| /************************************************************************ |
| * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC |
| * Copyright(c) 2002-2005 Neterion Inc. |
| |
| * This software may be used and distributed according to the terms of |
| * the GNU General Public License (GPL), incorporated herein by reference. |
| * Drivers based on or derived from this code fall under the GPL and must |
| * retain the authorship, copyright and license notice. This file is not |
| * a complete program and may only be used when the entire operating |
| * system is licensed under the GPL. |
| * See the file COPYING in this distribution for more information. |
| * |
| * Credits: |
| * Jeff Garzik : For pointing out the improper error condition |
| * check in the s2io_xmit routine and also some |
| * issues in the Tx watch dog function. Also for |
| * patiently answering all those innumerable |
| * questions regaring the 2.6 porting issues. |
| * Stephen Hemminger : Providing proper 2.6 porting mechanism for some |
| * macros available only in 2.6 Kernel. |
| * Francois Romieu : For pointing out all code part that were |
| * deprecated and also styling related comments. |
| * Grant Grundler : For helping me get rid of some Architecture |
| * dependent code. |
| * Christopher Hellwig : Some more 2.6 specific issues in the driver. |
| * |
| * The module loadable parameters that are supported by the driver and a brief |
| * explaination of all the variables. |
| * rx_ring_num : This can be used to program the number of receive rings used |
| * in the driver. |
| * rx_ring_sz: This defines the number of descriptors each ring can have. This |
| * is also an array of size 8. |
| * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. |
| * tx_fifo_len: This too is an array of 8. Each element defines the number of |
| * Tx descriptors that can be associated with each corresponding FIFO. |
| ************************************************************************/ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/stddef.h> |
| #include <linux/ioctl.h> |
| #include <linux/timex.h> |
| #include <linux/sched.h> |
| #include <linux/ethtool.h> |
| #include <linux/version.h> |
| #include <linux/workqueue.h> |
| #include <linux/if_vlan.h> |
| |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| /* local include */ |
| #include "s2io.h" |
| #include "s2io-regs.h" |
| |
| #define DRV_VERSION "Version 2.0.9.1" |
| |
| /* S2io Driver name & version. */ |
| static char s2io_driver_name[] = "Neterion"; |
| static char s2io_driver_version[] = DRV_VERSION; |
| |
| static inline int RXD_IS_UP2DT(RxD_t *rxdp) |
| { |
| int ret; |
| |
| ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); |
| |
| return ret; |
| } |
| |
| /* |
| * Cards with following subsystem_id have a link state indication |
| * problem, 600B, 600C, 600D, 640B, 640C and 640D. |
| * macro below identifies these cards given the subsystem_id. |
| */ |
| #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ |
| (dev_type == XFRAME_I_DEVICE) ? \ |
| ((((subid >= 0x600B) && (subid <= 0x600D)) || \ |
| ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 |
| |
| #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ |
| ADAPTER_STATUS_RMAC_LOCAL_FAULT))) |
| #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) |
| #define PANIC 1 |
| #define LOW 2 |
| static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) |
| { |
| int level = 0; |
| mac_info_t *mac_control; |
| |
| mac_control = &sp->mac_control; |
| if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) { |
| level = LOW; |
| if (rxb_size <= MAX_RXDS_PER_BLOCK) { |
| level = PANIC; |
| } |
| } |
| |
| return level; |
| } |
| |
| /* Ethtool related variables and Macros. */ |
| static char s2io_gstrings[][ETH_GSTRING_LEN] = { |
| "Register test\t(offline)", |
| "Eeprom test\t(offline)", |
| "Link test\t(online)", |
| "RLDRAM test\t(offline)", |
| "BIST Test\t(offline)" |
| }; |
| |
| static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { |
| {"tmac_frms"}, |
| {"tmac_data_octets"}, |
| {"tmac_drop_frms"}, |
| {"tmac_mcst_frms"}, |
| {"tmac_bcst_frms"}, |
| {"tmac_pause_ctrl_frms"}, |
| {"tmac_any_err_frms"}, |
| {"tmac_vld_ip_octets"}, |
| {"tmac_vld_ip"}, |
| {"tmac_drop_ip"}, |
| {"tmac_icmp"}, |
| {"tmac_rst_tcp"}, |
| {"tmac_tcp"}, |
| {"tmac_udp"}, |
| {"rmac_vld_frms"}, |
| {"rmac_data_octets"}, |
| {"rmac_fcs_err_frms"}, |
| {"rmac_drop_frms"}, |
| {"rmac_vld_mcst_frms"}, |
| {"rmac_vld_bcst_frms"}, |
| {"rmac_in_rng_len_err_frms"}, |
| {"rmac_long_frms"}, |
| {"rmac_pause_ctrl_frms"}, |
| {"rmac_discarded_frms"}, |
| {"rmac_usized_frms"}, |
| {"rmac_osized_frms"}, |
| {"rmac_frag_frms"}, |
| {"rmac_jabber_frms"}, |
| {"rmac_ip"}, |
| {"rmac_ip_octets"}, |
| {"rmac_hdr_err_ip"}, |
| {"rmac_drop_ip"}, |
| {"rmac_icmp"}, |
| {"rmac_tcp"}, |
| {"rmac_udp"}, |
| {"rmac_err_drp_udp"}, |
| {"rmac_pause_cnt"}, |
| {"rmac_accepted_ip"}, |
| {"rmac_err_tcp"}, |
| {"\n DRIVER STATISTICS"}, |
| {"single_bit_ecc_errs"}, |
| {"double_bit_ecc_errs"}, |
| }; |
| |
| #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN |
| #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN |
| |
| #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN |
| #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN |
| |
| #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ |
| init_timer(&timer); \ |
| timer.function = handle; \ |
| timer.data = (unsigned long) arg; \ |
| mod_timer(&timer, (jiffies + exp)) \ |
| |
| /* Add the vlan */ |
| static void s2io_vlan_rx_register(struct net_device *dev, |
| struct vlan_group *grp) |
| { |
| nic_t *nic = dev->priv; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nic->tx_lock, flags); |
| nic->vlgrp = grp; |
| spin_unlock_irqrestore(&nic->tx_lock, flags); |
| } |
| |
| /* Unregister the vlan */ |
| static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid) |
| { |
| nic_t *nic = dev->priv; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nic->tx_lock, flags); |
| if (nic->vlgrp) |
| nic->vlgrp->vlan_devices[vid] = NULL; |
| spin_unlock_irqrestore(&nic->tx_lock, flags); |
| } |
| |
| /* |
| * Constants to be programmed into the Xena's registers, to configure |
| * the XAUI. |
| */ |
| |
| #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL |
| #define END_SIGN 0x0 |
| |
| static u64 herc_act_dtx_cfg[] = { |
| /* Set address */ |
| 0x8000051536750000ULL, 0x80000515367500E0ULL, |
| /* Write data */ |
| 0x8000051536750004ULL, 0x80000515367500E4ULL, |
| /* Set address */ |
| 0x80010515003F0000ULL, 0x80010515003F00E0ULL, |
| /* Write data */ |
| 0x80010515003F0004ULL, 0x80010515003F00E4ULL, |
| /* Set address */ |
| 0x801205150D440000ULL, 0x801205150D4400E0ULL, |
| /* Write data */ |
| 0x801205150D440004ULL, 0x801205150D4400E4ULL, |
| /* Set address */ |
| 0x80020515F2100000ULL, 0x80020515F21000E0ULL, |
| /* Write data */ |
| 0x80020515F2100004ULL, 0x80020515F21000E4ULL, |
| /* Done */ |
| END_SIGN |
| }; |
| |
| static u64 xena_mdio_cfg[] = { |
| /* Reset PMA PLL */ |
| 0xC001010000000000ULL, 0xC0010100000000E0ULL, |
| 0xC0010100008000E4ULL, |
| /* Remove Reset from PMA PLL */ |
| 0xC001010000000000ULL, 0xC0010100000000E0ULL, |
| 0xC0010100000000E4ULL, |
| END_SIGN |
| }; |
| |
| static u64 xena_dtx_cfg[] = { |
| 0x8000051500000000ULL, 0x80000515000000E0ULL, |
| 0x80000515D93500E4ULL, 0x8001051500000000ULL, |
| 0x80010515000000E0ULL, 0x80010515001E00E4ULL, |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 0x80020515F21000E4ULL, |
| /* Set PADLOOPBACKN */ |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 0x80020515B20000E4ULL, 0x8003051500000000ULL, |
| 0x80030515000000E0ULL, 0x80030515B20000E4ULL, |
| 0x8004051500000000ULL, 0x80040515000000E0ULL, |
| 0x80040515B20000E4ULL, 0x8005051500000000ULL, |
| 0x80050515000000E0ULL, 0x80050515B20000E4ULL, |
| SWITCH_SIGN, |
| /* Remove PADLOOPBACKN */ |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 0x80020515F20000E4ULL, 0x8003051500000000ULL, |
| 0x80030515000000E0ULL, 0x80030515F20000E4ULL, |
| 0x8004051500000000ULL, 0x80040515000000E0ULL, |
| 0x80040515F20000E4ULL, 0x8005051500000000ULL, |
| 0x80050515000000E0ULL, 0x80050515F20000E4ULL, |
| END_SIGN |
| }; |
| |
| /* |
| * Constants for Fixing the MacAddress problem seen mostly on |
| * Alpha machines. |
| */ |
| static u64 fix_mac[] = { |
| 0x0060000000000000ULL, 0x0060600000000000ULL, |
| 0x0040600000000000ULL, 0x0000600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0000600000000000ULL, |
| 0x0040600000000000ULL, 0x0060600000000000ULL, |
| END_SIGN |
| }; |
| |
| /* Module Loadable parameters. */ |
| static unsigned int tx_fifo_num = 1; |
| static unsigned int tx_fifo_len[MAX_TX_FIFOS] = |
| {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; |
| static unsigned int rx_ring_num = 1; |
| static unsigned int rx_ring_sz[MAX_RX_RINGS] = |
| {[0 ...(MAX_RX_RINGS - 1)] = 0 }; |
| static unsigned int rts_frm_len[MAX_RX_RINGS] = |
| {[0 ...(MAX_RX_RINGS - 1)] = 0 }; |
| static unsigned int use_continuous_tx_intrs = 1; |
| static unsigned int rmac_pause_time = 65535; |
| static unsigned int mc_pause_threshold_q0q3 = 187; |
| static unsigned int mc_pause_threshold_q4q7 = 187; |
| static unsigned int shared_splits; |
| static unsigned int tmac_util_period = 5; |
| static unsigned int rmac_util_period = 5; |
| static unsigned int bimodal = 0; |
| #ifndef CONFIG_S2IO_NAPI |
| static unsigned int indicate_max_pkts; |
| #endif |
| /* Frequency of Rx desc syncs expressed as power of 2 */ |
| static unsigned int rxsync_frequency = 3; |
| /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */ |
| static unsigned int intr_type = 0; |
| |
| /* |
| * S2IO device table. |
| * This table lists all the devices that this driver supports. |
| */ |
| static struct pci_device_id s2io_tbl[] __devinitdata = { |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, s2io_tbl); |
| |
| static struct pci_driver s2io_driver = { |
| .name = "S2IO", |
| .id_table = s2io_tbl, |
| .probe = s2io_init_nic, |
| .remove = __devexit_p(s2io_rem_nic), |
| }; |
| |
| /* A simplifier macro used both by init and free shared_mem Fns(). */ |
| #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) |
| |
| /** |
| * init_shared_mem - Allocation and Initialization of Memory |
| * @nic: Device private variable. |
| * Description: The function allocates all the memory areas shared |
| * between the NIC and the driver. This includes Tx descriptors, |
| * Rx descriptors and the statistics block. |
| */ |
| |
| static int init_shared_mem(struct s2io_nic *nic) |
| { |
| u32 size; |
| void *tmp_v_addr, *tmp_v_addr_next; |
| dma_addr_t tmp_p_addr, tmp_p_addr_next; |
| RxD_block_t *pre_rxd_blk = NULL; |
| int i, j, blk_cnt, rx_sz, tx_sz; |
| int lst_size, lst_per_page; |
| struct net_device *dev = nic->dev; |
| #ifdef CONFIG_2BUFF_MODE |
| unsigned long tmp; |
| buffAdd_t *ba; |
| #endif |
| |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| |
| /* Allocation and initialization of TXDLs in FIOFs */ |
| size = 0; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| size += config->tx_cfg[i].fifo_len; |
| } |
| if (size > MAX_AVAILABLE_TXDS) { |
| DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ", |
| __FUNCTION__); |
| DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size); |
| return FAILURE; |
| } |
| |
| lst_size = (sizeof(TxD_t) * config->max_txds); |
| tx_sz = lst_size * size; |
| lst_per_page = PAGE_SIZE / lst_size; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int fifo_len = config->tx_cfg[i].fifo_len; |
| int list_holder_size = fifo_len * sizeof(list_info_hold_t); |
| mac_control->fifos[i].list_info = kmalloc(list_holder_size, |
| GFP_KERNEL); |
| if (!mac_control->fifos[i].list_info) { |
| DBG_PRINT(ERR_DBG, |
| "Malloc failed for list_info\n"); |
| return -ENOMEM; |
| } |
| memset(mac_control->fifos[i].list_info, 0, list_holder_size); |
| } |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| lst_per_page); |
| mac_control->fifos[i].tx_curr_put_info.offset = 0; |
| mac_control->fifos[i].tx_curr_put_info.fifo_len = |
| config->tx_cfg[i].fifo_len - 1; |
| mac_control->fifos[i].tx_curr_get_info.offset = 0; |
| mac_control->fifos[i].tx_curr_get_info.fifo_len = |
| config->tx_cfg[i].fifo_len - 1; |
| mac_control->fifos[i].fifo_no = i; |
| mac_control->fifos[i].nic = nic; |
| mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1; |
| |
| for (j = 0; j < page_num; j++) { |
| int k = 0; |
| dma_addr_t tmp_p; |
| void *tmp_v; |
| tmp_v = pci_alloc_consistent(nic->pdev, |
| PAGE_SIZE, &tmp_p); |
| if (!tmp_v) { |
| DBG_PRINT(ERR_DBG, |
| "pci_alloc_consistent "); |
| DBG_PRINT(ERR_DBG, "failed for TxDL\n"); |
| return -ENOMEM; |
| } |
| /* If we got a zero DMA address(can happen on |
| * certain platforms like PPC), reallocate. |
| * Store virtual address of page we don't want, |
| * to be freed later. |
| */ |
| if (!tmp_p) { |
| mac_control->zerodma_virt_addr = tmp_v; |
| DBG_PRINT(INIT_DBG, |
| "%s: Zero DMA address for TxDL. ", dev->name); |
| DBG_PRINT(INIT_DBG, |
| "Virtual address %p\n", tmp_v); |
| tmp_v = pci_alloc_consistent(nic->pdev, |
| PAGE_SIZE, &tmp_p); |
| if (!tmp_v) { |
| DBG_PRINT(ERR_DBG, |
| "pci_alloc_consistent "); |
| DBG_PRINT(ERR_DBG, "failed for TxDL\n"); |
| return -ENOMEM; |
| } |
| } |
| while (k < lst_per_page) { |
| int l = (j * lst_per_page) + k; |
| if (l == config->tx_cfg[i].fifo_len) |
| break; |
| mac_control->fifos[i].list_info[l].list_virt_addr = |
| tmp_v + (k * lst_size); |
| mac_control->fifos[i].list_info[l].list_phy_addr = |
| tmp_p + (k * lst_size); |
| k++; |
| } |
| } |
| } |
| |
| /* Allocation and initialization of RXDs in Rings */ |
| size = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { |
| DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); |
| DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", |
| i); |
| DBG_PRINT(ERR_DBG, "RxDs per Block"); |
| return FAILURE; |
| } |
| size += config->rx_cfg[i].num_rxd; |
| mac_control->rings[i].block_count = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| mac_control->rings[i].pkt_cnt = |
| config->rx_cfg[i].num_rxd - mac_control->rings[i].block_count; |
| } |
| size = (size * (sizeof(RxD_t))); |
| rx_sz = size; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| mac_control->rings[i].rx_curr_get_info.block_index = 0; |
| mac_control->rings[i].rx_curr_get_info.offset = 0; |
| mac_control->rings[i].rx_curr_get_info.ring_len = |
| config->rx_cfg[i].num_rxd - 1; |
| mac_control->rings[i].rx_curr_put_info.block_index = 0; |
| mac_control->rings[i].rx_curr_put_info.offset = 0; |
| mac_control->rings[i].rx_curr_put_info.ring_len = |
| config->rx_cfg[i].num_rxd - 1; |
| mac_control->rings[i].nic = nic; |
| mac_control->rings[i].ring_no = i; |
| |
| blk_cnt = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| /* Allocating all the Rx blocks */ |
| for (j = 0; j < blk_cnt; j++) { |
| #ifndef CONFIG_2BUFF_MODE |
| size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); |
| #else |
| size = SIZE_OF_BLOCK; |
| #endif |
| tmp_v_addr = pci_alloc_consistent(nic->pdev, size, |
| &tmp_p_addr); |
| if (tmp_v_addr == NULL) { |
| /* |
| * In case of failure, free_shared_mem() |
| * is called, which should free any |
| * memory that was alloced till the |
| * failure happened. |
| */ |
| mac_control->rings[i].rx_blocks[j].block_virt_addr = |
| tmp_v_addr; |
| return -ENOMEM; |
| } |
| memset(tmp_v_addr, 0, size); |
| mac_control->rings[i].rx_blocks[j].block_virt_addr = |
| tmp_v_addr; |
| mac_control->rings[i].rx_blocks[j].block_dma_addr = |
| tmp_p_addr; |
| } |
| /* Interlinking all Rx Blocks */ |
| for (j = 0; j < blk_cnt; j++) { |
| tmp_v_addr = |
| mac_control->rings[i].rx_blocks[j].block_virt_addr; |
| tmp_v_addr_next = |
| mac_control->rings[i].rx_blocks[(j + 1) % |
| blk_cnt].block_virt_addr; |
| tmp_p_addr = |
| mac_control->rings[i].rx_blocks[j].block_dma_addr; |
| tmp_p_addr_next = |
| mac_control->rings[i].rx_blocks[(j + 1) % |
| blk_cnt].block_dma_addr; |
| |
| pre_rxd_blk = (RxD_block_t *) tmp_v_addr; |
| pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD |
| * marker. |
| */ |
| #ifndef CONFIG_2BUFF_MODE |
| pre_rxd_blk->reserved_2_pNext_RxD_block = |
| (unsigned long) tmp_v_addr_next; |
| #endif |
| pre_rxd_blk->pNext_RxD_Blk_physical = |
| (u64) tmp_p_addr_next; |
| } |
| } |
| |
| #ifdef CONFIG_2BUFF_MODE |
| /* |
| * Allocation of Storages for buffer addresses in 2BUFF mode |
| * and the buffers as well. |
| */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| mac_control->rings[i].ba = kmalloc((sizeof(buffAdd_t *) * blk_cnt), |
| GFP_KERNEL); |
| if (!mac_control->rings[i].ba) |
| return -ENOMEM; |
| for (j = 0; j < blk_cnt; j++) { |
| int k = 0; |
| mac_control->rings[i].ba[j] = kmalloc((sizeof(buffAdd_t) * |
| (MAX_RXDS_PER_BLOCK + 1)), |
| GFP_KERNEL); |
| if (!mac_control->rings[i].ba[j]) |
| return -ENOMEM; |
| while (k != MAX_RXDS_PER_BLOCK) { |
| ba = &mac_control->rings[i].ba[j][k]; |
| |
| ba->ba_0_org = (void *) kmalloc |
| (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); |
| if (!ba->ba_0_org) |
| return -ENOMEM; |
| tmp = (unsigned long) ba->ba_0_org; |
| tmp += ALIGN_SIZE; |
| tmp &= ~((unsigned long) ALIGN_SIZE); |
| ba->ba_0 = (void *) tmp; |
| |
| ba->ba_1_org = (void *) kmalloc |
| (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); |
| if (!ba->ba_1_org) |
| return -ENOMEM; |
| tmp = (unsigned long) ba->ba_1_org; |
| tmp += ALIGN_SIZE; |
| tmp &= ~((unsigned long) ALIGN_SIZE); |
| ba->ba_1 = (void *) tmp; |
| k++; |
| } |
| } |
| } |
| #endif |
| |
| /* Allocation and initialization of Statistics block */ |
| size = sizeof(StatInfo_t); |
| mac_control->stats_mem = pci_alloc_consistent |
| (nic->pdev, size, &mac_control->stats_mem_phy); |
| |
| if (!mac_control->stats_mem) { |
| /* |
| * In case of failure, free_shared_mem() is called, which |
| * should free any memory that was alloced till the |
| * failure happened. |
| */ |
| return -ENOMEM; |
| } |
| mac_control->stats_mem_sz = size; |
| |
| tmp_v_addr = mac_control->stats_mem; |
| mac_control->stats_info = (StatInfo_t *) tmp_v_addr; |
| memset(tmp_v_addr, 0, size); |
| DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, |
| (unsigned long long) tmp_p_addr); |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * free_shared_mem - Free the allocated Memory |
| * @nic: Device private variable. |
| * Description: This function is to free all memory locations allocated by |
| * the init_shared_mem() function and return it to the kernel. |
| */ |
| |
| static void free_shared_mem(struct s2io_nic *nic) |
| { |
| int i, j, blk_cnt, size; |
| void *tmp_v_addr; |
| dma_addr_t tmp_p_addr; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int lst_size, lst_per_page; |
| struct net_device *dev = nic->dev; |
| |
| if (!nic) |
| return; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| lst_size = (sizeof(TxD_t) * config->max_txds); |
| lst_per_page = PAGE_SIZE / lst_size; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| lst_per_page); |
| for (j = 0; j < page_num; j++) { |
| int mem_blks = (j * lst_per_page); |
| if (!mac_control->fifos[i].list_info) |
| return; |
| if (!mac_control->fifos[i].list_info[mem_blks]. |
| list_virt_addr) |
| break; |
| pci_free_consistent(nic->pdev, PAGE_SIZE, |
| mac_control->fifos[i]. |
| list_info[mem_blks]. |
| list_virt_addr, |
| mac_control->fifos[i]. |
| list_info[mem_blks]. |
| list_phy_addr); |
| } |
| /* If we got a zero DMA address during allocation, |
| * free the page now |
| */ |
| if (mac_control->zerodma_virt_addr) { |
| pci_free_consistent(nic->pdev, PAGE_SIZE, |
| mac_control->zerodma_virt_addr, |
| (dma_addr_t)0); |
| DBG_PRINT(INIT_DBG, |
| "%s: Freeing TxDL with zero DMA addr. ", |
| dev->name); |
| DBG_PRINT(INIT_DBG, "Virtual address %p\n", |
| mac_control->zerodma_virt_addr); |
| } |
| kfree(mac_control->fifos[i].list_info); |
| } |
| |
| #ifndef CONFIG_2BUFF_MODE |
| size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); |
| #else |
| size = SIZE_OF_BLOCK; |
| #endif |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = mac_control->rings[i].block_count; |
| for (j = 0; j < blk_cnt; j++) { |
| tmp_v_addr = mac_control->rings[i].rx_blocks[j]. |
| block_virt_addr; |
| tmp_p_addr = mac_control->rings[i].rx_blocks[j]. |
| block_dma_addr; |
| if (tmp_v_addr == NULL) |
| break; |
| pci_free_consistent(nic->pdev, size, |
| tmp_v_addr, tmp_p_addr); |
| } |
| } |
| |
| #ifdef CONFIG_2BUFF_MODE |
| /* Freeing buffer storage addresses in 2BUFF mode. */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| for (j = 0; j < blk_cnt; j++) { |
| int k = 0; |
| if (!mac_control->rings[i].ba[j]) |
| continue; |
| while (k != MAX_RXDS_PER_BLOCK) { |
| buffAdd_t *ba = &mac_control->rings[i].ba[j][k]; |
| kfree(ba->ba_0_org); |
| kfree(ba->ba_1_org); |
| k++; |
| } |
| kfree(mac_control->rings[i].ba[j]); |
| } |
| kfree(mac_control->rings[i].ba); |
| } |
| #endif |
| |
| if (mac_control->stats_mem) { |
| pci_free_consistent(nic->pdev, |
| mac_control->stats_mem_sz, |
| mac_control->stats_mem, |
| mac_control->stats_mem_phy); |
| } |
| } |
| |
| /** |
| * s2io_verify_pci_mode - |
| */ |
| |
| static int s2io_verify_pci_mode(nic_t *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| int mode; |
| |
| val64 = readq(&bar0->pci_mode); |
| mode = (u8)GET_PCI_MODE(val64); |
| |
| if ( val64 & PCI_MODE_UNKNOWN_MODE) |
| return -1; /* Unknown PCI mode */ |
| return mode; |
| } |
| |
| |
| /** |
| * s2io_print_pci_mode - |
| */ |
| static int s2io_print_pci_mode(nic_t *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| int mode; |
| struct config_param *config = &nic->config; |
| |
| val64 = readq(&bar0->pci_mode); |
| mode = (u8)GET_PCI_MODE(val64); |
| |
