blob: 5a21407df274b80c754ab0ba3f668f7b4ebdb43c [file] [log] [blame]
/*
* MSM architecture clock driver
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007-2012, Code Aurora Forum. All rights reserved.
* Author: San Mehat <san@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include <linux/sort.h>
#include <linux/remote_spinlock.h>
#include <mach/board.h>
#include <mach/msm_iomap.h>
#include <asm/mach-types.h>
#include <mach/socinfo.h>
#include "smd_private.h"
#include "acpuclock.h"
#define A11S_CLK_CNTL_ADDR (MSM_CSR_BASE + 0x100)
#define A11S_CLK_SEL_ADDR (MSM_CSR_BASE + 0x104)
#define A11S_VDD_SVS_PLEVEL_ADDR (MSM_CSR_BASE + 0x124)
#define PLLn_MODE(n) (MSM_CLK_CTL_BASE + 0x300 + 28 * (n))
#define PLLn_L_VAL(n) (MSM_CLK_CTL_BASE + 0x304 + 28 * (n))
#define PLL4_MODE (MSM_CLK_CTL_BASE + 0x374)
#define PLL4_L_VAL (MSM_CLK_CTL_BASE + 0x378)
#define POWER_COLLAPSE_KHZ 19200
/* Max CPU frequency allowed by hardware while in standby waiting for an irq. */
#define MAX_WAIT_FOR_IRQ_KHZ 128000
enum {
ACPU_PLL_TCXO = -1,
ACPU_PLL_0 = 0,
ACPU_PLL_1,
ACPU_PLL_2,
ACPU_PLL_3,
ACPU_PLL_4,
ACPU_PLL_END,
};
static const struct pll {
void __iomem *mod_reg;
const uint32_t l_val_mask;
} soc_pll[ACPU_PLL_END] = {
[ACPU_PLL_0] = {PLLn_MODE(ACPU_PLL_0), 0x3f},
[ACPU_PLL_1] = {PLLn_MODE(ACPU_PLL_1), 0x3f},
[ACPU_PLL_2] = {PLLn_MODE(ACPU_PLL_2), 0x3f},
[ACPU_PLL_3] = {PLLn_MODE(ACPU_PLL_3), 0x3f},
[ACPU_PLL_4] = {PLL4_MODE, 0x3ff},
};
struct clock_state {
struct clkctl_acpu_speed *current_speed;
struct mutex lock;
uint32_t max_speed_delta_khz;
struct clk *ebi1_clk;
};
#define PLL_BASE 7
struct shared_pll_control {
uint32_t version;
struct {
/* Denotes if the PLL is ON. Technically, this can be read
* directly from the PLL registers, but this feild is here,
* so let's use it.
*/
uint32_t on;
/* One bit for each processor core. The application processor
* is allocated bit position 1. All other bits should be
* considered as votes from other processors.
*/
uint32_t votes;
} pll[PLL_BASE + ACPU_PLL_END];
};
struct clkctl_acpu_speed {
unsigned int use_for_scaling;
unsigned int a11clk_khz;
int pll;
unsigned int a11clk_src_sel;
unsigned int a11clk_src_div;
unsigned int ahbclk_khz;
unsigned int ahbclk_div;
int vdd;
unsigned int axiclk_khz;
unsigned long lpj; /* loops_per_jiffy */
/* Pointers in acpu_freq_tbl[] for max up/down steppings. */
struct clkctl_acpu_speed *down[ACPU_PLL_END];
struct clkctl_acpu_speed *up[ACPU_PLL_END];
};
static remote_spinlock_t pll_lock;
static struct shared_pll_control *pll_control;
static struct clock_state drv_state = { 0 };
static struct clkctl_acpu_speed *acpu_freq_tbl;
/*
* ACPU freq tables used for different PLLs frequency combinations. The
* correct table is selected during init.
*
* Table stepping up/down entries are calculated during boot to choose the
* largest frequency jump that's less than max_speed_delta_khz on each PLL.
