blob: a0e7ab9149dbbe44f8a0ff56eb41f01cf8fcaf41 [file] [log] [blame]
/* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/hwmon-sysfs.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/platform_device.h>
/* QPNP VADC register definition */
#define QPNP_VADC_REVISION1 0x0
#define QPNP_VADC_REVISION2 0x1
#define QPNP_VADC_REVISION3 0x2
#define QPNP_VADC_REVISION4 0x3
#define QPNP_VADC_PERPH_TYPE 0x4
#define QPNP_VADC_PERH_SUBTYPE 0x5
#define QPNP_VADC_SUPPORTED_REVISION2 1
#define QPNP_VADC_STATUS1 0x8
#define QPNP_VADC_STATUS1_OP_MODE 4
#define QPNP_VADC_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
#define QPNP_VADC_STATUS1_REQ_STS BIT(1)
#define QPNP_VADC_STATUS1_EOC BIT(0)
#define QPNP_VADC_STATUS1_REQ_STS_EOC_MASK 0x3
#define QPNP_VADC_STATUS2 0x9
#define QPNP_VADC_STATUS2_CONV_SEQ_STATE 6
#define QPNP_VADC_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
#define QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
#define QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT 4
#define QPNP_VADC_CONV_TIMEOUT_ERR 2
#define QPNP_VADC_INT_SET_TYPE 0x11
#define QPNP_VADC_INT_POLARITY_HIGH 0x12
#define QPNP_VADC_INT_POLARITY_LOW 0x13
#define QPNP_VADC_INT_LATCHED_CLR 0x14
#define QPNP_VADC_INT_EN_SET 0x15
#define QPNP_VADC_INT_CLR 0x16
#define QPNP_VADC_INT_LOW_THR_BIT BIT(4)
#define QPNP_VADC_INT_HIGH_THR_BIT BIT(3)
#define QPNP_VADC_INT_CONV_SEQ_TIMEOUT_BIT BIT(2)
#define QPNP_VADC_INT_FIFO_NOT_EMPTY_BIT BIT(1)
#define QPNP_VADC_INT_EOC_BIT BIT(0)
#define QPNP_VADC_INT_CLR_MASK 0x1f
#define QPNP_VADC_MODE_CTL 0x40
#define QPNP_VADC_OP_MODE_SHIFT 4
#define QPNP_VADC_VREF_XO_THM_FORCE BIT(2)
#define QPNP_VADC_AMUX_TRIM_EN BIT(1)
#define QPNP_VADC_ADC_TRIM_EN BIT(0)
#define QPNP_VADC_EN_CTL1 0x46
#define QPNP_VADC_ADC_EN BIT(7)
#define QPNP_VADC_ADC_CH_SEL_CTL 0x48
#define QPNP_VADC_ADC_DIG_PARAM 0x50
#define QPNP_VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 3
#define QPNP_VADC_HW_SETTLE_DELAY 0x51
#define QPNP_VADC_CONV_REQ 0x52
#define QPNP_VADC_CONV_REQ_SET BIT(7)
#define QPNP_VADC_CONV_SEQ_CTL 0x54
#define QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT 4
#define QPNP_VADC_CONV_SEQ_TRIG_CTL 0x55
#define QPNP_VADC_CONV_SEQ_FALLING_EDGE 0x0
#define QPNP_VADC_CONV_SEQ_RISING_EDGE 0x1
#define QPNP_VADC_CONV_SEQ_EDGE_SHIFT 7
#define QPNP_VADC_FAST_AVG_CTL 0x5a
#define QPNP_VADC_M0_LOW_THR_LSB 0x5c
#define QPNP_VADC_M0_LOW_THR_MSB 0x5d
#define QPNP_VADC_M0_HIGH_THR_LSB 0x5e
#define QPNP_VADC_M0_HIGH_THR_MSB 0x5f
#define QPNP_VADC_M1_LOW_THR_LSB 0x69
#define QPNP_VADC_M1_LOW_THR_MSB 0x6a
#define QPNP_VADC_M1_HIGH_THR_LSB 0x6b
#define QPNP_VADC_M1_HIGH_THR_MSB 0x6c
#define QPNP_VADC_DATA0 0x60
#define QPNP_VADC_DATA1 0x61
#define QPNP_VADC_CONV_TIMEOUT_ERR 2
#define QPNP_VADC_CONV_TIME_MIN 2000
#define QPNP_VADC_CONV_TIME_MAX 2100
struct qpnp_vadc_drv {
struct qpnp_adc_drv *adc;
struct dentry *dent;
struct device *vadc_hwmon;
bool vadc_init_calib;
bool vadc_initialized;
int max_channels_available;
struct sensor_device_attribute sens_attr[0];
};
struct qpnp_vadc_drv *qpnp_vadc;