| if ( val64 & PCI_MODE_UNKNOWN_MODE) |
| return -1; /* Unknown PCI mode */ |
| |
| if (val64 & PCI_MODE_32_BITS) { |
| DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name); |
| } else { |
| DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name); |
| } |
| |
| switch(mode) { |
| case PCI_MODE_PCI_33: |
| DBG_PRINT(ERR_DBG, "33MHz PCI bus\n"); |
| config->bus_speed = 33; |
| break; |
| case PCI_MODE_PCI_66: |
| DBG_PRINT(ERR_DBG, "66MHz PCI bus\n"); |
| config->bus_speed = 133; |
| break; |
| case PCI_MODE_PCIX_M1_66: |
| DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n"); |
| config->bus_speed = 133; /* Herc doubles the clock rate */ |
| break; |
| case PCI_MODE_PCIX_M1_100: |
| DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n"); |
| config->bus_speed = 200; |
| break; |
| case PCI_MODE_PCIX_M1_133: |
| DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n"); |
| config->bus_speed = 266; |
| break; |
| case PCI_MODE_PCIX_M2_66: |
| DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n"); |
| config->bus_speed = 133; |
| break; |
| case PCI_MODE_PCIX_M2_100: |
| DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n"); |
| config->bus_speed = 200; |
| break; |
| case PCI_MODE_PCIX_M2_133: |
| DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n"); |
| config->bus_speed = 266; |
| break; |
| default: |
| return -1; /* Unsupported bus speed */ |
| } |
| |
| return mode; |
| } |
| |
| /** |
| * init_nic - Initialization of hardware |
| * @nic: device peivate variable |
| * Description: The function sequentially configures every block |
| * of the H/W from their reset values. |
| * Return Value: SUCCESS on success and |
| * '-1' on failure (endian settings incorrect). |
| */ |
| |
| static int init_nic(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| struct net_device *dev = nic->dev; |
| register u64 val64 = 0; |
| void __iomem *add; |
| u32 time; |
| int i, j; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int mdio_cnt = 0, dtx_cnt = 0; |
| unsigned long long mem_share; |
| int mem_size; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* to set the swapper controle on the card */ |
| if(s2io_set_swapper(nic)) { |
| DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); |
| return -1; |
| } |
| |
| /* |
| * Herc requires EOI to be removed from reset before XGXS, so.. |
| */ |
| if (nic->device_type & XFRAME_II_DEVICE) { |
| val64 = 0xA500000000ULL; |
| writeq(val64, &bar0->sw_reset); |
| msleep(500); |
| val64 = readq(&bar0->sw_reset); |
| } |
| |
| /* Remove XGXS from reset state */ |
| val64 = 0; |
| writeq(val64, &bar0->sw_reset); |
| msleep(500); |
| val64 = readq(&bar0->sw_reset); |
| |
| /* Enable Receiving broadcasts */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_RMAC_BCAST_ENABLE; |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| /* Read registers in all blocks */ |
| val64 = readq(&bar0->mac_int_mask); |
| val64 = readq(&bar0->mc_int_mask); |
| val64 = readq(&bar0->xgxs_int_mask); |
| |
| /* Set MTU */ |
| val64 = dev->mtu; |
| writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| |
| /* |
| * Configuring the XAUI Interface of Xena. |
| * *************************************** |
| * To Configure the Xena's XAUI, one has to write a series |
| * of 64 bit values into two registers in a particular |
| * sequence. Hence a macro 'SWITCH_SIGN' has been defined |
| * which will be defined in the array of configuration values |
| * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places |
| * to switch writing from one regsiter to another. We continue |
| * writing these values until we encounter the 'END_SIGN' macro. |
| * For example, After making a series of 21 writes into |
| * dtx_control register the 'SWITCH_SIGN' appears and hence we |
| * start writing into mdio_control until we encounter END_SIGN. |
| */ |
| if (nic->device_type & XFRAME_II_DEVICE) { |
| while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { |
| SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], |
| &bar0->dtx_control, UF); |
| if (dtx_cnt & 0x1) |
| msleep(1); /* Necessary!! */ |
| dtx_cnt++; |
| } |
| } else { |
| while (1) { |
| dtx_cfg: |
| while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { |
| if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { |
| dtx_cnt++; |
| goto mdio_cfg; |
| } |
| SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], |
| &bar0->dtx_control, UF); |
| val64 = readq(&bar0->dtx_control); |
| dtx_cnt++; |
| } |
| mdio_cfg: |
| while (xena_mdio_cfg[mdio_cnt] != END_SIGN) { |
| if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { |
| mdio_cnt++; |
| goto dtx_cfg; |
| } |
| SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt], |
| &bar0->mdio_control, UF); |
| val64 = readq(&bar0->mdio_control); |
| mdio_cnt++; |
| } |
| if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) && |
| (xena_mdio_cfg[mdio_cnt] == END_SIGN)) { |
| break; |
| } else { |
| goto dtx_cfg; |
| } |
| } |
| } |
| |
| /* Tx DMA Initialization */ |
| val64 = 0; |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| writeq(val64, &bar0->tx_fifo_partition_1); |
| writeq(val64, &bar0->tx_fifo_partition_2); |
| writeq(val64, &bar0->tx_fifo_partition_3); |
| |
| |
| for (i = 0, j = 0; i < config->tx_fifo_num; i++) { |
| val64 |= |
| vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), |
| 13) | vBIT(config->tx_cfg[i].fifo_priority, |
| ((i * 32) + 5), 3); |
| |
| if (i == (config->tx_fifo_num - 1)) { |
| if (i % 2 == 0) |
| i++; |
| } |
| |
| switch (i) { |
| case 1: |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| val64 = 0; |
| break; |
| case 3: |
| writeq(val64, &bar0->tx_fifo_partition_1); |
| val64 = 0; |
| break; |
| case 5: |
| writeq(val64, &bar0->tx_fifo_partition_2); |
| val64 = 0; |
| break; |
| case 7: |
| writeq(val64, &bar0->tx_fifo_partition_3); |
| break; |
| } |
| } |
| |
| /* Enable Tx FIFO partition 0. */ |
| val64 = readq(&bar0->tx_fifo_partition_0); |
| val64 |= BIT(0); /* To enable the FIFO partition. */ |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| |
| /* |
| * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug |
| * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. |
| */ |
| if ((nic->device_type == XFRAME_I_DEVICE) && |
| (get_xena_rev_id(nic->pdev) < 4)) |
| writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); |
| |
| val64 = readq(&bar0->tx_fifo_partition_0); |
| DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", |
| &bar0->tx_fifo_partition_0, (unsigned long long) val64); |
| |
| /* |
| * Initialization of Tx_PA_CONFIG register to ignore packet |
| * integrity checking. |
| */ |
| val64 = readq(&bar0->tx_pa_cfg); |
| val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | |
| TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; |
| writeq(val64, &bar0->tx_pa_cfg); |
| |
| /* Rx DMA intialization. */ |
| val64 = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 |= |
| vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), |
| 3); |
| } |
| writeq(val64, &bar0->rx_queue_priority); |
| |
| /* |
| * Allocating equal share of memory to all the |
| * configured Rings. |
| */ |
| val64 = 0; |
| if (nic->device_type & XFRAME_II_DEVICE) |
| mem_size = 32; |
| else |
| mem_size = 64; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| switch (i) { |
| case 0: |
| mem_share = (mem_size / config->rx_ring_num + |
| mem_size % config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); |
| continue; |
| case 1: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); |
| continue; |
| case 2: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); |
| continue; |
| case 3: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); |
| continue; |
| case 4: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); |
| continue; |
| case 5: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); |
| continue; |
| case 6: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); |
| continue; |
| case 7: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); |
| continue; |
| } |
| } |
| writeq(val64, &bar0->rx_queue_cfg); |
| |
| /* |
| * Filling Tx round robin registers |
| * as per the number of FIFOs |
| */ |
| switch (config->tx_fifo_num) { |
| case 1: |
| val64 = 0x0000000000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 2: |
| val64 = 0x0000010000010000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0100000100000100ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0001000001000001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0000010000010000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0100000000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 3: |
| val64 = 0x0001000102000001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0001020000010001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0200000100010200ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0001000102000001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0001020000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 4: |
| val64 = 0x0001020300010200ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0100000102030001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0200010000010203ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0001020001000001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0203000100000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 5: |
| val64 = 0x0001000203000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0001020001030004ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0001000203000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0001020001030004ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0001000000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 6: |
| val64 = 0x0001020304000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0304050001020001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0203000100000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0304000102030405ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0001000200000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 7: |
| val64 = 0x0001020001020300ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0102030400010203ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0405060001020001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0304050000010200ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0102030000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 8: |
| val64 = 0x0001020300040105ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0200030106000204ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0103000502010007ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0304010002060500ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0103020400000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| } |
| |
| /* Filling the Rx round robin registers as per the |
| * number of Rings and steering based on QoS. |
| */ |
| switch (config->rx_ring_num) { |
| case 1: |
| val64 = 0x8080808080808080ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 2: |
| val64 = 0x0000010000010000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0100000100000100ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0001000001000001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0000010000010000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0100000000000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080808040404040ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 3: |
| val64 = 0x0001000102000001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0001020000010001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0200000100010200ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0001000102000001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0001020000000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080804040402020ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 4: |
| val64 = 0x0001020300010200ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0100000102030001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0200010000010203ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0001020001000001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0203000100000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080404020201010ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 5: |
| val64 = 0x0001000203000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0001020001030004ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0001000203000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0001020001030004ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0001000000000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080404020201008ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 6: |
| val64 = 0x0001020304000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0304050001020001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0203000100000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0304000102030405ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0001000200000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080404020100804ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 7: |
| val64 = 0x0001020001020300ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0102030400010203ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0405060001020001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0304050000010200ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0102030000000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080402010080402ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 8: |
| val64 = 0x0001020300040105ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0200030106000204ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0103000502010007ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0304010002060500ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0103020400000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8040201008040201ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| } |
| |
| /* UDP Fix */ |
| val64 = 0; |
| for (i = 0; i < 8; i++) |
| writeq(val64, &bar0->rts_frm_len_n[i]); |
| |
| /* Set the default rts frame length for the rings configured */ |
| val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); |
| for (i = 0 ; i < config->rx_ring_num ; i++) |
| writeq(val64, &bar0->rts_frm_len_n[i]); |
| |
| /* Set the frame length for the configured rings |
| * desired by the user |
| */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| /* If rts_frm_len[i] == 0 then it is assumed that user not |
| * specified frame length steering. |
| * If the user provides the frame length then program |
| * the rts_frm_len register for those values or else |
| * leave it as it is. |
| */ |
| if (rts_frm_len[i] != 0) { |
| writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), |
| &bar0->rts_frm_len_n[i]); |
| } |
| } |
| |
| /* Program statistics memory */ |
| writeq(mac_control->stats_mem_phy, &bar0->stat_addr); |
| |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| val64 = STAT_BC(0x320); |
| writeq(val64, &bar0->stat_byte_cnt); |
| } |
| |
| /* |
| * Initializing the sampling rate for the device to calculate the |
| * bandwidth utilization. |
| */ |
| val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | |
| MAC_RX_LINK_UTIL_VAL(rmac_util_period); |
| writeq(val64, &bar0->mac_link_util); |
| |
| |
| /* |
| * Initializing the Transmit and Receive Traffic Interrupt |
| * Scheme. |
| */ |
| /* |
| * TTI Initialization. Default Tx timer gets us about |
| * 250 interrupts per sec. Continuous interrupts are enabled |
| * by default. |
| */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| int count = (nic->config.bus_speed * 125)/2; |
| val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); |
| } else { |
| |
| val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); |
| } |
| val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | |
| TTI_DATA1_MEM_TX_URNG_B(0x10) | |
| TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN; |
| if (use_continuous_tx_intrs) |
| val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; |
| writeq(val64, &bar0->tti_data1_mem); |
| |
| val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | |
| TTI_DATA2_MEM_TX_UFC_B(0x20) | |
| TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80); |
| writeq(val64, &bar0->tti_data2_mem); |
| |
| val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; |
| writeq(val64, &bar0->tti_command_mem); |
| |
| /* |
| * Once the operation completes, the Strobe bit of the command |
| * register will be reset. We poll for this particular condition |
| * We wait for a maximum of 500ms for the operation to complete, |
| * if it's not complete by then we return error. |
| */ |
| time = 0; |
| while (TRUE) { |
| val64 = readq(&bar0->tti_command_mem); |
| if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { |
| break; |
| } |
| if (time > 10) { |
| DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", |
| dev->name); |
| return -1; |
| } |
| msleep(50); |
| time++; |
| } |
| |
| if (nic->config.bimodal) { |
| int k = 0; |
| for (k = 0; k < config->rx_ring_num; k++) { |
| val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; |
| val64 |= TTI_CMD_MEM_OFFSET(0x38+k); |
| writeq(val64, &bar0->tti_command_mem); |
| |
| /* |
| * Once the operation completes, the Strobe bit of the command |
| * register will be reset. We poll for this particular condition |
| * We wait for a maximum of 500ms for the operation to complete, |
| * if it's not complete by then we return error. |
| */ |
| time = 0; |
| while (TRUE) { |
| val64 = readq(&bar0->tti_command_mem); |
| if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { |
| break; |
| } |
| if (time > 10) { |
| DBG_PRINT(ERR_DBG, |
| "%s: TTI init Failed\n", |
| dev->name); |
| return -1; |
| } |
| time++; |
| msleep(50); |
| } |
| } |
| } else { |
| |
| /* RTI Initialization */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| /* |
| * Programmed to generate Apprx 500 Intrs per |
| * second |
| */ |
| int count = (nic->config.bus_speed * 125)/4; |
| val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); |
| } else { |
| val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); |
| } |
| val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | |
| RTI_DATA1_MEM_RX_URNG_B(0x10) | |
| RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; |
| |
| writeq(val64, &bar0->rti_data1_mem); |
| |
| val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | |
| RTI_DATA2_MEM_RX_UFC_B(0x2) ; |
| if (nic->intr_type == MSI_X) |
| val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \ |
| RTI_DATA2_MEM_RX_UFC_D(0x40)); |
| else |
| val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \ |
| RTI_DATA2_MEM_RX_UFC_D(0x80)); |
| writeq(val64, &bar0->rti_data2_mem); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD |
| | RTI_CMD_MEM_OFFSET(i); |
| writeq(val64, &bar0->rti_command_mem); |
| |
| /* |
| * Once the operation completes, the Strobe bit of the |
| * command register will be reset. We poll for this |
| * particular condition. We wait for a maximum of 500ms |
| * for the operation to complete, if it's not complete |
| * by then we return error. |
| */ |
| time = 0; |
| while (TRUE) { |
| val64 = readq(&bar0->rti_command_mem); |
| if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) { |
| break; |
| } |
| if (time > 10) { |
| DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", |
| dev->name); |
| return -1; |
| } |
| time++; |
| msleep(50); |
| } |
| } |
| } |
| |
| /* |
| * Initializing proper values as Pause threshold into all |
| * the 8 Queues on Rx side. |
| */ |
| writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); |
| writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); |
| |
| /* Disable RMAC PAD STRIPPING */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64), add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| val64 = readq(&bar0->mac_cfg); |
| |
| /* |
| * Set the time value to be inserted in the pause frame |
| * generated by xena. |
| */ |
| val64 = readq(&bar0->rmac_pause_cfg); |
| val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); |
| val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); |
| writeq(val64, &bar0->rmac_pause_cfg); |
| |
| /* |
| * Set the Threshold Limit for Generating the pause frame |
| * If the amount of data in any Queue exceeds ratio of |
| * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 |
| * pause frame is generated |
| */ |
| val64 = 0; |
| for (i = 0; i < 4; i++) { |
| val64 |= |
| (((u64) 0xFF00 | nic->mac_control. |
| mc_pause_threshold_q0q3) |
| << (i * 2 * 8)); |
| } |
| writeq(val64, &bar0->mc_pause_thresh_q0q3); |
| |
| val64 = 0; |
| for (i = 0; i < 4; i++) { |
| val64 |= |
| (((u64) 0xFF00 | nic->mac_control. |
| mc_pause_threshold_q4q7) |
| << (i * 2 * 8)); |
| } |
| writeq(val64, &bar0->mc_pause_thresh_q4q7); |
| |
| /* |
| * TxDMA will stop Read request if the number of read split has |
| * exceeded the limit pointed by shared_splits |
| */ |
| val64 = readq(&bar0->pic_control); |
| val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); |
| writeq(val64, &bar0->pic_control); |
| |
| /* |
| * Programming the Herc to split every write transaction |
| * that does not start on an ADB to reduce disconnects. |
| */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| val64 = WREQ_SPLIT_MASK_SET_MASK(255); |
| writeq(val64, &bar0->wreq_split_mask); |
| } |
| |
| /* Setting Link stability period to 64 ms */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| val64 = MISC_LINK_STABILITY_PRD(3); |
| writeq(val64, &bar0->misc_control); |
| } |
| |
| return SUCCESS; |
| } |
| #define LINK_UP_DOWN_INTERRUPT 1 |
| #define MAC_RMAC_ERR_TIMER 2 |
| |
