| /* |
| * PPC64 (POWER4) Huge TLB Page Support for Kernel. |
| * |
| * Copyright (C) 2003 David Gibson, IBM Corporation. |
| * |
| * Based on the IA-32 version: |
| * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/sysctl.h> |
| #include <asm/mman.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/machdep.h> |
| #include <asm/cputable.h> |
| #include <asm/spu.h> |
| |
| #define PAGE_SHIFT_64K 16 |
| #define PAGE_SHIFT_16M 24 |
| #define PAGE_SHIFT_16G 34 |
| |
| #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT) |
| #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT) |
| #define MAX_NUMBER_GPAGES 1024 |
| |
| /* Tracks the 16G pages after the device tree is scanned and before the |
| * huge_boot_pages list is ready. */ |
| static unsigned long gpage_freearray[MAX_NUMBER_GPAGES]; |
| static unsigned nr_gpages; |
| |
| /* Array of valid huge page sizes - non-zero value(hugepte_shift) is |
| * stored for the huge page sizes that are valid. |
| */ |
| unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */ |
| |
| #define hugepte_shift mmu_huge_psizes |
| #define PTRS_PER_HUGEPTE(psize) (1 << hugepte_shift[psize]) |
| #define HUGEPTE_TABLE_SIZE(psize) (sizeof(pte_t) << hugepte_shift[psize]) |
| |
| #define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \ |
| + hugepte_shift[psize]) |
| #define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize)) |
| #define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1)) |
| |
| /* Subtract one from array size because we don't need a cache for 4K since |
| * is not a huge page size */ |
| #define HUGE_PGTABLE_INDEX(psize) (HUGEPTE_CACHE_NUM + psize - 1) |
| #define HUGEPTE_CACHE_NAME(psize) (huge_pgtable_cache_name[psize]) |
| |
| static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = { |
| "unused_4K", "hugepte_cache_64K", "unused_64K_AP", |
| "hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G" |
| }; |
| |
| /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad() |
| * will choke on pointers to hugepte tables, which is handy for |
| * catching screwups early. */ |
| #define HUGEPD_OK 0x1 |
| |
| typedef struct { unsigned long pd; } hugepd_t; |
| |
| #define hugepd_none(hpd) ((hpd).pd == 0) |
| |
| static inline int shift_to_mmu_psize(unsigned int shift) |
| { |
| switch (shift) { |
| #ifndef CONFIG_PPC_64K_PAGES |
| case PAGE_SHIFT_64K: |
| return MMU_PAGE_64K; |
| #endif |
| case PAGE_SHIFT_16M: |
| return MMU_PAGE_16M; |
| case PAGE_SHIFT_16G: |
| return MMU_PAGE_16G; |
| } |
| return -1; |
| } |
| |
| static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) |
| { |
| if (mmu_psize_defs[mmu_psize].shift) |
| return mmu_psize_defs[mmu_psize].shift; |
| BUG(); |
| } |
| |
| static inline pte_t *hugepd_page(hugepd_t hpd) |
| { |
| BUG_ON(!(hpd.pd & HUGEPD_OK)); |
| return (pte_t *)(hpd.pd & ~HUGEPD_OK); |
| } |
| |
| static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, |
| struct hstate *hstate) |
| { |
| unsigned int shift = huge_page_shift(hstate); |
| int psize = shift_to_mmu_psize(shift); |
| unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1)); |
| pte_t *dir = hugepd_page(*hpdp); |
| |
| return dir + idx; |
| } |
| |
| static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, |
| unsigned long address, unsigned int psize) |
| { |
| pte_t *new = kmem_cache_zalloc(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], |
| GFP_KERNEL|__GFP_REPEAT); |
| |
| if (! new) |
| return -ENOMEM; |
| |
| spin_lock(&mm->page_table_lock); |
| if (!hugepd_none(*hpdp)) |
| kmem_cache_free(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], new); |
| else |