static struct qpnp_vadc_scale_fn vadc_scale_fn[] = {
[SCALE_DEFAULT] = {qpnp_adc_scale_default},
[SCALE_BATT_THERM] = {qpnp_adc_scale_batt_therm},
[SCALE_PMIC_THERM] = {qpnp_adc_scale_pmic_therm},
[SCALE_XOTHERM] = {qpnp_adc_tdkntcg_therm},
};
static int32_t qpnp_vadc_read_reg(int16_t reg, u8 *data)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
int rc;
rc = spmi_ext_register_readl(vadc->adc->spmi->ctrl, vadc->adc->slave,
(vadc->adc->offset + reg), data, 1);
if (rc < 0) {
pr_err("qpnp adc read reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_write_reg(int16_t reg, u8 data)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
int rc;
u8 *buf;
buf = &data;
rc = spmi_ext_register_writel(vadc->adc->spmi->ctrl, vadc->adc->slave,
(vadc->adc->offset + reg), buf, 1);
if (rc < 0) {
pr_err("qpnp adc write reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_configure_interrupt(void)
{
int rc = 0;
u8 data = 0;
/* Configure interrupt as an Edge trigger */
rc = qpnp_vadc_write_reg(QPNP_VADC_INT_SET_TYPE,
QPNP_VADC_INT_CLR_MASK);
if (rc < 0) {
pr_err("%s Interrupt configure failed\n", __func__);
return rc;
}
/* Configure interrupt for rising edge trigger */
rc = qpnp_vadc_write_reg(QPNP_VADC_INT_POLARITY_HIGH,
QPNP_VADC_INT_CLR_MASK);
if (rc < 0) {
pr_err("%s Rising edge trigger configure failed\n", __func__);
return rc;
}
/* Disable low level interrupt triggering */
data = QPNP_VADC_INT_CLR_MASK;
rc = qpnp_vadc_write_reg(QPNP_VADC_INT_POLARITY_LOW,
(~data & QPNP_VADC_INT_CLR_MASK));
if (rc < 0) {
pr_err("%s Setting level low to disable failed\n", __func__);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_enable(bool state)
{
int rc = 0;
u8 data = 0;
data = QPNP_VADC_ADC_EN;
if (state) {
rc = qpnp_vadc_write_reg(QPNP_VADC_EN_CTL1,
data);
if (rc < 0) {
pr_err("VADC enable failed\n");
return rc;
}
} else {
rc = qpnp_vadc_write_reg(QPNP_VADC_EN_CTL1,
(~data & QPNP_VADC_ADC_EN));
if (rc < 0) {
pr_err("VADC disable failed\n");
return rc;
}
}
return 0;
}
int32_t qpnp_vadc_configure(
struct qpnp_adc_amux_properties *chan_prop)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
u8 decimation = 0, conv_sequence = 0, conv_sequence_trig = 0;
u8 mode_ctrl = 0;
int rc = 0;
rc = qpnp_vadc_write_reg(QPNP_VADC_INT_EN_SET,
QPNP_VADC_INT_EOC_BIT);
if (rc < 0) {
pr_err("Configure error for interrupt setup\n");
return rc;
}
/* Mode selection */
mode_ctrl = chan_prop->mode_sel << QPNP_VADC_OP_MODE_SHIFT;
rc = qpnp_vadc_write_reg(QPNP_VADC_MODE_CTL, mode_ctrl);
if (rc < 0) {
pr_err("Mode configure write error\n");
return rc;
}
/* Channel selection */
rc = qpnp_vadc_write_reg(QPNP_VADC_ADC_CH_SEL_CTL,
chan_prop->amux_channel);
if (rc < 0) {
pr_err("Channel configure error\n");
return rc;
}
/* Digital parameter setup */
decimation = chan_prop->decimation <<
QPNP_VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
rc = qpnp_vadc_write_reg(QPNP_VADC_ADC_DIG_PARAM, decimation);
if (rc < 0) {
pr_err("Digital parameter configure write error\n");
return rc;
}
/* HW settling time delay */
rc = qpnp_vadc_write_reg(QPNP_VADC_HW_SETTLE_DELAY,
