { |
| if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) |
| break; |
| udelay(10); |
| } |
| if (limit == STOP_TRIES) { |
| printk(KERN_ERR "%s: RX MAC will not disable, resetting whole " |
| "chip.\n", dev->name); |
| return 1; |
| } |
| |
| /* Second, disable RX DMA. */ |
| writel(0, cp->regs + REG_RX_CFG); |
| for (limit = 0; limit < STOP_TRIES; limit++) { |
| if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) |
| break; |
| udelay(10); |
| } |
| if (limit == STOP_TRIES) { |
| printk(KERN_ERR "%s: RX DMA will not disable, resetting whole " |
| "chip.\n", dev->name); |
| return 1; |
| } |
| |
| mdelay(5); |
| |
| /* Execute RX reset command. */ |
| writel(SW_RESET_RX, cp->regs + REG_SW_RESET); |
| for (limit = 0; limit < STOP_TRIES; limit++) { |
| if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) |
| break; |
| udelay(10); |
| } |
| if (limit == STOP_TRIES) { |
| printk(KERN_ERR "%s: RX reset command will not execute, " |
| "resetting whole chip.\n", dev->name); |
| return 1; |
| } |
| |
| /* reset driver rx state */ |
| cas_clean_rxds(cp); |
| cas_clean_rxcs(cp); |
| |
| /* Now, reprogram the rest of RX unit. */ |
| cas_init_rx_dma(cp); |
| |
| /* re-enable */ |
| val = readl(cp->regs + REG_RX_CFG); |
| writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); |
| writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); |
| val = readl(cp->regs + REG_MAC_RX_CFG); |
| writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| return 0; |
| } |
| #endif |
| |
| static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); |
| |
| if (!stat) |
| return 0; |
| |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n", |
| cp->dev->name, stat); |
| |
| /* these are all rollovers */ |
| spin_lock(&cp->stat_lock[0]); |
| if (stat & MAC_RX_ALIGN_ERR) |
| cp->net_stats[0].rx_frame_errors += 0x10000; |
| |
| if (stat & MAC_RX_CRC_ERR) |
| cp->net_stats[0].rx_crc_errors += 0x10000; |
| |
| if (stat & MAC_RX_LEN_ERR) |
| cp->net_stats[0].rx_length_errors += 0x10000; |
| |
| if (stat & MAC_RX_OVERFLOW) { |
| cp->net_stats[0].rx_over_errors++; |
| cp->net_stats[0].rx_fifo_errors++; |
| } |
| |
| /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR |
| * events. |
| */ |
| spin_unlock(&cp->stat_lock[0]); |
| return 0; |
| } |
| |
| static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); |
| |
| if (!stat) |
| return 0; |
| |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n", |
| cp->dev->name, stat); |
| |
| /* This interrupt is just for pause frame and pause |
| * tracking. It is useful for diagnostics and debug |
| * but probably by default we will mask these events. |
| */ |
| if (stat & MAC_CTRL_PAUSE_STATE) |
| cp->pause_entered++; |
| |
| if (stat & MAC_CTRL_PAUSE_RECEIVED) |
| cp->pause_last_time_recvd = (stat >> 16); |
| |
| return 0; |
| } |
| |
| |
| /* Must be invoked under cp->lock. */ |
| static inline int cas_mdio_link_not_up(struct cas *cp) |
| { |
| u16 val; |
| |
| switch (cp->lstate) { |
| case link_force_ret: |
| if (netif_msg_link(cp)) |
| printk(KERN_INFO "%s: Autoneg failed again, keeping" |
| " forced mode\n", cp->dev->name); |
| cas_phy_write(cp, MII_BMCR, cp->link_fcntl); |
| cp->timer_ticks = 5; |
| cp->lstate = link_force_ok; |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| break; |
| |
| case link_aneg: |
| val = cas_phy_read(cp, MII_BMCR); |
| |
| /* Try forced modes. we try things in the following order: |
| * 1000 full -> 100 full/half -> 10 half |
| */ |
| val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); |
| val |= BMCR_FULLDPLX; |
| val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? |
| CAS_BMCR_SPEED1000 : BMCR_SPEED100; |
| cas_phy_write(cp, MII_BMCR, val); |
| cp->timer_ticks = 5; |
| cp->lstate = link_force_try; |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| break; |
| |
| case link_force_try: |
| /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ |
| val = cas_phy_read(cp, MII_BMCR); |
| cp->timer_ticks = 5; |
| if (val & CAS_BMCR_SPEED1000) { /* gigabit */ |
| val &= ~CAS_BMCR_SPEED1000; |
| val |= (BMCR_SPEED100 | BMCR_FULLDPLX); |
| cas_phy_write(cp, MII_BMCR, val); |
| break; |
| } |
| |
| if (val & BMCR_SPEED100) { |
| if (val & BMCR_FULLDPLX) /* fd failed */ |
| val &= ~BMCR_FULLDPLX; |
| else { /* 100Mbps failed */ |
| val &= ~BMCR_SPEED100; |
| } |
| cas_phy_write(cp, MII_BMCR, val); |
| break; |
| } |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /* must be invoked with cp->lock held */ |
| static int cas_mii_link_check(struct cas *cp, const u16 bmsr) |
| { |
| int restart; |
| |
| if (bmsr & BMSR_LSTATUS) { |
| /* Ok, here we got a link. If we had it due to a forced |
| * fallback, and we were configured for autoneg, we |
| * retry a short autoneg pass. If you know your hub is |
| * broken, use ethtool ;) |
| */ |
| if ((cp->lstate == link_force_try) && |
| (cp->link_cntl & BMCR_ANENABLE)) { |
| cp->lstate = link_force_ret; |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| cas_mif_poll(cp, 0); |
| cp->link_fcntl = cas_phy_read(cp, MII_BMCR); |
| cp->timer_ticks = 5; |
| if (cp->opened && netif_msg_link(cp)) |
| printk(KERN_INFO "%s: Got link after fallback, retrying" |
| " autoneg once...\n", cp->dev->name); |
| cas_phy_write(cp, MII_BMCR, |
| cp->link_fcntl | BMCR_ANENABLE | |
| BMCR_ANRESTART); |
| cas_mif_poll(cp, 1); |
| |
| } else if (cp->lstate != link_up) { |
| cp->lstate = link_up; |
| cp->link_transition = LINK_TRANSITION_LINK_UP; |
| |
| if (cp->opened) { |
| cas_set_link_modes(cp); |
| netif_carrier_on(cp->dev); |
| } |
| } |
| return 0; |
| } |
| |
| /* link not up. if the link was previously up, we restart the |
| * whole process |
| */ |
| restart = 0; |
| if (cp->lstate == link_up) { |
| cp->lstate = link_down; |
| cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| |
| netif_carrier_off(cp->dev); |
| if (cp->opened && netif_msg_link(cp)) |
| printk(KERN_INFO "%s: Link down\n", |
| cp->dev->name); |
| restart = 1; |
| |
| } else if (++cp->timer_ticks > 10) |
| cas_mdio_link_not_up(cp); |
| |
| return restart; |
| } |
| |
| static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_MIF_STATUS); |
| u16 bmsr; |
| |
| /* check for a link change */ |
| if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) |
| return 0; |
| |
| bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); |
| return cas_mii_link_check(cp, bmsr); |
| } |
| |
| static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); |
| |
| if (!stat) |
| return 0; |
| |
| printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat, |
| readl(cp->regs + REG_BIM_DIAG)); |
| |
| /* cassini+ has this reserved */ |
| if ((stat & PCI_ERR_BADACK) && |
| ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) |
| printk("<No ACK64# during ABS64 cycle> "); |
| |
| if (stat & PCI_ERR_DTRTO) |
| printk("<Delayed transaction timeout> "); |
| if (stat & PCI_ERR_OTHER) |
| printk("<other> "); |
| if (stat & PCI_ERR_BIM_DMA_WRITE) |
| printk("<BIM DMA 0 write req> "); |
| if (stat & PCI_ERR_BIM_DMA_READ) |
| printk("<BIM DMA 0 read req> "); |
| printk("\n"); |
| |
| if (stat & PCI_ERR_OTHER) { |
| u16 cfg; |
| |
| /* Interrogate PCI config space for the |
| * true cause. |
| */ |
| pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); |
| printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n", |
| dev->name, cfg); |
| if (cfg & PCI_STATUS_PARITY) |
| printk(KERN_ERR "%s: PCI parity error detected.\n", |
| dev->name); |
| if (cfg & PCI_STATUS_SIG_TARGET_ABORT) |
| printk(KERN_ERR "%s: PCI target abort.\n", |
| dev->name); |
| if (cfg & PCI_STATUS_REC_TARGET_ABORT) |
| printk(KERN_ERR "%s: PCI master acks target abort.\n", |
| dev->name); |
| if (cfg & PCI_STATUS_REC_MASTER_ABORT) |
| printk(KERN_ERR "%s: PCI master abort.\n", dev->name); |
| if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) |
| printk(KERN_ERR "%s: PCI system error SERR#.\n", |
| dev->name); |
| if (cfg & PCI_STATUS_DETECTED_PARITY) |
| printk(KERN_ERR "%s: PCI parity error.\n", |
| dev->name); |
| |
| /* Write the error bits back to clear them. */ |
| cfg &= (PCI_STATUS_PARITY | |
| PCI_STATUS_SIG_TARGET_ABORT | |
| PCI_STATUS_REC_TARGET_ABORT | |
| PCI_STATUS_REC_MASTER_ABORT | |
| PCI_STATUS_SIG_SYSTEM_ERROR | |
| PCI_STATUS_DETECTED_PARITY); |
| pci_write_config_word(cp->pdev, PCI_STATUS, cfg); |
| } |
| |
| /* For all PCI errors, we should reset the chip. */ |
| return 1; |
| } |
| |
| /* All non-normal interrupt conditions get serviced here. |
| * Returns non-zero if we should just exit the interrupt |
| * handler right now (ie. if we reset the card which invalidates |
| * all of the other original irq status bits). |
| */ |
| static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| if (status & INTR_RX_TAG_ERROR) { |
| /* corrupt RX tag framing */ |
| if (netif_msg_rx_err(cp)) |
| printk(KERN_DEBUG "%s: corrupt rx tag framing\n", |
| cp->dev->name); |
| spin_lock(&cp->stat_lock[0]); |
| cp->net_stats[0].rx_errors++; |
| spin_unlock(&cp->stat_lock[0]); |
| goto do_reset; |
| } |
| |
| if (status & INTR_RX_LEN_MISMATCH) { |
| /* length mismatch. */ |
| if (netif_msg_rx_err(cp)) |
| printk(KERN_DEBUG "%s: length mismatch for rx frame\n", |
| cp->dev->name); |
| spin_lock(&cp->stat_lock[0]); |
| cp->net_stats[0].rx_errors++; |
| spin_unlock(&cp->stat_lock[0]); |
| goto do_reset; |
| } |
| |
| if (status & INTR_PCS_STATUS) { |
| if (cas_pcs_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_TX_MAC_STATUS) { |
| if (cas_txmac_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_RX_MAC_STATUS) { |
| if (cas_rxmac_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_MAC_CTRL_STATUS) { |
| if (cas_mac_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_MIF_STATUS) { |
| if (cas_mif_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_PCI_ERROR_STATUS) { |
| if (cas_pci_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| return 0; |
| |
| do_reset: |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n", |
| dev->name, status); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| printk(KERN_ERR "reset called in cas_abnormal_irq\n"); |
| schedule_work(&cp->reset_task); |
| #endif |
| return 1; |
| } |
| |
| /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when |
| * determining whether to do a netif_stop/wakeup |
| */ |
| #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) |
| #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) |
| static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, |
| const int len) |
| { |
| unsigned long off = addr + len; |
| |
| if (CAS_TABORT(cp) == 1) |
| return 0; |
| if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) |
| return 0; |
| return TX_TARGET_ABORT_LEN; |
| } |
| |
| static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) |
| { |
| struct cas_tx_desc *txds; |
| struct sk_buff **skbs; |
| struct net_device *dev = cp->dev; |
| int entry, count; |
| |
| spin_lock(&cp->tx_lock[ring]); |
| txds = cp->init_txds[ring]; |
| skbs = cp->tx_skbs[ring]; |
| entry = cp->tx_old[ring]; |
| |
| count = TX_BUFF_COUNT(ring, entry, limit); |
| while (entry != limit) { |
| struct sk_buff *skb = skbs[entry]; |
| dma_addr_t daddr; |
| u32 dlen; |
| int frag; |
| |
| if (!skb) { |
| /* this should never occur */ |
| entry = TX_DESC_NEXT(ring, entry); |
| continue; |
| } |
| |
| /* however, we might get only a partial skb release. */ |
| count -= skb_shinfo(skb)->nr_frags + |
| + cp->tx_tiny_use[ring][entry].nbufs + 1; |
| if (count < 0) |
| break; |
| |
| if (netif_msg_tx_done(cp)) |
| printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n", |
| cp->dev->name, ring, entry); |
| |
| skbs[entry] = NULL; |
| cp->tx_tiny_use[ring][entry].nbufs = 0; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| struct cas_tx_desc *txd = txds + entry; |
| |
| daddr = le64_to_cpu(txd->buffer); |
| dlen = CAS_VAL(TX_DESC_BUFLEN, |
| le64_to_cpu(txd->control)); |
| pci_unmap_page(cp->pdev, daddr, dlen, |
| PCI_DMA_TODEVICE); |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| /* tiny buffer may follow */ |
| if (cp->tx_tiny_use[ring][entry].used) { |
| cp->tx_tiny_use[ring][entry].used = 0; |
| entry = TX_DESC_NEXT(ring, entry); |
| } |
| } |
| |
| spin_lock(&cp->stat_lock[ring]); |
| cp->net_stats[ring].tx_packets++; |
| cp->net_stats[ring].tx_bytes += skb->len; |
| spin_unlock(&cp->stat_lock[ring]); |
| dev_kfree_skb_irq(skb); |
| } |
| cp->tx_old[ring] = entry; |
| |
| /* this is wrong for multiple tx rings. the net device needs |
| * multiple queues for this to do the right thing. we wait |
| * for 2*packets to be available when using tiny buffers |
| */ |
| if (netif_queue_stopped(dev) && |
| (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) |
| netif_wake_queue(dev); |
| spin_unlock(&cp->tx_lock[ring]); |
| } |
| |
| static void cas_tx(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| int limit, ring; |
| #ifdef USE_TX_COMPWB |
| u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); |
| #endif |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n", |
| cp->dev->name, status, (unsigned long long)compwb); |
| /* process all the rings */ |
| for (ring = 0; ring < N_TX_RINGS; ring++) { |
| #ifdef USE_TX_COMPWB |
| /* use the completion writeback registers */ |
| limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | |
| CAS_VAL(TX_COMPWB_LSB, compwb); |
| compwb = TX_COMPWB_NEXT(compwb); |
| #else |
| limit = readl(cp->regs + REG_TX_COMPN(ring)); |
| #endif |
| if (cp->tx_old[ring] != limit) |