| hpdp->pd = (unsigned long)new | HUGEPD_OK; |
| spin_unlock(&mm->page_table_lock); |
| return 0; |
| } |
| |
| |
| static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate) |
| { |
| if (huge_page_shift(hstate) < PUD_SHIFT) |
| return pud_offset(pgd, addr); |
| else |
| return (pud_t *) pgd; |
| } |
| static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, |
| struct hstate *hstate) |
| { |
| if (huge_page_shift(hstate) < PUD_SHIFT) |
| return pud_alloc(mm, pgd, addr); |
| else |
| return (pud_t *) pgd; |
| } |
| static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate) |
| { |
| if (huge_page_shift(hstate) < PMD_SHIFT) |
| return pmd_offset(pud, addr); |
| else |
| return (pmd_t *) pud; |
| } |
| static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr, |
| struct hstate *hstate) |
| { |
| if (huge_page_shift(hstate) < PMD_SHIFT) |
| return pmd_alloc(mm, pud, addr); |
| else |
| return (pmd_t *) pud; |
| } |
| |
| /* Build list of addresses of gigantic pages. This function is used in early |
| * boot before the buddy or bootmem allocator is setup. |
| */ |
| void add_gpage(unsigned long addr, unsigned long page_size, |
| unsigned long number_of_pages) |
| { |
| if (!addr) |
| return; |
| while (number_of_pages > 0) { |
| gpage_freearray[nr_gpages] = addr; |
| nr_gpages++; |
| number_of_pages--; |
| addr += page_size; |
| } |
| } |
| |
| /* Moves the gigantic page addresses from the temporary list to the |
| * huge_boot_pages list. |
| */ |
| int alloc_bootmem_huge_page(struct hstate *hstate) |
| { |
| struct huge_bootmem_page *m; |
| if (nr_gpages == 0) |
| return 0; |
| m = phys_to_virt(gpage_freearray[--nr_gpages]); |
| gpage_freearray[nr_gpages] = 0; |
| list_add(&m->list, &huge_boot_pages); |
| m->hstate = hstate; |
| return 1; |
| } |
| |
| |
| /* Modelled after find_linux_pte() */ |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pg; |
| pud_t *pu; |
| pmd_t *pm; |
| |
| unsigned int psize; |
| unsigned int shift; |
| unsigned long sz; |
| struct hstate *hstate; |
| psize = get_slice_psize(mm, addr); |
| shift = mmu_psize_to_shift(psize); |
| sz = ((1UL) << shift); |
| hstate = size_to_hstate(sz); |
| |
| addr &= hstate->mask; |
| |
| pg = pgd_offset(mm, addr); |
| if (!pgd_none(*pg)) { |
| pu = hpud_offset(pg, addr, hstate); |
| if (!pud_none(*pu)) { |
| pm = hpmd_offset(pu, addr, hstate); |
| if (!pmd_none(*pm)) |
| return hugepte_offset((hugepd_t *)pm, addr, |
| hstate); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| pte_t *huge_pte_alloc(struct mm_struct *mm, |
| unsigned long addr, unsigned long sz) |
| { |
| pgd_t *pg; |
| pud_t *pu; |
| pmd_t *pm; |
| hugepd_t *hpdp = NULL; |
| struct hstate *hstate; |
| unsigned int psize; |
| hstate = size_to_hstate(sz); |
| |
| psize = get_slice_psize(mm, addr); |
| BUG_ON(!mmu_huge_psizes[psize]); |
| |
| addr &= hstate->mask; |
| |
| pg = pgd_offset(mm, addr); |
| pu = hpud_alloc(mm, pg, addr, hstate); |
| |
| if (pu) { |
| pm = hpmd_alloc(mm, pu, addr, hstate); |
| if (pm) |
| hpdp = (hugepd_t *)pm; |
| } |
| |
| if (! hpdp) |
| return NULL; |
| |
| if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize)) |
| return NULL; |
| |
| return hugepte_offset(hpdp, addr, hstate); |
| } |
| |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) |
| { |
| return 0; |
| } |
| |
| static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp, |
| unsigned int psize) |
| { |
| pte_t *hugepte = hugepd_page(*hpdp); |
| |
| hpdp->pd = 0; |
| tlb->need_flush = 1; |
| pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, |
| HUGEPTE_CACHE_NUM+psize-1, |
| PGF_CACHENUM_MASK)); |
| } |
| |