chan_prop->hw_settle_time);
if (rc < 0) {
pr_err("HW settling time setup error\n");
return rc;
}
if (chan_prop->mode_sel == (ADC_OP_NORMAL_MODE <<
QPNP_VADC_OP_MODE_SHIFT)) {
/* Normal measurement mode */
rc = qpnp_vadc_write_reg(QPNP_VADC_FAST_AVG_CTL,
chan_prop->fast_avg_setup);
if (rc < 0) {
pr_err("Fast averaging configure error\n");
return rc;
}
} else if (chan_prop->mode_sel == (ADC_OP_CONVERSION_SEQUENCER <<
QPNP_VADC_OP_MODE_SHIFT)) {
/* Conversion sequence mode */
conv_sequence = ((ADC_SEQ_HOLD_100US <<
QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT) |
ADC_CONV_SEQ_TIMEOUT_5MS);
rc = qpnp_vadc_write_reg(QPNP_VADC_CONV_SEQ_CTL,
conv_sequence);
if (rc < 0) {
pr_err("Conversion sequence error\n");
return rc;
}
conv_sequence_trig = ((QPNP_VADC_CONV_SEQ_RISING_EDGE <<
QPNP_VADC_CONV_SEQ_EDGE_SHIFT) |
chan_prop->trigger_channel);
rc = qpnp_vadc_write_reg(QPNP_VADC_CONV_SEQ_TRIG_CTL,
conv_sequence_trig);
if (rc < 0) {
pr_err("Conversion trigger error\n");
return rc;
}
}
INIT_COMPLETION(vadc->adc->adc_rslt_completion);
rc = qpnp_vadc_enable(true);
if (rc)
return rc;
/* Request conversion */
rc = qpnp_vadc_write_reg(QPNP_VADC_CONV_REQ, QPNP_VADC_CONV_REQ_SET);
if (rc < 0) {
pr_err("Request conversion failed\n");
return rc;
}
return 0;
}
EXPORT_SYMBOL(qpnp_vadc_configure);
static int32_t qpnp_vadc_read_conversion_result(int32_t *data)
{
uint8_t rslt_lsb, rslt_msb;
int rc = 0, status = 0;
status = qpnp_vadc_read_reg(QPNP_VADC_DATA0, &rslt_lsb);
if (status < 0) {
pr_err("qpnp adc result read failed for data0\n");
goto fail;
}
status = qpnp_vadc_read_reg(QPNP_VADC_DATA1, &rslt_msb);
if (status < 0) {
pr_err("qpnp adc result read failed for data1\n");
goto fail;
}
*data = (rslt_msb << 8) | rslt_lsb;
status = qpnp_vadc_check_result(data);
if (status < 0) {
pr_err("VADC data check failed\n");
goto fail;
}
fail:
rc = qpnp_vadc_enable(false);
if (rc)
return rc;
return status;
}
static int32_t qpnp_vadc_read_status(int mode_sel)
{
u8 status1, status2, status2_conv_seq_state;
u8 status_err = QPNP_VADC_CONV_TIMEOUT_ERR;
int rc;
switch (mode_sel) {
case (ADC_OP_CONVERSION_SEQUENCER << QPNP_VADC_OP_MODE_SHIFT):
rc = qpnp_vadc_read_reg(QPNP_VADC_STATUS1, &status1);
if (rc) {
pr_err("qpnp_vadc read mask interrupt failed\n");
return rc;
}
rc = qpnp_vadc_read_reg(QPNP_VADC_STATUS2, &status2);
if (rc) {
pr_err("qpnp_vadc read mask interrupt failed\n");
return rc;
}
if (!(status2 & ~QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS) &&
(status1 & (~QPNP_VADC_STATUS1_REQ_STS |
QPNP_VADC_STATUS1_EOC))) {
rc = status_err;
return rc;
}
status2_conv_seq_state = status2 >>
QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT;
if (status2_conv_seq_state != ADC_CONV_SEQ_IDLE) {
pr_err("qpnp vadc seq error with status %d\n",
status2);
rc = -EINVAL;
return rc;
}
}
return 0;
}
static void qpnp_vadc_work(struct work_struct *work)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
int rc;
rc = qpnp_vadc_write_reg(QPNP_VADC_INT_CLR, QPNP_VADC_INT_EOC_BIT);
if (rc)
pr_err("qpnp_vadc clear mask interrupt failed with %d\n", rc);