*/
/* 7627 with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_245_pll2_1200_pll4_0[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 19200, 0, 0, 30720 },
{ 0, 120000, ACPU_PLL_0, 4, 7, 60000, 1, 3, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 1, 61440, 1, 3, 61440 },
{ 0, 200000, ACPU_PLL_2, 2, 5, 66667, 2, 4, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 0, 122880, 1, 4, 61440 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 160000, 1, 5, 160000 },
{ 0, 400000, ACPU_PLL_2, 2, 2, 133333, 2, 5, 160000 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 160000, 2, 6, 160000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 200000, 2, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627 with CDMA capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_196_pll2_1200_pll4_0[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 19200, 0, 0, 24576 },
{ 1, 98304, ACPU_PLL_1, 1, 1, 98304, 0, 3, 49152 },
{ 0, 120000, ACPU_PLL_0, 4, 7, 60000, 1, 3, 49152 },
{ 1, 196608, ACPU_PLL_1, 1, 0, 65536, 2, 4, 98304 },
{ 0, 200000, ACPU_PLL_2, 2, 5, 66667, 2, 4, 98304 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 160000, 1, 5, 160000 },
{ 0, 400000, ACPU_PLL_2, 2, 2, 133333, 2, 5, 160000 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 160000, 2, 6, 160000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 200000, 2, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627 with GSM capable modem - PLL2 @ 800 */
static struct clkctl_acpu_speed pll0_960_pll1_245_pll2_800_pll4_0[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 19200, 0, 0, 30720 },
{ 0, 120000, ACPU_PLL_0, 4, 7, 60000, 1, 3, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 1, 61440, 1, 3, 61440 },
{ 0, 200000, ACPU_PLL_2, 2, 3, 66667, 2, 4, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 0, 122880, 1, 4, 61440 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 160000, 1, 5, 160000 },
{ 0, 400000, ACPU_PLL_2, 2, 1, 133333, 2, 5, 160000 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 160000, 2, 6, 160000 },
{ 1, 800000, ACPU_PLL_2, 2, 0, 200000, 3, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627 with CDMA capable modem - PLL2 @ 800 */
static struct clkctl_acpu_speed pll0_960_pll1_196_pll2_800_pll4_0[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 19200, 0, 0, 24576 },
{ 1, 98304, ACPU_PLL_1, 1, 1, 98304, 0, 3, 49152 },
{ 0, 120000, ACPU_PLL_0, 4, 7, 60000, 1, 3, 49152 },
{ 1, 196608, ACPU_PLL_1, 1, 0, 65536, 2, 4, 98304 },
{ 0, 200000, ACPU_PLL_2, 2, 3, 66667, 2, 4, 98304 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 160000, 1, 5, 160000 },
{ 0, 400000, ACPU_PLL_2, 2, 1, 133333, 2, 5, 160000 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 160000, 2, 6, 160000 },
{ 1, 800000, ACPU_PLL_2, 2, 0, 200000, 3, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627a PLL2 @ 1200MHz with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_245_pll2_1200_pll4_800[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 0, 61440, ACPU_PLL_1, 1, 3, 7680, 3, 1, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 1, 15360, 3, 2, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 0, 30720, 3, 3, 61440 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 0, 400000, ACPU_PLL_4, 6, 1, 50000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 800000, ACPU_PLL_4, 6, 0, 100000, 3, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627a PLL2 @ 1200MHz with CDMA capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_196_pll2_1200_pll4_800[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 24576 },
{ 0, 65536, ACPU_PLL_1, 1, 3, 8192, 3, 1, 49152 },
{ 1, 98304, ACPU_PLL_1, 1, 1, 12288, 3, 2, 49152 },
{ 1, 196608, ACPU_PLL_1, 1, 0, 24576, 3, 3, 98304 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 120000 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 120000 },
{ 0, 400000, ACPU_PLL_4, 6, 1, 50000, 3, 4, 120000 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 120000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 800000, ACPU_PLL_4, 6, 0, 100000, 3, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627aa PLL4 @ 1008MHz with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_245_pll2_1200_pll4_1008[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 0, 61440, ACPU_PLL_1, 1, 3, 7680, 3, 1, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 1, 15360, 3, 2, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 0, 30720, 3, 3, 61440 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 0, 504000, ACPU_PLL_4, 6, 1, 63000, 3, 6, 200000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 1008000, ACPU_PLL_4, 6, 0, 126000, 3, 7, 200000},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627aa PLL4 @ 1008MHz with CDMA capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_196_pll2_1200_pll4_1008[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 24576 },
{ 0, 65536, ACPU_PLL_1, 1, 3, 8192, 3, 1, 49152 },
{ 1, 98304, ACPU_PLL_1, 1, 1, 12288, 3, 2, 49152 },