| cas_tx_ringN(cp, ring, limit); |
| } |
| } |
| |
| |
| static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, |
| int entry, const u64 *words, |
| struct sk_buff **skbref) |
| { |
| int dlen, hlen, len, i, alloclen; |
| int off, swivel = RX_SWIVEL_OFF_VAL; |
| struct cas_page *page; |
| struct sk_buff *skb; |
| void *addr, *crcaddr; |
| __sum16 csum; |
| char *p; |
| |
| hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); |
| dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); |
| len = hlen + dlen; |
| |
| if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) |
| alloclen = len; |
| else |
| alloclen = max(hlen, RX_COPY_MIN); |
| |
| skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); |
| if (skb == NULL) |
| return -1; |
| |
| *skbref = skb; |
| skb_reserve(skb, swivel); |
| |
| p = skb->data; |
| addr = crcaddr = NULL; |
| if (hlen) { /* always copy header pages */ |
| i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + |
| swivel; |
| |
| i = hlen; |
| if (!dlen) /* attach FCS */ |
| i += cp->crc_size; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr + off, i); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| RX_USED_ADD(page, 0x100); |
| p += hlen; |
| swivel = 0; |
| } |
| |
| |
| if (alloclen < (hlen + dlen)) { |
| skb_frag_t *frag = skb_shinfo(skb)->frags; |
| |
| /* normal or jumbo packets. we use frags */ |
| i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; |
| |
| hlen = min(cp->page_size - off, dlen); |
| if (hlen < 0) { |
| if (netif_msg_rx_err(cp)) { |
| printk(KERN_DEBUG "%s: rx page overflow: " |
| "%d\n", cp->dev->name, hlen); |
| } |
| dev_kfree_skb_irq(skb); |
| return -1; |
| } |
| i = hlen; |
| if (i == dlen) /* attach FCS */ |
| i += cp->crc_size; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| |
| /* make sure we always copy a header */ |
| swivel = 0; |
| if (p == (char *) skb->data) { /* not split */ |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr + off, RX_COPY_MIN); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| off += RX_COPY_MIN; |
| swivel = RX_COPY_MIN; |
| RX_USED_ADD(page, cp->mtu_stride); |
| } else { |
| RX_USED_ADD(page, hlen); |
| } |
| skb_put(skb, alloclen); |
| |
| skb_shinfo(skb)->nr_frags++; |
| skb->data_len += hlen - swivel; |
| skb->truesize += hlen - swivel; |
| skb->len += hlen - swivel; |
| |
| get_page(page->buffer); |
| frag->page = page->buffer; |
| frag->page_offset = off; |
| frag->size = hlen - swivel; |
| |
| /* any more data? */ |
| if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { |
| hlen = dlen; |
| off = 0; |
| |
| i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
| hlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, |
| hlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| |
| skb_shinfo(skb)->nr_frags++; |
| skb->data_len += hlen; |
| skb->len += hlen; |
| frag++; |
| |
| get_page(page->buffer); |
| frag->page = page->buffer; |
| frag->page_offset = 0; |
| frag->size = hlen; |
| RX_USED_ADD(page, hlen + cp->crc_size); |
| } |
| |
| if (cp->crc_size) { |
| addr = cas_page_map(page->buffer); |
| crcaddr = addr + off + hlen; |
| } |
| |
| } else { |
| /* copying packet */ |
| if (!dlen) |
| goto end_copy_pkt; |
| |
| i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; |
| hlen = min(cp->page_size - off, dlen); |
| if (hlen < 0) { |
| if (netif_msg_rx_err(cp)) { |
| printk(KERN_DEBUG "%s: rx page overflow: " |
| "%d\n", cp->dev->name, hlen); |
| } |
| dev_kfree_skb_irq(skb); |
| return -1; |
| } |
| i = hlen; |
| if (i == dlen) /* attach FCS */ |
| i += cp->crc_size; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr + off, i); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| if (p == (char *) skb->data) /* not split */ |
| RX_USED_ADD(page, cp->mtu_stride); |
| else |
| RX_USED_ADD(page, i); |
| |
| /* any more data? */ |
| if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { |
| p += hlen; |
| i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
| dlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr, dlen + cp->crc_size); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, |
| dlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| RX_USED_ADD(page, dlen + cp->crc_size); |
| } |
| end_copy_pkt: |
| if (cp->crc_size) { |
| addr = NULL; |
| crcaddr = skb->data + alloclen; |
| } |
| skb_put(skb, alloclen); |
| } |
| |
| csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); |
| if (cp->crc_size) { |
| /* checksum includes FCS. strip it out. */ |
| csum = csum_fold(csum_partial(crcaddr, cp->crc_size, |
| csum_unfold(csum))); |
| if (addr) |
| cas_page_unmap(addr); |
| } |
| skb->protocol = eth_type_trans(skb, cp->dev); |
| if (skb->protocol == htons(ETH_P_IP)) { |
| skb->csum = csum_unfold(~csum); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } else |
| skb->ip_summed = CHECKSUM_NONE; |
| return len; |
| } |
| |
| |
| /* we can handle up to 64 rx flows at a time. we do the same thing |
| * as nonreassm except that we batch up the buffers. |
| * NOTE: we currently just treat each flow as a bunch of packets that |
| * we pass up. a better way would be to coalesce the packets |
| * into a jumbo packet. to do that, we need to do the following: |
| * 1) the first packet will have a clean split between header and |
| * data. save both. |
| * 2) each time the next flow packet comes in, extend the |
| * data length and merge the checksums. |
| * 3) on flow release, fix up the header. |
| * 4) make sure the higher layer doesn't care. |
| * because packets get coalesced, we shouldn't run into fragment count |
| * issues. |
| */ |
| static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, |
| struct sk_buff *skb) |
| { |
| int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); |
| struct sk_buff_head *flow = &cp->rx_flows[flowid]; |
| |
| /* this is protected at a higher layer, so no need to |
| * do any additional locking here. stick the buffer |
| * at the end. |
| */ |
| __skb_queue_tail(flow, skb); |
| if (words[0] & RX_COMP1_RELEASE_FLOW) { |
| while ((skb = __skb_dequeue(flow))) { |
| cas_skb_release(skb); |
| } |
| } |
| } |
| |
| /* put rx descriptor back on ring. if a buffer is in use by a higher |
| * layer, this will need to put in a replacement. |
| */ |
| static void cas_post_page(struct cas *cp, const int ring, const int index) |
| { |
| cas_page_t *new; |
| int entry; |
| |
| entry = cp->rx_old[ring]; |
| |
| new = cas_page_swap(cp, ring, index); |
| cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); |
| cp->init_rxds[ring][entry].index = |
| cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | |
| CAS_BASE(RX_INDEX_RING, ring)); |
| |
| entry = RX_DESC_ENTRY(ring, entry + 1); |
| cp->rx_old[ring] = entry; |
| |
| if (entry % 4) |
| return; |
| |
| if (ring == 0) |
| writel(entry, cp->regs + REG_RX_KICK); |
| else if ((N_RX_DESC_RINGS > 1) && |
| (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
| writel(entry, cp->regs + REG_PLUS_RX_KICK1); |
| } |
| |
| |
| /* only when things are bad */ |
| static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) |
| { |
| unsigned int entry, last, count, released; |
| int cluster; |
| cas_page_t **page = cp->rx_pages[ring]; |
| |
| entry = cp->rx_old[ring]; |
| |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n", |
| cp->dev->name, ring, entry); |
| |
| cluster = -1; |
| count = entry & 0x3; |
| last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); |
| released = 0; |
| while (entry != last) { |
| /* make a new buffer if it's still in use */ |
| if (page_count(page[entry]->buffer) > 1) { |
| cas_page_t *new = cas_page_dequeue(cp); |
| if (!new) { |
| /* let the timer know that we need to |
| * do this again |
| */ |
| cp->cas_flags |= CAS_FLAG_RXD_POST(ring); |
| if (!timer_pending(&cp->link_timer)) |
| mod_timer(&cp->link_timer, jiffies + |
| CAS_LINK_FAST_TIMEOUT); |
| cp->rx_old[ring] = entry; |
| cp->rx_last[ring] = num ? num - released : 0; |
| return -ENOMEM; |
| } |
| spin_lock(&cp->rx_inuse_lock); |
| list_add(&page[entry]->list, &cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| cp->init_rxds[ring][entry].buffer = |
| cpu_to_le64(new->dma_addr); |
| page[entry] = new; |
| |
| } |
| |
| if (++count == 4) { |
| cluster = entry; |
| count = 0; |
| } |
| released++; |
| entry = RX_DESC_ENTRY(ring, entry + 1); |
| } |
| cp->rx_old[ring] = entry; |
| |
| if (cluster < 0) |
| return 0; |
| |
| if (ring == 0) |
| writel(cluster, cp->regs + REG_RX_KICK); |
| else if ((N_RX_DESC_RINGS > 1) && |
| (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
| writel(cluster, cp->regs + REG_PLUS_RX_KICK1); |
| return 0; |
| } |
| |
| |
| /* process a completion ring. packets are set up in three basic ways: |
| * small packets: should be copied header + data in single buffer. |
| * large packets: header and data in a single buffer. |
| * split packets: header in a separate buffer from data. |
| * data may be in multiple pages. data may be > 256 |
| * bytes but in a single page. |
| * |
| * NOTE: RX page posting is done in this routine as well. while there's |
| * the capability of using multiple RX completion rings, it isn't |
| * really worthwhile due to the fact that the page posting will |
| * force serialization on the single descriptor ring. |
| */ |
| static int cas_rx_ringN(struct cas *cp, int ring, int budget) |
| { |
| struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; |
| int entry, drops; |
| int npackets = 0; |
| |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n", |
| cp->dev->name, ring, |
| readl(cp->regs + REG_RX_COMP_HEAD), |
| cp->rx_new[ring]); |
| |
| entry = cp->rx_new[ring]; |
| drops = 0; |
| while (1) { |
| struct cas_rx_comp *rxc = rxcs + entry; |
| struct sk_buff *skb; |
| int type, len; |
| u64 words[4]; |
| int i, dring; |
| |
| words[0] = le64_to_cpu(rxc->word1); |
| words[1] = le64_to_cpu(rxc->word2); |
| words[2] = le64_to_cpu(rxc->word3); |
| words[3] = le64_to_cpu(rxc->word4); |
| |
| /* don't touch if still owned by hw */ |
| type = CAS_VAL(RX_COMP1_TYPE, words[0]); |
| if (type == 0) |
| break; |
| |
| /* hw hasn't cleared the zero bit yet */ |
| if (words[3] & RX_COMP4_ZERO) { |
| break; |
| } |
| |
| /* get info on the packet */ |
| if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { |
| spin_lock(&cp->stat_lock[ring]); |
| cp->net_stats[ring].rx_errors++; |
| if (words[3] & RX_COMP4_LEN_MISMATCH) |
| cp->net_stats[ring].rx_length_errors++; |
| if (words[3] & RX_COMP4_BAD) |
| cp->net_stats[ring].rx_crc_errors++; |
| spin_unlock(&cp->stat_lock[ring]); |
| |
| /* We'll just return it to Cassini. */ |
| drop_it: |
| spin_lock(&cp->stat_lock[ring]); |
| ++cp->net_stats[ring].rx_dropped; |
| spin_unlock(&cp->stat_lock[ring]); |
| goto next; |
| } |
| |
| len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); |
| if (len < 0) { |
| ++drops; |
| goto drop_it; |
| } |
| |
| /* see if it's a flow re-assembly or not. the driver |
| * itself handles release back up. |
| */ |
| if (RX_DONT_BATCH || (type == 0x2)) { |
| /* non-reassm: these always get released */ |
| cas_skb_release(skb); |
| } else { |
| cas_rx_flow_pkt(cp, words, skb); |
| } |
| |
| spin_lock(&cp->stat_lock[ring]); |
| cp->net_stats[ring].rx_packets++; |
| cp->net_stats[ring].rx_bytes += len; |
| spin_unlock(&cp->stat_lock[ring]); |
| cp->dev->last_rx = jiffies; |
| |
| next: |
| npackets++; |
| |
| /* should it be released? */ |
| if (words[0] & RX_COMP1_RELEASE_HDR) { |
| i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); |
| dring = CAS_VAL(RX_INDEX_RING, i); |
| i = CAS_VAL(RX_INDEX_NUM, i); |
| cas_post_page(cp, dring, i); |
| } |
| |
| if (words[0] & RX_COMP1_RELEASE_DATA) { |
| i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| dring = CAS_VAL(RX_INDEX_RING, i); |
| i = CAS_VAL(RX_INDEX_NUM, i); |
| cas_post_page(cp, dring, i); |
| } |
| |
| if (words[0] & RX_COMP1_RELEASE_NEXT) { |
| i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| dring = CAS_VAL(RX_INDEX_RING, i); |
| i = CAS_VAL(RX_INDEX_NUM, i); |
| cas_post_page(cp, dring, i); |
| } |
| |
| /* skip to the next entry */ |
| entry = RX_COMP_ENTRY(ring, entry + 1 + |
| CAS_VAL(RX_COMP1_SKIP, words[0])); |
| #ifdef USE_NAPI |
| if (budget && (npackets >= budget)) |
| break; |
| #endif |
| } |
| cp->rx_new[ring] = entry; |
| |
| if (drops) |
| printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", |
| cp->dev->name); |
| return npackets; |
| } |
| |
| |
| /* put completion entries back on the ring */ |
| static void cas_post_rxcs_ringN(struct net_device *dev, |
| struct cas *cp, int ring) |
| { |
| struct cas_rx_comp *rxc = cp->init_rxcs[ring]; |
| int last, entry; |
| |
| last = cp->rx_cur[ring]; |
| entry = cp->rx_new[ring]; |
| if (netif_msg_intr(cp)) |
| printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n", |
| dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), |
| entry); |
| |
| /* zero and re-mark descriptors */ |
| while (last != entry) { |
| cas_rxc_init(rxc + last); |
| last = RX_COMP_ENTRY(ring, last + 1); |
| } |
| cp->rx_cur[ring] = last; |
| |
| if (ring == 0) |
| writel(last, cp->regs + REG_RX_COMP_TAIL); |
| else if (cp->cas_flags & CAS_FLAG_REG_PLUS) |
| writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); |
| } |
| |
| |
| |
| /* cassini can use all four PCI interrupts for the completion ring. |
| * rings 3 and 4 are identical |
| */ |
| #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| static inline void cas_handle_irqN(struct net_device *dev, |