complete(&vadc->adc->adc_rslt_completion);
return;
}
DECLARE_WORK(trigger_completion_work, qpnp_vadc_work);
static irqreturn_t qpnp_vadc_isr(int irq, void *dev_id)
{
schedule_work(&trigger_completion_work);
return IRQ_HANDLED;
}
static int32_t qpnp_vadc_version_check(void)
{
uint8_t revision;
int rc;
rc = qpnp_vadc_read_reg(QPNP_VADC_REVISION2, &revision);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
if (revision < QPNP_VADC_SUPPORTED_REVISION2) {
pr_err("VADC Version not supported\n");
return -EINVAL;
}
return 0;
}
static uint32_t qpnp_vadc_calib_device(void)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
struct qpnp_adc_amux_properties conv;
int rc, calib_read_1, calib_read_2;
u8 status1 = 0;
conv.amux_channel = REF_125V;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(&conv);
if (rc) {
pr_err("qpnp_vadc configure failed with %d\n", rc);
goto calib_fail;
}
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
}
rc = qpnp_vadc_read_conversion_result(&calib_read_1);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
conv.amux_channel = REF_625MV;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(&conv);
if (rc) {
pr_err("qpnp adc configure failed with %d\n", rc);
goto calib_fail;
}
status1 = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
}
rc = qpnp_vadc_read_conversion_result(&calib_read_2);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dy =
(calib_read_1 - calib_read_2);
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dx
= QPNP_ADC_625_UV;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_vref =
calib_read_1;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_gnd =
calib_read_2;
/* Ratiometric Calibration */
conv.amux_channel = VDD_VADC;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(&conv);
if (rc) {
pr_err("qpnp adc configure failed with %d\n", rc);
goto calib_fail;
}
status1 = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
}
rc = qpnp_vadc_read_conversion_result(&calib_read_1);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
conv.amux_channel = GND_REF;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(&conv);
if (rc) {
pr_err("qpnp adc configure failed with %d\n", rc);
goto calib_fail;
}
status1 = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
}
rc = qpnp_vadc_read_conversion_result(&calib_read_2);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy =
(calib_read_1 - calib_read_2);
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx =
vadc->adc->adc_prop->adc_vdd_reference;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_vref =
calib_read_1;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd =
calib_read_2;
calib_fail:
return rc;
}
int32_t qpnp_vadc_is_ready(void)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
if (!vadc || !vadc->vadc_initialized)
return -EPROBE_DEFER;
else
return 0;
}
EXPORT_SYMBOL(qpnp_vadc_is_ready);
int32_t qpnp_vadc_conv_seq_request(enum qpnp_vadc_trigger trigger_channel,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
int rc = 0, scale_type, amux_prescaling, dt_index = 0;
if (!vadc || !vadc->vadc_initialized)