{ 1, 196608, ACPU_PLL_1, 1, 0, 24576, 3, 3, 98304 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 0, 504000, ACPU_PLL_4, 6, 1, 63000, 3, 6, 200000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 1008000, ACPU_PLL_4, 6, 0, 126000, 3, 7, 200000},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7625a PLL2 @ 1200MHz with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_245_pll2_1200_25a[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 0, 61440, ACPU_PLL_1, 1, 3, 7680, 3, 1, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 1, 15360, 3, 2, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 0, 30720, 3, 3, 61440 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 0, 400000, ACPU_PLL_2, 2, 2, 50000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627a PLL2 @ 1200MHz with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_737_pll2_1200_pll4_800[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 0, 61440, ACPU_PLL_1, 1, 11, 7680, 3, 1, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 5, 15360, 3, 2, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 2, 30720, 3, 3, 61440 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 0, 400000, ACPU_PLL_4, 6, 1, 50000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 800000, ACPU_PLL_4, 6, 0, 100000, 3, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627a PLL2 @ 1200MHz with CDMA capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_589_pll2_1200_pll4_800[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 24576 },
{ 0, 65536, ACPU_PLL_1, 1, 8, 8192, 3, 1, 49152 },
{ 1, 98304, ACPU_PLL_1, 1, 5, 12288, 3, 2, 49152 },
{ 1, 196608, ACPU_PLL_1, 1, 2, 24576, 3, 3, 98304 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 120000 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 120000 },
{ 0, 400000, ACPU_PLL_4, 6, 1, 50000, 3, 4, 120000 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 120000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 800000, ACPU_PLL_4, 6, 0, 100000, 3, 7, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627aa PLL4 @ 1008MHz with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_737_pll2_1200_pll4_1008[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 0, 61440, ACPU_PLL_1, 1, 11, 7680, 3, 1, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 5, 15360, 3, 2, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 2, 30720, 3, 3, 61440 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 0, 504000, ACPU_PLL_4, 6, 1, 63000, 3, 6, 200000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 1008000, ACPU_PLL_4, 6, 0, 126000, 3, 7, 200000},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7627aa PLL4 @ 1008MHz with CDMA capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_589_pll2_1200_pll4_1008[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 24576 },
{ 0, 65536, ACPU_PLL_1, 1, 8, 8192, 3, 1, 49152 },
{ 1, 98304, ACPU_PLL_1, 1, 5, 12288, 3, 2, 49152 },
{ 1, 196608, ACPU_PLL_1, 1, 2, 24576, 3, 3, 98304 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 0, 504000, ACPU_PLL_4, 6, 1, 63000, 3, 6, 200000 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 1, 1008000, ACPU_PLL_4, 6, 0, 126000, 3, 7, 200000},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
/* 7625a PLL2 @ 1200MHz with GSM capable modem */
static struct clkctl_acpu_speed pll0_960_pll1_737_pll2_1200_25a[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 0, 61440, ACPU_PLL_1, 1, 11, 7680, 3, 1, 61440 },
{ 1, 122880, ACPU_PLL_1, 1, 5, 15360, 3, 2, 61440 },
{ 1, 245760, ACPU_PLL_1, 1, 2, 30720, 3, 3, 61440 },
{ 0, 300000, ACPU_PLL_2, 2, 3, 37500, 3, 4, 122880 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, 4, 122880 },
{ 0, 400000, ACPU_PLL_2, 2, 2, 50000, 3, 4, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, 5, 122880 },
{ 1, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 6, 200000 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0} }
};
#define PLL_0_MHZ 0
#define PLL_196_MHZ 10
#define PLL_245_MHZ 12
#define PLL_589_MHZ 30
#define PLL_737_MHZ 38
#define PLL_800_MHZ 41
#define PLL_960_MHZ 50
#define PLL_1008_MHZ 52
#define PLL_1200_MHZ 62
#define PLL_CONFIG(m0, m1, m2, m4) { \
PLL_##m0##_MHZ, PLL_##m1##_MHZ, PLL_##m2##_MHZ, PLL_##m4##_MHZ, \
pll0_##m0##_pll1_##m1##_pll2_##m2##_pll4_##m4 \
}
struct pll_freq_tbl_map {
unsigned int pll0_l;
unsigned int pll1_l;
unsigned int pll2_l;
unsigned int pll4_l;
struct clkctl_acpu_speed *tbl;
};
static struct pll_freq_tbl_map acpu_freq_tbl_list[] = {
PLL_CONFIG(960, 196, 1200, 0),
PLL_CONFIG(960, 245, 1200, 0),
PLL_CONFIG(960, 196, 800, 0),
PLL_CONFIG(960, 245, 800, 0),
PLL_CONFIG(960, 245, 1200, 800),
PLL_CONFIG(960, 196, 1200, 800),
PLL_CONFIG(960, 245, 1200, 1008),
PLL_CONFIG(960, 196, 1200, 1008),
PLL_CONFIG(960, 737, 1200, 800),
PLL_CONFIG(960, 589, 1200, 800),
PLL_CONFIG(960, 737, 1200, 1008),
PLL_CONFIG(960, 589, 1200, 1008),
{ 0, 0, 0, 0, 0 }
};
#ifdef CONFIG_CPU_FREQ_MSM
static struct cpufreq_frequency_table freq_table[NR_CPUS][20];
static void __init cpufreq_table_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
unsigned int i, freq_cnt = 0;
/* Construct the freq_table table from acpu_freq_tbl since
* the freq_table values need to match frequencies specified
* in acpu_freq_tbl and acpu_freq_tbl needs to be fixed up
* during init.