| struct cas *cp, const u32 status, |
| const int ring) |
| { |
| if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) |
| cas_post_rxcs_ringN(dev, cp, ring); |
| } |
| |
| static irqreturn_t cas_interruptN(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| int ring; |
| u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); |
| |
| /* check for shared irq */ |
| if (status == 0) |
| return IRQ_NONE; |
| |
| ring = (irq == cp->pci_irq_INTC) ? 2 : 3; |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ |
| #ifdef USE_NAPI |
| cas_mask_intr(cp); |
| netif_rx_schedule(dev, &cp->napi); |
| #else |
| cas_rx_ringN(cp, ring, 0); |
| #endif |
| status &= ~INTR_RX_DONE_ALT; |
| } |
| |
| if (status) |
| cas_handle_irqN(dev, cp, status, ring); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| #ifdef USE_PCI_INTB |
| /* everything but rx packets */ |
| static inline void cas_handle_irq1(struct cas *cp, const u32 status) |
| { |
| if (status & INTR_RX_BUF_UNAVAIL_1) { |
| /* Frame arrived, no free RX buffers available. |
| * NOTE: we can get this on a link transition. */ |
| cas_post_rxds_ringN(cp, 1, 0); |
| spin_lock(&cp->stat_lock[1]); |
| cp->net_stats[1].rx_dropped++; |
| spin_unlock(&cp->stat_lock[1]); |
| } |
| |
| if (status & INTR_RX_BUF_AE_1) |
| cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - |
| RX_AE_FREEN_VAL(1)); |
| |
| if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) |
| cas_post_rxcs_ringN(cp, 1); |
| } |
| |
| /* ring 2 handles a few more events than 3 and 4 */ |
| static irqreturn_t cas_interrupt1(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); |
| |
| /* check for shared interrupt */ |
| if (status == 0) |
| return IRQ_NONE; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ |
| #ifdef USE_NAPI |
| cas_mask_intr(cp); |
| netif_rx_schedule(dev, &cp->napi); |
| #else |
| cas_rx_ringN(cp, 1, 0); |
| #endif |
| status &= ~INTR_RX_DONE_ALT; |
| } |
| if (status) |
| cas_handle_irq1(cp, status); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static inline void cas_handle_irq(struct net_device *dev, |
| struct cas *cp, const u32 status) |
| { |
| /* housekeeping interrupts */ |
| if (status & INTR_ERROR_MASK) |
| cas_abnormal_irq(dev, cp, status); |
| |
| if (status & INTR_RX_BUF_UNAVAIL) { |
| /* Frame arrived, no free RX buffers available. |
| * NOTE: we can get this on a link transition. |
| */ |
| cas_post_rxds_ringN(cp, 0, 0); |
| spin_lock(&cp->stat_lock[0]); |
| cp->net_stats[0].rx_dropped++; |
| spin_unlock(&cp->stat_lock[0]); |
| } else if (status & INTR_RX_BUF_AE) { |
| cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - |
| RX_AE_FREEN_VAL(0)); |
| } |
| |
| if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) |
| cas_post_rxcs_ringN(dev, cp, 0); |
| } |
| |
| static irqreturn_t cas_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| u32 status = readl(cp->regs + REG_INTR_STATUS); |
| |
| if (status == 0) |
| return IRQ_NONE; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status & (INTR_TX_ALL | INTR_TX_INTME)) { |
| cas_tx(dev, cp, status); |
| status &= ~(INTR_TX_ALL | INTR_TX_INTME); |
| } |
| |
| if (status & INTR_RX_DONE) { |
| #ifdef USE_NAPI |
| cas_mask_intr(cp); |
| netif_rx_schedule(dev, &cp->napi); |
| #else |
| cas_rx_ringN(cp, 0, 0); |
| #endif |
| status &= ~INTR_RX_DONE; |
| } |
| |
| if (status) |
| cas_handle_irq(dev, cp, status); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| |
| #ifdef USE_NAPI |
| static int cas_poll(struct napi_struct *napi, int budget) |
| { |
| struct cas *cp = container_of(napi, struct cas, napi); |
| struct net_device *dev = cp->dev; |
| int i, enable_intr, credits; |
| u32 status = readl(cp->regs + REG_INTR_STATUS); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_tx(dev, cp, status); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| |
| /* NAPI rx packets. we spread the credits across all of the |
| * rxc rings |
| * |
| * to make sure we're fair with the work we loop through each |
| * ring N_RX_COMP_RING times with a request of |
| * budget / N_RX_COMP_RINGS |
| */ |
| enable_intr = 1; |
| credits = 0; |
| for (i = 0; i < N_RX_COMP_RINGS; i++) { |
| int j; |
| for (j = 0; j < N_RX_COMP_RINGS; j++) { |
| credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); |
| if (credits >= budget) { |
| enable_intr = 0; |
| goto rx_comp; |
| } |
| } |
| } |
| |
| rx_comp: |
| /* final rx completion */ |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status) |
| cas_handle_irq(dev, cp, status); |
| |
| #ifdef USE_PCI_INTB |
| if (N_RX_COMP_RINGS > 1) { |
| status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); |
| if (status) |
| cas_handle_irq1(dev, cp, status); |
| } |
| #endif |
| |
| #ifdef USE_PCI_INTC |
| if (N_RX_COMP_RINGS > 2) { |
| status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); |
| if (status) |
| cas_handle_irqN(dev, cp, status, 2); |
| } |
| #endif |
| |
| #ifdef USE_PCI_INTD |
| if (N_RX_COMP_RINGS > 3) { |
| status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); |
| if (status) |
| cas_handle_irqN(dev, cp, status, 3); |
| } |
| #endif |
| spin_unlock_irqrestore(&cp->lock, flags); |
| if (enable_intr) { |
| netif_rx_complete(dev, napi); |
| cas_unmask_intr(cp); |
| } |
| return credits; |
| } |
| #endif |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void cas_netpoll(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| cas_disable_irq(cp, 0); |
| cas_interrupt(cp->pdev->irq, dev); |
| cas_enable_irq(cp, 0); |
| |
| #ifdef USE_PCI_INTB |
| if (N_RX_COMP_RINGS > 1) { |
| /* cas_interrupt1(); */ |
| } |
| #endif |
| #ifdef USE_PCI_INTC |
| if (N_RX_COMP_RINGS > 2) { |
| /* cas_interruptN(); */ |
| } |
| #endif |
| #ifdef USE_PCI_INTD |
| if (N_RX_COMP_RINGS > 3) { |
| /* cas_interruptN(); */ |
| } |
| #endif |
| } |
| #endif |
| |
| static void cas_tx_timeout(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); |
| if (!cp->hw_running) { |
| printk("%s: hrm.. hw not running!\n", dev->name); |
| return; |
| } |
| |
| printk(KERN_ERR "%s: MIF_STATE[%08x]\n", |
| dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE)); |
| |
| printk(KERN_ERR "%s: MAC_STATE[%08x]\n", |
| dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| |
| printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] " |
| "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", |
| dev->name, |
| readl(cp->regs + REG_TX_CFG), |
| readl(cp->regs + REG_MAC_TX_STATUS), |
| readl(cp->regs + REG_MAC_TX_CFG), |
| readl(cp->regs + REG_TX_FIFO_PKT_CNT), |
| readl(cp->regs + REG_TX_FIFO_WRITE_PTR), |
| readl(cp->regs + REG_TX_FIFO_READ_PTR), |
| readl(cp->regs + REG_TX_SM_1), |
| readl(cp->regs + REG_TX_SM_2)); |
| |
| printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n", |
| dev->name, |
| readl(cp->regs + REG_RX_CFG), |
| readl(cp->regs + REG_MAC_RX_STATUS), |
| readl(cp->regs + REG_MAC_RX_CFG)); |
| |
| printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n", |
| dev->name, |
| readl(cp->regs + REG_HP_STATE_MACHINE), |
| readl(cp->regs + REG_HP_STATUS0), |
| readl(cp->regs + REG_HP_STATUS1), |
| readl(cp->regs + REG_HP_STATUS2)); |
| |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| schedule_work(&cp->reset_task); |
| #endif |
| } |
| |
| static inline int cas_intme(int ring, int entry) |
| { |
| /* Algorithm: IRQ every 1/2 of descriptors. */ |
| if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) |
| return 1; |
| return 0; |
| } |
| |
| |
| static void cas_write_txd(struct cas *cp, int ring, int entry, |
| dma_addr_t mapping, int len, u64 ctrl, int last) |
| { |
| struct cas_tx_desc *txd = cp->init_txds[ring] + entry; |
| |
| ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); |
| if (cas_intme(ring, entry)) |
| ctrl |= TX_DESC_INTME; |
| if (last) |
| ctrl |= TX_DESC_EOF; |
| txd->control = cpu_to_le64(ctrl); |
| txd->buffer = cpu_to_le64(mapping); |
| } |
| |
| static inline void *tx_tiny_buf(struct cas *cp, const int ring, |
| const int entry) |
| { |
| return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; |
| } |
| |
| static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, |
| const int entry, const int tentry) |
| { |
| cp->tx_tiny_use[ring][tentry].nbufs++; |
| cp->tx_tiny_use[ring][entry].used = 1; |
| return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; |
| } |
| |
| static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, |
| struct sk_buff *skb) |
| { |
| struct net_device *dev = cp->dev; |
| int entry, nr_frags, frag, tabort, tentry; |
| dma_addr_t mapping; |
| unsigned long flags; |
| u64 ctrl; |
| u32 len; |
| |
| spin_lock_irqsave(&cp->tx_lock[ring], flags); |
| |
| /* This is a hard error, log it. */ |
| if (TX_BUFFS_AVAIL(cp, ring) <= |
| CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { |
| netif_stop_queue(dev); |
| spin_unlock_irqrestore(&cp->tx_lock[ring], flags); |
| printk(KERN_ERR PFX "%s: BUG! Tx Ring full when " |
| "queue awake!\n", dev->name); |
| return 1; |
| } |
| |
| ctrl = 0; |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| const u64 csum_start_off = skb_transport_offset(skb); |
| const u64 csum_stuff_off = csum_start_off + skb->csum_offset; |
| |
| ctrl = TX_DESC_CSUM_EN | |
| CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | |
| CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); |
| } |
| |
| entry = cp->tx_new[ring]; |
| cp->tx_skbs[ring][entry] = skb; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| len = skb_headlen(skb); |
| mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), |
| offset_in_page(skb->data), len, |
| PCI_DMA_TODEVICE); |
| |
| tentry = entry; |
| tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); |
| if (unlikely(tabort)) { |
| /* NOTE: len is always > tabort */ |
| cas_write_txd(cp, ring, entry, mapping, len - tabort, |
| ctrl | TX_DESC_SOF, 0); |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| skb_copy_from_linear_data_offset(skb, len - tabort, |
| tx_tiny_buf(cp, ring, entry), tabort); |
| mapping = tx_tiny_map(cp, ring, entry, tentry); |
| cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, |
| (nr_frags == 0)); |
| } else { |
| cas_write_txd(cp, ring, entry, mapping, len, ctrl | |
| TX_DESC_SOF, (nr_frags == 0)); |
| } |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| for (frag = 0; frag < nr_frags; frag++) { |
| skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; |
| |
| len = fragp->size; |
| mapping = pci_map_page(cp->pdev, fragp->page, |
| fragp->page_offset, len, |
| PCI_DMA_TODEVICE); |
| |
| tabort = cas_calc_tabort(cp, fragp->page_offset, len); |
| if (unlikely(tabort)) { |
| void *addr; |
| |
| /* NOTE: len is always > tabort */ |
| cas_write_txd(cp, ring, entry, mapping, len - tabort, |
| ctrl, 0); |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| addr = cas_page_map(fragp->page); |
| memcpy(tx_tiny_buf(cp, ring, entry), |
| addr + fragp->page_offset + len - tabort, |
| tabort); |
| cas_page_unmap(addr); |
| mapping = tx_tiny_map(cp, ring, entry, tentry); |
| len = tabort; |
| } |
| |
| cas_write_txd(cp, ring, entry, mapping, len, ctrl, |
| (frag + 1 == nr_frags)); |
| entry = TX_DESC_NEXT(ring, entry); |
| } |
| |
| cp->tx_new[ring] = entry; |
| if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) |
| netif_stop_queue(dev); |
| |
| if (netif_msg_tx_queued(cp)) |
| printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, " |
| "avail %d\n", |
| dev->name, ring, entry, skb->len, |
| TX_BUFFS_AVAIL(cp, ring)); |
| writel(entry, cp->regs + REG_TX_KICKN(ring)); |
| spin_unlock_irqrestore(&cp->tx_lock[ring], flags); |
| return 0; |
| } |
| |
| static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| /* this is only used as a load-balancing hint, so it doesn't |
| * need to be SMP safe |
| */ |
| static int ring; |
| |
| if (skb_padto(skb, cp->min_frame_size)) |
| return 0; |
| |
| /* XXX: we need some higher-level QoS hooks to steer packets to |
| * individual queues. |
| */ |
| if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) |
| return 1; |
| dev->trans_start = jiffies; |
| return 0; |
| } |
| |
| static void cas_init_tx_dma(struct cas *cp) |
| { |
| u64 desc_dma = cp->block_dvma; |
| unsigned long off; |
| u32 val; |
| int i; |
| |
| /* set up tx completion writeback registers. must be 8-byte aligned */ |
| #ifdef USE_TX_COMPWB |
| off = offsetof(struct cas_init_block, tx_compwb); |
| writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); |
| writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); |
| #endif |
| |
| /* enable completion writebacks, enable paced mode, |
| * disable read pipe, and disable pre-interrupt compwbs |
| */ |
| val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | |
| TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | |
| TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | |
| TX_CFG_INTR_COMPWB_DIS; |
| |
| /* write out tx ring info and tx desc bases */ |
| for (i = 0; i < MAX_TX_RINGS; i++) { |
| off = (unsigned long) cp->init_txds[i] - |
| (unsigned long) cp->init_block; |
| |
| val |= CAS_TX_RINGN_BASE(i); |
| writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); |
| writel((desc_dma + off) & 0xffffffff, cp->regs + |
| REG_TX_DBN_LOW(i)); |
| /* don't zero out the kick register here as the system |
| * will wedge |
| */ |
| } |
| writel(val, cp->regs + REG_TX_CFG); |
| |
| /* program max burst sizes. these numbers should be different |
| * if doing QoS. |
| */ |
| #ifdef USE_QOS |