return -EPROBE_DEFER;
if (!vadc->vadc_init_calib) {
rc = qpnp_vadc_version_check();
if (rc)
return rc;
rc = qpnp_vadc_calib_device();
if (rc) {
pr_err("Calibration failed\n");
return rc;
} else
vadc->vadc_init_calib = true;
}
mutex_lock(&vadc->adc->adc_lock);
vadc->adc->amux_prop->amux_channel = channel;
while (vadc->adc->adc_channels[dt_index].channel_num
!= channel || dt_index > vadc->max_channels_available)
dt_index++;
if (dt_index > vadc->max_channels_available)
goto fail_unlock;
vadc->adc->amux_prop->decimation =
vadc->adc->adc_channels[dt_index].adc_decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->adc_channels[dt_index].hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->adc_channels[dt_index].fast_avg_setup;
if (trigger_channel < ADC_SEQ_NONE)
vadc->adc->amux_prop->mode_sel = (ADC_OP_CONVERSION_SEQUENCER
<< QPNP_VADC_OP_MODE_SHIFT);
else if (trigger_channel == ADC_SEQ_NONE)
vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
<< QPNP_VADC_OP_MODE_SHIFT);
else {
pr_err("Invalid trigger channel:%d\n", trigger_channel);
goto fail_unlock;
}
vadc->adc->amux_prop->trigger_channel = trigger_channel;
rc = qpnp_vadc_configure(vadc->adc->amux_prop);
if (rc) {
pr_err("qpnp vadc configure failed with %d\n", rc);
goto fail_unlock;
}
wait_for_completion(&vadc->adc->adc_rslt_completion);
if (trigger_channel < ADC_SEQ_NONE) {
rc = qpnp_vadc_read_status(vadc->adc->amux_prop->mode_sel);
if (rc)
pr_debug("Conversion sequence timed out - %d\n", rc);
}
rc = qpnp_vadc_read_conversion_result(&result->adc_code);
if (rc) {
pr_err("qpnp vadc read adc code failed with %d\n", rc);
goto fail_unlock;
}
amux_prescaling =
vadc->adc->adc_channels[dt_index].chan_path_prescaling;
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_NONE) {
rc = -EBADF;
goto fail_unlock;
}
vadc_scale_fn[scale_type].chan(result->adc_code,
vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
fail_unlock:
mutex_unlock(&vadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_conv_seq_request);
int32_t qpnp_vadc_read(enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
return qpnp_vadc_conv_seq_request(ADC_SEQ_NONE,
channel, result);
}
EXPORT_SYMBOL_GPL(qpnp_vadc_read);
static ssize_t qpnp_adc_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct qpnp_vadc_result result;
int rc = -1;
rc = qpnp_vadc_read(attr->index, &result);
if (rc) {
pr_err("VADC read error with %d\n", rc);
return 0;
}
return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
"Result:%lld Raw:%d\n", result.physical, result.adc_code);
}
static struct sensor_device_attribute qpnp_adc_attr =
SENSOR_ATTR(NULL, S_IRUGO, qpnp_adc_show, NULL, 0);
static int32_t qpnp_vadc_init_hwmon(struct spmi_device *spmi)
{
struct qpnp_vadc_drv *vadc = qpnp_vadc;
struct device_node *child;
struct device_node *node = spmi->dev.of_node;
int rc = 0, i = 0, channel;
for_each_child_of_node(node, child) {
channel = vadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.index = vadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.dev_attr.attr.name =
vadc->adc->adc_channels[i].name;