*/
for (i = 0; acpu_freq_tbl[i].a11clk_khz != 0
&& freq_cnt < ARRAY_SIZE(*freq_table)-1; i++) {
if (acpu_freq_tbl[i].use_for_scaling) {
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency
= acpu_freq_tbl[i].a11clk_khz;
freq_cnt++;
}
}
/* freq_table not big enough to store all usable freqs. */
BUG_ON(acpu_freq_tbl[i].a11clk_khz != 0);
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END;
/* Register table with CPUFreq. */
cpufreq_frequency_table_get_attr(freq_table[cpu], cpu);
pr_info("CPU%d: %d scaling frequencies supported.\n",
cpu, freq_cnt);
}
}
#endif
static void pll_enable(void __iomem *addr, unsigned on)
{
if (on) {
writel_relaxed(2, addr);
mb();
udelay(5);
writel_relaxed(6, addr);
mb();
udelay(50);
writel_relaxed(7, addr);
} else {
writel_relaxed(0, addr);
}
}
static int pc_pll_request(unsigned id, unsigned on)
{
int res = 0;
on = !!on;
if (on)
pr_debug("Enabling PLL %d\n", id);
else
pr_debug("Disabling PLL %d\n", id);
if (id >= ACPU_PLL_END)
return -EINVAL;
remote_spin_lock(&pll_lock);
if (on) {
pll_control->pll[PLL_BASE + id].votes |= 2;
if (!pll_control->pll[PLL_BASE + id].on) {
pll_enable(soc_pll[id].mod_reg, 1);
pll_control->pll[PLL_BASE + id].on = 1;
}
} else {
pll_control->pll[PLL_BASE + id].votes &= ~2;
if (pll_control->pll[PLL_BASE + id].on
&& !pll_control->pll[PLL_BASE + id].votes) {
pll_enable(soc_pll[id].mod_reg, 0);
pll_control->pll[PLL_BASE + id].on = 0;
}
}
remote_spin_unlock(&pll_lock);
if (on)
pr_debug("PLL enabled\n");
else
pr_debug("PLL disabled\n");
return res;
}
static int acpuclk_set_vdd_level(int vdd)
{
uint32_t current_vdd;
/*
* NOTE: v1.0 of 7x27a/7x25a chip doesn't have working
* VDD switching support.
*/
if ((cpu_is_msm7x27a() || cpu_is_msm7x25a()) &&
(SOCINFO_VERSION_MINOR(socinfo_get_version()) < 1))
return 0;
current_vdd = readl_relaxed(A11S_VDD_SVS_PLEVEL_ADDR) & 0x07;
pr_debug("Switching VDD from %u mV -> %d mV\n",
current_vdd, vdd);
writel_relaxed((1 << 7) | (vdd << 3), A11S_VDD_SVS_PLEVEL_ADDR);
mb();
udelay(62);
if ((readl_relaxed(A11S_VDD_SVS_PLEVEL_ADDR) & 0x7) != vdd) {
pr_err("VDD set failed\n");
return -EIO;
}
pr_debug("VDD switched\n");
return 0;
}
/* Set proper dividers for the given clock speed. */
static void acpuclk_set_div(const struct clkctl_acpu_speed *hunt_s)
{
uint32_t reg_clkctl, reg_clksel, clk_div, src_sel;
reg_clksel = readl_relaxed(A11S_CLK_SEL_ADDR);
/* AHB_CLK_DIV */
clk_div = (reg_clksel >> 1) & 0x03;
/* CLK_SEL_SRC1NO */
src_sel = reg_clksel & 1;
/*
* If the new clock divider is higher than the previous, then
* program the divider before switching the clock
*/
if (hunt_s->ahbclk_div > clk_div) {
reg_clksel &= ~(0x3 << 1);
reg_clksel |= (hunt_s->ahbclk_div << 1);
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