| int s2io_link_fault_indication(nic_t *nic) |
| { |
| if (nic->intr_type != INTA) |
| return MAC_RMAC_ERR_TIMER; |
| if (nic->device_type == XFRAME_II_DEVICE) |
| return LINK_UP_DOWN_INTERRUPT; |
| else |
| return MAC_RMAC_ERR_TIMER; |
| } |
| |
| /** |
| * en_dis_able_nic_intrs - Enable or Disable the interrupts |
| * @nic: device private variable, |
| * @mask: A mask indicating which Intr block must be modified and, |
| * @flag: A flag indicating whether to enable or disable the Intrs. |
| * Description: This function will either disable or enable the interrupts |
| * depending on the flag argument. The mask argument can be used to |
| * enable/disable any Intr block. |
| * Return Value: NONE. |
| */ |
| |
| static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0, temp64 = 0; |
| |
| /* Top level interrupt classification */ |
| /* PIC Interrupts */ |
| if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { |
| /* Enable PIC Intrs in the general intr mask register */ |
| val64 = TXPIC_INT_M | PIC_RX_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * If Hercules adapter enable GPIO otherwise |
| * disabled all PCIX, Flash, MDIO, IIC and GPIO |
| * interrupts for now. |
| * TODO |
| */ |
| if (s2io_link_fault_indication(nic) == |
| LINK_UP_DOWN_INTERRUPT ) { |
| temp64 = readq(&bar0->pic_int_mask); |
| temp64 &= ~((u64) PIC_INT_GPIO); |
| writeq(temp64, &bar0->pic_int_mask); |
| temp64 = readq(&bar0->gpio_int_mask); |
| temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP); |
| writeq(temp64, &bar0->gpio_int_mask); |
| } else { |
| writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| } |
| /* |
| * No MSI Support is available presently, so TTI and |
| * RTI interrupts are also disabled. |
| */ |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable PIC Intrs in the general |
| * intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* DMA Interrupts */ |
| /* Enabling/Disabling Tx DMA interrupts */ |
| if (mask & TX_DMA_INTR) { |
| /* Enable TxDMA Intrs in the general intr mask register */ |
| val64 = TXDMA_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * Keep all interrupts other than PFC interrupt |
| * and PCC interrupt disabled in DMA level. |
| */ |
| val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | |
| TXDMA_PCC_INT_M); |
| writeq(val64, &bar0->txdma_int_mask); |
| /* |
| * Enable only the MISC error 1 interrupt in PFC block |
| */ |
| val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); |
| writeq(val64, &bar0->pfc_err_mask); |
| /* |
| * Enable only the FB_ECC error interrupt in PCC block |
| */ |
| val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); |
| writeq(val64, &bar0->pcc_err_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable TxDMA Intrs in the general intr mask |
| * register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); |
| writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* Enabling/Disabling Rx DMA interrupts */ |
| if (mask & RX_DMA_INTR) { |
| /* Enable RxDMA Intrs in the general intr mask register */ |
| val64 = RXDMA_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All RxDMA block interrupts are disabled for now |
| * TODO |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable RxDMA Intrs in the general intr mask |
| * register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* MAC Interrupts */ |
| /* Enabling/Disabling MAC interrupts */ |
| if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { |
| val64 = TXMAC_INT_M | RXMAC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All MAC block error interrupts are disabled for now |
| * TODO |
| */ |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable MAC Intrs in the general intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); |
| writeq(DISABLE_ALL_INTRS, |
| &bar0->mac_rmac_err_mask); |
| |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* XGXS Interrupts */ |
| if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { |
| val64 = TXXGXS_INT_M | RXXGXS_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All XGXS block error interrupts are disabled for now |
| * TODO |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable MC Intrs in the general intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* Memory Controller(MC) interrupts */ |
| if (mask & MC_INTR) { |
| val64 = MC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * Enable all MC Intrs. |
| */ |
| writeq(0x0, &bar0->mc_int_mask); |
| writeq(0x0, &bar0->mc_err_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable MC Intrs in the general intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| |
| /* Tx traffic interrupts */ |
| if (mask & TX_TRAFFIC_INTR) { |
| val64 = TXTRAFFIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * Enable all the Tx side interrupts |
| * writing 0 Enables all 64 TX interrupt levels |
| */ |
| writeq(0x0, &bar0->tx_traffic_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable Tx Traffic Intrs in the general intr mask |
| * register. |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* Rx traffic interrupts */ |
| if (mask & RX_TRAFFIC_INTR) { |
| val64 = RXTRAFFIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* writing 0 Enables all 8 RX interrupt levels */ |
| writeq(0x0, &bar0->rx_traffic_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable Rx Traffic Intrs in the general intr mask |
| * register. |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| } |
| |
| static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc) |
| { |
| int ret = 0; |
| |
| if (flag == FALSE) { |
| if ((!herc && (rev_id >= 4)) || herc) { |
| if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && |
| ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT)) { |
| ret = 1; |
| } |
| }else { |
| if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) && |
| ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT)) { |
| ret = 1; |
| } |
| } |
| } else { |
| if ((!herc && (rev_id >= 4)) || herc) { |
| if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == |
| ADAPTER_STATUS_RMAC_PCC_IDLE) && |
| (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || |
| ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT))) { |
| ret = 1; |
| } |
| } else { |
| if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == |
| ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) && |
| (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || |
| ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT))) { |
| ret = 1; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| /** |
| * verify_xena_quiescence - Checks whether the H/W is ready |
| * @val64 : Value read from adapter status register. |
| * @flag : indicates if the adapter enable bit was ever written once |
| * before. |
| * Description: Returns whether the H/W is ready to go or not. Depending |
| * on whether adapter enable bit was written or not the comparison |
| * differs and the calling function passes the input argument flag to |
| * indicate this. |
| * Return: 1 If xena is quiescence |
| * 0 If Xena is not quiescence |
| */ |
| |
| static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag) |
| { |
| int ret = 0, herc; |
| u64 tmp64 = ~((u64) val64); |
| int rev_id = get_xena_rev_id(sp->pdev); |
| |
| herc = (sp->device_type == XFRAME_II_DEVICE); |
| if (! |
| (tmp64 & |
| (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | |
| ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | |
| ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | |
| ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | |
| ADAPTER_STATUS_P_PLL_LOCK))) { |
| ret = check_prc_pcc_state(val64, flag, rev_id, herc); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * fix_mac_address - Fix for Mac addr problem on Alpha platforms |
| * @sp: Pointer to device specifc structure |
| * Description : |
| * New procedure to clear mac address reading problems on Alpha platforms |
| * |
| */ |
| |
| void fix_mac_address(nic_t * sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int i = 0; |
| |
| while (fix_mac[i] != END_SIGN) { |
| writeq(fix_mac[i++], &bar0->gpio_control); |
| udelay(10); |
| val64 = readq(&bar0->gpio_control); |
| } |
| } |
| |
| /** |
| * start_nic - Turns the device on |
| * @nic : device private variable. |
| * Description: |
| * This function actually turns the device on. Before this function is |
| * called,all Registers are configured from their reset states |
| * and shared memory is allocated but the NIC is still quiescent. On |
| * calling this function, the device interrupts are cleared and the NIC is |
| * literally switched on by writing into the adapter control register. |
| * Return Value: |
| * SUCCESS on success and -1 on failure. |
| */ |
| |
| static int start_nic(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| struct net_device *dev = nic->dev; |
| register u64 val64 = 0; |
| u16 interruptible; |
| u16 subid, i; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* PRC Initialization and configuration */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr, |
| &bar0->prc_rxd0_n[i]); |
| |
| val64 = readq(&bar0->prc_ctrl_n[i]); |
| if (nic->config.bimodal) |
| val64 |= PRC_CTRL_BIMODAL_INTERRUPT; |
| #ifndef CONFIG_2BUFF_MODE |
| val64 |= PRC_CTRL_RC_ENABLED; |
| #else |
| val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; |
| #endif |
| writeq(val64, &bar0->prc_ctrl_n[i]); |
| } |
| |
| #ifdef CONFIG_2BUFF_MODE |
| /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ |
| val64 = readq(&bar0->rx_pa_cfg); |
| val64 |= RX_PA_CFG_IGNORE_L2_ERR; |
| writeq(val64, &bar0->rx_pa_cfg); |
| #endif |
| |
| /* |
| * Enabling MC-RLDRAM. After enabling the device, we timeout |
| * for around 100ms, which is approximately the time required |
| * for the device to be ready for operation. |
| */ |
| val64 = readq(&bar0->mc_rldram_mrs); |
| val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| val64 = readq(&bar0->mc_rldram_mrs); |
| |
| msleep(100); /* Delay by around 100 ms. */ |
| |
| /* Enabling ECC Protection. */ |
| val64 = readq(&bar0->adapter_control); |
| val64 &= ~ADAPTER_ECC_EN; |
| writeq(val64, &bar0->adapter_control); |
| |
| /* |
| * Clearing any possible Link state change interrupts that |
| * could have popped up just before Enabling the card. |
| */ |
| val64 = readq(&bar0->mac_rmac_err_reg); |
| if (val64) |
| writeq(val64, &bar0->mac_rmac_err_reg); |
| |
| /* |
| * Verify if the device is ready to be enabled, if so enable |
| * it. |
| */ |
| val64 = readq(&bar0->adapter_status); |
| if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) { |
| DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); |
| DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| |
| /* Enable select interrupts */ |
| if (nic->intr_type != INTA) |
| en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS); |
| else { |
| interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; |
| interruptible |= TX_PIC_INTR | RX_PIC_INTR; |
| interruptible |= TX_MAC_INTR | RX_MAC_INTR; |
| en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); |
| } |
| |
| /* |
| * With some switches, link might be already up at this point. |
| * Because of this weird behavior, when we enable laser, |
| * we may not get link. We need to handle this. We cannot |
| * figure out which switch is misbehaving. So we are forced to |
| * make a global change. |
| */ |
| |
| /* Enabling Laser. */ |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_EOI_TX_ON; |
| writeq(val64, &bar0->adapter_control); |
| |
| /* SXE-002: Initialize link and activity LED */ |
| subid = nic->pdev->subsystem_device; |
| if (((subid & 0xFF) >= 0x07) && |
| (nic->device_type == XFRAME_I_DEVICE)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *)bar0 + 0x2700); |
| } |
| |
| /* |
| * Don't see link state interrupts on certain switches, so |
| * directly scheduling a link state task from here. |
| */ |
| schedule_work(&nic->set_link_task); |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * free_tx_buffers - Free all queued Tx buffers |
| * @nic : device private variable. |
| * Description: |
| * Free all queued Tx buffers. |
| * Return Value: void |
| */ |
| |
| static void free_tx_buffers(struct s2io_nic *nic) |
| { |
| struct net_device *dev = nic->dev; |
| struct sk_buff *skb; |
| TxD_t *txdp; |
| int i, j; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int cnt = 0, frg_cnt; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { |
| txdp = (TxD_t *) mac_control->fifos[i].list_info[j]. |
| list_virt_addr; |
| skb = |
| (struct sk_buff *) ((unsigned long) txdp-> |
| Host_Control); |
| if (skb == NULL) { |
| memset(txdp, 0, sizeof(TxD_t) * |
| config->max_txds); |
| continue; |
| } |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| txdp->Buffer_Pointer, |
| skb->len - skb->data_len, |
| PCI_DMA_TODEVICE); |
| if (frg_cnt) { |
| TxD_t *temp; |
| temp = txdp; |
| txdp++; |
| for (j = 0; j < frg_cnt; j++, txdp++) { |
| skb_frag_t *frag = |
| &skb_shinfo(skb)->frags[j]; |
| pci_unmap_page(nic->pdev, |
| (dma_addr_t) |
| txdp-> |
| Buffer_Pointer, |
| frag->size, |
| PCI_DMA_TODEVICE); |
| } |
| txdp = temp; |
| } |
| dev_kfree_skb(skb); |
| memset(txdp, 0, sizeof(TxD_t) * config->max_txds); |
| cnt++; |
| } |
| DBG_PRINT(INTR_DBG, |
| "%s:forcibly freeing %d skbs on FIFO%d\n", |
| dev->name, cnt, i); |
| mac_control->fifos[i].tx_curr_get_info.offset = 0; |
| mac_control->fifos[i].tx_curr_put_info.offset = 0; |
| } |
| } |
| |
| /** |
| * stop_nic - To stop the nic |
| * @nic ; device private variable. |
| * Description: |
| * This function does exactly the opposite of what the start_nic() |
| * function does. This function is called to stop the device. |
| * Return Value: |
| * void. |
| */ |
| |
| static void stop_nic(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| u16 interruptible, i; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* Disable all interrupts */ |
| interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; |
| interruptible |= TX_PIC_INTR | RX_PIC_INTR; |
| interruptible |= TX_MAC_INTR | RX_MAC_INTR; |
| en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); |
| |
| /* Disable PRCs */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 = readq(&bar0->prc_ctrl_n[i]); |
| val64 &= ~((u64) PRC_CTRL_RC_ENABLED); |
| writeq(val64, &bar0->prc_ctrl_n[i]); |
| } |
| } |
| |
| /** |
| * fill_rx_buffers - Allocates the Rx side skbs |
| * @nic: device private variable |
| * @ring_no: ring number |
| * Description: |
| * The function allocates Rx side skbs and puts the physical |
| * address of these buffers into the RxD buffer pointers, so that the NIC |
| * can DMA the received frame into these locations. |
| * The NIC supports 3 receive modes, viz |
| * 1. single buffer, |
| * 2. three buffer and |
| * 3. Five buffer modes. |
| * Each mode defines how many fragments the received frame will be split |
| * up into by the NIC. The frame is split into L3 header, L4 Header, |
| * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself |
| * is split into 3 fragments. As of now only single buffer mode is |
| * supported. |
| * Return Value: |
| * SUCCESS on success or an appropriate -ve value on failure. |
| */ |
| |
| int fill_rx_buffers(struct s2io_nic *nic, int ring_no) |
| { |
| struct net_device *dev = nic->dev; |
| struct sk_buff *skb; |
| RxD_t *rxdp; |
| int off, off1, size, block_no, block_no1; |
| int offset, offset1; |
| u32 alloc_tab = 0; |
| u32 alloc_cnt; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| #ifdef CONFIG_2BUFF_MODE |
| RxD_t *rxdpnext; |
| int nextblk; |
| u64 tmp; |
| buffAdd_t *ba; |
| dma_addr_t rxdpphys; |
| #endif |
| #ifndef CONFIG_S2IO_NAPI |
| unsigned long flags; |
| #endif |
| RxD_t *first_rxdp = NULL; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| alloc_cnt = mac_control->rings[ring_no].pkt_cnt - |
| atomic_read(&nic->rx_bufs_left[ring_no]); |
| size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + HEADER_SNAP_SIZE; |
| |
| while (alloc_tab < alloc_cnt) { |
| block_no = mac_control->rings[ring_no].rx_curr_put_info. |
| block_index; |
| block_no1 = mac_control->rings[ring_no].rx_curr_get_info. |
| block_index; |
| off = mac_control->rings[ring_no].rx_curr_put_info.offset; |
| off1 = mac_control->rings[ring_no].rx_curr_get_info.offset; |
| #ifndef CONFIG_2BUFF_MODE |
| offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; |
| offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; |
| #else |
| offset = block_no * (MAX_RXDS_PER_BLOCK) + off; |
| offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; |
| #endif |
| |
| rxdp = mac_control->rings[ring_no].rx_blocks[block_no]. |
| block_virt_addr + off; |
| if ((offset == offset1) && (rxdp->Host_Control)) { |
| DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); |
| DBG_PRINT(INTR_DBG, " info equated\n"); |
| goto end; |
| } |
| #ifndef CONFIG_2BUFF_MODE |
| if (rxdp->Control_1 == END_OF_BLOCK) { |
| mac_control->rings[ring_no].rx_curr_put_info. |
| block_index++; |
| mac_control->rings[ring_no].rx_curr_put_info. |
| block_index %= mac_control->rings[ring_no].block_count; |
| block_no = mac_control->rings[ring_no].rx_curr_put_info. |
| block_index; |
| off++; |
| off %= (MAX_RXDS_PER_BLOCK + 1); |
| mac_control->rings[ring_no].rx_curr_put_info.offset = |
| off; |
| rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); |
| DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", |
| dev->name, rxdp); |
| } |
| #ifndef CONFIG_S2IO_NAPI |
| spin_lock_irqsave(&nic->put_lock, flags); |
| mac_control->rings[ring_no].put_pos = |
| (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; |
| spin_unlock_irqrestore(&nic->put_lock, flags); |
| #endif |
| #else |
| if (rxdp->Host_Control == END_OF_BLOCK) { |
| mac_control->rings[ring_no].rx_curr_put_info. |
| block_index++; |
| mac_control->rings[ring_no].rx_curr_put_info.block_index |
| %= mac_control->rings[ring_no].block_count; |
| block_no = mac_control->rings[ring_no].rx_curr_put_info |
| .block_index; |
| off = 0; |
| DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", |
| dev->name, block_no, |
| (unsigned long long) rxdp->Control_1); |
| mac_control->rings[ring_no].rx_curr_put_info.offset = |
| off; |
| rxdp = mac_control->rings[ring_no].rx_blocks[block_no]. |
| block_virt_addr; |
| } |
| #ifndef CONFIG_S2IO_NAPI |
| spin_lock_irqsave(&nic->put_lock, flags); |
| mac_control->rings[ring_no].put_pos = (block_no * |
| (MAX_RXDS_PER_BLOCK + 1)) + off; |
| spin_unlock_irqrestore(&nic->put_lock, flags); |
| #endif |
| #endif |
| |
| #ifndef CONFIG_2BUFF_MODE |
| if (rxdp->Control_1 & RXD_OWN_XENA) |
| #else |
| if (rxdp->Control_2 & BIT(0)) |
| #endif |
| { |
| mac_control->rings[ring_no].rx_curr_put_info. |
| offset = off; |
| goto end; |
| } |
| #ifdef CONFIG_2BUFF_MODE |
| /* |
| * RxDs Spanning cache lines will be replenished only |
| * if the succeeding RxD is also owned by Host. It |
| * will always be the ((8*i)+3) and ((8*i)+6) |
| * descriptors for the 48 byte descriptor. The offending |
| * decsriptor is of-course the 3rd descriptor. |
| */ |
| rxdpphys = mac_control->rings[ring_no].rx_blocks[block_no]. |
| block_dma_addr + (off * sizeof(RxD_t)); |
| if (((u64) (rxdpphys)) % 128 > 80) { |
| rxdpnext = mac_control->rings[ring_no].rx_blocks[block_no]. |
| block_virt_addr + (off + 1); |
| if (rxdpnext->Host_Control == END_OF_BLOCK) { |
| nextblk = (block_no + 1) % |
| (mac_control->rings[ring_no].block_count); |
| rxdpnext = mac_control->rings[ring_no].rx_blocks |
| [nextblk].block_virt_addr; |
| } |
| if (rxdpnext->Control_2 & BIT(0)) |
| goto end; |
| } |
| #endif |
| |
| #ifndef CONFIG_2BUFF_MODE |
| skb = dev_alloc_skb(size + NET_IP_ALIGN); |
| #else |
| skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); |
| #endif |
| if (!skb) { |
| DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); |
| DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); |
| if (first_rxdp) { |
| wmb(); |
| first_rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| return -ENOMEM; |
| } |
| #ifndef CONFIG_2BUFF_MODE |
| skb_reserve(skb, NET_IP_ALIGN); |
| memset(rxdp, 0, sizeof(RxD_t)); |
| rxdp->Buffer0_ptr = pci_map_single |
| (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); |
| rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); |
| rxdp->Control_2 |= SET_BUFFER0_SIZE(size); |
| rxdp->Host_Control = (unsigned long) (skb); |
| if (alloc_tab & ((1 << rxsync_frequency) - 1)) |
| rxdp->Control_1 |= RXD_OWN_XENA; |
| off++; |
| off %= (MAX_RXDS_PER_BLOCK + 1); |
| mac_control->rings[ring_no].rx_curr_put_info.offset = off; |
| #else |
| ba = &mac_control->rings[ring_no].ba[block_no][off]; |
| skb_reserve(skb, BUF0_LEN); |
| tmp = ((unsigned long) skb->data & ALIGN_SIZE); |
| if (tmp) |
| skb_reserve(skb, (ALIGN_SIZE + 1) - tmp); |
| |
| memset(rxdp, 0, sizeof(RxD_t)); |
| rxdp->Buffer2_ptr = pci_map_single |
| (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| rxdp->Buffer0_ptr = |
| pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, |
| PCI_DMA_FROMDEVICE); |
| rxdp->Buffer1_ptr = |
| pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| |
| rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); |
| rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); |
| rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ |
| rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ |
| rxdp->Host_Control = (u64) ((unsigned long) (skb)); |
| if (alloc_tab & ((1 << rxsync_frequency) - 1)) |
| rxdp->Control_1 |= RXD_OWN_XENA; |
| off++; |
| mac_control->rings[ring_no].rx_curr_put_info.offset = off; |
| #endif |
| rxdp->Control_2 |= SET_RXD_MARKER; |
| |
| if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { |
| if (first_rxdp) { |
| wmb(); |