| static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
| unsigned long addr, unsigned long end, |
| unsigned long floor, unsigned long ceiling, |
| unsigned int psize) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| unsigned long start; |
| |
| start = addr; |
| pmd = pmd_offset(pud, addr); |
| do { |
| next = pmd_addr_end(addr, end); |
| if (pmd_none(*pmd)) |
| continue; |
| free_hugepte_range(tlb, (hugepd_t *)pmd, psize); |
| } while (pmd++, addr = next, addr != end); |
| |
| start &= PUD_MASK; |
| if (start < floor) |
| return; |
| if (ceiling) { |
| ceiling &= PUD_MASK; |
| if (!ceiling) |
| return; |
| } |
| if (end - 1 > ceiling - 1) |
| return; |
| |
| pmd = pmd_offset(pud, start); |
| pud_clear(pud); |
| pmd_free_tlb(tlb, pmd, start); |
| } |
| |
| static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
| unsigned long addr, unsigned long end, |
| unsigned long floor, unsigned long ceiling) |
| { |
| pud_t *pud; |
| unsigned long next; |
| unsigned long start; |
| unsigned int shift; |
| unsigned int psize = get_slice_psize(tlb->mm, addr); |
| shift = mmu_psize_to_shift(psize); |
| |
| start = addr; |
| pud = pud_offset(pgd, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (shift < PMD_SHIFT) { |
| if (pud_none_or_clear_bad(pud)) |
| continue; |
| hugetlb_free_pmd_range(tlb, pud, addr, next, floor, |
| ceiling, psize); |
| } else { |
| if (pud_none(*pud)) |
| continue; |
| free_hugepte_range(tlb, (hugepd_t *)pud, psize); |
| } |
| } while (pud++, addr = next, addr != end); |
| |
| start &= PGDIR_MASK; |
| if (start < floor) |
| return; |
| if (ceiling) { |
| ceiling &= PGDIR_MASK; |
| if (!ceiling) |
| return; |
| } |
| if (end - 1 > ceiling - 1) |
| return; |
| |
| pud = pud_offset(pgd, start); |
| pgd_clear(pgd); |
| pud_free_tlb(tlb, pud, start); |
| } |
| |
| /* |
| * This function frees user-level page tables of a process. |
| * |
| * Must be called with pagetable lock held. |
| */ |
| void hugetlb_free_pgd_range(struct mmu_gather *tlb, |
| unsigned long addr, unsigned long end, |
| unsigned long floor, unsigned long ceiling) |
| { |
| pgd_t *pgd; |
| unsigned long next; |
| unsigned long start; |
| |
| /* |
| * Comments below take from the normal free_pgd_range(). They |
| * apply here too. The tests against HUGEPD_MASK below are |
| * essential, because we *don't* test for this at the bottom |
| * level. Without them we'll attempt to free a hugepte table |
| * when we unmap just part of it, even if there are other |
| * active mappings using it. |
| * |
| * The next few lines have given us lots of grief... |
| * |
| * Why are we testing HUGEPD* at this top level? Because |
| * often there will be no work to do at all, and we'd prefer |
| * not to go all the way down to the bottom just to discover |
| * that. |
| * |
| * Why all these "- 1"s? Because 0 represents both the bottom |
| * of the address space and the top of it (using -1 for the |
| * top wouldn't help much: the masks would do the wrong thing). |
| * The rule is that addr 0 and floor 0 refer to the bottom of |
| * the address space, but end 0 and ceiling 0 refer to the top |
| * Comparisons need to use "end - 1" and "ceiling - 1" (though |
| * that end 0 case should be mythical). |
| * |
| * Wherever addr is brought up or ceiling brought down, we |
| * must be careful to reject "the opposite 0" before it |
| * confuses the subsequent tests. But what about where end is |
| * brought down by HUGEPD_SIZE below? no, end can't go down to |
| * 0 there. |
| * |
| * Whereas we round start (addr) and ceiling down, by different |
| * masks at different levels, in order to test whether a table |