}
/* Program clock source and divider */
reg_clkctl = readl_relaxed(A11S_CLK_CNTL_ADDR);
reg_clkctl &= ~(0xFF << (8 * src_sel));
reg_clkctl |= hunt_s->a11clk_src_sel << (4 + 8 * src_sel);
reg_clkctl |= hunt_s->a11clk_src_div << (0 + 8 * src_sel);
writel_relaxed(reg_clkctl, A11S_CLK_CNTL_ADDR);
/* Program clock source selection */
reg_clksel ^= 1;
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
/*
* If the new clock divider is lower than the previous, then
* program the divider after switching the clock
*/
if (hunt_s->ahbclk_div < clk_div) {
reg_clksel &= ~(0x3 << 1);
reg_clksel |= (hunt_s->ahbclk_div << 1);
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
}
}
static int acpuclk_7627_set_rate(int cpu, unsigned long rate,
enum setrate_reason reason)
{
uint32_t reg_clkctl;
struct clkctl_acpu_speed *cur_s, *tgt_s, *strt_s;
int res, rc = 0;
unsigned int plls_enabled = 0, pll;
if (reason == SETRATE_CPUFREQ)
mutex_lock(&drv_state.lock);
strt_s = cur_s = drv_state.current_speed;
WARN_ONCE(cur_s == NULL, "%s: not initialized\n", __func__);
if (cur_s == NULL) {
rc = -ENOENT;
goto out;
}
if (rate == cur_s->a11clk_khz)
goto out;
for (tgt_s = acpu_freq_tbl; tgt_s->a11clk_khz != 0; tgt_s++) {
if (tgt_s->a11clk_khz == rate)
break;
}
if (tgt_s->a11clk_khz == 0) {
rc = -EINVAL;
goto out;
}
/* Choose the highest speed at or below 'rate' with same PLL. */
if (reason != SETRATE_CPUFREQ
&& tgt_s->a11clk_khz < cur_s->a11clk_khz) {
while (tgt_s->pll != ACPU_PLL_TCXO && tgt_s->pll != cur_s->pll)
tgt_s--;
}
if (strt_s->pll != ACPU_PLL_TCXO)
plls_enabled |= 1 << strt_s->pll;
if (reason == SETRATE_CPUFREQ) {
if (strt_s->pll != tgt_s->pll && tgt_s->pll != ACPU_PLL_TCXO) {
rc = pc_pll_request(tgt_s->pll, 1);
if (rc < 0) {
pr_err("PLL%d enable failed (%d)\n",
tgt_s->pll, rc);
goto out;
}
plls_enabled |= 1 << tgt_s->pll;
}
}
/* Need to do this when coming out of power collapse since some modem
* firmwares reset the VDD when the application processor enters power
* collapse. */
if (reason == SETRATE_CPUFREQ || reason == SETRATE_PC) {
/* Increase VDD if needed. */
if (tgt_s->vdd > cur_s->vdd) {
rc = acpuclk_set_vdd_level(tgt_s->vdd);
if (rc < 0) {
pr_err("Unable to switch ACPU vdd (%d)\n", rc);
goto out;
}
}
}
/* Set wait states for CPU inbetween frequency changes */
reg_clkctl = readl_relaxed(A11S_CLK_CNTL_ADDR);
reg_clkctl |= (100 << 16); /* set WT_ST_CNT */
writel_relaxed(reg_clkctl, A11S_CLK_CNTL_ADDR);
pr_debug("Switching from ACPU rate %u KHz -> %u KHz\n",
strt_s->a11clk_khz, tgt_s->a11clk_khz);
while (cur_s != tgt_s) {
/*
* Always jump to target freq if within max_speed_delta_khz,
* regardless of PLL. If differnece is greater, use the
* predefined steppings in the table.