sysfs_attr_init(&vadc->sens_attr[i].dev_attr.attr);
memcpy(&vadc->sens_attr[i], &qpnp_adc_attr,
sizeof(qpnp_adc_attr));
rc = device_create_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&spmi->dev,
"device_create_file failed for dev %s\n",
vadc->adc->adc_channels[i].name);
goto hwmon_err_sens;
}
i++;
}
return 0;
hwmon_err_sens:
pr_err("Init HWMON failed for qpnp_adc with %d\n", rc);
return rc;
}
static int __devinit qpnp_vadc_probe(struct spmi_device *spmi)
{
struct qpnp_vadc_drv *vadc;
struct qpnp_adc_drv *adc_qpnp;
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int rc, count_adc_channel_list = 0;
if (!node)
return -EINVAL;
if (qpnp_vadc) {
pr_err("VADC already in use\n");
return -EBUSY;
}
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
vadc = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_vadc_drv) +
(sizeof(struct sensor_device_attribute) *
count_adc_channel_list), GFP_KERNEL);
if (!vadc) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
adc_qpnp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_drv),
GFP_KERNEL);
if (!adc_qpnp) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
vadc->adc = adc_qpnp;
rc = qpnp_adc_get_devicetree_data(spmi, vadc->adc);
if (rc) {
dev_err(&spmi->dev, "failed to read device tree\n");
return rc;
}
rc = devm_request_irq(&spmi->dev, vadc->adc->adc_irq,
qpnp_vadc_isr, IRQF_TRIGGER_RISING,
"qpnp_vadc_interrupt", vadc);
if (rc) {
dev_err(&spmi->dev,
"failed to request adc irq with error %d\n", rc);
return rc;
} else {
enable_irq_wake(vadc->adc->adc_irq);
}
qpnp_vadc = vadc;
dev_set_drvdata(&spmi->dev, vadc);
rc = qpnp_vadc_init_hwmon(spmi);
if (rc) {
dev_err(&spmi->dev, "failed to initialize qpnp hwmon adc\n");
goto fail_free_irq;
}
vadc->vadc_hwmon = hwmon_device_register(&vadc->adc->spmi->dev);
vadc->vadc_init_calib = false;
vadc->vadc_initialized = true;
vadc->max_channels_available = count_adc_channel_list;
rc = qpnp_vadc_configure_interrupt();
if (rc) {
dev_err(&spmi->dev, "failed to configure interrupt");
goto fail_free_irq;
}
return 0;
fail_free_irq:
free_irq(vadc->adc->adc_irq, vadc);
return rc;
}
static int __devexit qpnp_vadc_remove(struct spmi_device *spmi)
{
struct qpnp_vadc_drv *vadc = dev_get_drvdata(&spmi->dev);
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int i = 0;
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
i++;
}
free_irq(vadc->adc->adc_irq, vadc);
vadc->vadc_initialized = false;
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static const struct of_device_id qpnp_vadc_match_table[] = {
{ .compatible = "qcom,qpnp-vadc",
},
{}
};
static struct spmi_driver qpnp_vadc_driver = {
.driver = {
.name = "qcom,qpnp-vadc",
.of_match_table = qpnp_vadc_match_table,
},
.probe = qpnp_vadc_probe,
.remove = qpnp_vadc_remove,
};
static int __init qpnp_vadc_init(void)
{
return spmi_driver_register(&qpnp_vadc_driver);
}
module_init(qpnp_vadc_init);
static void __exit qpnp_vadc_exit(void)
{
spmi_driver_unregister(&qpnp_vadc_driver);
}
module_exit(qpnp_vadc_exit);
MODULE_DESCRIPTION("QPNP PMIC Voltage ADC driver");
MODULE_LICENSE("GPL v2");