| first_rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| first_rxdp = rxdp; |
| } |
| atomic_inc(&nic->rx_bufs_left[ring_no]); |
| alloc_tab++; |
| } |
| |
| end: |
| /* Transfer ownership of first descriptor to adapter just before |
| * exiting. Before that, use memory barrier so that ownership |
| * and other fields are seen by adapter correctly. |
| */ |
| if (first_rxdp) { |
| wmb(); |
| first_rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * free_rx_buffers - Frees all Rx buffers |
| * @sp: device private variable. |
| * Description: |
| * This function will free all Rx buffers allocated by host. |
| * Return Value: |
| * NONE. |
| */ |
| |
| static void free_rx_buffers(struct s2io_nic *sp) |
| { |
| struct net_device *dev = sp->dev; |
| int i, j, blk = 0, off, buf_cnt = 0; |
| RxD_t *rxdp; |
| struct sk_buff *skb; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| #ifdef CONFIG_2BUFF_MODE |
| buffAdd_t *ba; |
| #endif |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { |
| off = j % (MAX_RXDS_PER_BLOCK + 1); |
| rxdp = mac_control->rings[i].rx_blocks[blk]. |
| block_virt_addr + off; |
| |
| #ifndef CONFIG_2BUFF_MODE |
| if (rxdp->Control_1 == END_OF_BLOCK) { |
| rxdp = |
| (RxD_t *) ((unsigned long) rxdp-> |
| Control_2); |
| j++; |
| blk++; |
| } |
| #else |
| if (rxdp->Host_Control == END_OF_BLOCK) { |
| blk++; |
| continue; |
| } |
| #endif |
| |
| if (!(rxdp->Control_1 & RXD_OWN_XENA)) { |
| memset(rxdp, 0, sizeof(RxD_t)); |
| continue; |
| } |
| |
| skb = |
| (struct sk_buff *) ((unsigned long) rxdp-> |
| Host_Control); |
| if (skb) { |
| #ifndef CONFIG_2BUFF_MODE |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| dev->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE |
| + HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| #else |
| ba = &mac_control->rings[i].ba[blk][off]; |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| BUF0_LEN, |
| PCI_DMA_FROMDEVICE); |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer1_ptr, |
| BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer2_ptr, |
| dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| #endif |
| dev_kfree_skb(skb); |
| atomic_dec(&sp->rx_bufs_left[i]); |
| buf_cnt++; |
| } |
| memset(rxdp, 0, sizeof(RxD_t)); |
| } |
| mac_control->rings[i].rx_curr_put_info.block_index = 0; |
| mac_control->rings[i].rx_curr_get_info.block_index = 0; |
| mac_control->rings[i].rx_curr_put_info.offset = 0; |
| mac_control->rings[i].rx_curr_get_info.offset = 0; |
| atomic_set(&sp->rx_bufs_left[i], 0); |
| DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", |
| dev->name, buf_cnt, i); |
| } |
| } |
| |
| /** |
| * s2io_poll - Rx interrupt handler for NAPI support |
| * @dev : pointer to the device structure. |
| * @budget : The number of packets that were budgeted to be processed |
| * during one pass through the 'Poll" function. |
| * Description: |
| * Comes into picture only if NAPI support has been incorporated. It does |
| * the same thing that rx_intr_handler does, but not in a interrupt context |
| * also It will process only a given number of packets. |
| * Return value: |
| * 0 on success and 1 if there are No Rx packets to be processed. |
| */ |
| |
| #if defined(CONFIG_S2IO_NAPI) |
| static int s2io_poll(struct net_device *dev, int *budget) |
| { |
| nic_t *nic = dev->priv; |
| int pkt_cnt = 0, org_pkts_to_process; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| u64 val64; |
| int i; |
| |
| atomic_inc(&nic->isr_cnt); |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| nic->pkts_to_process = *budget; |
| if (nic->pkts_to_process > dev->quota) |
| nic->pkts_to_process = dev->quota; |
| org_pkts_to_process = nic->pkts_to_process; |
| |
| val64 = readq(&bar0->rx_traffic_int); |
| writeq(val64, &bar0->rx_traffic_int); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| rx_intr_handler(&mac_control->rings[i]); |
| pkt_cnt = org_pkts_to_process - nic->pkts_to_process; |
| if (!nic->pkts_to_process) { |
| /* Quota for the current iteration has been met */ |
| goto no_rx; |
| } |
| } |
| if (!pkt_cnt) |
| pkt_cnt = 1; |
| |
| dev->quota -= pkt_cnt; |
| *budget -= pkt_cnt; |
| netif_rx_complete(dev); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (fill_rx_buffers(nic, i) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); |
| DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); |
| break; |
| } |
| } |
| /* Re enable the Rx interrupts. */ |
| en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); |
| atomic_dec(&nic->isr_cnt); |
| return 0; |
| |
| no_rx: |
| dev->quota -= pkt_cnt; |
| *budget -= pkt_cnt; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (fill_rx_buffers(nic, i) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); |
| DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); |
| break; |
| } |
| } |
| atomic_dec(&nic->isr_cnt); |
| return 1; |
| } |
| #endif |
| |
| /** |
| * rx_intr_handler - Rx interrupt handler |
| * @nic: device private variable. |
| * Description: |
| * If the interrupt is because of a received frame or if the |
| * receive ring contains fresh as yet un-processed frames,this function is |
| * called. It picks out the RxD at which place the last Rx processing had |
| * stopped and sends the skb to the OSM's Rx handler and then increments |
| * the offset. |
| * Return Value: |
| * NONE. |
| */ |
| static void rx_intr_handler(ring_info_t *ring_data) |
| { |
| nic_t *nic = ring_data->nic; |
| struct net_device *dev = (struct net_device *) nic->dev; |
| int get_block, get_offset, put_block, put_offset, ring_bufs; |
| rx_curr_get_info_t get_info, put_info; |
| RxD_t *rxdp; |
| struct sk_buff *skb; |
| #ifndef CONFIG_S2IO_NAPI |
| int pkt_cnt = 0; |
| #endif |
| spin_lock(&nic->rx_lock); |
| if (atomic_read(&nic->card_state) == CARD_DOWN) { |
| DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n", |
| __FUNCTION__, dev->name); |
| spin_unlock(&nic->rx_lock); |
| return; |
| } |
| |
| get_info = ring_data->rx_curr_get_info; |
| get_block = get_info.block_index; |
| put_info = ring_data->rx_curr_put_info; |
| put_block = put_info.block_index; |
| ring_bufs = get_info.ring_len+1; |
| rxdp = ring_data->rx_blocks[get_block].block_virt_addr + |
| get_info.offset; |
| get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| #ifndef CONFIG_S2IO_NAPI |
| spin_lock(&nic->put_lock); |
| put_offset = ring_data->put_pos; |
| spin_unlock(&nic->put_lock); |
| #else |
| put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| put_info.offset; |
| #endif |
| while (RXD_IS_UP2DT(rxdp) && |
| (((get_offset + 1) % ring_bufs) != put_offset)) { |
| skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| spin_unlock(&nic->rx_lock); |
| return; |
| } |
| #ifndef CONFIG_2BUFF_MODE |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| dev->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| #else |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer1_ptr, |
| BUF1_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer2_ptr, |
| dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| #endif |
| rx_osm_handler(ring_data, rxdp); |
| get_info.offset++; |
| ring_data->rx_curr_get_info.offset = |
| get_info.offset; |
| rxdp = ring_data->rx_blocks[get_block].block_virt_addr + |
| get_info.offset; |
| if (get_info.offset && |
| (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { |
| get_info.offset = 0; |
| ring_data->rx_curr_get_info.offset |
| = get_info.offset; |
| get_block++; |
| get_block %= ring_data->block_count; |
| ring_data->rx_curr_get_info.block_index |
| = get_block; |
| rxdp = ring_data->rx_blocks[get_block].block_virt_addr; |
| } |
| |
| get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| #ifdef CONFIG_S2IO_NAPI |
| nic->pkts_to_process -= 1; |
| if (!nic->pkts_to_process) |
| break; |
| #else |
| pkt_cnt++; |
| if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) |
| break; |
| #endif |
| } |
| spin_unlock(&nic->rx_lock); |
| } |
| |
| /** |
| * tx_intr_handler - Transmit interrupt handler |
| * @nic : device private variable |
| * Description: |
| * If an interrupt was raised to indicate DMA complete of the |
| * Tx packet, this function is called. It identifies the last TxD |
| * whose buffer was freed and frees all skbs whose data have already |
| * DMA'ed into the NICs internal memory. |
| * Return Value: |
| * NONE |
| */ |
| |
| static void tx_intr_handler(fifo_info_t *fifo_data) |
| { |
| nic_t *nic = fifo_data->nic; |
| struct net_device *dev = (struct net_device *) nic->dev; |
| tx_curr_get_info_t get_info, put_info; |
| struct sk_buff *skb; |
| TxD_t *txdlp; |
| u16 j, frg_cnt; |
| |
| get_info = fifo_data->tx_curr_get_info; |
| put_info = fifo_data->tx_curr_put_info; |
| txdlp = (TxD_t *) fifo_data->list_info[get_info.offset]. |
| list_virt_addr; |
| while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && |
| (get_info.offset != put_info.offset) && |
| (txdlp->Host_Control)) { |
| /* Check for TxD errors */ |
| if (txdlp->Control_1 & TXD_T_CODE) { |
| unsigned long long err; |
| err = txdlp->Control_1 & TXD_T_CODE; |
| if ((err >> 48) == 0xA) { |
| DBG_PRINT(TX_DBG, "TxD returned due \ |
| to loss of link\n"); |
| } |
| else { |
| DBG_PRINT(ERR_DBG, "***TxD error \ |
| %llx\n", err); |
| } |
| } |
| |
| skb = (struct sk_buff *) ((unsigned long) |
| txdlp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: Null skb ", |
| __FUNCTION__); |
| DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); |
| return; |
| } |
| |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| nic->tx_pkt_count++; |
| |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| txdlp->Buffer_Pointer, |
| skb->len - skb->data_len, |
| PCI_DMA_TODEVICE); |
| if (frg_cnt) { |
| TxD_t *temp; |
| temp = txdlp; |
| txdlp++; |
| for (j = 0; j < frg_cnt; j++, txdlp++) { |
| skb_frag_t *frag = |
| &skb_shinfo(skb)->frags[j]; |
| if (!txdlp->Buffer_Pointer) |
| break; |
| pci_unmap_page(nic->pdev, |
| (dma_addr_t) |
| txdlp-> |
| Buffer_Pointer, |
| frag->size, |
| PCI_DMA_TODEVICE); |
| } |
| txdlp = temp; |
| } |
| memset(txdlp, 0, |
| (sizeof(TxD_t) * fifo_data->max_txds)); |
| |
| /* Updating the statistics block */ |
| nic->stats.tx_bytes += skb->len; |
| dev_kfree_skb_irq(skb); |
| |
| get_info.offset++; |
| get_info.offset %= get_info.fifo_len + 1; |
| txdlp = (TxD_t *) fifo_data->list_info |
| [get_info.offset].list_virt_addr; |
| fifo_data->tx_curr_get_info.offset = |
| get_info.offset; |
| } |
| |
| spin_lock(&nic->tx_lock); |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| spin_unlock(&nic->tx_lock); |
| } |
| |
| /** |
| * alarm_intr_handler - Alarm Interrrupt handler |
| * @nic: device private variable |
| * Description: If the interrupt was neither because of Rx packet or Tx |
| * complete, this function is called. If the interrupt was to indicate |
| * a loss of link, the OSM link status handler is invoked for any other |
| * alarm interrupt the block that raised the interrupt is displayed |
| * and a H/W reset is issued. |
| * Return Value: |
| * NONE |
| */ |
| |
| static void alarm_intr_handler(struct s2io_nic *nic) |
| { |
| struct net_device *dev = (struct net_device *) nic->dev; |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0, err_reg = 0; |
| |
| /* Handling link status change error Intr */ |
| if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { |
| err_reg = readq(&bar0->mac_rmac_err_reg); |
| writeq(err_reg, &bar0->mac_rmac_err_reg); |
| if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { |
| schedule_work(&nic->set_link_task); |
| } |
| } |
| |
| /* Handling Ecc errors */ |
| val64 = readq(&bar0->mc_err_reg); |
| writeq(val64, &bar0->mc_err_reg); |
| if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { |
| if (val64 & MC_ERR_REG_ECC_ALL_DBL) { |
| nic->mac_control.stats_info->sw_stat. |
| double_ecc_errs++; |
| DBG_PRINT(INIT_DBG, "%s: Device indicates ", |
| dev->name); |
| DBG_PRINT(INIT_DBG, "double ECC error!!\n"); |
| if (nic->device_type != XFRAME_II_DEVICE) { |
| /* Reset XframeI only if critical error */ |
| if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | |
| MC_ERR_REG_MIRI_ECC_DB_ERR_1)) { |
| netif_stop_queue(dev); |
| schedule_work(&nic->rst_timer_task); |
| } |
| } |
| } else { |
| nic->mac_control.stats_info->sw_stat. |
| single_ecc_errs++; |
| } |
| } |
| |
| /* In case of a serious error, the device will be Reset. */ |
| val64 = readq(&bar0->serr_source); |
| if (val64 & SERR_SOURCE_ANY) { |
| DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); |
| DBG_PRINT(ERR_DBG, "serious error %llx!!\n", |
| (unsigned long long)val64); |
| netif_stop_queue(dev); |
| schedule_work(&nic->rst_timer_task); |
| } |
| |
| /* |
| * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC |
| * Error occurs, the adapter will be recycled by disabling the |
| * adapter enable bit and enabling it again after the device |
| * becomes Quiescent. |
| */ |
| val64 = readq(&bar0->pcc_err_reg); |
| writeq(val64, &bar0->pcc_err_reg); |
| if (val64 & PCC_FB_ECC_DB_ERR) { |
| u64 ac = readq(&bar0->adapter_control); |
| ac &= ~(ADAPTER_CNTL_EN); |
| writeq(ac, &bar0->adapter_control); |
| ac = readq(&bar0->adapter_control); |
| schedule_work(&nic->set_link_task); |
| } |
| |
| /* Other type of interrupts are not being handled now, TODO */ |
| } |
| |
| /** |
| * wait_for_cmd_complete - waits for a command to complete. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * Description: Function that waits for a command to Write into RMAC |
| * ADDR DATA registers to be completed and returns either success or |
| * error depending on whether the command was complete or not. |
| * Return value: |
| * SUCCESS on success and FAILURE on failure. |
| */ |
| |
| int wait_for_cmd_complete(nic_t * sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| int ret = FAILURE, cnt = 0; |
| u64 val64; |
| |
| while (TRUE) { |
| val64 = readq(&bar0->rmac_addr_cmd_mem); |
| if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { |
| ret = SUCCESS; |
| break; |
| } |
| msleep(50); |
| if (cnt++ > 10) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * s2io_reset - Resets the card. |
| * @sp : private member of the device structure. |
| * Description: Function to Reset the card. This function then also |
| * restores the previously saved PCI configuration space registers as |
| * the card reset also resets the configuration space. |
| * Return value: |
| * void. |
| */ |
| |
| void s2io_reset(nic_t * sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| u16 subid, pci_cmd; |
| |
| /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); |
| |
| val64 = SW_RESET_ALL; |
| writeq(val64, &bar0->sw_reset); |
| |
| /* |
| * At this stage, if the PCI write is indeed completed, the |
| * card is reset and so is the PCI Config space of the device. |
| * So a read cannot be issued at this stage on any of the |
| * registers to ensure the write into "sw_reset" register |
| * has gone through. |
| * Question: Is there any system call that will explicitly force |
| * all the write commands still pending on the bus to be pushed |
| * through? |
| * As of now I'am just giving a 250ms delay and hoping that the |
| * PCI write to sw_reset register is done by this time. |
| */ |
| msleep(250); |
| |
| /* Restore the PCI state saved during initialization. */ |
| pci_restore_state(sp->pdev); |
| pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| pci_cmd); |
| s2io_init_pci(sp); |
| |
| msleep(250); |
| |
| /* Set swapper to enable I/O register access */ |
| s2io_set_swapper(sp); |
| |
| /* Restore the MSIX table entries from local variables */ |
| restore_xmsi_data(sp); |
| |
| /* Clear certain PCI/PCI-X fields after reset */ |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| /* Clear parity err detect bit */ |
| pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); |
| |
| /* Clearing PCIX Ecc status register */ |
| pci_write_config_dword(sp->pdev, 0x68, 0x7C); |
| |
| /* Clearing PCI_STATUS error reflected here */ |
| writeq(BIT(62), &bar0->txpic_int_reg); |
| } |
| |
| /* Reset device statistics maintained by OS */ |
| memset(&sp->stats, 0, sizeof (struct net_device_stats)); |
| |
| /* SXE-002: Configure link and activity LED to turn it off */ |
| subid = sp->pdev->subsystem_device; |
| if (((subid & 0xFF) >= 0x07) && |
| (sp->device_type == XFRAME_I_DEVICE)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *)bar0 + 0x2700); |
| } |
| |
| /* |
| * Clear spurious ECC interrupts that would have occured on |
| * XFRAME II cards after reset. |
| */ |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| val64 = readq(&bar0->pcc_err_reg); |
| writeq(val64, &bar0->pcc_err_reg); |
| } |
| |
| sp->device_enabled_once = FALSE; |
| } |
| |
| /** |
| * s2io_set_swapper - to set the swapper controle on the card |
| * @sp : private member of the device structure, |
| * pointer to the s2io_nic structure. |
| * Description: Function to set the swapper control on the card |
| * correctly depending on the 'endianness' of the system. |
| * Return value: |
| * SUCCESS on success and FAILURE on failure. |
| */ |
| |
| int s2io_set_swapper(nic_t * sp) |
| { |
| struct net_device *dev = sp->dev; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64, valt, valr; |
| |
| /* |
| * Set proper endian settings and verify the same by reading |
| * the PIF Feed-back register. |
| */ |
| |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x0123456789ABCDEFULL) { |
| int i = 0; |
| u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ |
| 0x8100008181000081ULL, /* FE=1, SE=0 */ |
| 0x4200004242000042ULL, /* FE=0, SE=1 */ |
| 0}; /* FE=0, SE=0 */ |
| |
| while(i<4) { |
| writeq(value[i], &bar0->swapper_ctrl); |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 == 0x0123456789ABCDEFULL) |
| break; |
| i++; |
| } |
| if (i == 4) { |
| DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| valr = value[i]; |
| } else { |
| valr = readq(&bar0->swapper_ctrl); |
| } |
| |
| valt = 0x0123456789ABCDEFULL; |
| writeq(valt, &bar0->xmsi_address); |
| val64 = readq(&bar0->xmsi_address); |
| |
| if(val64 != valt) { |
| int i = 0; |
| u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ |
| 0x0081810000818100ULL, /* FE=1, SE=0 */ |
| 0x0042420000424200ULL, /* FE=0, SE=1 */ |
| 0}; /* FE=0, SE=0 */ |
| |
| while(i<4) { |
| writeq((value[i] | valr), &bar0->swapper_ctrl); |
| writeq(valt, &bar0->xmsi_address); |
| val64 = readq(&bar0->xmsi_address); |
| if(val64 == valt) |
| break; |
| i++; |
| } |
| if(i == 4) { |
| unsigned long long x = val64; |
| DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); |
| DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x); |
| return FAILURE; |
| } |
| } |
| val64 = readq(&bar0->swapper_ctrl); |
| val64 &= 0xFFFF000000000000ULL; |
| |
| #ifdef __BIG_ENDIAN |
| /* |
| * The device by default set to a big endian format, so a |
| * big endian driver need not set anything. |
| */ |
| val64 |= (SWAPPER_CTRL_TXP_FE | |
| SWAPPER_CTRL_TXP_SE | |
| SWAPPER_CTRL_TXD_R_FE | |
| SWAPPER_CTRL_TXD_W_FE | |
| SWAPPER_CTRL_TXF_R_FE | |
| SWAPPER_CTRL_RXD_R_FE | |
| SWAPPER_CTRL_RXD_W_FE | |
| SWAPPER_CTRL_RXF_W_FE | |
| SWAPPER_CTRL_XMSI_FE | |
| SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| if (sp->intr_type == INTA) |
| val64 |= SWAPPER_CTRL_XMSI_SE; |
| writeq(val64, &bar0->swapper_ctrl); |
| #else |
| /* |
| * Initially we enable all bits to make it accessible by the |
| * driver, then we selectively enable only those bits that |
| * we want to set. |
| */ |
| val64 |= (SWAPPER_CTRL_TXP_FE | |
| SWAPPER_CTRL_TXP_SE | |
| SWAPPER_CTRL_TXD_R_FE | |
| SWAPPER_CTRL_TXD_R_SE | |
| SWAPPER_CTRL_TXD_W_FE | |
| SWAPPER_CTRL_TXD_W_SE | |
| SWAPPER_CTRL_TXF_R_FE | |
| SWAPPER_CTRL_RXD_R_FE | |
| SWAPPER_CTRL_RXD_R_SE | |
| SWAPPER_CTRL_RXD_W_FE | |
| SWAPPER_CTRL_RXD_W_SE | |
| SWAPPER_CTRL_RXF_W_FE | |
| SWAPPER_CTRL_XMSI_FE | |
| SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| if (sp->intr_type == INTA) |
| val64 |= SWAPPER_CTRL_XMSI_SE; |
| writeq(val64, &bar0->swapper_ctrl); |
| #endif |
| val64 = readq(&bar0->swapper_ctrl); |
| |
| /* |
| * Verifying if endian settings are accurate by reading a |
| * feedback register. |
| */ |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x0123456789ABCDEFULL) { |
| /* Endian settings are incorrect, calls for another dekko. */ |
| DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| |
| return SUCCESS; |
| } |
| |
| int wait_for_msix_trans(nic_t *nic, int i) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| u64 val64; |
| int ret = 0, cnt = 0; |
| |
| do { |
| val64 = readq(&bar0->xmsi_access); |
| if (!(val64 & BIT(15))) |
| break; |
| mdelay(1); |
| cnt++; |
| } while(cnt < 5); |
| if (cnt == 5) { |
| DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| void restore_xmsi_data(nic_t *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| u64 val64; |
| int i; |
| |
| for (i=0; i< MAX_REQUESTED_MSI_X; i++) { |
| writeq(nic->msix_info[i].addr, &bar0->xmsi_address); |
| writeq(nic->msix_info[i].data, &bar0->xmsi_data); |
| val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6)); |
| writeq(val64, &bar0->xmsi_access); |
| if (wait_for_msix_trans(nic, i)) { |
| DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__); |
| continue; |
| } |
| } |
| } |
| |
| void store_xmsi_data(nic_t *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| u64 val64, addr, data; |
| int i; |
| |
| /* Store and display */ |
| for (i=0; i< MAX_REQUESTED_MSI_X; i++) { |
| val64 = (BIT(15) | vBIT(i, 26, 6)); |
| writeq(val64, &bar0->xmsi_access); |
| if (wait_for_msix_trans(nic, i)) { |
| DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__); |
| continue; |
| } |
| addr = readq(&bar0->xmsi_address); |
| data = readq(&bar0->xmsi_data); |
| if (addr && data) { |
| nic->msix_info[i].addr = addr; |