| writel(0x800, cp->regs + REG_TX_MAXBURST_0); |
| writel(0x1600, cp->regs + REG_TX_MAXBURST_1); |
| writel(0x2400, cp->regs + REG_TX_MAXBURST_2); |
| writel(0x4800, cp->regs + REG_TX_MAXBURST_3); |
| #else |
| writel(0x800, cp->regs + REG_TX_MAXBURST_0); |
| writel(0x800, cp->regs + REG_TX_MAXBURST_1); |
| writel(0x800, cp->regs + REG_TX_MAXBURST_2); |
| writel(0x800, cp->regs + REG_TX_MAXBURST_3); |
| #endif |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static inline void cas_init_dma(struct cas *cp) |
| { |
| cas_init_tx_dma(cp); |
| cas_init_rx_dma(cp); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static u32 cas_setup_multicast(struct cas *cp) |
| { |
| u32 rxcfg = 0; |
| int i; |
| |
| if (cp->dev->flags & IFF_PROMISC) { |
| rxcfg |= MAC_RX_CFG_PROMISC_EN; |
| |
| } else if (cp->dev->flags & IFF_ALLMULTI) { |
| for (i=0; i < 16; i++) |
| writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); |
| rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; |
| |
| } else { |
| u16 hash_table[16]; |
| u32 crc; |
| struct dev_mc_list *dmi = cp->dev->mc_list; |
| int i; |
| |
| /* use the alternate mac address registers for the |
| * first 15 multicast addresses |
| */ |
| for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) { |
| if (!dmi) { |
| writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0)); |
| writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1)); |
| writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2)); |
| continue; |
| } |
| writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], |
| cp->regs + REG_MAC_ADDRN(i*3 + 0)); |
| writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], |
| cp->regs + REG_MAC_ADDRN(i*3 + 1)); |
| writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], |
| cp->regs + REG_MAC_ADDRN(i*3 + 2)); |
| dmi = dmi->next; |
| } |
| |
| /* use hw hash table for the next series of |
| * multicast addresses |
| */ |
| memset(hash_table, 0, sizeof(hash_table)); |
| while (dmi) { |
| crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr); |
| crc >>= 24; |
| hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); |
| dmi = dmi->next; |
| } |
| for (i=0; i < 16; i++) |
| writel(hash_table[i], cp->regs + |
| REG_MAC_HASH_TABLEN(i)); |
| rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; |
| } |
| |
| return rxcfg; |
| } |
| |
| /* must be invoked under cp->stat_lock[N_TX_RINGS] */ |
| static void cas_clear_mac_err(struct cas *cp) |
| { |
| writel(0, cp->regs + REG_MAC_COLL_NORMAL); |
| writel(0, cp->regs + REG_MAC_COLL_FIRST); |
| writel(0, cp->regs + REG_MAC_COLL_EXCESS); |
| writel(0, cp->regs + REG_MAC_COLL_LATE); |
| writel(0, cp->regs + REG_MAC_TIMER_DEFER); |
| writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); |
| writel(0, cp->regs + REG_MAC_RECV_FRAME); |
| writel(0, cp->regs + REG_MAC_LEN_ERR); |
| writel(0, cp->regs + REG_MAC_ALIGN_ERR); |
| writel(0, cp->regs + REG_MAC_FCS_ERR); |
| writel(0, cp->regs + REG_MAC_RX_CODE_ERR); |
| } |
| |
| |
| static void cas_mac_reset(struct cas *cp) |
| { |
| int i; |
| |
| /* do both TX and RX reset */ |
| writel(0x1, cp->regs + REG_MAC_TX_RESET); |
| writel(0x1, cp->regs + REG_MAC_RX_RESET); |
| |
| /* wait for TX */ |
| i = STOP_TRIES; |
| while (i-- > 0) { |
| if (readl(cp->regs + REG_MAC_TX_RESET) == 0) |
| break; |
| udelay(10); |
| } |
| |
| /* wait for RX */ |
| i = STOP_TRIES; |
| while (i-- > 0) { |
| if (readl(cp->regs + REG_MAC_RX_RESET) == 0) |
| break; |
| udelay(10); |
| } |
| |
| if (readl(cp->regs + REG_MAC_TX_RESET) | |
| readl(cp->regs + REG_MAC_RX_RESET)) |
| printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n", |
| cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET), |
| readl(cp->regs + REG_MAC_RX_RESET), |
| readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| } |
| |
| |
| /* Must be invoked under cp->lock. */ |
| static void cas_init_mac(struct cas *cp) |
| { |
| unsigned char *e = &cp->dev->dev_addr[0]; |
| int i; |
| #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE |
| u32 rxcfg; |
| #endif |
| cas_mac_reset(cp); |
| |
| /* setup core arbitration weight register */ |
| writel(CAWR_RR_DIS, cp->regs + REG_CAWR); |
| |
| /* XXX Use pci_dma_burst_advice() */ |
| #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) |
| /* set the infinite burst register for chips that don't have |
| * pci issues. |
| */ |
| if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) |
| writel(INF_BURST_EN, cp->regs + REG_INF_BURST); |
| #endif |
| |
| writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); |
| |
| writel(0x00, cp->regs + REG_MAC_IPG0); |
| writel(0x08, cp->regs + REG_MAC_IPG1); |
| writel(0x04, cp->regs + REG_MAC_IPG2); |
| |
| /* change later for 802.3z */ |
| writel(0x40, cp->regs + REG_MAC_SLOT_TIME); |
| |
| /* min frame + FCS */ |
| writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); |
| |
| /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we |
| * specify the maximum frame size to prevent RX tag errors on |
| * oversized frames. |
| */ |
| writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | |
| CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, |
| (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), |
| cp->regs + REG_MAC_FRAMESIZE_MAX); |
| |
| /* NOTE: crc_size is used as a surrogate for half-duplex. |
| * workaround saturn half-duplex issue by increasing preamble |
| * size to 65 bytes. |
| */ |
| if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) |
| writel(0x41, cp->regs + REG_MAC_PA_SIZE); |
| else |
| writel(0x07, cp->regs + REG_MAC_PA_SIZE); |
| writel(0x04, cp->regs + REG_MAC_JAM_SIZE); |
| writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); |
| writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); |
| |
| writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); |
| |
| writel(0, cp->regs + REG_MAC_ADDR_FILTER0); |
| writel(0, cp->regs + REG_MAC_ADDR_FILTER1); |
| writel(0, cp->regs + REG_MAC_ADDR_FILTER2); |
| writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); |
| writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); |
| |
| /* setup mac address in perfect filter array */ |
| for (i = 0; i < 45; i++) |
| writel(0x0, cp->regs + REG_MAC_ADDRN(i)); |
| |
| writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); |
| writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); |
| writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); |
| |
| writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); |
| writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); |
| writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); |
| |
| #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE |
| cp->mac_rx_cfg = cas_setup_multicast(cp); |
| #else |
| /* WTZ: Do what Adrian did in cas_set_multicast. Doing |
| * a writel does not seem to be necessary because Cassini |
| * seems to preserve the configuration when we do the reset. |
| * If the chip is in trouble, though, it is not clear if we |
| * can really count on this behavior. cas_set_multicast uses |
| * spin_lock_irqsave, but we are called only in cas_init_hw and |
| * cas_init_hw is protected by cas_lock_all, which calls |
| * spin_lock_irq (so it doesn't need to save the flags, and |
| * we should be OK for the writel, as that is the only |
| * difference). |
| */ |
| cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp); |
| writel(rxcfg, cp->regs + REG_MAC_RX_CFG); |
| #endif |
| spin_lock(&cp->stat_lock[N_TX_RINGS]); |
| cas_clear_mac_err(cp); |
| spin_unlock(&cp->stat_lock[N_TX_RINGS]); |
| |
| /* Setup MAC interrupts. We want to get all of the interesting |
| * counter expiration events, but we do not want to hear about |
| * normal rx/tx as the DMA engine tells us that. |
| */ |
| writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); |
| writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); |
| |
| /* Don't enable even the PAUSE interrupts for now, we |
| * make no use of those events other than to record them. |
| */ |
| writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static void cas_init_pause_thresholds(struct cas *cp) |
| { |
| /* Calculate pause thresholds. Setting the OFF threshold to the |
| * full RX fifo size effectively disables PAUSE generation |
| */ |
| if (cp->rx_fifo_size <= (2 * 1024)) { |
| cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; |
| } else { |
| int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; |
| if (max_frame * 3 > cp->rx_fifo_size) { |
| cp->rx_pause_off = 7104; |
| cp->rx_pause_on = 960; |
| } else { |
| int off = (cp->rx_fifo_size - (max_frame * 2)); |
| int on = off - max_frame; |
| cp->rx_pause_off = off; |
| cp->rx_pause_on = on; |
| } |
| } |
| } |
| |
| static int cas_vpd_match(const void __iomem *p, const char *str) |
| { |
| int len = strlen(str) + 1; |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (readb(p + i) != str[i]) |
| return 0; |
| } |
| return 1; |
| } |
| |
| |
| /* get the mac address by reading the vpd information in the rom. |
| * also get the phy type and determine if there's an entropy generator. |
| * NOTE: this is a bit convoluted for the following reasons: |
| * 1) vpd info has order-dependent mac addresses for multinic cards |
| * 2) the only way to determine the nic order is to use the slot |
| * number. |
| * 3) fiber cards don't have bridges, so their slot numbers don't |
| * mean anything. |
| * 4) we don't actually know we have a fiber card until after |
| * the mac addresses are parsed. |
| */ |
| static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, |
| const int offset) |
| { |
| void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; |
| void __iomem *base, *kstart; |
| int i, len; |
| int found = 0; |
| #define VPD_FOUND_MAC 0x01 |
| #define VPD_FOUND_PHY 0x02 |
| |
| int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ |
| int mac_off = 0; |
| |
| /* give us access to the PROM */ |
| writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, |
| cp->regs + REG_BIM_LOCAL_DEV_EN); |
| |
| /* check for an expansion rom */ |
| if (readb(p) != 0x55 || readb(p + 1) != 0xaa) |
| goto use_random_mac_addr; |
| |
| /* search for beginning of vpd */ |
| base = NULL; |
| for (i = 2; i < EXPANSION_ROM_SIZE; i++) { |
| /* check for PCIR */ |
| if ((readb(p + i + 0) == 0x50) && |
| (readb(p + i + 1) == 0x43) && |
| (readb(p + i + 2) == 0x49) && |
| (readb(p + i + 3) == 0x52)) { |
| base = p + (readb(p + i + 8) | |
| (readb(p + i + 9) << 8)); |
| break; |
| } |
| } |
| |
| if (!base || (readb(base) != 0x82)) |
| goto use_random_mac_addr; |
| |
| i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; |
| while (i < EXPANSION_ROM_SIZE) { |
| if (readb(base + i) != 0x90) /* no vpd found */ |
| goto use_random_mac_addr; |
| |
| /* found a vpd field */ |
| len = readb(base + i + 1) | (readb(base + i + 2) << 8); |
| |
| /* extract keywords */ |
| kstart = base + i + 3; |
| p = kstart; |
| while ((p - kstart) < len) { |
| int klen = readb(p + 2); |
| int j; |
| char type; |
| |
| p += 3; |
| |
| /* look for the following things: |
| * -- correct length == 29 |
| * 3 (type) + 2 (size) + |
| * 18 (strlen("local-mac-address") + 1) + |
| * 6 (mac addr) |
| * -- VPD Instance 'I' |
| * -- VPD Type Bytes 'B' |
| * -- VPD data length == 6 |
| * -- property string == local-mac-address |
| * |
| * -- correct length == 24 |
| * 3 (type) + 2 (size) + |
| * 12 (strlen("entropy-dev") + 1) + |
| * 7 (strlen("vms110") + 1) |
| * -- VPD Instance 'I' |
| * -- VPD Type String 'B' |
| * -- VPD data length == 7 |
| * -- property string == entropy-dev |
| * |
| * -- correct length == 18 |
| * 3 (type) + 2 (size) + |
| * 9 (strlen("phy-type") + 1) + |
| * 4 (strlen("pcs") + 1) |
| * -- VPD Instance 'I' |
| * -- VPD Type String 'S' |
| * -- VPD data length == 4 |
| * -- property string == phy-type |
| * |
| * -- correct length == 23 |
| * 3 (type) + 2 (size) + |
| * 14 (strlen("phy-interface") + 1) + |
| * 4 (strlen("pcs") + 1) |
| * -- VPD Instance 'I' |
| * -- VPD Type String 'S' |
| * -- VPD data length == 4 |
| * -- property string == phy-interface |
| */ |
| if (readb(p) != 'I') |
| goto next; |
| |
| /* finally, check string and length */ |
| type = readb(p + 3); |
| if (type == 'B') { |
| if ((klen == 29) && readb(p + 4) == 6 && |
| cas_vpd_match(p + 5, |
| "local-mac-address")) { |
| if (mac_off++ > offset) |
| goto next; |
| |
| /* set mac address */ |
| for (j = 0; j < 6; j++) |
| dev_addr[j] = |
| readb(p + 23 + j); |
| goto found_mac; |
| } |
| } |
| |
| if (type != 'S') |
| goto next; |
| |
| #ifdef USE_ENTROPY_DEV |
| if ((klen == 24) && |
| cas_vpd_match(p + 5, "entropy-dev") && |
| cas_vpd_match(p + 17, "vms110")) { |
| cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; |
| goto next; |
| } |
| #endif |
| |
| if (found & VPD_FOUND_PHY) |
| goto next; |
| |
| if ((klen == 18) && readb(p + 4) == 4 && |
| cas_vpd_match(p + 5, "phy-type")) { |
| if (cas_vpd_match(p + 14, "pcs")) { |
| phy_type = CAS_PHY_SERDES; |
| goto found_phy; |
| } |
| } |
| |
| if ((klen == 23) && readb(p + 4) == 4 && |
| cas_vpd_match(p + 5, "phy-interface")) { |
| if (cas_vpd_match(p + 19, "pcs")) { |
| phy_type = CAS_PHY_SERDES; |
| goto found_phy; |
| } |
| } |
| found_mac: |
| found |= VPD_FOUND_MAC; |
| goto next; |
| |
| found_phy: |
| found |= VPD_FOUND_PHY; |
| |
| next: |
| p += klen; |
| } |
| i += len + 3; |
| } |
| |
| use_random_mac_addr: |
| if (found & VPD_FOUND_MAC) |
| goto done; |
| |
| /* Sun MAC prefix then 3 random bytes. */ |