*/
int d = abs((int)(cur_s->a11clk_khz - tgt_s->a11clk_khz));
if (d > drv_state.max_speed_delta_khz) {
if (tgt_s->a11clk_khz > cur_s->a11clk_khz) {
/* Step up: jump to target PLL as early as
* possible so indexing using TCXO (up[-1])
* never occurs. */
if (likely(cur_s->up[tgt_s->pll]))
cur_s = cur_s->up[tgt_s->pll];
else
cur_s = cur_s->up[cur_s->pll];
} else {
/* Step down: stay on current PLL as long as
* possible so indexing using TCXO (down[-1])
* never occurs. */
if (likely(cur_s->down[cur_s->pll]))
cur_s = cur_s->down[cur_s->pll];
else
cur_s = cur_s->down[tgt_s->pll];
}
if (cur_s == NULL) { /* This should not happen. */
pr_err("No stepping frequencies found. "
"strt_s:%u tgt_s:%u\n",
strt_s->a11clk_khz, tgt_s->a11clk_khz);
rc = -EINVAL;
goto out;
}
} else {
cur_s = tgt_s;
}
pr_debug("STEP khz = %u, pll = %d\n",
cur_s->a11clk_khz, cur_s->pll);
if (cur_s->pll != ACPU_PLL_TCXO
&& !(plls_enabled & (1 << cur_s->pll))) {
rc = pc_pll_request(cur_s->pll, 1);
if (rc < 0) {
pr_err("PLL%d enable failed (%d)\n",
cur_s->pll, rc);
goto out;
}
plls_enabled |= 1 << cur_s->pll;
}
acpuclk_set_div(cur_s);
drv_state.current_speed = cur_s;
/* Re-adjust lpj for the new clock speed. */
loops_per_jiffy = cur_s->lpj;
mb();
udelay(50);
}
/* Nothing else to do for SWFI. */
if (reason == SETRATE_SWFI)
goto out;
/* Change the AXI bus frequency if we can. */
if (strt_s->axiclk_khz != tgt_s->axiclk_khz) {
res = clk_set_rate(drv_state.ebi1_clk,
tgt_s->axiclk_khz * 1000);
if (res < 0)
pr_warning("Setting AXI min rate failed (%d)\n", res);
}
/* Disable PLLs we are not using anymore. */
if (tgt_s->pll != ACPU_PLL_TCXO)
plls_enabled &= ~(1 << tgt_s->pll);
for (pll = ACPU_PLL_0; pll < ACPU_PLL_END; pll++)
if (plls_enabled & (1 << pll)) {
res = pc_pll_request(pll, 0);
if (res < 0)
pr_warning("PLL%d disable failed (%d)\n",
pll, res);
}
/* Nothing else to do for power collapse. */
if (reason == SETRATE_PC)
goto out;
/* Drop VDD level if we can. */
if (tgt_s->vdd < strt_s->vdd) {
res = acpuclk_set_vdd_level(tgt_s->vdd);
if (res < 0)
pr_warning("Unable to drop ACPU vdd (%d)\n", res);
}
pr_debug("ACPU speed change complete\n");
out:
if (reason == SETRATE_CPUFREQ)
mutex_unlock(&drv_state.lock);
return rc;
}
static void __init acpuclk_hw_init(void)
{
struct clkctl_acpu_speed *speed;
uint32_t div, sel, reg_clksel;
int res;
/*
* Determine the rate of ACPU clock
*/
if (!(readl_relaxed(A11S_CLK_SEL_ADDR) & 0x01)) { /* CLK_SEL_SRC1N0 */
/* CLK_SRC0_SEL */
sel = (readl_relaxed(A11S_CLK_CNTL_ADDR) >> 12) & 0x7;
/* CLK_SRC0_DIV */
div = (readl_relaxed(A11S_CLK_CNTL_ADDR) >> 8) & 0x0f;
} else {
/* CLK_SRC1_SEL */
sel = (readl_relaxed(A11S_CLK_CNTL_ADDR) >> 4) & 0x07;
/* CLK_SRC1_DIV */
div = readl_relaxed(A11S_CLK_CNTL_ADDR) & 0x0f;
}
for (speed = acpu_freq_tbl; speed->a11clk_khz != 0; speed++) {
if (speed->a11clk_src_sel == sel
&& (speed->a11clk_src_div == div))
break;
}
if (speed->a11clk_khz == 0) {
pr_err("Error - ACPU clock reports invalid speed\n");
return;
}
drv_state.current_speed = speed;
if (speed->pll != ACPU_PLL_TCXO)
if (pc_pll_request(speed->pll, 1))
pr_warning("Failed to vote for boot PLL\n");
/* Fix div2 to 2 for 7x27/5a(aa) targets */
if (!cpu_is_msm7x27()) {
reg_clksel = readl_relaxed(A11S_CLK_SEL_ADDR);
reg_clksel &= ~(0x3 << 14);
reg_clksel |= (0x1 << 14);
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
}
res = clk_set_rate(drv_state.ebi1_clk, speed->axiclk_khz * 1000);
if (res < 0)
pr_warning("Setting AXI min rate failed (%d)\n", res);
res = clk_prepare_enable(drv_state.ebi1_clk);
if (res < 0)
pr_warning("Enabling AXI clock failed (%d)\n", res);
pr_info("ACPU running at %d KHz\n", speed->a11clk_khz);
}
static unsigned long acpuclk_7627_get_rate(int cpu)
{
WARN_ONCE(drv_state.current_speed == NULL,
"%s: not initialized\n", __func__);
if (drv_state.current_speed)
return drv_state.current_speed->a11clk_khz;
else
return 0;
}
/*----------------------------------------------------------------------------
* Clock driver initialization
*---------------------------------------------------------------------------*/
static void __init acpu_freq_tbl_fixup(void)
{
unsigned long pll0_l, pll1_l, pll2_l, pll4_l;
struct pll_freq_tbl_map *lst;
/* Wait for the PLLs to be initialized and then read their frequency.