| nic->msix_info[i].data = data; |
| } |
| } |
| } |
| |
| int s2io_enable_msi(nic_t *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| u16 msi_ctrl, msg_val; |
| struct config_param *config = &nic->config; |
| struct net_device *dev = nic->dev; |
| u64 val64, tx_mat, rx_mat; |
| int i, err; |
| |
| val64 = readq(&bar0->pic_control); |
| val64 &= ~BIT(1); |
| writeq(val64, &bar0->pic_control); |
| |
| err = pci_enable_msi(nic->pdev); |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n", |
| nic->dev->name); |
| return err; |
| } |
| |
| /* |
| * Enable MSI and use MSI-1 in stead of the standard MSI-0 |
| * for interrupt handling. |
| */ |
| pci_read_config_word(nic->pdev, 0x4c, &msg_val); |
| msg_val ^= 0x1; |
| pci_write_config_word(nic->pdev, 0x4c, msg_val); |
| pci_read_config_word(nic->pdev, 0x4c, &msg_val); |
| |
| pci_read_config_word(nic->pdev, 0x42, &msi_ctrl); |
| msi_ctrl |= 0x10; |
| pci_write_config_word(nic->pdev, 0x42, msi_ctrl); |
| |
| /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */ |
| tx_mat = readq(&bar0->tx_mat0_n[0]); |
| for (i=0; i<config->tx_fifo_num; i++) { |
| tx_mat |= TX_MAT_SET(i, 1); |
| } |
| writeq(tx_mat, &bar0->tx_mat0_n[0]); |
| |
| rx_mat = readq(&bar0->rx_mat); |
| for (i=0; i<config->rx_ring_num; i++) { |
| rx_mat |= RX_MAT_SET(i, 1); |
| } |
| writeq(rx_mat, &bar0->rx_mat); |
| |
| dev->irq = nic->pdev->irq; |
| return 0; |
| } |
| |
| int s2io_enable_msi_x(nic_t *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| u64 tx_mat, rx_mat; |
| u16 msi_control; /* Temp variable */ |
| int ret, i, j, msix_indx = 1; |
| |
| nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (nic->entries == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__); |
| return -ENOMEM; |
| } |
| memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry)); |
| |
| nic->s2io_entries = |
| kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry), |
| GFP_KERNEL); |
| if (nic->s2io_entries == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__); |
| kfree(nic->entries); |
| return -ENOMEM; |
| } |
| memset(nic->s2io_entries, 0, |
| MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry)); |
| |
| for (i=0; i< MAX_REQUESTED_MSI_X; i++) { |
| nic->entries[i].entry = i; |
| nic->s2io_entries[i].entry = i; |
| nic->s2io_entries[i].arg = NULL; |
| nic->s2io_entries[i].in_use = 0; |
| } |
| |
| tx_mat = readq(&bar0->tx_mat0_n[0]); |
| for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) { |
| tx_mat |= TX_MAT_SET(i, msix_indx); |
| nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i]; |
| nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE; |
| nic->s2io_entries[msix_indx].in_use = MSIX_FLG; |
| } |
| writeq(tx_mat, &bar0->tx_mat0_n[0]); |
| |
| if (!nic->config.bimodal) { |
| rx_mat = readq(&bar0->rx_mat); |
| for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) { |
| rx_mat |= RX_MAT_SET(j, msix_indx); |
| nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j]; |
| nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE; |
| nic->s2io_entries[msix_indx].in_use = MSIX_FLG; |
| } |
| writeq(rx_mat, &bar0->rx_mat); |
| } else { |
| tx_mat = readq(&bar0->tx_mat0_n[7]); |
| for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) { |
| tx_mat |= TX_MAT_SET(i, msix_indx); |
| nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j]; |
| nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE; |
| nic->s2io_entries[msix_indx].in_use = MSIX_FLG; |
| } |
| writeq(tx_mat, &bar0->tx_mat0_n[7]); |
| } |
| |
| ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X); |
| if (ret) { |
| DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name); |
| kfree(nic->entries); |
| kfree(nic->s2io_entries); |
| nic->entries = NULL; |
| nic->s2io_entries = NULL; |
| return -ENOMEM; |
| } |
| |
| /* |
| * To enable MSI-X, MSI also needs to be enabled, due to a bug |
| * in the herc NIC. (Temp change, needs to be removed later) |
| */ |
| pci_read_config_word(nic->pdev, 0x42, &msi_control); |
| msi_control |= 0x1; /* Enable MSI */ |
| pci_write_config_word(nic->pdev, 0x42, msi_control); |
| |
| return 0; |
| } |
| |
| /* ********************************************************* * |
| * Functions defined below concern the OS part of the driver * |
| * ********************************************************* */ |
| |
| /** |
| * s2io_open - open entry point of the driver |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function is the open entry point of the driver. It mainly calls a |
| * function to allocate Rx buffers and inserts them into the buffer |
| * descriptors and then enables the Rx part of the NIC. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| int s2io_open(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| int err = 0; |
| int i; |
| u16 msi_control; /* Temp variable */ |
| |
| /* |
| * Make sure you have link off by default every time |
| * Nic is initialized |
| */ |
| netif_carrier_off(dev); |
| sp->last_link_state = 0; |
| |
| /* Initialize H/W and enable interrupts */ |
| if (s2io_card_up(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| dev->name); |
| err = -ENODEV; |
| goto hw_init_failed; |
| } |
| |
| /* Store the values of the MSIX table in the nic_t structure */ |
| store_xmsi_data(sp); |
| |
| /* After proper initialization of H/W, register ISR */ |
| if (sp->intr_type == MSI) { |
| err = request_irq((int) sp->pdev->irq, s2io_msi_handle, |
| SA_SHIRQ, sp->name, dev); |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: MSI registration \ |
| failed\n", dev->name); |
| goto isr_registration_failed; |
| } |
| } |
| if (sp->intr_type == MSI_X) { |
| for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) { |
| if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) { |
| sprintf(sp->desc1, "%s:MSI-X-%d-TX", |
| dev->name, i); |
| err = request_irq(sp->entries[i].vector, |
| s2io_msix_fifo_handle, 0, sp->desc1, |
| sp->s2io_entries[i].arg); |
| DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1, |
| sp->msix_info[i].addr); |
| } else { |
| sprintf(sp->desc2, "%s:MSI-X-%d-RX", |
| dev->name, i); |
| err = request_irq(sp->entries[i].vector, |
| s2io_msix_ring_handle, 0, sp->desc2, |
| sp->s2io_entries[i].arg); |
| DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2, |
| sp->msix_info[i].addr); |
| } |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \ |
| failed\n", dev->name, i); |
| DBG_PRINT(ERR_DBG, "Returned: %d\n", err); |
| goto isr_registration_failed; |
| } |
| sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS; |
| } |
| } |
| if (sp->intr_type == INTA) { |
| err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ, |
| sp->name, dev); |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", |
| dev->name); |
| goto isr_registration_failed; |
| } |
| } |
| |
| if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { |
| DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); |
| err = -ENODEV; |
| goto setting_mac_address_failed; |
| } |
| |
| netif_start_queue(dev); |
| return 0; |
| |
| setting_mac_address_failed: |
| if (sp->intr_type != MSI_X) |
| free_irq(sp->pdev->irq, dev); |
| isr_registration_failed: |
| del_timer_sync(&sp->alarm_timer); |
| if (sp->intr_type == MSI_X) { |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| for (i=1; (sp->s2io_entries[i].in_use == |
| MSIX_REGISTERED_SUCCESS); i++) { |
| int vector = sp->entries[i].vector; |
| void *arg = sp->s2io_entries[i].arg; |
| |
| free_irq(vector, arg); |
| } |
| pci_disable_msix(sp->pdev); |
| |
| /* Temp */ |
| pci_read_config_word(sp->pdev, 0x42, &msi_control); |
| msi_control &= 0xFFFE; /* Disable MSI */ |
| pci_write_config_word(sp->pdev, 0x42, msi_control); |
| } |
| } |
| else if (sp->intr_type == MSI) |
| pci_disable_msi(sp->pdev); |
| s2io_reset(sp); |
| hw_init_failed: |
| if (sp->intr_type == MSI_X) { |
| if (sp->entries) |
| kfree(sp->entries); |
| if (sp->s2io_entries) |
| kfree(sp->s2io_entries); |
| } |
| return err; |
| } |
| |
| /** |
| * s2io_close -close entry point of the driver |
| * @dev : device pointer. |
| * Description: |
| * This is the stop entry point of the driver. It needs to undo exactly |
| * whatever was done by the open entry point,thus it's usually referred to |
| * as the close function.Among other things this function mainly stops the |
| * Rx side of the NIC and frees all the Rx buffers in the Rx rings. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| int s2io_close(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| int i; |
| u16 msi_control; |
| |
| flush_scheduled_work(); |
| netif_stop_queue(dev); |
| /* Reset card, kill tasklet and free Tx and Rx buffers. */ |
| s2io_card_down(sp); |
| |
| if (sp->intr_type == MSI_X) { |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| for (i=1; (sp->s2io_entries[i].in_use == |
| MSIX_REGISTERED_SUCCESS); i++) { |
| int vector = sp->entries[i].vector; |
| void *arg = sp->s2io_entries[i].arg; |
| |
| free_irq(vector, arg); |
| } |
| pci_read_config_word(sp->pdev, 0x42, &msi_control); |
| msi_control &= 0xFFFE; /* Disable MSI */ |
| pci_write_config_word(sp->pdev, 0x42, msi_control); |
| |
| pci_disable_msix(sp->pdev); |
| } |
| } |
| else { |
| free_irq(sp->pdev->irq, dev); |
| if (sp->intr_type == MSI) |
| pci_disable_msi(sp->pdev); |
| } |
| sp->device_close_flag = TRUE; /* Device is shut down. */ |
| return 0; |
| } |
| |
| /** |
| * s2io_xmit - Tx entry point of te driver |
| * @skb : the socket buffer containing the Tx data. |
| * @dev : device pointer. |
| * Description : |
| * This function is the Tx entry point of the driver. S2IO NIC supports |
| * certain protocol assist features on Tx side, namely CSO, S/G, LSO. |
| * NOTE: when device cant queue the pkt,just the trans_start variable will |
| * not be upadted. |
| * Return value: |
| * 0 on success & 1 on failure. |
| */ |
| |
| int s2io_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; |
| register u64 val64; |
| TxD_t *txdp; |
| TxFIFO_element_t __iomem *tx_fifo; |
| unsigned long flags; |
| #ifdef NETIF_F_TSO |
| int mss; |
| #endif |
| u16 vlan_tag = 0; |
| int vlan_priority = 0; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); |
| spin_lock_irqsave(&sp->tx_lock, flags); |
| if (atomic_read(&sp->card_state) == CARD_DOWN) { |
| DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", |
| dev->name); |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| queue = 0; |
| |
| /* Get Fifo number to Transmit based on vlan priority */ |
| if (sp->vlgrp && vlan_tx_tag_present(skb)) { |
| vlan_tag = vlan_tx_tag_get(skb); |
| vlan_priority = vlan_tag >> 13; |
| queue = config->fifo_mapping[vlan_priority]; |
| } |
| |
| put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset; |
| get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset; |
| txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off]. |
| list_virt_addr; |
| |
| queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1; |
| /* Avoid "put" pointer going beyond "get" pointer */ |
| if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { |
| DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); |
| netif_stop_queue(dev); |
| dev_kfree_skb(skb); |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| return 0; |
| } |
| |
| /* A buffer with no data will be dropped */ |
| if (!skb->len) { |
| DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name); |
| dev_kfree_skb(skb); |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| return 0; |
| } |
| |
| #ifdef NETIF_F_TSO |
| mss = skb_shinfo(skb)->tso_size; |
| if (mss) { |
| txdp->Control_1 |= TXD_TCP_LSO_EN; |
| txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); |
| } |
| #endif |
| |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| frg_len = skb->len - skb->data_len; |
| |
| txdp->Buffer_Pointer = pci_map_single |
| (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); |
| txdp->Host_Control = (unsigned long) skb; |
| if (skb->ip_summed == CHECKSUM_HW) { |
| txdp->Control_2 |= |
| (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | |
| TXD_TX_CKO_UDP_EN); |
| } |
| |
| txdp->Control_2 |= config->tx_intr_type; |
| |
| if (sp->vlgrp && vlan_tx_tag_present(skb)) { |
| txdp->Control_2 |= TXD_VLAN_ENABLE; |
| txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); |
| } |
| |
| txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | |
| TXD_GATHER_CODE_FIRST); |
| txdp->Control_1 |= TXD_LIST_OWN_XENA; |
| |
| /* For fragmented SKB. */ |
| for (i = 0; i < frg_cnt; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| /* A '0' length fragment will be ignored */ |
| if (!frag->size) |
| continue; |
| txdp++; |
| txdp->Buffer_Pointer = (u64) pci_map_page |
| (sp->pdev, frag->page, frag->page_offset, |
| frag->size, PCI_DMA_TODEVICE); |
| txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); |
| } |
| txdp->Control_1 |= TXD_GATHER_CODE_LAST; |
| |
| tx_fifo = mac_control->tx_FIFO_start[queue]; |
| val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr; |
| writeq(val64, &tx_fifo->TxDL_Pointer); |
| |
| val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | |
| TX_FIFO_LAST_LIST); |
| |
| #ifdef NETIF_F_TSO |
| if (mss) |
| val64 |= TX_FIFO_SPECIAL_FUNC; |
| #endif |
| writeq(val64, &tx_fifo->List_Control); |
| |
| mmiowb(); |
| |
| put_off++; |
| put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1; |
| mac_control->fifos[queue].tx_curr_put_info.offset = put_off; |
| |
| /* Avoid "put" pointer going beyond "get" pointer */ |
| if (((put_off + 1) % queue_len) == get_off) { |
| DBG_PRINT(TX_DBG, |
| "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", |
| put_off, get_off); |
| netif_stop_queue(dev); |
| } |
| |
| dev->trans_start = jiffies; |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| |
| return 0; |
| } |
| |
| static void |
| s2io_alarm_handle(unsigned long data) |
| { |
| nic_t *sp = (nic_t *)data; |
| |
| alarm_intr_handler(sp); |
| mod_timer(&sp->alarm_timer, jiffies + HZ / 2); |
| } |
| |
| static irqreturn_t |
| s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| nic_t *sp = dev->priv; |
| int i; |
| int ret; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| atomic_inc(&sp->isr_cnt); |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__); |
| |
| /* If Intr is because of Rx Traffic */ |
| for (i = 0; i < config->rx_ring_num; i++) |
| rx_intr_handler(&mac_control->rings[i]); |
| |
| /* If Intr is because of Tx Traffic */ |
| for (i = 0; i < config->tx_fifo_num; i++) |
| tx_intr_handler(&mac_control->fifos[i]); |
| |
| /* |
| * If the Rx buffer count is below the panic threshold then |
| * reallocate the buffers from the interrupt handler itself, |
| * else schedule a tasklet to reallocate the buffers. |
| */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| int rxb_size = atomic_read(&sp->rx_bufs_left[i]); |
| int level = rx_buffer_level(sp, rxb_size, i); |
| |
| if ((level == PANIC) && (!TASKLET_IN_USE)) { |
| DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); |
| DBG_PRINT(INTR_DBG, "PANIC levels\n"); |
| if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", |
| dev->name); |
| DBG_PRINT(ERR_DBG, " in ISR!!\n"); |
| clear_bit(0, (&sp->tasklet_status)); |
| atomic_dec(&sp->isr_cnt); |
| return IRQ_HANDLED; |
| } |
| clear_bit(0, (&sp->tasklet_status)); |
| } else if (level == LOW) { |
| tasklet_schedule(&sp->task); |
| } |
| } |
| |
| atomic_dec(&sp->isr_cnt); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t |
| s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| ring_info_t *ring = (ring_info_t *)dev_id; |
| nic_t *sp = ring->nic; |
| int rxb_size, level, rng_n; |
| |
| atomic_inc(&sp->isr_cnt); |
| rx_intr_handler(ring); |
| |
| rng_n = ring->ring_no; |
| rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]); |
| level = rx_buffer_level(sp, rxb_size, rng_n); |
| |
| if ((level == PANIC) && (!TASKLET_IN_USE)) { |
| int ret; |
| DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__); |
| DBG_PRINT(INTR_DBG, "PANIC levels\n"); |
| if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "Out of memory in %s", |
| __FUNCTION__); |
| clear_bit(0, (&sp->tasklet_status)); |
| return IRQ_HANDLED; |
| } |
| clear_bit(0, (&sp->tasklet_status)); |
| } else if (level == LOW) { |
| tasklet_schedule(&sp->task); |
| } |
| atomic_dec(&sp->isr_cnt); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t |
| s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| fifo_info_t *fifo = (fifo_info_t *)dev_id; |
| nic_t *sp = fifo->nic; |
| |
| atomic_inc(&sp->isr_cnt); |
| tx_intr_handler(fifo); |
| atomic_dec(&sp->isr_cnt); |
| return IRQ_HANDLED; |
| } |
| |
| static void s2io_txpic_intr_handle(nic_t *sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| |
| val64 = readq(&bar0->pic_int_status); |
| if (val64 & PIC_INT_GPIO) { |
| val64 = readq(&bar0->gpio_int_reg); |
| if ((val64 & GPIO_INT_REG_LINK_DOWN) && |
| (val64 & GPIO_INT_REG_LINK_UP)) { |
| val64 |= GPIO_INT_REG_LINK_DOWN; |
| val64 |= GPIO_INT_REG_LINK_UP; |
| writeq(val64, &bar0->gpio_int_reg); |
| goto masking; |
| } |
| |
| if (((sp->last_link_state == LINK_UP) && |
| (val64 & GPIO_INT_REG_LINK_DOWN)) || |
| ((sp->last_link_state == LINK_DOWN) && |
| (val64 & GPIO_INT_REG_LINK_UP))) { |
| val64 = readq(&bar0->gpio_int_mask); |
| val64 |= GPIO_INT_MASK_LINK_DOWN; |
| val64 |= GPIO_INT_MASK_LINK_UP; |
| writeq(val64, &bar0->gpio_int_mask); |
| s2io_set_link((unsigned long)sp); |
| } |
| masking: |
| if (sp->last_link_state == LINK_UP) { |
| /*enable down interrupt */ |
| val64 = readq(&bar0->gpio_int_mask); |
| /* unmasks link down intr */ |
| val64 &= ~GPIO_INT_MASK_LINK_DOWN; |
| /* masks link up intr */ |
| val64 |= GPIO_INT_MASK_LINK_UP; |
| writeq(val64, &bar0->gpio_int_mask); |
| } else { |
| /*enable UP Interrupt */ |
| val64 = readq(&bar0->gpio_int_mask); |
| /* unmasks link up interrupt */ |
| val64 &= ~GPIO_INT_MASK_LINK_UP; |
| /* masks link down interrupt */ |
| val64 |= GPIO_INT_MASK_LINK_DOWN; |
| writeq(val64, &bar0->gpio_int_mask); |
| } |
| } |
| } |
| |
| /** |
| * s2io_isr - ISR handler of the device . |
| * @irq: the irq of the device. |
| * @dev_id: a void pointer to the dev structure of the NIC. |
| * @pt_regs: pointer to the registers pushed on the stack. |
| * Description: This function is the ISR handler of the device. It |
| * identifies the reason for the interrupt and calls the relevant |
| * service routines. As a contongency measure, this ISR allocates the |
| * recv buffers, if their numbers are below the panic value which is |
| * presently set to 25% of the original number of rcv buffers allocated. |
| * Return value: |
| * IRQ_HANDLED: will be returned if IRQ was handled by this routine |
| * IRQ_NONE: will be returned if interrupt is not from our device |
| */ |
| static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| int i; |
| u64 reason = 0, val64; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| atomic_inc(&sp->isr_cnt); |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| /* |
| * Identify the cause for interrupt and call the appropriate |
| * interrupt handler. Causes for the interrupt could be; |
| * 1. Rx of packet. |
| * 2. Tx complete. |
| * 3. Link down. |
| * 4. Error in any functional blocks of the NIC. |
| */ |
| reason = readq(&bar0->general_int_status); |
| |
| if (!reason) { |
| /* The interrupt was not raised by Xena. */ |
| atomic_dec(&sp->isr_cnt); |
| return IRQ_NONE; |
| } |
| |
| #ifdef CONFIG_S2IO_NAPI |
| if (reason & GEN_INTR_RXTRAFFIC) { |
| if (netif_rx_schedule_prep(dev)) { |
| en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, |
| DISABLE_INTRS); |
| __netif_rx_schedule(dev); |
| } |
| } |
| #else |
| /* If Intr is because of Rx Traffic */ |
| if (reason & GEN_INTR_RXTRAFFIC) { |
| /* |
| * rx_traffic_int reg is an R1 register, writing all 1's |
| * will ensure that the actual interrupt causing bit get's |
| * cleared and hence a read can be avoided. |
| */ |
| val64 = 0xFFFFFFFFFFFFFFFFULL; |
| writeq(val64, &bar0->rx_traffic_int); |
| for (i = 0; i < config->rx_ring_num; i++) { |
| rx_intr_handler(&mac_control->rings[i]); |
| } |
| } |
| #endif |
| |
| /* If Intr is because of Tx Traffic */ |
| if (reason & GEN_INTR_TXTRAFFIC) { |
| /* |
| * tx_traffic_int reg is an R1 register, writing all 1's |
| * will ensure that the actual interrupt causing bit get's |
| * cleared and hence a read can be avoided. |
| */ |
| val64 = 0xFFFFFFFFFFFFFFFFULL; |
| writeq(val64, &bar0->tx_traffic_int); |
| |
| for (i = 0; i < config->tx_fifo_num; i++) |
| tx_intr_handler(&mac_control->fifos[i]); |
| } |
| |
| if (reason & GEN_INTR_TXPIC) |
| s2io_txpic_intr_handle(sp); |
| /* |
| * If the Rx buffer count is below the panic threshold then |
| * reallocate the buffers from the interrupt handler itself, |
| * else schedule a tasklet to reallocate the buffers. |
| */ |
| #ifndef CONFIG_S2IO_NAPI |
| for (i = 0; i < config->rx_ring_num; i++) { |
| int ret; |
| int rxb_size = atomic_read(&sp->rx_bufs_left[i]); |
| int level = rx_buffer_level(sp, rxb_size, i); |
| |
| if ((level == PANIC) && (!TASKLET_IN_USE)) { |
| DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); |
| DBG_PRINT(INTR_DBG, "PANIC levels\n"); |
| if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", |
| dev->name); |
| DBG_PRINT(ERR_DBG, " in ISR!!\n"); |
| clear_bit(0, (&sp->tasklet_status)); |
| atomic_dec(&sp->isr_cnt); |
| return IRQ_HANDLED; |
| } |
| clear_bit(0, (&sp->tasklet_status)); |
| } else if (level == LOW) { |
| tasklet_schedule(&sp->task); |
| } |
| } |
| #endif |
| |
| atomic_dec(&sp->isr_cnt); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * s2io_updt_stats - |
| */ |
| static void s2io_updt_stats(nic_t *sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int cnt = 0; |
| |
| if (atomic_read(&sp->card_state) == CARD_UP) { |