| * now has no other vmas using it, so can be freed, we don't |
| * bother to round floor or end up - the tests don't need that. |
| */ |
| unsigned int psize = get_slice_psize(tlb->mm, addr); |
| |
| addr &= HUGEPD_MASK(psize); |
| if (addr < floor) { |
| addr += HUGEPD_SIZE(psize); |
| if (!addr) |
| return; |
| } |
| if (ceiling) { |
| ceiling &= HUGEPD_MASK(psize); |
| if (!ceiling) |
| return; |
| } |
| if (end - 1 > ceiling - 1) |
| end -= HUGEPD_SIZE(psize); |
| if (addr > end - 1) |
| return; |
| |
| start = addr; |
| pgd = pgd_offset(tlb->mm, addr); |
| do { |
| psize = get_slice_psize(tlb->mm, addr); |
| BUG_ON(!mmu_huge_psizes[psize]); |
| next = pgd_addr_end(addr, end); |
| if (mmu_psize_to_shift(psize) < PUD_SHIFT) { |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
| } else { |
| if (pgd_none(*pgd)) |
| continue; |
| free_hugepte_range(tlb, (hugepd_t *)pgd, psize); |
| } |
| } while (pgd++, addr = next, addr != end); |
| } |
| |
| void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| if (pte_present(*ptep)) { |
| /* We open-code pte_clear because we need to pass the right |
| * argument to hpte_need_flush (huge / !huge). Might not be |
| * necessary anymore if we make hpte_need_flush() get the |
| * page size from the slices |
| */ |
| unsigned int psize = get_slice_psize(mm, addr); |
| unsigned int shift = mmu_psize_to_shift(psize); |
| unsigned long sz = ((1UL) << shift); |
| struct hstate *hstate = size_to_hstate(sz); |
| pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1); |
| } |
| *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); |
| } |
| |
| pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1); |
| return __pte(old); |
| } |
| |
| struct page * |
| follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) |
| { |
| pte_t *ptep; |
| struct page *page; |
| unsigned int mmu_psize = get_slice_psize(mm, address); |
| |
| /* Verify it is a huge page else bail. */ |
| if (!mmu_huge_psizes[mmu_psize]) |
| return ERR_PTR(-EINVAL); |
| |
| ptep = huge_pte_offset(mm, address); |
| page = pte_page(*ptep); |
| if (page) { |
| unsigned int shift = mmu_psize_to_shift(mmu_psize); |
| unsigned long sz = ((1UL) << shift); |
| page += (address % sz) / PAGE_SIZE; |
| } |
| |
| return page; |
| } |
| |
| int pmd_huge(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| int pud_huge(pud_t pud) |
| { |
| return 0; |
| } |
| |
| struct page * |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
| pmd_t *pmd, int write) |
| { |
| BUG(); |
| return NULL; |
| } |
| |
| |
| unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags) |
| { |
| struct hstate *hstate = hstate_file(file); |
| int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); |
| |
| if (!mmu_huge_psizes[mmu_psize]) |
| return -EINVAL; |
| return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); |
| } |
| |
| unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) |
| { |
| unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); |
| |
| return 1UL << mmu_psize_to_shift(psize); |
| } |
| |
| /* |
| * Called by asm hashtable.S for doing lazy icache flush |
| */ |
| static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, |
| pte_t pte, int trap, unsigned long sz) |
| { |
| struct page *page; |
| int i; |
| |
| if (!pfn_valid(pte_pfn(pte))) |
| return rflags; |
| |
| page = pte_page(pte); |
| |
| /* page is dirty */ |
| if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { |
| if (trap == 0x400) { |
| for (i = 0; i < (sz / PAGE_SIZE); i++) |
| __flush_dcache_icache(page_address(page+i)); |
| set_bit(PG_arch_1, &page->flags); |
| } else { |