*/
do {
pll0_l = readl_relaxed(PLLn_L_VAL(0)) &
soc_pll[ACPU_PLL_0].l_val_mask;
cpu_relax();
udelay(50);
} while (pll0_l == 0);
do {
pll1_l = readl_relaxed(PLLn_L_VAL(1)) &
soc_pll[ACPU_PLL_1].l_val_mask;
cpu_relax();
udelay(50);
} while (pll1_l == 0);
do {
pll2_l = readl_relaxed(PLLn_L_VAL(2)) &
soc_pll[ACPU_PLL_2].l_val_mask;
cpu_relax();
udelay(50);
} while (pll2_l == 0);
pr_info("L val: PLL0: %d, PLL1: %d, PLL2: %d\n",
(int)pll0_l, (int)pll1_l, (int)pll2_l);
if (!cpu_is_msm7x27() && !cpu_is_msm7x25a()) {
do {
pll4_l = readl_relaxed(PLL4_L_VAL) &
soc_pll[ACPU_PLL_4].l_val_mask;
cpu_relax();
udelay(50);
} while (pll4_l == 0);
pr_info("L val: PLL4: %d\n", (int)pll4_l);
} else {
pll4_l = 0;
}
/* Fix the tables for 7x25a variant to not conflict with 7x27 ones */
if (cpu_is_msm7x25a()) {
if (pll1_l == PLL_245_MHZ) {
acpu_freq_tbl =
pll0_960_pll1_245_pll2_1200_25a;
} else if (pll1_l == PLL_737_MHZ) {
acpu_freq_tbl =
pll0_960_pll1_737_pll2_1200_25a;
}
} else {
/* Select the right table to use. */
for (lst = acpu_freq_tbl_list; lst->tbl != 0; lst++) {
if (lst->pll0_l == pll0_l && lst->pll1_l == pll1_l
&& lst->pll2_l == pll2_l
&& lst->pll4_l == pll4_l) {
acpu_freq_tbl = lst->tbl;
break;
}
}
}
if (acpu_freq_tbl == NULL) {
pr_crit("Unknown PLL configuration!\n");
BUG();
}
}
/*
* Hardware requires the CPU to be dropped to less than MAX_WAIT_FOR_IRQ_KHZ
* before entering a wait for irq low-power mode. Find a suitable rate.
*/
static unsigned long __init find_wait_for_irq_khz(void)
{
unsigned long found_khz = 0;
int i;
for (i = 0; acpu_freq_tbl[i].a11clk_khz &&
acpu_freq_tbl[i].a11clk_khz <= MAX_WAIT_FOR_IRQ_KHZ; i++)
found_khz = acpu_freq_tbl[i].a11clk_khz;
return found_khz;
}
/* Initalize the lpj field in the acpu_freq_tbl. */
static void __init lpj_init(void)
{
int i;
const struct clkctl_acpu_speed *base_clk = drv_state.current_speed;
for (i = 0; acpu_freq_tbl[i].a11clk_khz; i++) {
acpu_freq_tbl[i].lpj = cpufreq_scale(loops_per_jiffy,
base_clk->a11clk_khz,
acpu_freq_tbl[i].a11clk_khz);
}
}
static void __init precompute_stepping(void)
{
int i, step_idx;
#define cur_freq acpu_freq_tbl[i].a11clk_khz
#define step_freq acpu_freq_tbl[step_idx].a11clk_khz
#define cur_pll acpu_freq_tbl[i].pll
#define step_pll acpu_freq_tbl[step_idx].pll
for (i = 0; acpu_freq_tbl[i].a11clk_khz; i++) {
/* Calculate max "up" step for each destination PLL */
step_idx = i + 1;
while (step_freq && (step_freq - cur_freq)
<= drv_state.max_speed_delta_khz) {
acpu_freq_tbl[i].up[step_pll] =
&acpu_freq_tbl[step_idx];
step_idx++;
}
if (step_idx == (i + 1) && step_freq) {
pr_crit("Delta between freqs %u KHz and %u KHz is"
" too high!\n", cur_freq, step_freq);
BUG();
}
/* Calculate max "down" step for each destination PLL */
step_idx = i - 1;
while (step_idx >= 0 && (cur_freq - step_freq)
<= drv_state.max_speed_delta_khz) {
acpu_freq_tbl[i].down[step_pll] =