| /* Apprx 30us on a 133 MHz bus */ |
| val64 = SET_UPDT_CLICKS(10) | |
| STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; |
| writeq(val64, &bar0->stat_cfg); |
| do { |
| udelay(100); |
| val64 = readq(&bar0->stat_cfg); |
| if (!(val64 & BIT(0))) |
| break; |
| cnt++; |
| if (cnt == 5) |
| break; /* Updt failed */ |
| } while(1); |
| } |
| } |
| |
| /** |
| * s2io_get_stats - Updates the device statistics structure. |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function updates the device statistics structure in the s2io_nic |
| * structure and returns a pointer to the same. |
| * Return value: |
| * pointer to the updated net_device_stats structure. |
| */ |
| |
| struct net_device_stats *s2io_get_stats(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| /* Configure Stats for immediate updt */ |
| s2io_updt_stats(sp); |
| |
| sp->stats.tx_packets = |
| le32_to_cpu(mac_control->stats_info->tmac_frms); |
| sp->stats.tx_errors = |
| le32_to_cpu(mac_control->stats_info->tmac_any_err_frms); |
| sp->stats.rx_errors = |
| le32_to_cpu(mac_control->stats_info->rmac_drop_frms); |
| sp->stats.multicast = |
| le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms); |
| sp->stats.rx_length_errors = |
| le32_to_cpu(mac_control->stats_info->rmac_long_frms); |
| |
| return (&sp->stats); |
| } |
| |
| /** |
| * s2io_set_multicast - entry point for multicast address enable/disable. |
| * @dev : pointer to the device structure |
| * Description: |
| * This function is a driver entry point which gets called by the kernel |
| * whenever multicast addresses must be enabled/disabled. This also gets |
| * called to set/reset promiscuous mode. Depending on the deivce flag, we |
| * determine, if multicast address must be enabled or if promiscuous mode |
| * is to be disabled etc. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_set_multicast(struct net_device *dev) |
| { |
| int i, j, prev_cnt; |
| struct dev_mc_list *mclist; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = |
| 0xfeffffffffffULL; |
| u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; |
| void __iomem *add; |
| |
| if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { |
| /* Enable all Multicast addresses */ |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| wait_for_cmd_complete(sp); |
| |
| sp->m_cast_flg = 1; |
| sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; |
| } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { |
| /* Disable all Multicast addresses */ |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| wait_for_cmd_complete(sp); |
| |
| sp->m_cast_flg = 0; |
| sp->all_multi_pos = 0; |
| } |
| |
| if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { |
| /* Put the NIC into promiscuous mode */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_CFG_RMAC_PROM_ENABLE; |
| |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| val64 = readq(&bar0->mac_cfg); |
| sp->promisc_flg = 1; |
| DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", |
| dev->name); |
| } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { |
| /* Remove the NIC from promiscuous mode */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; |
| |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| val64 = readq(&bar0->mac_cfg); |
| sp->promisc_flg = 0; |
| DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", |
| dev->name); |
| } |
| |
| /* Update individual M_CAST address list */ |
| if ((!sp->m_cast_flg) && dev->mc_count) { |
| if (dev->mc_count > |
| (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { |
| DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "can be added, please enable "); |
| DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); |
| return; |
| } |
| |
| prev_cnt = sp->mc_addr_count; |
| sp->mc_addr_count = dev->mc_count; |
| |
| /* Clear out the previous list of Mc in the H/W. */ |
| for (i = 0; i < prev_cnt; i++) { |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET |
| (MAC_MC_ADDR_START_OFFSET + i); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait for command completes */ |
| if (wait_for_cmd_complete(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Adding ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| return; |
| } |
| } |
| |
| /* Create the new Rx filter list and update the same in H/W. */ |
| for (i = 0, mclist = dev->mc_list; i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, |
| ETH_ALEN); |
| for (j = 0; j < ETH_ALEN; j++) { |
| mac_addr |= mclist->dmi_addr[j]; |
| mac_addr <<= 8; |
| } |
| mac_addr >>= 8; |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET |
| (i + MAC_MC_ADDR_START_OFFSET); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait for command completes */ |
| if (wait_for_cmd_complete(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Adding ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| return; |
| } |
| } |
| } |
| } |
| |
| /** |
| * s2io_set_mac_addr - Programs the Xframe mac address |
| * @dev : pointer to the device structure. |
| * @addr: a uchar pointer to the new mac address which is to be set. |
| * Description : This procedure will program the Xframe to receive |
| * frames with new Mac Address |
| * Return value: SUCCESS on success and an appropriate (-)ve integer |
| * as defined in errno.h file on failure. |
| */ |
| |
| int s2io_set_mac_addr(struct net_device *dev, u8 * addr) |
| { |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| register u64 val64, mac_addr = 0; |
| int i; |
| |
| /* |
| * Set the new MAC address as the new unicast filter and reflect this |
| * change on the device address registered with the OS. It will be |
| * at offset 0. |
| */ |
| for (i = 0; i < ETH_ALEN; i++) { |
| mac_addr <<= 8; |
| mac_addr |= addr[i]; |
| } |
| |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), |
| &bar0->rmac_addr_data0_mem); |
| |
| val64 = |
| RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(0); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| if (wait_for_cmd_complete(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); |
| return FAILURE; |
| } |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * s2io_ethtool_sset - Sets different link parameters. |
| * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| * @info: pointer to the structure with parameters given by ethtool to set |
| * link information. |
| * Description: |
| * The function sets different link parameters provided by the user onto |
| * the NIC. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_ethtool_sset(struct net_device *dev, |
| struct ethtool_cmd *info) |
| { |
| nic_t *sp = dev->priv; |
| if ((info->autoneg == AUTONEG_ENABLE) || |
| (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) |
| return -EINVAL; |
| else { |
| s2io_close(sp->dev); |
| s2io_open(sp->dev); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtol_gset - Return link specific information. |
| * @sp : private member of the device structure, pointer to the |
| * s2io_nic structure. |
| * @info : pointer to the structure with parameters given by ethtool |
| * to return link information. |
| * Description: |
| * Returns link specific information like speed, duplex etc.. to ethtool. |
| * Return value : |
| * return 0 on success. |
| */ |
| |
| static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) |
| { |
| nic_t *sp = dev->priv; |
| info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); |
| info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); |
| info->port = PORT_FIBRE; |
| /* info->transceiver?? TODO */ |
| |
| if (netif_carrier_ok(sp->dev)) { |
| info->speed = 10000; |
| info->duplex = DUPLEX_FULL; |
| } else { |
| info->speed = -1; |
| info->duplex = -1; |
| } |
| |
| info->autoneg = AUTONEG_DISABLE; |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtool_gdrvinfo - Returns driver specific information. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @info : pointer to the structure with parameters given by ethtool to |
| * return driver information. |
| * Description: |
| * Returns driver specefic information like name, version etc.. to ethtool. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_ethtool_gdrvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| nic_t *sp = dev->priv; |
| |
| strncpy(info->driver, s2io_driver_name, sizeof(info->driver)); |
| strncpy(info->version, s2io_driver_version, sizeof(info->version)); |
| strncpy(info->fw_version, "", sizeof(info->fw_version)); |
| strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); |
| info->regdump_len = XENA_REG_SPACE; |
| info->eedump_len = XENA_EEPROM_SPACE; |
| info->testinfo_len = S2IO_TEST_LEN; |
| info->n_stats = S2IO_STAT_LEN; |
| } |
| |
| /** |
| * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. |
| * @sp: private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @regs : pointer to the structure with parameters given by ethtool for |
| * dumping the registers. |
| * @reg_space: The input argumnet into which all the registers are dumped. |
| * Description: |
| * Dumps the entire register space of xFrame NIC into the user given |
| * buffer area. |
| * Return value : |
| * void . |
| */ |
| |
| static void s2io_ethtool_gregs(struct net_device *dev, |
| struct ethtool_regs *regs, void *space) |
| { |
| int i; |
| u64 reg; |
| u8 *reg_space = (u8 *) space; |
| nic_t *sp = dev->priv; |
| |
| regs->len = XENA_REG_SPACE; |
| regs->version = sp->pdev->subsystem_device; |
| |
| for (i = 0; i < regs->len; i += 8) { |
| reg = readq(sp->bar0 + i); |
| memcpy((reg_space + i), ®, 8); |
| } |
| } |
| |
| /** |
| * s2io_phy_id - timer function that alternates adapter LED. |
| * @data : address of the private member of the device structure, which |
| * is a pointer to the s2io_nic structure, provided as an u32. |
| * Description: This is actually the timer function that alternates the |
| * adapter LED bit of the adapter control bit to set/reset every time on |
| * invocation. The timer is set for 1/2 a second, hence tha NIC blinks |
| * once every second. |
| */ |
| static void s2io_phy_id(unsigned long data) |
| { |
| nic_t *sp = (nic_t *) data; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64 = 0; |
| u16 subid; |
| |
| subid = sp->pdev->subsystem_device; |
| if ((sp->device_type == XFRAME_II_DEVICE) || |
| ((subid & 0xFF) >= 0x07)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 ^= GPIO_CTRL_GPIO_0; |
| writeq(val64, &bar0->gpio_control); |
| } else { |
| val64 = readq(&bar0->adapter_control); |
| val64 ^= ADAPTER_LED_ON; |
| writeq(val64, &bar0->adapter_control); |
| } |
| |
| mod_timer(&sp->id_timer, jiffies + HZ / 2); |
| } |
| |
| /** |
| * s2io_ethtool_idnic - To physically identify the nic on the system. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @id : pointer to the structure with identification parameters given by |
| * ethtool. |
| * Description: Used to physically identify the NIC on the system. |
| * The Link LED will blink for a time specified by the user for |
| * identification. |
| * NOTE: The Link has to be Up to be able to blink the LED. Hence |
| * identification is possible only if it's link is up. |
| * Return value: |
| * int , returns 0 on success |
| */ |
| |
| static int s2io_ethtool_idnic(struct net_device *dev, u32 data) |
| { |
| u64 val64 = 0, last_gpio_ctrl_val; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u16 subid; |
| |
| subid = sp->pdev->subsystem_device; |
| last_gpio_ctrl_val = readq(&bar0->gpio_control); |
| if ((sp->device_type == XFRAME_I_DEVICE) && |
| ((subid & 0xFF) < 0x07)) { |
| val64 = readq(&bar0->adapter_control); |
| if (!(val64 & ADAPTER_CNTL_EN)) { |
| printk(KERN_ERR |
| "Adapter Link down, cannot blink LED\n"); |
| return -EFAULT; |
| } |
| } |
| if (sp->id_timer.function == NULL) { |
| init_timer(&sp->id_timer); |
| sp->id_timer.function = s2io_phy_id; |
| sp->id_timer.data = (unsigned long) sp; |
| } |
| mod_timer(&sp->id_timer, jiffies); |
| if (data) |
| msleep_interruptible(data * HZ); |
| else |
| msleep_interruptible(MAX_FLICKER_TIME); |
| del_timer_sync(&sp->id_timer); |
| |
| if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) { |
| writeq(last_gpio_ctrl_val, &bar0->gpio_control); |
| last_gpio_ctrl_val = readq(&bar0->gpio_control); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtool_getpause_data -Pause frame frame generation and reception. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @ep : pointer to the structure with pause parameters given by ethtool. |
| * Description: |
| * Returns the Pause frame generation and reception capability of the NIC. |
| * Return value: |
| * void |
| */ |
| static void s2io_ethtool_getpause_data(struct net_device *dev, |
| struct ethtool_pauseparam *ep) |
| { |
| u64 val64; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| |
| val64 = readq(&bar0->rmac_pause_cfg); |
| if (val64 & RMAC_PAUSE_GEN_ENABLE) |
| ep->tx_pause = TRUE; |
| if (val64 & RMAC_PAUSE_RX_ENABLE) |
| ep->rx_pause = TRUE; |
| ep->autoneg = FALSE; |
| } |
| |
| /** |
| * s2io_ethtool_setpause_data - set/reset pause frame generation. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @ep : pointer to the structure with pause parameters given by ethtool. |
| * Description: |
| * It can be used to set or reset Pause frame generation or reception |
| * support of the NIC. |
| * Return value: |
| * int, returns 0 on Success |
| */ |
| |
| static int s2io_ethtool_setpause_data(struct net_device *dev, |
| struct ethtool_pauseparam *ep) |
| { |
| u64 val64; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| |
| val64 = readq(&bar0->rmac_pause_cfg); |
| if (ep->tx_pause) |
| val64 |= RMAC_PAUSE_GEN_ENABLE; |
| else |
| val64 &= ~RMAC_PAUSE_GEN_ENABLE; |
| if (ep->rx_pause) |
| val64 |= RMAC_PAUSE_RX_ENABLE; |
| else |
| val64 &= ~RMAC_PAUSE_RX_ENABLE; |
| writeq(val64, &bar0->rmac_pause_cfg); |
| return 0; |
| } |
| |
| /** |
| * read_eeprom - reads 4 bytes of data from user given offset. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @off : offset at which the data must be written |
| * @data : Its an output parameter where the data read at the given |
| * offset is stored. |
| * Description: |
| * Will read 4 bytes of data from the user given offset and return the |
| * read data. |
| * NOTE: Will allow to read only part of the EEPROM visible through the |
| * I2C bus. |
| * Return value: |
| * -1 on failure and 0 on success. |
| */ |
| |
| #define S2IO_DEV_ID 5 |
| static int read_eeprom(nic_t * sp, int off, u64 * data) |
| { |
| int ret = -1; |
| u32 exit_cnt = 0; |
| u64 val64; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | |
| I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | |
| I2C_CONTROL_CNTL_START; |
| SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); |
| |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->i2c_control); |
| if (I2C_CONTROL_CNTL_END(val64)) { |
| *data = I2C_CONTROL_GET_DATA(val64); |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | |
| SPI_CONTROL_BYTECNT(0x3) | |
| SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| val64 |= SPI_CONTROL_REQ; |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->spi_control); |
| if (val64 & SPI_CONTROL_NACK) { |
| ret = 1; |
| break; |
| } else if (val64 & SPI_CONTROL_DONE) { |
| *data = readq(&bar0->spi_data); |
| *data &= 0xffffff; |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| return ret; |
| } |
| |
| /** |
| * write_eeprom - actually writes the relevant part of the data value. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @off : offset at which the data must be written |
| * @data : The data that is to be written |
| * @cnt : Number of bytes of the data that are actually to be written into |
| * the Eeprom. (max of 3) |
| * Description: |
| * Actually writes the relevant part of the data value into the Eeprom |
| * through the I2C bus. |
| * Return value: |
| * 0 on success, -1 on failure. |
| */ |
| |
| static int write_eeprom(nic_t * sp, int off, u64 data, int cnt) |
| { |
| int exit_cnt = 0, ret = -1; |
| u64 val64; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | |
| I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) | |
| I2C_CONTROL_CNTL_START; |
| SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); |
| |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->i2c_control); |
| if (I2C_CONTROL_CNTL_END(val64)) { |
| if (!(val64 & I2C_CONTROL_NACK)) |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| int write_cnt = (cnt == 8) ? 0 : cnt; |
| writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data); |
| |
| val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | |
| SPI_CONTROL_BYTECNT(write_cnt) | |
| SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| val64 |= SPI_CONTROL_REQ; |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->spi_control); |
| if (val64 & SPI_CONTROL_NACK) { |
| ret = 1; |
| break; |
| } else if (val64 & SPI_CONTROL_DONE) { |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| return ret; |
| } |
| |
| /** |
| * s2io_ethtool_geeprom - reads the value stored in the Eeprom. |
| * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| * @eeprom : pointer to the user level structure provided by ethtool, |
| * containing all relevant information. |
| * @data_buf : user defined value to be written into Eeprom. |
| * Description: Reads the values stored in the Eeprom at given offset |
| * for a given length. Stores these values int the input argument data |
| * buffer 'data_buf' and returns these to the caller (ethtool.) |
| * Return value: |
| * int 0 on success |
| */ |
| |
| static int s2io_ethtool_geeprom(struct net_device *dev, |
| struct ethtool_eeprom *eeprom, u8 * data_buf) |
| { |
| u32 i, valid; |
| u64 data; |
| nic_t *sp = dev->priv; |
| |
| eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); |
| |
| if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) |
| eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; |
| |
| for (i = 0; i < eeprom->len; i += 4) { |
| if (read_eeprom(sp, (eeprom->offset + i), &data)) { |
| DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); |
| return -EFAULT; |
| } |
| valid = INV(data); |
| memcpy((data_buf + i), &valid, 4); |
| } |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @eeprom : pointer to the user level structure provided by ethtool, |
| * containing all relevant information. |
| * @data_buf ; user defined value to be written into Eeprom. |
| * Description: |
| * Tries to write the user provided value in the Eeprom, at the offset |
| * given by the user. |
| * Return value: |
| * 0 on success, -EFAULT on failure. |
| */ |
| |
| static int s2io_ethtool_seeprom(struct net_device *dev, |
| struct ethtool_eeprom *eeprom, |
| u8 * data_buf) |
| { |
| int len = eeprom->len, cnt = 0; |
| u64 valid = 0, data; |
| nic_t *sp = dev->priv; |
| |
| if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { |
| DBG_PRINT(ERR_DBG, |
| "ETHTOOL_WRITE_EEPROM Err: Magic value "); |
| DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", |
| eeprom->magic); |
| return -EFAULT; |
| } |
| |
| while (len) { |
| data = (u32) data_buf[cnt] & 0x000000FF; |
| if (data) { |
| valid = (u32) (data << 24); |
| } else |
| valid = data; |
| |
| if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { |
| DBG_PRINT(ERR_DBG, |
| "ETHTOOL_WRITE_EEPROM Err: Cannot "); |
| DBG_PRINT(ERR_DBG, |
| "write into the specified offset\n"); |
| return -EFAULT; |
| } |
| cnt++; |
| len--; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_register_test - reads and writes into all clock domains. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data : variable that returns the result of each of the test conducted b |
| * by the driver. |
| * Description: |
| * Read and write into all clock domains. The NIC has 3 clock domains, |
| * see that registers in all the three regions are accessible. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_register_test(nic_t * sp, uint64_t * data) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64 = 0, exp_val; |
| int fail = 0; |
| |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x123456789abcdefULL) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); |
| } |
| |
| val64 = readq(&bar0->rmac_pause_cfg); |
| if (val64 != 0xc000ffff00000000ULL) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); |
| } |
| |
| val64 = readq(&bar0->rx_queue_cfg); |
| if (sp->device_type == XFRAME_II_DEVICE) |
| exp_val = 0x0404040404040404ULL; |
| else |
| exp_val = 0x0808080808080808ULL; |
| if (val64 != exp_val) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); |
| } |
| |
| val64 = readq(&bar0->xgxs_efifo_cfg); |
| if (val64 != 0x000000001923141EULL) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); |
| } |
| |
| val64 = 0x5A5A5A5A5A5A5A5AULL; |
| writeq(val64, &bar0->xmsi_data); |
| val64 = readq(&bar0->xmsi_data); |
| if (val64 != 0x5A5A5A5A5A5A5A5AULL) { |
| fail = 1; |
| DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); |
| } |
| |
| val64 = 0xA5A5A5A5A5A5A5A5ULL; |
| writeq(val64, &bar0->xmsi_data); |
| val64 = readq(&bar0->xmsi_data); |
| if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { |
| fail = 1; |
| DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); |
| } |
| |
| *data = fail; |
| return fail; |
| } |
| |
| /** |
| * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data:variable that returns the result of each of the test conducted by |
| * the driver. |
| * Description: |
| * Verify that EEPROM in the xena can be programmed using I2C_CONTROL |
| * register. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_eeprom_test(nic_t * sp, uint64_t * data) |
| { |
| int fail = 0; |
| u64 ret_data, org_4F0, org_7F0; |
| u8 saved_4F0 = 0, saved_7F0 = 0; |
| struct net_device *dev = sp->dev; |
| |