| rflags |= HPTE_R_N; |
| } |
| } |
| return rflags; |
| } |
| |
| int hash_huge_page(struct mm_struct *mm, unsigned long access, |
| unsigned long ea, unsigned long vsid, int local, |
| unsigned long trap) |
| { |
| pte_t *ptep; |
| unsigned long old_pte, new_pte; |
| unsigned long va, rflags, pa, sz; |
| long slot; |
| int err = 1; |
| int ssize = user_segment_size(ea); |
| unsigned int mmu_psize; |
| int shift; |
| mmu_psize = get_slice_psize(mm, ea); |
| |
| if (!mmu_huge_psizes[mmu_psize]) |
| goto out; |
| ptep = huge_pte_offset(mm, ea); |
| |
| /* Search the Linux page table for a match with va */ |
| va = hpt_va(ea, vsid, ssize); |
| |
| /* |
| * If no pte found or not present, send the problem up to |
| * do_page_fault |
| */ |
| if (unlikely(!ptep || pte_none(*ptep))) |
| goto out; |
| |
| /* |
| * Check the user's access rights to the page. If access should be |
| * prevented then send the problem up to do_page_fault. |
| */ |
| if (unlikely(access & ~pte_val(*ptep))) |
| goto out; |
| /* |
| * At this point, we have a pte (old_pte) which can be used to build |
| * or update an HPTE. There are 2 cases: |
| * |
| * 1. There is a valid (present) pte with no associated HPTE (this is |
| * the most common case) |
| * 2. There is a valid (present) pte with an associated HPTE. The |
| * current values of the pp bits in the HPTE prevent access |
| * because we are doing software DIRTY bit management and the |
| * page is currently not DIRTY. |
| */ |
| |
| |
| do { |
| old_pte = pte_val(*ptep); |
| if (old_pte & _PAGE_BUSY) |
| goto out; |
| new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED; |
| } while(old_pte != __cmpxchg_u64((unsigned long *)ptep, |
| old_pte, new_pte)); |
| |
| rflags = 0x2 | (!(new_pte & _PAGE_RW)); |
| /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ |
| rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); |
| shift = mmu_psize_to_shift(mmu_psize); |
| sz = ((1UL) << shift); |
| if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| /* No CPU has hugepages but lacks no execute, so we |
| * don't need to worry about that case */ |
| rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), |
| trap, sz); |
| |
| /* Check if pte already has an hpte (case 2) */ |
| if (unlikely(old_pte & _PAGE_HASHPTE)) { |
| /* There MIGHT be an HPTE for this pte */ |
| unsigned long hash, slot; |
| |
| hash = hpt_hash(va, shift, ssize); |
| if (old_pte & _PAGE_F_SECOND) |
| hash = ~hash; |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += (old_pte & _PAGE_F_GIX) >> 12; |
| |
| if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize, |
| ssize, local) == -1) |
| old_pte &= ~_PAGE_HPTEFLAGS; |
| } |
| |
| if (likely(!(old_pte & _PAGE_HASHPTE))) { |
| unsigned long hash = hpt_hash(va, shift, ssize); |
| unsigned long hpte_group; |
| |
| pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; |
| |
| repeat: |
| hpte_group = ((hash & htab_hash_mask) * |
| HPTES_PER_GROUP) & ~0x7UL; |
| |
| /* clear HPTE slot informations in new PTE */ |
| #ifdef CONFIG_PPC_64K_PAGES |
| new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0; |
| #else |
| new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; |
| #endif |
| /* Add in WIMG bits */ |
| rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | |
| _PAGE_COHERENT | _PAGE_GUARDED)); |
| |
| /* Insert into the hash table, primary slot */ |
| slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, |
| mmu_psize, ssize); |
| |
| /* Primary is full, try the secondary */ |
| if (unlikely(slot == -1)) { |
| hpte_group = ((~hash & htab_hash_mask) * |
| HPTES_PER_GROUP) & ~0x7UL; |
| slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, |
| HPTE_V_SECONDARY, |
| mmu_psize, ssize); |
| if (slot == -1) { |
| if (mftb() & 0x1) |
| hpte_group = ((hash & htab_hash_mask) * |
| HPTES_PER_GROUP)&~0x7UL; |
| |
| ppc_md.hpte_remove(hpte_group); |
| goto repeat; |
| } |
| } |
| |
| if (unlikely(slot == -2)) |
| panic("hash_huge_page: pte_insert failed\n"); |
| |
| new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX); |
| } |
| |
| /* |
| * No need to use ldarx/stdcx here |
| */ |
| *ptep = __pte(new_pte & ~_PAGE_BUSY); |
| |
| err = 0; |
| |
| out: |
| return err; |
| } |
| |
| static void __init set_huge_psize(int psize) |
| { |
| /* Check that it is a page size supported by the hardware and |
| * that it fits within pagetable limits. */ |
| if (mmu_psize_defs[psize].shift && |
| mmu_psize_defs[psize].shift < SID_SHIFT_1T && |
| (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT || |
| mmu_psize_defs[psize].shift == PAGE_SHIFT_64K || |
| mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) { |
| /* Return if huge page size has already been setup or is the |
| * same as the base page size. */ |
| if (mmu_huge_psizes[psize] || |
| mmu_psize_defs[psize].shift == PAGE_SHIFT) |
| return; |
| hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT); |
| |
| switch (mmu_psize_defs[psize].shift) { |
| case PAGE_SHIFT_64K: |
| /* We only allow 64k hpages with 4k base page, |
| * which was checked above, and always put them |
| * at the PMD */ |
| hugepte_shift[psize] = PMD_SHIFT; |
| break; |
| case PAGE_SHIFT_16M: |
| /* 16M pages can be at two different levels |
| * of pagestables based on base page size */ |
| if (PAGE_SHIFT == PAGE_SHIFT_64K) |
| hugepte_shift[psize] = PMD_SHIFT; |
| else /* 4k base page */ |
| hugepte_shift[psize] = PUD_SHIFT; |
| break; |
| case PAGE_SHIFT_16G: |
| /* 16G pages are always at PGD level */ |
| hugepte_shift[psize] = PGDIR_SHIFT; |
| break; |
| } |
| hugepte_shift[psize] -= mmu_psize_defs[psize].shift; |
| } else |
| hugepte_shift[psize] = 0; |
| } |
| |
| static int __init hugepage_setup_sz(char *str) |
| { |
| unsigned long long size; |
| int mmu_psize; |
| int shift; |
| |
| size = memparse(str, &str); |
| |
| shift = __ffs(size); |
| mmu_psize = shift_to_mmu_psize(shift); |
| if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift) |
| set_huge_psize(mmu_psize); |
| else |
| printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); |
| |
| return 1; |
| } |
| __setup("hugepagesz=", hugepage_setup_sz); |
| |
| static int __init hugetlbpage_init(void) |
| { |
| unsigned int psize; |
| |
| if (!cpu_has_feature(CPU_FTR_16M_PAGE)) |
| return -ENODEV; |
| |
| /* Add supported huge page sizes. Need to change HUGE_MAX_HSTATE |
| * and adjust PTE_NONCACHE_NUM if the number of supported huge page |
| * sizes changes. |
| */ |
| set_huge_psize(MMU_PAGE_16M); |
| set_huge_psize(MMU_PAGE_16G); |
| |
| /* Temporarily disable support for 64K huge pages when 64K SPU local |
| * store support is enabled as the current implementation conflicts. |
| */ |
| #ifndef CONFIG_SPU_FS_64K_LS |
| set_huge_psize(MMU_PAGE_64K); |
| #endif |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { |
| if (mmu_huge_psizes[psize]) { |
| pgtable_cache[HUGE_PGTABLE_INDEX(psize)] = |
| kmem_cache_create( |
| HUGEPTE_CACHE_NAME(psize), |
| HUGEPTE_TABLE_SIZE(psize), |
| HUGEPTE_TABLE_SIZE(psize), |
| 0, |
| NULL); |
| if (!pgtable_cache[HUGE_PGTABLE_INDEX(psize)]) |
| panic("hugetlbpage_init(): could not create %s"\ |
| "\n", HUGEPTE_CACHE_NAME(psize)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| module_init(hugetlbpage_init); |