&acpu_freq_tbl[step_idx];
step_idx--;
}
if (step_idx == (i - 1) && i > 0) {
pr_crit("Delta between freqs %u KHz and %u KHz is"
" too high!\n", cur_freq, step_freq);
BUG();
}
}
}
static void __init print_acpu_freq_tbl(void)
{
struct clkctl_acpu_speed *t;
short down_idx[ACPU_PLL_END];
short up_idx[ACPU_PLL_END];
int i, j;
#define FREQ_IDX(freq_ptr) (freq_ptr - acpu_freq_tbl)
pr_info("Id CPU-KHz PLL DIV AHB-KHz ADIV AXI-KHz "
"D0 D1 D2 D4 U0 U1 U2 U4\n");
t = &acpu_freq_tbl[0];
for (i = 0; t->a11clk_khz != 0; i++) {
for (j = 0; j < ACPU_PLL_END; j++) {
down_idx[j] = t->down[j] ? FREQ_IDX(t->down[j]) : -1;
up_idx[j] = t->up[j] ? FREQ_IDX(t->up[j]) : -1;
}
pr_info("%2d %7d %3d %3d %7d %4d %7d "
"%2d %2d %2d %2d %2d %2d %2d %2d\n",
i, t->a11clk_khz, t->pll, t->a11clk_src_div + 1,
t->ahbclk_khz, t->ahbclk_div + 1, t->axiclk_khz,
down_idx[0], down_idx[1], down_idx[2], down_idx[4],
up_idx[0], up_idx[1], up_idx[2], up_idx[4]);
t++;
}
}
static void shared_pll_control_init(void)
{
#define PLL_REMOTE_SPINLOCK_ID "S:7"
unsigned smem_size;
remote_spin_lock_init(&pll_lock, PLL_REMOTE_SPINLOCK_ID);
pll_control = smem_get_entry(SMEM_CLKREGIM_SOURCES, &smem_size);
if (!pll_control) {
pr_err("Can't find shared PLL control data structure!\n");
BUG();
/* There might be more PLLs than what the application processor knows
* about. But the index used for each PLL is guaranteed to remain the
* same. */
} else if (smem_size < sizeof(struct shared_pll_control)) {
pr_err("Shared PLL control data"
"structure too small!\n");
BUG();
} else if (pll_control->version != 0xCCEE0001) {
pr_err("Shared PLL control version mismatch!\n");
BUG();
} else {
pr_info("Shared PLL control available.\n");
return;
}
}
static struct acpuclk_data acpuclk_7627_data = {
.set_rate = acpuclk_7627_set_rate,
.get_rate = acpuclk_7627_get_rate,
.power_collapse_khz = POWER_COLLAPSE_KHZ,
.switch_time_us = 50,
};
static int __init acpuclk_7627_init(struct acpuclk_soc_data *soc_data)
{
pr_info("%s()\n", __func__);
drv_state.ebi1_clk = clk_get(NULL, "ebi1_acpu_clk");
BUG_ON(IS_ERR(drv_state.ebi1_clk));
mutex_init(&drv_state.lock);
shared_pll_control_init();
drv_state.max_speed_delta_khz = soc_data->max_speed_delta_khz;
acpu_freq_tbl_fixup();
acpuclk_7627_data.wait_for_irq_khz = find_wait_for_irq_khz();
precompute_stepping();
acpuclk_hw_init();
lpj_init();
print_acpu_freq_tbl();
acpuclk_register(&acpuclk_7627_data);
#ifdef CONFIG_CPU_FREQ_MSM
cpufreq_table_init();
#endif
return 0;
}
struct acpuclk_soc_data acpuclk_7x27_soc_data __initdata = {
.max_speed_delta_khz = 400000,
.init = acpuclk_7627_init,
};
struct acpuclk_soc_data acpuclk_7x27a_soc_data __initdata = {
.max_speed_delta_khz = 400000,
.init = acpuclk_7627_init,
};
struct acpuclk_soc_data acpuclk_7x27aa_soc_data __initdata = {
.max_speed_delta_khz = 504000,
.init = acpuclk_7627_init,
};