| /* Test Write Error at offset 0 */ |
| /* Note that SPI interface allows write access to all areas |
| * of EEPROM. Hence doing all negative testing only for Xframe I. |
| */ |
| if (sp->device_type == XFRAME_I_DEVICE) |
| if (!write_eeprom(sp, 0, 0, 3)) |
| fail = 1; |
| |
| /* Save current values at offsets 0x4F0 and 0x7F0 */ |
| if (!read_eeprom(sp, 0x4F0, &org_4F0)) |
| saved_4F0 = 1; |
| if (!read_eeprom(sp, 0x7F0, &org_7F0)) |
| saved_7F0 = 1; |
| |
| /* Test Write at offset 4f0 */ |
| if (write_eeprom(sp, 0x4F0, 0x012345, 3)) |
| fail = 1; |
| if (read_eeprom(sp, 0x4F0, &ret_data)) |
| fail = 1; |
| |
| if (ret_data != 0x012345) { |
| DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data); |
| fail = 1; |
| } |
| |
| /* Reset the EEPROM data go FFFF */ |
| write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); |
| |
| /* Test Write Request Error at offset 0x7c */ |
| if (sp->device_type == XFRAME_I_DEVICE) |
| if (!write_eeprom(sp, 0x07C, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Request at offset 0x7f0 */ |
| if (write_eeprom(sp, 0x7F0, 0x012345, 3)) |
| fail = 1; |
| if (read_eeprom(sp, 0x7F0, &ret_data)) |
| fail = 1; |
| |
| if (ret_data != 0x012345) { |
| DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data); |
| fail = 1; |
| } |
| |
| /* Reset the EEPROM data go FFFF */ |
| write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); |
| |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| /* Test Write Error at offset 0x80 */ |
| if (!write_eeprom(sp, 0x080, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Error at offset 0xfc */ |
| if (!write_eeprom(sp, 0x0FC, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Error at offset 0x100 */ |
| if (!write_eeprom(sp, 0x100, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Error at offset 4ec */ |
| if (!write_eeprom(sp, 0x4EC, 0, 3)) |
| fail = 1; |
| } |
| |
| /* Restore values at offsets 0x4F0 and 0x7F0 */ |
| if (saved_4F0) |
| write_eeprom(sp, 0x4F0, org_4F0, 3); |
| if (saved_7F0) |
| write_eeprom(sp, 0x7F0, org_7F0, 3); |
| |
| *data = fail; |
| return fail; |
| } |
| |
| /** |
| * s2io_bist_test - invokes the MemBist test of the card . |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data:variable that returns the result of each of the test conducted by |
| * the driver. |
| * Description: |
| * This invokes the MemBist test of the card. We give around |
| * 2 secs time for the Test to complete. If it's still not complete |
| * within this peiod, we consider that the test failed. |
| * Return value: |
| * 0 on success and -1 on failure. |
| */ |
| |
| static int s2io_bist_test(nic_t * sp, uint64_t * data) |
| { |
| u8 bist = 0; |
| int cnt = 0, ret = -1; |
| |
| pci_read_config_byte(sp->pdev, PCI_BIST, &bist); |
| bist |= PCI_BIST_START; |
| pci_write_config_word(sp->pdev, PCI_BIST, bist); |
| |
| while (cnt < 20) { |
| pci_read_config_byte(sp->pdev, PCI_BIST, &bist); |
| if (!(bist & PCI_BIST_START)) { |
| *data = (bist & PCI_BIST_CODE_MASK); |
| ret = 0; |
| break; |
| } |
| msleep(100); |
| cnt++; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * s2io-link_test - verifies the link state of the nic |
| * @sp ; private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data: variable that returns the result of each of the test conducted by |
| * the driver. |
| * Description: |
| * The function verifies the link state of the NIC and updates the input |
| * argument 'data' appropriately. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_link_test(nic_t * sp, uint64_t * data) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| |
| val64 = readq(&bar0->adapter_status); |
| if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) |
| *data = 1; |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_rldram_test - offline test for access to the RldRam chip on the NIC |
| * @sp - private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data - variable that returns the result of each of the test |
| * conducted by the driver. |
| * Description: |
| * This is one of the offline test that tests the read and write |
| * access to the RldRam chip on the NIC. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_rldram_test(nic_t * sp, uint64_t * data) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int cnt, iteration = 0, test_fail = 0; |
| |
| val64 = readq(&bar0->adapter_control); |
| val64 &= ~ADAPTER_ECC_EN; |
| writeq(val64, &bar0->adapter_control); |
| |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| val64 |= MC_RLDRAM_TEST_MODE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); |
| |
| val64 = readq(&bar0->mc_rldram_mrs); |
| val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| |
| val64 |= MC_RLDRAM_MRS_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| |
| while (iteration < 2) { |
| val64 = 0x55555555aaaa0000ULL; |
| if (iteration == 1) { |
| val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| } |
| writeq(val64, &bar0->mc_rldram_test_d0); |
| |
| val64 = 0xaaaa5a5555550000ULL; |
| if (iteration == 1) { |
| val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| } |
| writeq(val64, &bar0->mc_rldram_test_d1); |
| |
| val64 = 0x55aaaaaaaa5a0000ULL; |
| if (iteration == 1) { |
| val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| } |
| writeq(val64, &bar0->mc_rldram_test_d2); |
| |
| val64 = (u64) (0x0000003ffffe0100ULL); |
| writeq(val64, &bar0->mc_rldram_test_add); |
| |
| val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | |
| MC_RLDRAM_TEST_GO; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); |
| |
| for (cnt = 0; cnt < 5; cnt++) { |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| if (val64 & MC_RLDRAM_TEST_DONE) |
| break; |
| msleep(200); |
| } |
| |
| if (cnt == 5) |
| break; |
| |
| val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); |
| |
| for (cnt = 0; cnt < 5; cnt++) { |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| if (val64 & MC_RLDRAM_TEST_DONE) |
| break; |
| msleep(500); |
| } |
| |
| if (cnt == 5) |
| break; |
| |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| if (!(val64 & MC_RLDRAM_TEST_PASS)) |
| test_fail = 1; |
| |
| iteration++; |
| } |
| |
| *data = test_fail; |
| |
| /* Bring the adapter out of test mode */ |
| SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); |
| |
| return test_fail; |
| } |
| |
| /** |
| * s2io_ethtool_test - conducts 6 tsets to determine the health of card. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @ethtest : pointer to a ethtool command specific structure that will be |
| * returned to the user. |
| * @data : variable that returns the result of each of the test |
| * conducted by the driver. |
| * Description: |
| * This function conducts 6 tests ( 4 offline and 2 online) to determine |
| * the health of the card. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_ethtool_test(struct net_device *dev, |
| struct ethtool_test *ethtest, |
| uint64_t * data) |
| { |
| nic_t *sp = dev->priv; |
| int orig_state = netif_running(sp->dev); |
| |
| if (ethtest->flags == ETH_TEST_FL_OFFLINE) { |
| /* Offline Tests. */ |
| if (orig_state) |
| s2io_close(sp->dev); |
| |
| if (s2io_register_test(sp, &data[0])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| s2io_reset(sp); |
| |
| if (s2io_rldram_test(sp, &data[3])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| s2io_reset(sp); |
| |
| if (s2io_eeprom_test(sp, &data[1])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| if (s2io_bist_test(sp, &data[4])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| if (orig_state) |
| s2io_open(sp->dev); |
| |
| data[2] = 0; |
| } else { |
| /* Online Tests. */ |
| if (!orig_state) { |
| DBG_PRINT(ERR_DBG, |
| "%s: is not up, cannot run test\n", |
| dev->name); |
| data[0] = -1; |
| data[1] = -1; |
| data[2] = -1; |
| data[3] = -1; |
| data[4] = -1; |
| } |
| |
| if (s2io_link_test(sp, &data[2])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| data[0] = 0; |
| data[1] = 0; |
| data[3] = 0; |
| data[4] = 0; |
| } |
| } |
| |
| static void s2io_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *estats, |
| u64 * tmp_stats) |
| { |
| int i = 0; |
| nic_t *sp = dev->priv; |
| StatInfo_t *stat_info = sp->mac_control.stats_info; |
| |
| s2io_updt_stats(sp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_data_octets); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_mcst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_bcst_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_any_err_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_vld_ip); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_drop_ip); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_icmp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_rst_tcp); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); |
| tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_udp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_vld_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_data_octets); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_vld_mcst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_vld_bcst_frms); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_discarded_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_usized_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_osized_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_frag_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_jabber_frms); |
| tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_ip); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); |
| tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_drop_ip); |
| tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_icmp); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); |
| tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_udp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_err_drp_udp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_pause_cnt); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_accepted_ip); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); |
| tmp_stats[i++] = 0; |
| tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs; |
| tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs; |
| } |
| |
| int s2io_ethtool_get_regs_len(struct net_device *dev) |
| { |
| return (XENA_REG_SPACE); |
| } |
| |
| |
| u32 s2io_ethtool_get_rx_csum(struct net_device * dev) |
| { |
| nic_t *sp = dev->priv; |
| |
| return (sp->rx_csum); |
| } |
| int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) |
| { |
| nic_t *sp = dev->priv; |
| |
| if (data) |
| sp->rx_csum = 1; |
| else |
| sp->rx_csum = 0; |
| |
| return 0; |
| } |
| int s2io_get_eeprom_len(struct net_device *dev) |
| { |
| return (XENA_EEPROM_SPACE); |
| } |
| |
| int s2io_ethtool_self_test_count(struct net_device *dev) |
| { |
| return (S2IO_TEST_LEN); |
| } |
| void s2io_ethtool_get_strings(struct net_device *dev, |
| u32 stringset, u8 * data) |
| { |
| switch (stringset) { |
| case ETH_SS_TEST: |
| memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); |
| break; |
| case ETH_SS_STATS: |
| memcpy(data, ðtool_stats_keys, |
| sizeof(ethtool_stats_keys)); |
| } |
| } |
| static int s2io_ethtool_get_stats_count(struct net_device *dev) |
| { |
| return (S2IO_STAT_LEN); |
| } |
| |
| int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) |
| { |
| if (data) |
| dev->features |= NETIF_F_IP_CSUM; |
| else |
| dev->features &= ~NETIF_F_IP_CSUM; |
| |
| return 0; |
| } |
| |
| |
| static struct ethtool_ops netdev_ethtool_ops = { |
| .get_settings = s2io_ethtool_gset, |
| .set_settings = s2io_ethtool_sset, |
| .get_drvinfo = s2io_ethtool_gdrvinfo, |
| .get_regs_len = s2io_ethtool_get_regs_len, |
| .get_regs = s2io_ethtool_gregs, |
| .get_link = ethtool_op_get_link, |
| .get_eeprom_len = s2io_get_eeprom_len, |
| .get_eeprom = s2io_ethtool_geeprom, |
| .set_eeprom = s2io_ethtool_seeprom, |
| .get_pauseparam = s2io_ethtool_getpause_data, |
| .set_pauseparam = s2io_ethtool_setpause_data, |
| .get_rx_csum = s2io_ethtool_get_rx_csum, |
| .set_rx_csum = s2io_ethtool_set_rx_csum, |
| .get_tx_csum = ethtool_op_get_tx_csum, |
| .set_tx_csum = s2io_ethtool_op_set_tx_csum, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = ethtool_op_set_sg, |
| #ifdef NETIF_F_TSO |
| .get_tso = ethtool_op_get_tso, |
| .set_tso = ethtool_op_set_tso, |
| #endif |
| .self_test_count = s2io_ethtool_self_test_count, |
| .self_test = s2io_ethtool_test, |
| .get_strings = s2io_ethtool_get_strings, |
| .phys_id = s2io_ethtool_idnic, |
| .get_stats_count = s2io_ethtool_get_stats_count, |
| .get_ethtool_stats = s2io_get_ethtool_stats |
| }; |
| |
| /** |
| * s2io_ioctl - Entry point for the Ioctl |
| * @dev : Device pointer. |
| * @ifr : An IOCTL specefic structure, that can contain a pointer to |
| * a proprietary structure used to pass information to the driver. |
| * @cmd : This is used to distinguish between the different commands that |
| * can be passed to the IOCTL functions. |
| * Description: |
| * Currently there are no special functionality supported in IOCTL, hence |
| * function always return EOPNOTSUPPORTED |
| */ |
| |
| int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * s2io_change_mtu - entry point to change MTU size for the device. |
| * @dev : device pointer. |
| * @new_mtu : the new MTU size for the device. |
| * Description: A driver entry point to change MTU size for the device. |
| * Before changing the MTU the device must be stopped. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| int s2io_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| nic_t *sp = dev->priv; |
| |
| if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { |
| DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", |
| dev->name); |
| return -EPERM; |
| } |
| |
| dev->mtu = new_mtu; |
| if (netif_running(dev)) { |
| s2io_card_down(sp); |
| netif_stop_queue(dev); |
| if (s2io_card_up(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", |
| __FUNCTION__); |
| } |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| } else { /* Device is down */ |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64 = new_mtu; |
| |
| writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_tasklet - Bottom half of the ISR. |
| * @dev_adr : address of the device structure in dma_addr_t format. |
| * Description: |
| * This is the tasklet or the bottom half of the ISR. This is |
| * an extension of the ISR which is scheduled by the scheduler to be run |
| * when the load on the CPU is low. All low priority tasks of the ISR can |
| * be pushed into the tasklet. For now the tasklet is used only to |
| * replenish the Rx buffers in the Rx buffer descriptors. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_tasklet(unsigned long dev_addr) |
| { |
| struct net_device *dev = (struct net_device *) dev_addr; |
| nic_t *sp = dev->priv; |
| int i, ret; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| if (!TASKLET_IN_USE) { |
| for (i = 0; i < config->rx_ring_num; i++) { |
| ret = fill_rx_buffers(sp, i); |
| if (ret == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s: Out of ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "memory in tasklet\n"); |
| break; |
| } else if (ret == -EFILL) { |
| DBG_PRINT(ERR_DBG, |
| "%s: Rx Ring %d is full\n", |
| dev->name, i); |
| break; |
| } |
| } |
| clear_bit(0, (&sp->tasklet_status)); |
| } |
| } |
| |
| /** |
| * s2io_set_link - Set the LInk status |
| * @data: long pointer to device private structue |
| * Description: Sets the link status for the adapter |
| */ |
| |
| static void s2io_set_link(unsigned long data) |
| { |
| nic_t *nic = (nic_t *) data; |
| struct net_device *dev = nic->dev; |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64; |
| u16 subid; |
| |
| if (test_and_set_bit(0, &(nic->link_state))) { |
| /* The card is being reset, no point doing anything */ |
| return; |
| } |
| |
| subid = nic->pdev->subsystem_device; |
| if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { |
| /* |
| * Allow a small delay for the NICs self initiated |
| * cleanup to complete. |
| */ |
| msleep(100); |
| } |
| |
| val64 = readq(&bar0->adapter_status); |
| if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) { |
| if (LINK_IS_UP(val64)) { |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_CNTL_EN; |
| writeq(val64, &bar0->adapter_control); |
| if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, |
| subid)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= GPIO_CTRL_GPIO_0; |
| writeq(val64, &bar0->gpio_control); |
| val64 = readq(&bar0->gpio_control); |
| } else { |
| val64 |= ADAPTER_LED_ON; |
| writeq(val64, &bar0->adapter_control); |
| } |
| if (s2io_link_fault_indication(nic) == |
| MAC_RMAC_ERR_TIMER) { |
| val64 = readq(&bar0->adapter_status); |
| if (!LINK_IS_UP(val64)) { |
| DBG_PRINT(ERR_DBG, "%s:", dev->name); |
| DBG_PRINT(ERR_DBG, " Link down"); |
| DBG_PRINT(ERR_DBG, "after "); |
| DBG_PRINT(ERR_DBG, "enabling "); |
| DBG_PRINT(ERR_DBG, "device \n"); |
| } |
| } |
| if (nic->device_enabled_once == FALSE) { |
| nic->device_enabled_once = TRUE; |
| } |
| s2io_link(nic, LINK_UP); |
| } else { |
| if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, |
| subid)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 &= ~GPIO_CTRL_GPIO_0; |
| writeq(val64, &bar0->gpio_control); |
| val64 = readq(&bar0->gpio_control); |
| } |
| s2io_link(nic, LINK_DOWN); |
| } |
| } else { /* NIC is not Quiescent. */ |
| DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); |
| DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); |
| netif_stop_queue(dev); |
| } |
| clear_bit(0, &(nic->link_state)); |
| } |
| |
| static void s2io_card_down(nic_t * sp) |
| { |
| int cnt = 0; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| unsigned long flags; |
| register u64 val64 = 0; |
| |
| del_timer_sync(&sp->alarm_timer); |
| /* If s2io_set_link task is executing, wait till it completes. */ |
| while (test_and_set_bit(0, &(sp->link_state))) { |
| msleep(50); |
| } |
| atomic_set(&sp->card_state, CARD_DOWN); |
| |
| /* disable Tx and Rx traffic on the NIC */ |
| stop_nic(sp); |
| |
| /* Kill tasklet. */ |
| tasklet_kill(&sp->task); |
| |
| /* Check if the device is Quiescent and then Reset the NIC */ |
| do { |
| val64 = readq(&bar0->adapter_status); |
| if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) { |
| break; |
| } |
| |
| msleep(50); |
| cnt++; |
| if (cnt == 10) { |
| DBG_PRINT(ERR_DBG, |
| "s2io_close:Device not Quiescent "); |
| DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", |
| (unsigned long long) val64); |
| break; |
| } |
| } while (1); |
| s2io_reset(sp); |
| |
| /* Waiting till all Interrupt handlers are complete */ |
| cnt = 0; |
| do { |
| msleep(10); |
| if (!atomic_read(&sp->isr_cnt)) |
| break; |
| cnt++; |
| } while(cnt < 5); |
| |
| spin_lock_irqsave(&sp->tx_lock, flags); |
| /* Free all Tx buffers */ |
| free_tx_buffers(sp); |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| |
| /* Free all Rx buffers */ |
| spin_lock_irqsave(&sp->rx_lock, flags); |
| free_rx_buffers(sp); |
| spin_unlock_irqrestore(&sp->rx_lock, flags); |
| |
| clear_bit(0, &(sp->link_state)); |
| } |
| |
| static int s2io_card_up(nic_t * sp) |
| { |
| int i, ret = 0; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| struct net_device *dev = (struct net_device *) sp->dev; |
| |
| /* Initialize the H/W I/O registers */ |
| if (init_nic(sp) != 0) { |
| DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| dev->name); |
| return -ENODEV; |
| } |
| |
| if (sp->intr_type == MSI) |
| ret = s2io_enable_msi(sp); |
| else if (sp->intr_type == MSI_X) |
| ret = s2io_enable_msi_x(sp); |
| if (ret) { |
| DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); |
| sp->intr_type = INTA; |
| } |
| |
| /* |
| * Initializing the Rx buffers. For now we are considering only 1 |
| * Rx ring and initializing buffers into 30 Rx blocks |
| */ |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if ((ret = fill_rx_buffers(sp, i))) { |
| DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", |
| dev->name); |
| s2io_reset(sp); |
| free_rx_buffers(sp); |
| return -ENOMEM; |
| } |
| DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, |
| atomic_read(&sp->rx_bufs_left[i])); |
| } |
| |
| /* Setting its receive mode */ |
| s2io_set_multicast(dev); |
| |
| /* Enable tasklet for the device */ |
| tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); |
| |
| /* Enable Rx Traffic and interrupts on the NIC */ |
| if (start_nic(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); |
| tasklet_kill(&sp->task); |
| s2io_reset(sp); |
| free_irq(dev->irq, dev); |
| free_rx_buffers(sp); |
| return -ENODEV; |
| } |
| |
| S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); |
| |
| atomic_set(&sp->card_state, CARD_UP); |
| return 0; |
| } |
| |
| /** |
| * s2io_restart_nic - Resets the NIC. |
| * @data : long pointer to the device private structure |
| * Description: |
| * This function is scheduled to be run by the s2io_tx_watchdog |
| * function after 0.5 secs to reset the NIC. The idea is to reduce |
| * the run time of the watch dog routine which is run holding a |
| * spin lock. |
| */ |
| |
| static void s2io_restart_nic(unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *) data; |
| nic_t *sp = dev->priv; |
| |
| s2io_card_down(sp); |
| if (s2io_card_up(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", |
| dev->name); |
| } |
| netif_wake_queue(dev); |
| DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", |
| dev->name); |
| |
| } |
| |
| /** |
| * s2io_tx_watchdog - Watchdog for transmit side. |
| * @dev : Pointer to net device structure |
| * Description: |
| * This function is triggered if the Tx Queue is stopped |