| printk(PFX "MAC address not found in ROM VPD\n"); |
| dev_addr[0] = 0x08; |
| dev_addr[1] = 0x00; |
| dev_addr[2] = 0x20; |
| get_random_bytes(dev_addr + 3, 3); |
| |
| done: |
| writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); |
| return phy_type; |
| } |
| |
| /* check pci invariants */ |
| static void cas_check_pci_invariants(struct cas *cp) |
| { |
| struct pci_dev *pdev = cp->pdev; |
| |
| cp->cas_flags = 0; |
| if ((pdev->vendor == PCI_VENDOR_ID_SUN) && |
| (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { |
| if (pdev->revision >= CAS_ID_REVPLUS) |
| cp->cas_flags |= CAS_FLAG_REG_PLUS; |
| if (pdev->revision < CAS_ID_REVPLUS02u) |
| cp->cas_flags |= CAS_FLAG_TARGET_ABORT; |
| |
| /* Original Cassini supports HW CSUM, but it's not |
| * enabled by default as it can trigger TX hangs. |
| */ |
| if (pdev->revision < CAS_ID_REV2) |
| cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; |
| } else { |
| /* Only sun has original cassini chips. */ |
| cp->cas_flags |= CAS_FLAG_REG_PLUS; |
| |
| /* We use a flag because the same phy might be externally |
| * connected. |
| */ |
| if ((pdev->vendor == PCI_VENDOR_ID_NS) && |
| (pdev->device == PCI_DEVICE_ID_NS_SATURN)) |
| cp->cas_flags |= CAS_FLAG_SATURN; |
| } |
| } |
| |
| |
| static int cas_check_invariants(struct cas *cp) |
| { |
| struct pci_dev *pdev = cp->pdev; |
| u32 cfg; |
| int i; |
| |
| /* get page size for rx buffers. */ |
| cp->page_order = 0; |
| #ifdef USE_PAGE_ORDER |
| if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { |
| /* see if we can allocate larger pages */ |
| struct page *page = alloc_pages(GFP_ATOMIC, |
| CAS_JUMBO_PAGE_SHIFT - |
| PAGE_SHIFT); |
| if (page) { |
| __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); |
| cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; |
| } else { |
| printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU); |
| } |
| } |
| #endif |
| cp->page_size = (PAGE_SIZE << cp->page_order); |
| |
| /* Fetch the FIFO configurations. */ |
| cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; |
| cp->rx_fifo_size = RX_FIFO_SIZE; |
| |
| /* finish phy determination. MDIO1 takes precedence over MDIO0 if |
| * they're both connected. |
| */ |
| cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, |
| PCI_SLOT(pdev->devfn)); |
| if (cp->phy_type & CAS_PHY_SERDES) { |
| cp->cas_flags |= CAS_FLAG_1000MB_CAP; |
| return 0; /* no more checking needed */ |
| } |
| |
| /* MII */ |
| cfg = readl(cp->regs + REG_MIF_CFG); |
| if (cfg & MIF_CFG_MDIO_1) { |
| cp->phy_type = CAS_PHY_MII_MDIO1; |
| } else if (cfg & MIF_CFG_MDIO_0) { |
| cp->phy_type = CAS_PHY_MII_MDIO0; |
| } |
| |
| cas_mif_poll(cp, 0); |
| writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); |
| |
| for (i = 0; i < 32; i++) { |
| u32 phy_id; |
| int j; |
| |
| for (j = 0; j < 3; j++) { |
| cp->phy_addr = i; |
| phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; |
| phy_id |= cas_phy_read(cp, MII_PHYSID2); |
| if (phy_id && (phy_id != 0xFFFFFFFF)) { |
| cp->phy_id = phy_id; |
| goto done; |
| } |
| } |
| } |
| printk(KERN_ERR PFX "MII phy did not respond [%08x]\n", |
| readl(cp->regs + REG_MIF_STATE_MACHINE)); |
| return -1; |
| |
| done: |
| /* see if we can do gigabit */ |
| cfg = cas_phy_read(cp, MII_BMSR); |
| if ((cfg & CAS_BMSR_1000_EXTEND) && |
| cas_phy_read(cp, CAS_MII_1000_EXTEND)) |
| cp->cas_flags |= CAS_FLAG_1000MB_CAP; |
| return 0; |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static inline void cas_start_dma(struct cas *cp) |
| { |
| int i; |
| u32 val; |
| int txfailed = 0; |
| |
| /* enable dma */ |
| val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; |
| writel(val, cp->regs + REG_TX_CFG); |
| val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; |
| writel(val, cp->regs + REG_RX_CFG); |
| |
| /* enable the mac */ |
| val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; |
| writel(val, cp->regs + REG_MAC_TX_CFG); |
| val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; |
| writel(val, cp->regs + REG_MAC_RX_CFG); |
| |
| i = STOP_TRIES; |
| while (i-- > 0) { |
| val = readl(cp->regs + REG_MAC_TX_CFG); |
| if ((val & MAC_TX_CFG_EN)) |
| break; |
| udelay(10); |
| } |
| if (i < 0) txfailed = 1; |
| i = STOP_TRIES; |
| while (i-- > 0) { |
| val = readl(cp->regs + REG_MAC_RX_CFG); |
| if ((val & MAC_RX_CFG_EN)) { |
| if (txfailed) { |
| printk(KERN_ERR |
| "%s: enabling mac failed [tx:%08x:%08x].\n", |
| cp->dev->name, |
| readl(cp->regs + REG_MIF_STATE_MACHINE), |
| readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| } |
| goto enable_rx_done; |
| } |
| udelay(10); |
| } |
| printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", |
| cp->dev->name, |
| (txfailed? "tx,rx":"rx"), |
| readl(cp->regs + REG_MIF_STATE_MACHINE), |
| readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| |
| enable_rx_done: |
| cas_unmask_intr(cp); /* enable interrupts */ |
| writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); |
| writel(0, cp->regs + REG_RX_COMP_TAIL); |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| if (N_RX_DESC_RINGS > 1) |
| writel(RX_DESC_RINGN_SIZE(1) - 4, |
| cp->regs + REG_PLUS_RX_KICK1); |
| |
| for (i = 1; i < N_RX_COMP_RINGS; i++) |
| writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); |
| } |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, |
| int *pause) |
| { |
| u32 val = readl(cp->regs + REG_PCS_MII_LPA); |
| *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; |
| *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; |
| if (val & PCS_MII_LPA_ASYM_PAUSE) |
| *pause |= 0x10; |
| *spd = 1000; |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, |
| int *pause) |
| { |
| u32 val; |
| |
| *fd = 0; |
| *spd = 10; |
| *pause = 0; |
| |
| /* use GMII registers */ |
| val = cas_phy_read(cp, MII_LPA); |
| if (val & CAS_LPA_PAUSE) |
| *pause = 0x01; |
| |
| if (val & CAS_LPA_ASYM_PAUSE) |
| *pause |= 0x10; |
| |
| if (val & LPA_DUPLEX) |
| *fd = 1; |
| if (val & LPA_100) |
| *spd = 100; |
| |
| if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| val = cas_phy_read(cp, CAS_MII_1000_STATUS); |
| if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) |
| *spd = 1000; |
| if (val & CAS_LPA_1000FULL) |
| *fd = 1; |
| } |
| } |
| |
| /* A link-up condition has occurred, initialize and enable the |
| * rest of the chip. |
| * |
| * Must be invoked under cp->lock. |
| */ |
| static void cas_set_link_modes(struct cas *cp) |
| { |
| u32 val; |
| int full_duplex, speed, pause; |
| |
| full_duplex = 0; |
| speed = 10; |
| pause = 0; |
| |
| if (CAS_PHY_MII(cp->phy_type)) { |
| cas_mif_poll(cp, 0); |
| val = cas_phy_read(cp, MII_BMCR); |
| if (val & BMCR_ANENABLE) { |
| cas_read_mii_link_mode(cp, &full_duplex, &speed, |
| &pause); |
| } else { |
| if (val & BMCR_FULLDPLX) |
| full_duplex = 1; |
| |
| if (val & BMCR_SPEED100) |
| speed = 100; |
| else if (val & CAS_BMCR_SPEED1000) |
| speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? |
| 1000 : 100; |
| } |
| cas_mif_poll(cp, 1); |
| |
| } else { |
| val = readl(cp->regs + REG_PCS_MII_CTRL); |
| cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); |
| if ((val & PCS_MII_AUTONEG_EN) == 0) { |
| if (val & PCS_MII_CTRL_DUPLEX) |
| full_duplex = 1; |
| } |
| } |
| |
| if (netif_msg_link(cp)) |
| printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n", |
| cp->dev->name, speed, (full_duplex ? "full" : "half")); |
| |
| val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; |
| if (CAS_PHY_MII(cp->phy_type)) { |
| val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; |
| if (!full_duplex) |
| val |= MAC_XIF_DISABLE_ECHO; |
| } |
| if (full_duplex) |
| val |= MAC_XIF_FDPLX_LED; |
| if (speed == 1000) |
| val |= MAC_XIF_GMII_MODE; |
| writel(val, cp->regs + REG_MAC_XIF_CFG); |
| |
| /* deal with carrier and collision detect. */ |
| val = MAC_TX_CFG_IPG_EN; |
| if (full_duplex) { |
| val |= MAC_TX_CFG_IGNORE_CARRIER; |
| val |= MAC_TX_CFG_IGNORE_COLL; |
| } else { |
| #ifndef USE_CSMA_CD_PROTO |
| val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; |
| val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; |
| #endif |
| } |
| /* val now set up for REG_MAC_TX_CFG */ |
| |
| /* If gigabit and half-duplex, enable carrier extension |
| * mode. increase slot time to 512 bytes as well. |
| * else, disable it and make sure slot time is 64 bytes. |
| * also activate checksum bug workaround |
| */ |
| if ((speed == 1000) && !full_duplex) { |
| writel(val | MAC_TX_CFG_CARRIER_EXTEND, |
| cp->regs + REG_MAC_TX_CFG); |
| |
| val = readl(cp->regs + REG_MAC_RX_CFG); |
| val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ |
| writel(val | MAC_RX_CFG_CARRIER_EXTEND, |
| cp->regs + REG_MAC_RX_CFG); |
| |
| writel(0x200, cp->regs + REG_MAC_SLOT_TIME); |
| |
| cp->crc_size = 4; |
| /* minimum size gigabit frame at half duplex */ |
| cp->min_frame_size = CAS_1000MB_MIN_FRAME; |
| |
| } else { |
| writel(val, cp->regs + REG_MAC_TX_CFG); |
| |
| /* checksum bug workaround. don't strip FCS when in |
| * half-duplex mode |
| */ |
| val = readl(cp->regs + REG_MAC_RX_CFG); |
| if (full_duplex) { |
| val |= MAC_RX_CFG_STRIP_FCS; |
| cp->crc_size = 0; |
| cp->min_frame_size = CAS_MIN_MTU; |
| } else { |
| val &= ~MAC_RX_CFG_STRIP_FCS; |
| cp->crc_size = 4; |
| cp->min_frame_size = CAS_MIN_FRAME; |
| } |
| writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, |
| cp->regs + REG_MAC_RX_CFG); |
| writel(0x40, cp->regs + REG_MAC_SLOT_TIME); |
| } |
| |
| if (netif_msg_link(cp)) { |
| if (pause & 0x01) { |
| printk(KERN_INFO "%s: Pause is enabled " |
| "(rxfifo: %d off: %d on: %d)\n", |
| cp->dev->name, |
| cp->rx_fifo_size, |
| cp->rx_pause_off, |
| cp->rx_pause_on); |
| } else if (pause & 0x10) { |
| printk(KERN_INFO "%s: TX pause enabled\n", |
| cp->dev->name); |
| } else { |
| printk(KERN_INFO "%s: Pause is disabled\n", |
| cp->dev->name); |
| } |
| } |
| |
| val = readl(cp->regs + REG_MAC_CTRL_CFG); |
| val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); |
| if (pause) { /* symmetric or asymmetric pause */ |
| val |= MAC_CTRL_CFG_SEND_PAUSE_EN; |
| if (pause & 0x01) { /* symmetric pause */ |
| val |= MAC_CTRL_CFG_RECV_PAUSE_EN; |
| } |
| } |
| writel(val, cp->regs + REG_MAC_CTRL_CFG); |
| cas_start_dma(cp); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static void cas_init_hw(struct cas *cp, int restart_link) |
| { |
| if (restart_link) |
| cas_phy_init(cp); |
| |
| cas_init_pause_thresholds(cp); |
| cas_init_mac(cp); |
| cas_init_dma(cp); |
| |
| if (restart_link) { |
| /* Default aneg parameters */ |
| cp->timer_ticks = 0; |
| cas_begin_auto_negotiation(cp, NULL); |
| } else if (cp->lstate == link_up) { |
| cas_set_link_modes(cp); |
| netif_carrier_on(cp->dev); |
| } |
| } |
| |
| /* Must be invoked under cp->lock. on earlier cassini boards, |
| * SOFT_0 is tied to PCI reset. we use this to force a pci reset, |
| * let it settle out, and then restore pci state. |
| */ |
| static void cas_hard_reset(struct cas *cp) |
| { |
| writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); |
| udelay(20); |
| pci_restore_state(cp->pdev); |
| } |
| |
| |
| static void cas_global_reset(struct cas *cp, int blkflag) |
| { |
| int limit; |
| |
| /* issue a global reset. don't use RSTOUT. */ |
| if (blkflag && !CAS_PHY_MII(cp->phy_type)) { |
| /* For PCS, when the blkflag is set, we should set the |
| * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of |
| * the last autonegotiation from being cleared. We'll |
| * need some special handling if the chip is set into a |
| * loopback mode. |
| */ |
| writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), |
| cp->regs + REG_SW_RESET); |
| } else { |
| writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); |
| } |
| |
| /* need to wait at least 3ms before polling register */ |
| mdelay(3); |
| |
| limit = STOP_TRIES; |
| while (limit-- > 0) { |
| u32 val = readl(cp->regs + REG_SW_RESET); |
| if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) |
| goto done; |
| udelay(10); |
| } |
| printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name); |
| |
| done: |
| /* enable various BIM interrupts */ |
| writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | |
| BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); |
| |
| /* clear out pci error status mask for handled errors. |
| * we don't deal with DMA counter overflows as they happen |
| * all the time. |
| */ |
| writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | |
| PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | |
| PCI_ERR_BIM_DMA_READ), cp->regs + |
| REG_PCI_ERR_STATUS_MASK); |
| |
| /* set up for MII by default to address mac rx reset timeout |
| * issue |
| */ |
| writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); |
| } |
| |
| static void cas_reset(struct cas *cp, int blkflag) |
| { |
| u32 val; |
| |
| cas_mask_intr(cp); |
| cas_global_reset(cp, blkflag); |
| cas_mac_reset(cp); |
| cas_entropy_reset(cp); |
| |
| /* disable dma engines. */ |
| val = readl(cp->regs + REG_TX_CFG); |
| val &= ~TX_CFG_DMA_EN; |
| writel(val, cp->regs + REG_TX_CFG); |
| |
| val = readl(cp->regs + REG_RX_CFG); |
| val &= ~RX_CFG_DMA_EN; |
| writel(val, cp->regs + REG_RX_CFG); |
| |
| /* program header parser */ |
| if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || |
| (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { |
| cas_load_firmware(cp, CAS_HP_FIRMWARE); |
| } else { |
| cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); |
| } |
| |
| /* clear out error registers */ |
| spin_lock(&cp->stat_lock[N_TX_RINGS]); |
| cas_clear_mac_err(cp); |
| spin_unlock(&cp->stat_lock[N_TX_RINGS]); |
| } |
| |
| /* Shut down the chip, must be called with pm_mutex held. */ |
| static void cas_shutdown(struct cas *cp) |
| { |
| unsigned long flags; |
| |
| /* Make us not-running to avoid timers respawning */ |
| cp->hw_running = 0; |
| |
| del_timer_sync(&cp->link_timer); |
| |
| /* Stop the reset task */ |
| #if 0 |
| while (atomic_read(&cp->reset_task_pending_mtu) || |
| atomic_read(&cp->reset_task_pending_spare) || |
| atomic_read(&cp->reset_task_pending_all)) |
| schedule(); |
| |
| #else |
| while (atomic_read(&cp->reset_task_pending)) |
| schedule(); |
| #endif |
| /* Actually stop the chip */ |
| cas_lock_all_save(cp, flags); |
| cas_reset(cp, 0); |
| if (cp->cas_flags & CAS_FLAG_SATURN) |
| cas_phy_powerdown(cp); |
| cas_unlock_all_restore(cp, flags); |
| } |
| |
| static int cas_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) |
| return -EINVAL; |
| |
| dev->mtu = new_mtu; |
| if (!netif_running(dev) || !netif_device_present(dev)) |
| return 0; |
| |
| /* let the reset task handle it */ |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| if ((cp->phy_type & CAS_PHY_SERDES)) { |
| atomic_inc(&cp->reset_task_pending_all); |
| } else { |
| atomic_inc(&cp->reset_task_pending_mtu); |
| } |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? |
| CAS_RESET_ALL : CAS_RESET_MTU); |
| printk(KERN_ERR "reset called in cas_change_mtu\n"); |
| schedule_work(&cp->reset_task); |
| #endif |
| |
| flush_scheduled_work(); |
| return 0; |
| } |
| |
| static void cas_clean_txd(struct cas *cp, int ring) |
| { |
| struct cas_tx_desc *txd = cp->init_txds[ring]; |
| struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; |
| u64 daddr, dlen; |
| int i, size; |
| |
| size = TX_DESC_RINGN_SIZE(ring); |
| for (i = 0; i < size; i++) { |
| int frag; |
| |
| if (skbs[i] == NULL) |
| continue; |
| |
| skb = skbs[i]; |
| skbs[i] = NULL; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| int ent = i & (size - 1); |
| |
| /* first buffer is never a tiny buffer and so |
| * needs to be unmapped. |
| */ |
| daddr = le64_to_cpu(txd[ent].buffer); |
| dlen = CAS_VAL(TX_DESC_BUFLEN, |
| le64_to_cpu(txd[ent].control)); |
| pci_unmap_page(cp->pdev, daddr, dlen, |
| PCI_DMA_TODEVICE); |
| |
| if (frag != skb_shinfo(skb)->nr_frags) { |
| i++; |
| |
| /* next buffer might by a tiny buffer. |
| * skip past it. |
| */ |
| ent = i & (size - 1); |
| if (cp->tx_tiny_use[ring][ent].used) |
| i++; |
| } |
| } |
| dev_kfree_skb_any(skb); |
| } |
| |
| /* zero out tiny buf usage */ |
| memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); |
| } |
| |
| /* freed on close */ |
| static inline void cas_free_rx_desc(struct cas *cp, int ring) |
| { |
| cas_page_t **page = cp->rx_pages[ring]; |
| int i, size; |
| |
| size = RX_DESC_RINGN_SIZE(ring); |
| for (i = 0; i < size; i++) { |
| if (page[i]) { |
| cas_page_free(cp, page[i]); |
| page[i] = NULL; |
| } |
| } |
| } |
| |
| static void cas_free_rxds(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_RX_DESC_RINGS; i++) |
| cas_free_rx_desc(cp, i); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static void cas_clean_rings(struct cas *cp) |
| { |
| int i; |
| |
| /* need to clean all tx rings */ |
| memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); |
| memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); |
| for (i = 0; i < N_TX_RINGS; i++) |
| cas_clean_txd(cp, i); |
| |
| /* zero out init block */ |
| memset(cp->init_block, 0, sizeof(struct cas_init_block)); |
| cas_clean_rxds(cp); |
| cas_clean_rxcs(cp); |
| } |
| |
| /* allocated on open */ |
| static inline int cas_alloc_rx_desc(struct cas *cp, int ring) |
| { |
| cas_page_t **page = cp->rx_pages[ring]; |
| int size, i = 0; |
| |
| size = RX_DESC_RINGN_SIZE(ring); |
| for (i = 0; i < size; i++) { |
| if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int cas_alloc_rxds(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_RX_DESC_RINGS; i++) { |
| if (cas_alloc_rx_desc(cp, i) < 0) { |
| cas_free_rxds(cp); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static void cas_reset_task(struct work_struct *work) |
| { |
| struct cas *cp = container_of(work, struct cas, reset_task); |
| #if 0 |
| int pending = atomic_read(&cp->reset_task_pending); |
| #else |
| int pending_all = atomic_read(&cp->reset_task_pending_all); |
| int pending_spare = atomic_read(&cp->reset_task_pending_spare); |
| int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); |
| |
| if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { |
| /* We can have more tasks scheduled than actually |
| * needed. |
| */ |
| atomic_dec(&cp->reset_task_pending); |
| return; |
| } |
| #endif |
| /* The link went down, we reset the ring, but keep |
| * DMA stopped. Use this function for reset |
| * on error as well. |
| */ |
| if (cp->hw_running) { |
| unsigned long flags; |
| |
| /* Make sure we don't get interrupts or tx packets */ |
| netif_device_detach(cp->dev); |
| cas_lock_all_save(cp, flags); |
| |
| if (cp->opened) { |
| /* We call cas_spare_recover when we call cas_open. |
| * but we do not initialize the lists cas_spare_recover |
| * uses until cas_open is called. |
| */ |
| cas_spare_recover(cp, GFP_ATOMIC); |
| } |
| #if 1 |
| /* test => only pending_spare set */ |
| if (!pending_all && !pending_mtu) |
| goto done; |
| #else |
| if (pending == CAS_RESET_SPARE) |
| goto done; |
| #endif |
| /* when pending == CAS_RESET_ALL, the following |
| * call to cas_init_hw will restart auto negotiation. |
| * Setting the second argument of cas_reset to |
| * !(pending == CAS_RESET_ALL) will set this argument |
| * to 1 (avoiding reinitializing the PHY for the normal |
| * PCS case) when auto negotiation is not restarted. |
| */ |
| #if 1 |
| cas_reset(cp, !(pending_all > 0)); |
| if (cp->opened) |
| cas_clean_rings(cp); |
| cas_init_hw(cp, (pending_all > 0)); |
| #else |
| cas_reset(cp, !(pending == CAS_RESET_ALL)); |
| if (cp->opened) |
| cas_clean_rings(cp); |
| cas_init_hw(cp, pending == CAS_RESET_ALL); |
| #endif |
| |
| done: |
| cas_unlock_all_restore(cp, flags); |
| netif_device_attach(cp->dev); |
| } |
| #if 1 |
| atomic_sub(pending_all, &cp->reset_task_pending_all); |
| atomic_sub(pending_spare, &cp->reset_task_pending_spare); |
| atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); |
| atomic_dec(&cp->reset_task_pending); |
| #else |
| atomic_set(&cp->reset_task_pending, 0); |
| #endif |
| } |
| |
| static void cas_link_timer(unsigned long data) |
| { |
| struct cas *cp = (struct cas *) data; |
| int mask, pending = 0, reset = 0; |
| unsigned long flags; |
| |
| if (link_transition_timeout != 0 && |
| cp->link_transition_jiffies_valid && |
| ((jiffies - cp->link_transition_jiffies) > |
| (link_transition_timeout))) { |
| /* One-second counter so link-down workaround doesn't |
| * cause resets to occur so fast as to fool the switch |
| * into thinking the link is down. |
| */ |
| cp->link_transition_jiffies_valid = 0; |
| } |
| |
| if (!cp->hw_running) |
| return; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_lock_tx(cp); |
| cas_entropy_gather(cp); |
| |
| /* If the link task is still pending, we just |
| * reschedule the link timer |
| */ |
| #if 1 |
| if (atomic_read(&cp->reset_task_pending_all) || |
| atomic_read(&cp->reset_task_pending_spare) || |
| atomic_read(&cp->reset_task_pending_mtu)) |
| goto done; |
| #else |
| if (atomic_read(&cp->reset_task_pending)) |
| goto done; |
| #endif |
| |
| /* check for rx cleaning */ |
| if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { |
| int i, rmask; |
| |
| for (i = 0; i < MAX_RX_DESC_RINGS; i++) { |
| rmask = CAS_FLAG_RXD_POST(i); |
| if ((mask & rmask) == 0) |
| continue; |
| |
| /* post_rxds will do a mod_timer */ |
| if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { |
| pending = 1; |
| continue; |
| } |
| cp->cas_flags &= ~rmask; |
| } |
| } |
| |
| if (CAS_PHY_MII(cp->phy_type)) { |
| u16 bmsr; |
| cas_mif_poll(cp, 0); |
| bmsr = cas_phy_read(cp, MII_BMSR); |
| /* WTZ: Solaris driver reads this twice, but that |
| * may be due to the PCS case and the use of a |
| * common implementation. Read it twice here to be |
| * safe. |
| */ |
| bmsr = cas_phy_read(cp, MII_BMSR); |
| cas_mif_poll(cp, 1); |
| readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ |
| reset = cas_mii_link_check(cp, bmsr); |
| } else { |
| reset = cas_pcs_link_check(cp); |
| } |
| |
| if (reset) |
| goto done; |
| |
| /* check for tx state machine confusion */ |
| if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { |
| u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); |
| u32 wptr, rptr; |
| int tlm = CAS_VAL(MAC_SM_TLM, val); |
| |
| if (((tlm == 0x5) || (tlm == 0x3)) && |
| (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { |
| if (netif_msg_tx_err(cp)) |
| printk(KERN_DEBUG "%s: tx err: " |
| "MAC_STATE[%08x]\n", |
| cp->dev->name, val); |
| reset = 1; |
| goto done; |
| } |
| |
| val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); |
| wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); |
| rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); |
| if ((val == 0) && (wptr != rptr)) { |
| if (netif_msg_tx_err(cp)) |
| printk(KERN_DEBUG "%s: tx err: " |
| "TX_FIFO[%08x:%08x:%08x]\n", |
| cp->dev->name, val, wptr, rptr); |
| reset = 1; |
| } |
| |
| if (reset) |
| cas_hard_reset(cp); |
| } |
| |
| done: |
| if (reset) { |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| printk(KERN_ERR "reset called in cas_link_timer\n"); |
| schedule_work(&cp->reset_task); |
| #endif |
| } |
| |
| if (!pending) |
| mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| cas_unlock_tx(cp); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| } |
| |
| /* tiny buffers are used to avoid target abort issues with |
| * older cassini's |
| */ |
| static void cas_tx_tiny_free(struct cas *cp) |
| { |
| struct pci_dev *pdev = cp->pdev; |
| int i; |
| |
| for (i = 0; i < N_TX_RINGS; i++) { |
| if (!cp->tx_tiny_bufs[i]) |
| continue; |
| |
| pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, |
| cp->tx_tiny_bufs[i], |
| cp->tx_tiny_dvma[i]); |
| cp->tx_tiny_bufs[i] = NULL; |
| } |
| } |
| |
| static int cas_tx_tiny_alloc(struct cas *cp) |
| { |
| struct pci_dev *pdev = cp->pdev; |
| int i; |
| |
| for (i = 0; i < N_TX_RINGS; i++) { |
| cp->tx_tiny_bufs[i] = |
| pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, |
| &cp->tx_tiny_dvma[i]); |
| if (!cp->tx_tiny_bufs[i]) { |
| cas_tx_tiny_free(cp); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| |
| static int cas_open(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| int hw_was_up, err; |
| unsigned long flags; |
| |
| mutex_lock(&cp->pm_mutex); |
| |
| hw_was_up = cp->hw_running; |
| |
| /* The power-management mutex protects the hw_running |
| * etc. state so it is safe to do this bit without cp->lock |
| */ |
| if (!cp->hw_running) { |
| /* Reset the chip */ |
| cas_lock_all_save(cp, flags); |
| /* We set the second arg to cas_reset to zero |
| * because cas_init_hw below will have its second |
| * argument set to non-zero, which will force |
| * autonegotiation to start. |
| */ |
| cas_reset(cp, 0); |
| cp->hw_running = 1; |
| cas_unlock_all_restore(cp, flags); |
| } |
| |
| if (cas_tx_tiny_alloc(cp) < 0) |
| return -ENOMEM; |
| |
| /* alloc rx descriptors */ |
| err = -ENOMEM; |
| if (cas_alloc_rxds(cp) < 0) |
| goto err_tx_tiny; |
| |
| /* allocate spares */ |
| cas_spare_init(cp); |
| cas_spare_recover(cp, GFP_KERNEL); |
| |
| /* We can now request the interrupt as we know it's masked |
| * on the controller. cassini+ has up to 4 interrupts |
| * that can be used, but you need to do explicit pci interrupt |
| * mapping to expose them |
| */ |
| if (request_irq(cp->pdev->irq, cas_interrupt, |
| IRQF_SHARED, dev->name, (void *) dev)) { |
| printk(KERN_ERR "%s: failed to request irq !\n", |
| cp->dev->name); |
| err = -EAGAIN; |
| goto err_spare; |
| } |
| |
| #ifdef USE_NAPI |
| napi_enable(&cp->napi); |
| #endif |
| /* init hw */ |
| cas_lock_all_save(cp, flags); |
| cas_clean_rings(cp); |
| cas_init_hw(cp, !hw_was_up); |
| cp->opened = 1; |
| cas_unlock_all_restore(cp, flags); |
| |
| netif_start_queue(dev); |
| mutex_unlock(&cp->pm_mutex); |
| return 0; |
| |
| err_spare: |
| cas_spare_free(cp); |
| cas_free_rxds(cp); |
| err_tx_tiny: |
| cas_tx_tiny_free(cp); |
| mutex_unlock(&cp->pm_mutex); |
| return err; |
| } |
| |
| static int cas_close(struct net_device *dev) |
| { |
| unsigned long flags; |
| struct cas *cp = netdev_priv(dev); |
| |
| #ifdef USE_NAPI |
| napi_disable(&cp->napi); |
| #endif |
| /* Make sure we don't get distracted by suspend/resume */ |
| mutex_lock(&cp->pm_mutex); |
| |
| netif_stop_queue(dev); |
| |
| /* Stop traffic, mark us closed */ |
| cas_lock_all_save(cp, flags); |
| cp->opened = 0; |
| cas_reset(cp, 0); |
| cas_phy_init(cp); |
| cas_begin_auto_negotiation(cp, NULL); |
| cas_clean_rings(cp); |
| cas_unlock_all_restore(cp, flags); |
| |
| free_irq(cp->pdev->irq, (void *) dev); |
| cas_spare_free(cp); |
| cas_free_rxds(cp); |
| cas_tx_tiny_free(cp); |
| mutex_unlock(&cp->pm_mutex); |
| return 0; |
| } |
| |
| static struct { |
| const char name[ETH_GSTRING_LEN]; |
| } ethtool_cassini_statnames[] = { |
| {"collisions"}, |
| {"rx_bytes"}, |
| {"rx_crc_errors"}, |
| {"rx_dropped"}, |
| {"rx_errors"}, |
| {"rx_fifo_errors"}, |
| {"rx_frame_errors"}, |
| {"rx_length_errors"}, |
| {"rx_over_errors"}, |
| {"rx_packets"}, |
| {"tx_aborted_errors"}, |
| {"tx_bytes"}, |
| {"tx_dropped"}, |
| {"tx_errors"}, |
| {"tx_fifo_errors"}, |
| {"tx_packets"} |
| }; |
| #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) |
| |
| static struct { |
| const int offsets; /* neg. values for 2nd arg to cas_read_phy */ |
| } ethtool_register_table[] = { |
| {-MII_BMSR}, |
| {-MII_BMCR}, |
| {REG_CAWR}, |
| {REG_INF_BURST}, |
| {REG_BIM_CFG}, |
| {REG_RX_CFG}, |
| {REG_HP_CFG}, |
| {REG_MAC_TX_CFG}, |
| {REG_MAC_RX_CFG}, |
| {REG_MAC_CTRL_CFG}, |
| {REG_MAC_XIF_CFG}, |
| {REG_MIF_CFG}, |
| {REG_PCS_CFG}, |
| {REG_SATURN_PCFG}, |
| {REG_PCS_MII_STATUS}, |
| {REG_PCS_STATE_MACHINE}, |
| {REG_MAC_COLL_EXCESS}, |
| {REG_MAC_COLL_LATE} |
| }; |
| #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) |
| #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) |
| |
| static void cas_read_regs(struct cas *cp, u8 *ptr, int len) |
| { |
| u8 *p; |
| int i; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { |
| u16 hval; |
| u32 val; |
| if (ethtool_register_table[i].offsets < 0) { |
| hval = cas_phy_read(cp, |
| -ethtool_register_table[i].offsets); |
| val = hval; |
| } else { |
| val= readl(cp->regs+ethtool_register_table[i].offsets); |
| } |
| memcpy(p, (u8 *)&val, sizeof(u32)); |
| } |
| spin_unlock_irqrestore(&cp->lock, flags); |
| } |
| |
| static struct net_device_stats *cas_get_stats(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| struct net_device_stats *stats = cp->net_stats; |
| unsigned long flags; |
| int i; |
| unsigned long tmp; |
| |
| /* we collate all of the stats into net_stats[N_TX_RING] */ |
| if (!cp->hw_running) |
| return stats + N_TX_RINGS; |
| |
| /* collect outstanding stats */ |
| /* WTZ: the Cassini spec gives these as 16 bit counters but |
| * stored in 32-bit words. Added a mask of 0xffff to be safe, |
| * in case the chip somehow puts any garbage in the other bits. |
| * Also, counter usage didn't seem to mach what Adrian did |
| * in the parts of the code that set these quantities. Made |
| * that consistent. |
| */ |
| spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); |
| stats[N_TX_RINGS].rx_crc_errors += |
| readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; |
| stats[N_TX_RINGS].rx_frame_errors += |
| readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; |
| stats[N_TX_RINGS].rx_length_errors += |
| readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; |
| #if 1 |
| tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + |
| (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); |
| stats[N_TX_RINGS].tx_aborted_errors += tmp; |
| stats[N_TX_RINGS].collisions += |
| tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); |
| #else |
| stats[N_TX_RINGS].tx_aborted_errors += |
| readl(cp->regs + REG_MAC_COLL_EXCESS); |
| stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + |
| readl(cp->regs + REG_MAC_COLL_LATE); |
| #endif |
| cas_clear_mac_err(cp); |
| |
| /* saved bits that are unique to ring 0 */ |
| spin_lock(&cp->stat_lock[0]); |
| stats[N_TX_RINGS].collisions += stats[0].collisions; |
| stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; |
| stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; |
| stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; |
| stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; |
| stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; |
| spin_unlock(&cp->stat_lock[0]); |
| |
| for (i = 0; i < N_TX_RINGS; i++) { |
| spin_lock(&cp->stat_lock[i]); |
| stats[N_TX_RINGS].rx_length_errors += |
| stats[i].rx_length_errors; |
| stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; |
| stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; |
| stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; |
| stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; |
| stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; |
| stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; |
| stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; |
| stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; |
| stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; |
| memset(stats + i, 0, sizeof(struct net_device_stats)); |
| spin_unlock(&cp->stat_lock[i]); |
| } |
| spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); |
| return stats + N_TX_RINGS; |
| } |
| |
| |
| static void cas_set_multicast(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| u32 rxcfg, rxcfg_new; |
| unsigned long flags; |
| int limit = STOP_TRIES; |
| |
| if (!cp->hw_running) |
| return; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| rxcfg = readl(cp->regs + REG_MAC_RX_CFG); |
| |
| /* disable RX MAC and wait for completion */ |
| writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { |
| if (!limit--) |
| break; |
| udelay(10); |
| } |
| |
| /* disable hash filter and wait for completion */ |
| limit = STOP_TRIES; |
| rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); |
| writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { |
| if (!limit--) |
| break; |
| udelay(10); |
| } |
| |
| /* program hash filters */ |
| cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); |
| rxcfg |= rxcfg_new; |
| writel(rxcfg, cp->regs + REG_MAC_RX_CFG); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| } |
| |
| static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct cas *cp = netdev_priv(dev); |
| strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN); |
| strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN); |
| info->fw_version[0] = '\0'; |
| strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN); |
| info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? |
| cp->casreg_len : CAS_MAX_REGS; |
| info->n_stats = CAS_NUM_STAT_KEYS; |
| } |
| |
| static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct cas *cp = netdev_priv(dev); |
| u16 bmcr; |
| int full_duplex, speed, pause; |
| unsigned long flags; |
| enum link_state linkstate = link_up; |
| |
| cmd->advertising = 0; |
| cmd->supported = SUPPORTED_Autoneg; |
| if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| cmd->supported |= SUPPORTED_1000baseT_Full; |
| cmd->advertising |= ADVERTISED_1000baseT_Full; |
| } |
| |
| /* Record PHY settings if HW is on. */ |
| spin_lock_irqsave(&cp->lock, flags); |
| bmcr = 0; |
| linkstate = cp->lstate; |
| if (CAS_PHY_MII(cp->phy_type)) { |
| cmd->port = PORT_MII; |
| cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? |
| XCVR_INTERNAL : XCVR_EXTERNAL; |
| cmd->phy_address = cp->phy_addr; |
| cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | |
| ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | |
| ADVERTISED_100baseT_Half | |
| ADVERTISED_100baseT_Full; |
| |
| cmd->supported |= |
| (SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_TP | SUPPORTED_MII); |
| |
| if (cp->hw_running) { |
| cas_mif_poll(cp, 0); |
| bmcr = cas_phy_read(cp, MII_BMCR); |
| cas_read_mii_link_mode(cp, &full_duplex, |
| &speed, &pause); |
| cas_mif_poll(cp, 1); |
| } |
| |
| } else { |
| cmd->port = PORT_FIBRE; |
| cmd->transceiver = XCVR_INTERNAL; |
| cmd->phy_address = 0; |
| cmd->supported |= SUPPORTED_FIBRE; |
| cmd->advertising |= ADVERTISED_FIBRE; |
| |
| if (cp->hw_running) { |
| /* pcs uses the same bits as mii */ |
| bmcr = readl(cp->regs + REG_PCS_MII_CTRL); |
| cas_read_pcs_link_mode(cp, &full_duplex, |
| &speed, &pause); |
| } |
| } |
| spin_unlock_irqrestore(&cp->lock, flags); |
| |
| if (bmcr & BMCR_ANENABLE) { |
| cmd->advertising |= ADVERTISED_Autoneg; |
| cmd->autoneg = AUTONEG_ENABLE; |
| cmd->speed = ((speed == 10) ? |
| SPEED_10 : |
| ((speed == 1000) ? |
| SPEED_1000 : SPEED_100)); |
| cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; |
| } else { |
| cmd->autoneg = AUTONEG_DISABLE; |
| cmd->speed = |
| (bmcr & CAS_BMCR_SPEED1000) ? |
| SPEED_1000 : |
| ((bmcr & BMCR_SPEED100) ? SPEED_100: |
| SPEED_10); |
| cmd->duplex = |
| (bmcr & BMCR_FULLDPLX) ? |
| DUPLEX_FULL : DUPLEX_HALF; |
| } |
| if (linkstate != link_up) { |
| /* Force these to "unknown" if the link is not up and |
| * autonogotiation in enabled. We can set the link |
| * speed to 0, but not cmd->duplex, |
| * because its legal values are 0 and 1. Ethtool will |
| * print the value reported in parentheses after the |
| * word "Unknown" for unrecognized values. |
| * |
| * If in forced mode, we report the speed and duplex |
| * settings that we configured. |
| */ |
| if (cp->link_cntl & BMCR_ANENABLE) { |
| cmd->speed = 0; |
| cmd->duplex = 0xff; |
| } else { |
| cmd->speed = SPEED_10; |
| if (cp->link_cntl & BMCR_SPEED100) { |
| cmd->speed = SPEED_100; |
| } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { |
| cmd->speed = SPEED_1000; |
| } |
| cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? |
| DUPLEX_FULL : DUPLEX_HALF; |
| } |
| } |
| return 0; |
| } |
| |
| static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| |
| /* Verify the settings we care about. */ |
| if (cmd->autoneg != AUTONEG_ENABLE && |
| cmd->autoneg != AUTONEG_DISABLE) |
| return -EINVAL; |
| |
| if (cmd->autoneg == AUTONEG_DISABLE && |
| ((cmd->speed != SPEED_1000 && |
| cmd->speed != SPEED_100 && |
| cmd->speed != SPEED_10) || |
| (cmd->duplex != DUPLEX_HALF && |
| cmd->duplex != DUPLEX_FULL))) |
| return -EINVAL; |
| |
| /* Apply settings and restart link process. */ |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_begin_auto_negotiation(cp, cmd); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return 0; |
| } |
| |
| static int cas_nway_reset(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| |
| if ((cp->link_cntl & BMCR_ANENABLE) == 0) |
| return -EINVAL; |
| |
| /* Restart link process. */ |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_begin_auto_negotiation(cp, NULL); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| |
| return 0; |
| } |
| |
| static u32 cas_get_link(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| return cp->lstate == link_up; |
| } |
| |
| static u32 cas_get_msglevel(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| return cp->msg_enable; |
| } |
| |
| static void cas_set_msglevel(struct net_device *dev, u32 value) |
| { |
| struct cas *cp = netdev_priv(dev); |
| cp->msg_enable = value; |
| } |
| |
| static int cas_get_regs_len(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; |
| } |
| |
| static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, |
| void *p) |
| { |
| struct cas *cp = netdev_priv(dev); |
| regs->version = 0; |
| /* cas_read_regs handles locks (cp->lock). */ |
| cas_read_regs(cp, p, regs->len / sizeof(u32)); |
| } |
| |
| static int cas_get_sset_count(struct net_device *dev, int sset) |
| { |
| switch (sset) { |
| case ETH_SS_STATS: |
| return CAS_NUM_STAT_KEYS; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) |
| { |
| memcpy(data, ðtool_cassini_statnames, |
| CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); |
| } |
| |
| static void cas_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *estats, u64 *data) |
| { |
| struct cas *cp = netdev_priv(dev); |
| struct net_device_stats *stats = cas_get_stats(cp->dev); |
| int i = 0; |
| data[i++] = stats->collisions; |
| data[i++] = stats->rx_bytes; |
| data[i++] = stats->rx_crc_errors; |
| data[i++] = stats->rx_dropped; |
| data[i++] = stats->rx_errors; |
| data[i++] = stats->rx_fifo_errors; |
| data[i++] = stats->rx_frame_errors; |
| data[i++] = stats->rx_length_errors; |
| data[i++] = stats->rx_over_errors; |
| data[i++] = stats->rx_packets; |
| data[i++] = stats->tx_aborted_errors; |
| data[i++] = stats->tx_bytes; |
| data[i++] = stats->tx_dropped; |
| data[i++] = stats->tx_errors; |
| data[i++] = stats->tx_fifo_errors; |
| data[i++] = stats->tx_packets; |
| BUG_ON(i != CAS_NUM_STAT_KEYS); |
| } |
| |
| static const struct ethtool_ops cas_ethtool_ops = { |
| .get_drvinfo = cas_get_drvinfo, |
| .get_settings = cas_get_settings, |
| .set_settings = cas_set_settings, |
| .nway_reset = cas_nway_reset, |
| .get_link = cas_get_link, |
| .get_msglevel = cas_get_msglevel, |
| .set_msglevel = cas_set_msglevel, |
| .get_regs_len = cas_get_regs_len, |
| .get_regs = cas_get_regs, |
| .get_sset_count = cas_get_sset_count, |
| .get_strings = cas_get_strings, |
| .get_ethtool_stats = cas_get_ethtool_stats, |
| }; |
| |
| static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct cas *cp = netdev_priv(dev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| unsigned long flags; |
| int rc = -EOPNOTSUPP; |
| |
| /* Hold the PM mutex while doing ioctl's or we may collide |
| * with open/close and power management and oops. |
| */ |
| mutex_lock(&cp->pm_mutex); |
| switch (cmd) { |
| case SIOCGMIIPHY: /* Get address of MII PHY in use. */ |
| data->phy_id = cp->phy_addr; |
| /* Fallthrough... */ |
| |
| case SIOCGMIIREG: /* Read MII PHY register. */ |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_mif_poll(cp, 0); |
| data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); |
| cas_mif_poll(cp, 1); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| rc = 0; |
| break; |
| |
| case SIOCSMIIREG: /* Write MII PHY register. */ |
| if (!capable(CAP_NET_ADMIN)) { |
| rc = -EPERM; |
| break; |
| } |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_mif_poll(cp, 0); |
| rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); |
| cas_mif_poll(cp, 1); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| break; |
| default: |
| break; |
| }; |
| |
| mutex_unlock(&cp->pm_mutex); |
| return rc; |
| } |
| |
| /* When this chip sits underneath an Intel 31154 bridge, it is the |
| * only subordinate device and we can tweak the bridge settings to |
| * reflect that fact. |
| */ |
| static void __devinit cas_program_bridge(struct pci_dev *cas_pdev) |
| { |
| struct pci_dev *pdev = cas_pdev->bus->self; |
| u32 val; |
| |
| if (!pdev) |
| return; |
| |
| if (pdev->vendor != 0x8086 || pdev->device != 0x537c) |
| return; |
| |
| /* Clear bit 10 (Bus Parking Control) in the Secondary |
| * Arbiter Control/Status Register which lives at offset |
| * 0x41. Using a 32-bit word read/modify/write at 0x40 |
| * is much simpler so that's how we do this. |
| */ |
| pci_read_config_dword(pdev, 0x40, &val); |
| val &= ~0x00040000; |
| pci_write_config_dword(pdev, 0x40, val); |
| |
| /* Max out the Multi-Transaction Timer settings since |
| * Cassini is the only device present. |
| * |
| * The register is 16-bit and lives at 0x50. When the |
| * settings are enabled, it extends the GRANT# signal |
| * for a requestor after a transaction is complete. This |
| * allows the next request to run without first needing |
| * to negotiate the GRANT# signal back. |
| * |
| * Bits 12:10 define the grant duration: |
| * |
| * 1 -- 16 clocks |
| * 2 -- 32 clocks |
| * 3 -- 64 clocks |
| * 4 -- 128 clocks |
| * 5 -- 256 clocks |
| * |
| * All other values are illegal. |
| * |
| * Bits 09:00 define which REQ/GNT signal pairs get the |
| * GRANT# signal treatment. We set them all. |
| */ |
| pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); |
| |
| /* The Read Prefecth Policy register is 16-bit and sits at |
| * offset 0x52. It enables a "smart" pre-fetch policy. We |
| * enable it and max out all of the settings since only one |
| * device is sitting underneath and thus bandwidth sharing is |
| * not an issue. |
| * |
| * The register has several 3 bit fields, which indicates a |
| * multiplier applied to the base amount of prefetching the |
| * chip would do. These fields are at: |
| * |
| * 15:13 --- ReRead Primary Bus |
| * 12:10 --- FirstRead Primary Bus |
| * 09:07 --- ReRead Secondary Bus |
| * 06:04 --- FirstRead Secondary Bus |
| * |
| * Bits 03:00 control which REQ/GNT pairs the prefetch settings |
| * get enabled on. Bit 3 is a grouped enabler which controls |
| * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control |
| * the individual REQ/GNT pairs [2:0]. |
| */ |
| pci_write_config_word(pdev, 0x52, |
| (0x7 << 13) | |
| (0x7 << 10) | |
| (0x7 << 7) | |
| (0x7 << 4) | |
| (0xf << 0)); |
| |
| /* Force cacheline size to 0x8 */ |
| pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); |
| |
| /* Force latency timer to maximum setting so Cassini can |
| * sit on the bus as long as it likes. |
| */ |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); |
| } |
| |
| static int __devinit cas_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| static int cas_version_printed = 0; |
| unsigned long casreg_len; |
| struct net_device *dev; |
| struct cas *cp; |
| int i, err, pci_using_dac; |
| u16 pci_cmd; |
| u8 orig_cacheline_size = 0, cas_cacheline_size = 0; |
| DECLARE_MAC_BUF(mac); |
| |
| if (cas_version_printed++ == 0) |
| printk(KERN_INFO "%s", version); |
| |
| err = pci_enable_device(pdev); |
| if (err) { |
| dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n"); |
| return err; |
| } |
| |
| if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| dev_err(&pdev->dev, "Cannot find proper PCI device " |
| "base address, aborting.\n"); |
| err = -ENODEV; |
| goto err_out_disable_pdev; |
| } |
| |
| dev = alloc_etherdev(sizeof(*cp)); |
| if (!dev) { |
| dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n"); |
| err = -ENOMEM; |
| goto err_out_disable_pdev; |
| } |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| err = pci_request_regions(pdev, dev->name); |
| if (err) { |
| dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n"); |
| goto err_out_free_netdev; |
| } |
| pci_set_master(pdev); |
| |
| /* we must always turn on parity response or else parity |
| * doesn't get generated properly. disable SERR/PERR as well. |
| * in addition, we want to turn MWI on. |
| */ |
| pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); |
| pci_cmd &= ~PCI_COMMAND_SERR; |
| pci_cmd |= PCI_COMMAND_PARITY; |
| pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); |
| if (pci_try_set_mwi(pdev)) |
| printk(KERN_WARNING PFX "Could not enable MWI for %s\n", |
| pci_name(pdev)); |
| |
| cas_program_bridge(pdev); |
| |
| /* |
| * On some architectures, the default cache line size set |
| * by pci_try_set_mwi reduces perforamnce. We have to increase |
| * it for this case. To start, we'll print some configuration |
| * data. |
| */ |
| #if 1 |
| pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
| &orig_cacheline_size); |
| if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { |
| cas_cacheline_size = |
| (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? |
| CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; |
| if (pci_write_config_byte(pdev, |
| PCI_CACHE_LINE_SIZE, |
| cas_cacheline_size)) { |
| dev_err(&pdev->dev, "Could not set PCI cache " |
| "line size\n"); |
| goto err_write_cacheline; |
| } |
| } |
| #endif |
| |
| |
| /* Configure DMA attributes. */ |
| if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| pci_using_dac = 1; |
| err = pci_set_consistent_dma_mask(pdev, |
| DMA_64BIT_MASK); |
| if (err < 0) { |
| dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " |
| "for consistent allocations\n"); |
| goto err_out_free_res; |
| } |
| |
| } else { |
| err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| if (err) { |
| dev_err(&pdev->dev, "No usable DMA configuration, " |
| "aborting.\n"); |
| goto err_out_free_res; |
| } |
| pci_using_dac = 0; |
| } |
| |
| casreg_len = pci_resource_len(pdev, 0); |
| |
| cp = netdev_priv(dev); |
| cp->pdev = pdev; |
| #if 1 |
| /* A value of 0 indicates we never explicitly set it */ |
| cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; |
| #endif |
| cp->dev = dev; |
| cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : |
| cassini_debug; |
| |
| cp->link_transition = LINK_TRANSITION_UNKNOWN; |
| cp->link_transition_jiffies_valid = 0; |
| |
| spin_lock_init(&cp->lock); |
| spin_lock_init(&cp->rx_inuse_lock); |
| spin_lock_init(&cp->rx_spare_lock); |
| for (i = 0; i < N_TX_RINGS; i++) { |
| spin_lock_init(&cp->stat_lock[i]); |
| spin_lock_init(&cp->tx_lock[i]); |
| } |
| spin_lock_init(&cp->stat_lock[N_TX_RINGS]); |
| mutex_init(&cp->pm_mutex); |
| |
| init_timer(&cp->link_timer); |
| cp->link_timer.function = cas_link_timer; |
| cp->link_timer.data = (unsigned long) cp; |
| |
| #if 1 |
| /* Just in case the implementation of atomic operations |
| * change so that an explicit initialization is necessary. |
| */ |
| atomic_set(&cp->reset_task_pending, 0); |
| atomic_set(&cp->reset_task_pending_all, 0); |
| atomic_set(&cp->reset_task_pending_spare, 0); |
| atomic_set(&cp->reset_task_pending_mtu, 0); |
| #endif |
| INIT_WORK(&cp->reset_task, cas_reset_task); |
| |
| /* Default link parameters */ |
| if (link_mode >= 0 && link_mode <= 6) |
| cp->link_cntl = link_modes[link_mode]; |
| else |
| cp->link_cntl = BMCR_ANENABLE; |
| cp->lstate = link_down; |
| cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| netif_carrier_off(cp->dev); |
| cp->timer_ticks = 0; |
| |
| /* give us access to cassini registers */ |
| cp->regs = pci_iomap(pdev, 0, casreg_len); |
| if (!cp->regs) { |
| dev_err(&pdev->dev, "Cannot map device registers, aborting.\n"); |
| goto err_out_free_res; |
| } |
| cp->casreg_len = casreg_len; |
| |
| pci_save_state(pdev); |
| cas_check_pci_invariants(cp); |
| cas_hard_reset(cp); |
| cas_reset(cp, 0); |
| if (cas_check_invariants(cp)) |
| goto err_out_iounmap; |
| if (cp->cas_flags & CAS_FLAG_SATURN) |
| if (cas_saturn_firmware_init(cp)) |
| goto err_out_iounmap; |
| |
| cp->init_block = (struct cas_init_block *) |
| pci_alloc_consistent(pdev, sizeof(struct cas_init_block), |
| &cp->block_dvma); |
| if (!cp->init_block) { |
| dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n"); |
| goto err_out_iounmap; |
| } |
| |
| for (i = 0; i < N_TX_RINGS; i++) |
| cp->init_txds[i] = cp->init_block->txds[i]; |
| |
| for (i = 0; i < N_RX_DESC_RINGS; i++) |
| cp->init_rxds[i] = cp->init_block->rxds[i]; |
| |
| for (i = 0; i < N_RX_COMP_RINGS; i++) |
| cp->init_rxcs[i] = cp->init_block->rxcs[i]; |
| |
| for (i = 0; i < N_RX_FLOWS; i++) |
| skb_queue_head_init(&cp->rx_flows[i]); |
| |
| dev->open = cas_open; |
| dev->stop = cas_close; |
| dev->hard_start_xmit = cas_start_xmit; |
| dev->get_stats = cas_get_stats; |
| dev->set_multicast_list = cas_set_multicast; |
| dev->do_ioctl = cas_ioctl; |
| dev->ethtool_ops = &cas_ethtool_ops; |
| dev->tx_timeout = cas_tx_timeout; |
| dev->watchdog_timeo = CAS_TX_TIMEOUT; |
| dev->change_mtu = cas_change_mtu; |
| #ifdef USE_NAPI |
| netif_napi_add(dev, &cp->napi, cas_poll, 64); |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| dev->poll_controller = cas_netpoll; |
| #endif |
| dev->irq = pdev->irq; |
| dev->dma = 0; |
| |
| /* Cassini features. */ |
| if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) |
| dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; |
| |
| if (pci_using_dac) |
| dev->features |= NETIF_F_HIGHDMA; |
| |
| if (register_netdev(dev)) { |
| dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); |
| goto err_out_free_consistent; |
| } |
| |
| i = readl(cp->regs + REG_BIM_CFG); |
| printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) " |
| "Ethernet[%d] %s\n", dev->name, |
| (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", |
| (i & BIM_CFG_32BIT) ? "32" : "64", |
| (i & BIM_CFG_66MHZ) ? "66" : "33", |
| (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, |
| print_mac(mac, dev->dev_addr)); |
| |
| pci_set_drvdata(pdev, dev); |
| cp->hw_running = 1; |
| cas_entropy_reset(cp); |
| cas_phy_init(cp); |
| cas_begin_auto_negotiation(cp, NULL); |
| return 0; |
| |
| err_out_free_consistent: |
| pci_free_consistent(pdev, sizeof(struct cas_init_block), |
| cp->init_block, cp->block_dvma); |
| |
| err_out_iounmap: |
| mutex_lock(&cp->pm_mutex); |
| if (cp->hw_running) |
| cas_shutdown(cp); |
| mutex_unlock(&cp->pm_mutex); |
| |
| pci_iounmap(pdev, cp->regs); |
| |
| |
| err_out_free_res: |
| pci_release_regions(pdev); |
| |
| err_write_cacheline: |
| /* Try to restore it in case the error occured after we |
| * set it. |
| */ |
| pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); |
| |
| err_out_free_netdev: |
| free_netdev(dev); |
| |
| err_out_disable_pdev: |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| return -ENODEV; |
| } |
| |
| static void __devexit cas_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct cas *cp; |
| if (!dev) |
| return; |
| |
| cp = netdev_priv(dev); |
| unregister_netdev(dev); |
| |
| if (cp->fw_data) |
| vfree(cp->fw_data); |
| |
| mutex_lock(&cp->pm_mutex); |
| flush_scheduled_work(); |
| if (cp->hw_running) |
| cas_shutdown(cp); |
| mutex_unlock(&cp->pm_mutex); |
| |
| #if 1 |
| if (cp->orig_cacheline_size) { |
| /* Restore the cache line size if we had modified |
| * it. |
| */ |
| pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
| cp->orig_cacheline_size); |
| } |
| #endif |
| pci_free_consistent(pdev, sizeof(struct cas_init_block), |
| cp->init_block, cp->block_dvma); |
| pci_iounmap(pdev, cp->regs); |
| free_netdev(dev); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| #ifdef CONFIG_PM |
| static int cas_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| |
| mutex_lock(&cp->pm_mutex); |
| |
| /* If the driver is opened, we stop the DMA */ |
| if (cp->opened) { |
| netif_device_detach(dev); |
| |
| cas_lock_all_save(cp, flags); |
| |
| /* We can set the second arg of cas_reset to 0 |
| * because on resume, we'll call cas_init_hw with |
| * its second arg set so that autonegotiation is |
| * restarted. |
| */ |
| cas_reset(cp, 0); |
| cas_clean_rings(cp); |
| cas_unlock_all_restore(cp, flags); |
| } |
| |
| if (cp->hw_running) |
| cas_shutdown(cp); |
| mutex_unlock(&cp->pm_mutex); |
| |
| return 0; |
| } |
| |
| static int cas_resume(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct cas *cp = netdev_priv(dev); |
| |
| printk(KERN_INFO "%s: resuming\n", dev->name); |
| |
| mutex_lock(&cp->pm_mutex); |
| cas_hard_reset(cp); |
| if (cp->opened) { |
| unsigned long flags; |
| cas_lock_all_save(cp, flags); |
| cas_reset(cp, 0); |
| cp->hw_running = 1; |
| cas_clean_rings(cp); |
| cas_init_hw(cp, 1); |
| cas_unlock_all_restore(cp, flags); |
| |
| netif_device_attach(dev); |
| } |
| mutex_unlock(&cp->pm_mutex); |
| return 0; |
| } |
| #endif /* CONFIG_PM */ |
| |
| static struct pci_driver cas_driver = { |
| .name = DRV_MODULE_NAME, |
| .id_table = cas_pci_tbl, |
| .probe = cas_init_one, |
| .remove = __devexit_p(cas_remove_one), |
| #ifdef CONFIG_PM |
| .suspend = cas_suspend, |
| .resume = cas_resume |
| #endif |
| }; |
| |
| static int __init cas_init(void) |
| { |
| if (linkdown_timeout > 0) |
| link_transition_timeout = linkdown_timeout * HZ; |
| else |
| link_transition_timeout = 0; |
| |
| return pci_register_driver(&cas_driver); |
| } |
| |
| static void __exit cas_cleanup(void) |
| { |
| pci_unregister_driver(&cas_driver); |
| } |
| |
| module_init(cas_init); |
| module_exit(cas_cleanup); |