| * for a pre-defined amount of time when the Interface is still up. |
| * If the Interface is jammed in such a situation, the hardware is |
| * reset (by s2io_close) and restarted again (by s2io_open) to |
| * overcome any problem that might have been caused in the hardware. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_tx_watchdog(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| |
| if (netif_carrier_ok(dev)) { |
| schedule_work(&sp->rst_timer_task); |
| } |
| } |
| |
| /** |
| * rx_osm_handler - To perform some OS related operations on SKB. |
| * @sp: private member of the device structure,pointer to s2io_nic structure. |
| * @skb : the socket buffer pointer. |
| * @len : length of the packet |
| * @cksum : FCS checksum of the frame. |
| * @ring_no : the ring from which this RxD was extracted. |
| * Description: |
| * This function is called by the Tx interrupt serivce routine to perform |
| * some OS related operations on the SKB before passing it to the upper |
| * layers. It mainly checks if the checksum is OK, if so adds it to the |
| * SKBs cksum variable, increments the Rx packet count and passes the SKB |
| * to the upper layer. If the checksum is wrong, it increments the Rx |
| * packet error count, frees the SKB and returns error. |
| * Return value: |
| * SUCCESS on success and -1 on failure. |
| */ |
| static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp) |
| { |
| nic_t *sp = ring_data->nic; |
| struct net_device *dev = (struct net_device *) sp->dev; |
| struct sk_buff *skb = (struct sk_buff *) |
| ((unsigned long) rxdp->Host_Control); |
| int ring_no = ring_data->ring_no; |
| u16 l3_csum, l4_csum; |
| #ifdef CONFIG_2BUFF_MODE |
| int buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); |
| int buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2); |
| int get_block = ring_data->rx_curr_get_info.block_index; |
| int get_off = ring_data->rx_curr_get_info.offset; |
| buffAdd_t *ba = &ring_data->ba[get_block][get_off]; |
| unsigned char *buff; |
| #else |
| u16 len = (u16) ((RXD_GET_BUFFER0_SIZE(rxdp->Control_2)) >> 48);; |
| #endif |
| skb->dev = dev; |
| if (rxdp->Control_1 & RXD_T_CODE) { |
| unsigned long long err = rxdp->Control_1 & RXD_T_CODE; |
| DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", |
| dev->name, err); |
| dev_kfree_skb(skb); |
| sp->stats.rx_crc_errors++; |
| atomic_dec(&sp->rx_bufs_left[ring_no]); |
| rxdp->Host_Control = 0; |
| return 0; |
| } |
| |
| /* Updating statistics */ |
| rxdp->Host_Control = 0; |
| sp->rx_pkt_count++; |
| sp->stats.rx_packets++; |
| #ifndef CONFIG_2BUFF_MODE |
| sp->stats.rx_bytes += len; |
| #else |
| sp->stats.rx_bytes += buf0_len + buf2_len; |
| #endif |
| |
| #ifndef CONFIG_2BUFF_MODE |
| skb_put(skb, len); |
| #else |
| buff = skb_push(skb, buf0_len); |
| memcpy(buff, ba->ba_0, buf0_len); |
| skb_put(skb, buf2_len); |
| #endif |
| |
| if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && |
| (sp->rx_csum)) { |
| l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); |
| l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { |
| /* |
| * NIC verifies if the Checksum of the received |
| * frame is Ok or not and accordingly returns |
| * a flag in the RxD. |
| */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else { |
| /* |
| * Packet with erroneous checksum, let the |
| * upper layers deal with it. |
| */ |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| } else { |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| #ifdef CONFIG_S2IO_NAPI |
| if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) { |
| /* Queueing the vlan frame to the upper layer */ |
| vlan_hwaccel_receive_skb(skb, sp->vlgrp, |
| RXD_GET_VLAN_TAG(rxdp->Control_2)); |
| } else { |
| netif_receive_skb(skb); |
| } |
| #else |
| if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) { |
| /* Queueing the vlan frame to the upper layer */ |
| vlan_hwaccel_rx(skb, sp->vlgrp, |
| RXD_GET_VLAN_TAG(rxdp->Control_2)); |
| } else { |
| netif_rx(skb); |
| } |
| #endif |
| dev->last_rx = jiffies; |
| atomic_dec(&sp->rx_bufs_left[ring_no]); |
| return SUCCESS; |
| } |
| |
| /** |
| * s2io_link - stops/starts the Tx queue. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @link : inidicates whether link is UP/DOWN. |
| * Description: |
| * This function stops/starts the Tx queue depending on whether the link |
| * status of the NIC is is down or up. This is called by the Alarm |
| * interrupt handler whenever a link change interrupt comes up. |
| * Return value: |
| * void. |
| */ |
| |
| void s2io_link(nic_t * sp, int link) |
| { |
| struct net_device *dev = (struct net_device *) sp->dev; |
| |
| if (link != sp->last_link_state) { |
| if (link == LINK_DOWN) { |
| DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); |
| netif_carrier_off(dev); |
| } else { |
| DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); |
| netif_carrier_on(dev); |
| } |
| } |
| sp->last_link_state = link; |
| } |
| |
| /** |
| * get_xena_rev_id - to identify revision ID of xena. |
| * @pdev : PCI Dev structure |
| * Description: |
| * Function to identify the Revision ID of xena. |
| * Return value: |
| * returns the revision ID of the device. |
| */ |
| |
| int get_xena_rev_id(struct pci_dev *pdev) |
| { |
| u8 id = 0; |
| int ret; |
| ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id); |
| return id; |
| } |
| |
| /** |
| * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * Description: |
| * This function initializes a few of the PCI and PCI-X configuration registers |
| * with recommended values. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_init_pci(nic_t * sp) |
| { |
| u16 pci_cmd = 0, pcix_cmd = 0; |
| |
| /* Enable Data Parity Error Recovery in PCI-X command register. */ |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| &(pcix_cmd)); |
| pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| (pcix_cmd | 1)); |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| &(pcix_cmd)); |
| |
| /* Set the PErr Response bit in PCI command register. */ |
| pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); |
| pci_write_config_word(sp->pdev, PCI_COMMAND, |
| (pci_cmd | PCI_COMMAND_PARITY)); |
| pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); |
| |
| /* Forcibly disabling relaxed ordering capability of the card. */ |
| pcix_cmd &= 0xfffd; |
| pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| pcix_cmd); |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| &(pcix_cmd)); |
| } |
| |
| MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| module_param(tx_fifo_num, int, 0); |
| module_param(rx_ring_num, int, 0); |
| module_param_array(tx_fifo_len, uint, NULL, 0); |
| module_param_array(rx_ring_sz, uint, NULL, 0); |
| module_param_array(rts_frm_len, uint, NULL, 0); |
| module_param(use_continuous_tx_intrs, int, 1); |
| module_param(rmac_pause_time, int, 0); |
| module_param(mc_pause_threshold_q0q3, int, 0); |
| module_param(mc_pause_threshold_q4q7, int, 0); |
| module_param(shared_splits, int, 0); |
| module_param(tmac_util_period, int, 0); |
| module_param(rmac_util_period, int, 0); |
| module_param(bimodal, bool, 0); |
| #ifndef CONFIG_S2IO_NAPI |
| module_param(indicate_max_pkts, int, 0); |
| #endif |
| module_param(rxsync_frequency, int, 0); |
| module_param(intr_type, int, 0); |
| |
| /** |
| * s2io_init_nic - Initialization of the adapter . |
| * @pdev : structure containing the PCI related information of the device. |
| * @pre: List of PCI devices supported by the driver listed in s2io_tbl. |
| * Description: |
| * The function initializes an adapter identified by the pci_dec structure. |
| * All OS related initialization including memory and device structure and |
| * initlaization of the device private variable is done. Also the swapper |
| * control register is initialized to enable read and write into the I/O |
| * registers of the device. |
| * Return value: |
| * returns 0 on success and negative on failure. |
| */ |
| |
| static int __devinit |
| s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) |
| { |
| nic_t *sp; |
| struct net_device *dev; |
| int i, j, ret; |
| int dma_flag = FALSE; |
| u32 mac_up, mac_down; |
| u64 val64 = 0, tmp64 = 0; |
| XENA_dev_config_t __iomem *bar0 = NULL; |
| u16 subid; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int mode; |
| u8 dev_intr_type = intr_type; |
| |
| #ifdef CONFIG_S2IO_NAPI |
| if (dev_intr_type != INTA) { |
| DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \ |
| is enabled. Defaulting to INTA\n"); |
| dev_intr_type = INTA; |
| } |
| else |
| DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n"); |
| #endif |
| |
| if ((ret = pci_enable_device(pdev))) { |
| DBG_PRINT(ERR_DBG, |
| "s2io_init_nic: pci_enable_device failed\n"); |
| return ret; |
| } |
| |
| if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); |
| dma_flag = TRUE; |
| if (pci_set_consistent_dma_mask |
| (pdev, DMA_64BIT_MASK)) { |
| DBG_PRINT(ERR_DBG, |
| "Unable to obtain 64bit DMA for \ |
| consistent allocations\n"); |
| pci_disable_device(pdev); |
| return -ENOMEM; |
| } |
| } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { |
| DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); |
| } else { |
| pci_disable_device(pdev); |
| return -ENOMEM; |
| } |
| |
| if ((dev_intr_type == MSI_X) && |
| ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && |
| (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { |
| DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \ |
| Defaulting to INTA\n"); |
| dev_intr_type = INTA; |
| } |
| if (dev_intr_type != MSI_X) { |
| if (pci_request_regions(pdev, s2io_driver_name)) { |
| DBG_PRINT(ERR_DBG, "Request Regions failed\n"), |
| pci_disable_device(pdev); |
| return -ENODEV; |
| } |
| } |
| else { |
| if (!(request_mem_region(pci_resource_start(pdev, 0), |
| pci_resource_len(pdev, 0), s2io_driver_name))) { |
| DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n"); |
| pci_disable_device(pdev); |
| return -ENODEV; |
| } |
| if (!(request_mem_region(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2), s2io_driver_name))) { |
| DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n"); |
| release_mem_region(pci_resource_start(pdev, 0), |
| pci_resource_len(pdev, 0)); |
| pci_disable_device(pdev); |
| return -ENODEV; |
| } |
| } |
| |
| dev = alloc_etherdev(sizeof(nic_t)); |
| if (dev == NULL) { |
| DBG_PRINT(ERR_DBG, "Device allocation failed\n"); |
| pci_disable_device(pdev); |
| pci_release_regions(pdev); |
| return -ENODEV; |
| } |
| |
| pci_set_master(pdev); |
| pci_set_drvdata(pdev, dev); |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| /* Private member variable initialized to s2io NIC structure */ |
| sp = dev->priv; |
| memset(sp, 0, sizeof(nic_t)); |
| sp->dev = dev; |
| sp->pdev = pdev; |
| sp->high_dma_flag = dma_flag; |
| sp->device_enabled_once = FALSE; |
| sp->intr_type = dev_intr_type; |
| |
| if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || |
| (pdev->device == PCI_DEVICE_ID_HERC_UNI)) |
| sp->device_type = XFRAME_II_DEVICE; |
| else |
| sp->device_type = XFRAME_I_DEVICE; |
| |
| |
| /* Initialize some PCI/PCI-X fields of the NIC. */ |
| s2io_init_pci(sp); |
| |
| /* |
| * Setting the device configuration parameters. |
| * Most of these parameters can be specified by the user during |
| * module insertion as they are module loadable parameters. If |
| * these parameters are not not specified during load time, they |
| * are initialized with default values. |
| */ |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| /* Tx side parameters. */ |
| if (tx_fifo_len[0] == 0) |
| tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */ |
| config->tx_fifo_num = tx_fifo_num; |
| for (i = 0; i < MAX_TX_FIFOS; i++) { |
| config->tx_cfg[i].fifo_len = tx_fifo_len[i]; |
| config->tx_cfg[i].fifo_priority = i; |
| } |
| |
| /* mapping the QoS priority to the configured fifos */ |
| for (i = 0; i < MAX_TX_FIFOS; i++) |
| config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i]; |
| |
| config->tx_intr_type = TXD_INT_TYPE_UTILZ; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| config->tx_cfg[i].f_no_snoop = |
| (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); |
| if (config->tx_cfg[i].fifo_len < 65) { |
| config->tx_intr_type = TXD_INT_TYPE_PER_LIST; |
| break; |
| } |
| } |
| config->max_txds = MAX_SKB_FRAGS + 1; |
| |
| /* Rx side parameters. */ |
| if (rx_ring_sz[0] == 0) |
| rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */ |
| config->rx_ring_num = rx_ring_num; |
| for (i = 0; i < MAX_RX_RINGS; i++) { |
| config->rx_cfg[i].num_rxd = rx_ring_sz[i] * |
| (MAX_RXDS_PER_BLOCK + 1); |
| config->rx_cfg[i].ring_priority = i; |
| } |
| |
| for (i = 0; i < rx_ring_num; i++) { |
| config->rx_cfg[i].ring_org = RING_ORG_BUFF1; |
| config->rx_cfg[i].f_no_snoop = |
| (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); |
| } |
| |
| /* Setting Mac Control parameters */ |
| mac_control->rmac_pause_time = rmac_pause_time; |
| mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; |
| mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; |
| |
| |
| /* Initialize Ring buffer parameters. */ |
| for (i = 0; i < config->rx_ring_num; i++) |
| atomic_set(&sp->rx_bufs_left[i], 0); |
| |
| /* Initialize the number of ISRs currently running */ |
| atomic_set(&sp->isr_cnt, 0); |
| |
| /* initialize the shared memory used by the NIC and the host */ |
| if (init_shared_mem(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", |
| __FUNCTION__); |
| ret = -ENOMEM; |
| goto mem_alloc_failed; |
| } |
| |
| sp->bar0 = ioremap(pci_resource_start(pdev, 0), |
| pci_resource_len(pdev, 0)); |
| if (!sp->bar0) { |
| DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", |
| dev->name); |
| ret = -ENOMEM; |
| goto bar0_remap_failed; |
| } |
| |
| sp->bar1 = ioremap(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2)); |
| if (!sp->bar1) { |
| DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", |
| dev->name); |
| ret = -ENOMEM; |
| goto bar1_remap_failed; |
| } |
| |
| dev->irq = pdev->irq; |
| dev->base_addr = (unsigned long) sp->bar0; |
| |
| /* Initializing the BAR1 address as the start of the FIFO pointer. */ |
| for (j = 0; j < MAX_TX_FIFOS; j++) { |
| mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *) |
| (sp->bar1 + (j * 0x00020000)); |
| } |
| |
| /* Driver entry points */ |
| dev->open = &s2io_open; |
| dev->stop = &s2io_close; |
| dev->hard_start_xmit = &s2io_xmit; |
| dev->get_stats = &s2io_get_stats; |
| dev->set_multicast_list = &s2io_set_multicast; |
| dev->do_ioctl = &s2io_ioctl; |
| dev->change_mtu = &s2io_change_mtu; |
| SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); |
| dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; |
| dev->vlan_rx_register = s2io_vlan_rx_register; |
| dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid; |
| |
| /* |
| * will use eth_mac_addr() for dev->set_mac_address |
| * mac address will be set every time dev->open() is called |
| */ |
| #if defined(CONFIG_S2IO_NAPI) |
| dev->poll = s2io_poll; |
| dev->weight = 32; |
| #endif |
| |
| dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; |
| if (sp->high_dma_flag == TRUE) |
| dev->features |= NETIF_F_HIGHDMA; |
| #ifdef NETIF_F_TSO |
| dev->features |= NETIF_F_TSO; |
| #endif |
| |
| dev->tx_timeout = &s2io_tx_watchdog; |
| dev->watchdog_timeo = WATCH_DOG_TIMEOUT; |
| INIT_WORK(&sp->rst_timer_task, |
| (void (*)(void *)) s2io_restart_nic, dev); |
| INIT_WORK(&sp->set_link_task, |
| (void (*)(void *)) s2io_set_link, sp); |
| |
| pci_save_state(sp->pdev); |
| |
| /* Setting swapper control on the NIC, for proper reset operation */ |
| if (s2io_set_swapper(sp)) { |
| DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", |
| dev->name); |
| ret = -EAGAIN; |
| goto set_swap_failed; |
| } |
| |
| /* Verify if the Herc works on the slot its placed into */ |
| if (sp->device_type & XFRAME_II_DEVICE) { |
| mode = s2io_verify_pci_mode(sp); |
| if (mode < 0) { |
| DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__); |
| DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n"); |
| ret = -EBADSLT; |
| goto set_swap_failed; |
| } |
| } |
| |
| /* Not needed for Herc */ |
| if (sp->device_type & XFRAME_I_DEVICE) { |
| /* |
| * Fix for all "FFs" MAC address problems observed on |
| * Alpha platforms |
| */ |
| fix_mac_address(sp); |
| s2io_reset(sp); |
| } |
| |
| /* |
| * MAC address initialization. |
| * For now only one mac address will be read and used. |
| */ |
| bar0 = sp->bar0; |
| val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| wait_for_cmd_complete(sp); |
| |
| tmp64 = readq(&bar0->rmac_addr_data0_mem); |
| mac_down = (u32) tmp64; |
| mac_up = (u32) (tmp64 >> 32); |
| |
| memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN)); |
| |
| sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); |
| sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); |
| sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); |
| sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); |
| sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); |
| sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); |
| |
| /* Set the factory defined MAC address initially */ |
| dev->addr_len = ETH_ALEN; |
| memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); |
| |
| /* |
| * Initialize the tasklet status and link state flags |
| * and the card state parameter |
| */ |
| atomic_set(&(sp->card_state), 0); |
| sp->tasklet_status = 0; |
| sp->link_state = 0; |
| |
| /* Initialize spinlocks */ |
| spin_lock_init(&sp->tx_lock); |
| #ifndef CONFIG_S2IO_NAPI |
| spin_lock_init(&sp->put_lock); |
| #endif |
| spin_lock_init(&sp->rx_lock); |
| |
| /* |
| * SXE-002: Configure link and activity LED to init state |
| * on driver load. |
| */ |
| subid = sp->pdev->subsystem_device; |
| if ((subid & 0xFF) >= 0x07) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *) bar0 + 0x2700); |
| val64 = readq(&bar0->gpio_control); |
| } |
| |
| sp->rx_csum = 1; /* Rx chksum verify enabled by default */ |
| |
| if (register_netdev(dev)) { |
| DBG_PRINT(ERR_DBG, "Device registration failed\n"); |
| ret = -ENODEV; |
| goto register_failed; |
| } |
| |
| if (sp->device_type & XFRAME_II_DEVICE) { |
| DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "(rev %d), Version %s", |
| get_xena_rev_id(sp->pdev), |
| s2io_driver_version); |
| #ifdef CONFIG_2BUFF_MODE |
| DBG_PRINT(ERR_DBG, ", Buffer mode %d",2); |
| #endif |
| switch(sp->intr_type) { |
| case INTA: |
| DBG_PRINT(ERR_DBG, ", Intr type INTA"); |
| break; |
| case MSI: |
| DBG_PRINT(ERR_DBG, ", Intr type MSI"); |
| break; |
| case MSI_X: |
| DBG_PRINT(ERR_DBG, ", Intr type MSI-X"); |
| break; |
| } |
| |
| DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n"); |
| DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| sp->def_mac_addr[0].mac_addr[0], |
| sp->def_mac_addr[0].mac_addr[1], |
| sp->def_mac_addr[0].mac_addr[2], |
| sp->def_mac_addr[0].mac_addr[3], |
| sp->def_mac_addr[0].mac_addr[4], |
| sp->def_mac_addr[0].mac_addr[5]); |
| mode = s2io_print_pci_mode(sp); |
| if (mode < 0) { |
| DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode "); |
| ret = -EBADSLT; |
| goto set_swap_failed; |
| } |
| } else { |
| DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "(rev %d), Version %s", |
| get_xena_rev_id(sp->pdev), |
| s2io_driver_version); |
| #ifdef CONFIG_2BUFF_MODE |
| DBG_PRINT(ERR_DBG, ", Buffer mode %d",2); |
| #endif |
| switch(sp->intr_type) { |
| case INTA: |
| DBG_PRINT(ERR_DBG, ", Intr type INTA"); |
| break; |
| case MSI: |
| DBG_PRINT(ERR_DBG, ", Intr type MSI"); |
| break; |
| case MSI_X: |
| DBG_PRINT(ERR_DBG, ", Intr type MSI-X"); |
| break; |
| } |
| DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n"); |
| DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| sp->def_mac_addr[0].mac_addr[0], |
| sp->def_mac_addr[0].mac_addr[1], |
| sp->def_mac_addr[0].mac_addr[2], |
| sp->def_mac_addr[0].mac_addr[3], |
| sp->def_mac_addr[0].mac_addr[4], |
| sp->def_mac_addr[0].mac_addr[5]); |
| } |
| |
| /* Initialize device name */ |
| strcpy(sp->name, dev->name); |
| if (sp->device_type & XFRAME_II_DEVICE) |
| strcat(sp->name, ": Neterion Xframe II 10GbE adapter"); |
| else |
| strcat(sp->name, ": Neterion Xframe I 10GbE adapter"); |
| |
| /* Initialize bimodal Interrupts */ |
| sp->config.bimodal = bimodal; |
| if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) { |
| sp->config.bimodal = 0; |
| DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n", |
| dev->name); |
| } |
| |
| /* |
| * Make Link state as off at this point, when the Link change |
| * interrupt comes the state will be automatically changed to |
| * the right state. |
| */ |
| netif_carrier_off(dev); |
| |
| return 0; |
| |
| register_failed: |
| set_swap_failed: |
| iounmap(sp->bar1); |
| bar1_remap_failed: |
| iounmap(sp->bar0); |
| bar0_remap_failed: |
| mem_alloc_failed: |
| free_shared_mem(sp); |
| pci_disable_device(pdev); |
| if (dev_intr_type != MSI_X) |
| pci_release_regions(pdev); |
| else { |
| release_mem_region(pci_resource_start(pdev, 0), |
| pci_resource_len(pdev, 0)); |
| release_mem_region(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2)); |
| } |
| pci_set_drvdata(pdev, NULL); |
| free_netdev(dev); |
| |
| return ret; |
| } |
| |
| /** |
| * s2io_rem_nic - Free the PCI device |
| * @pdev: structure containing the PCI related information of the device. |
| * Description: This function is called by the Pci subsystem to release a |
| * PCI device and free up all resource held up by the device. This could |
| * be in response to a Hot plug event or when the driver is to be removed |
| * from memory. |
| */ |
| |
| static void __devexit s2io_rem_nic(struct pci_dev *pdev) |
| { |
| struct net_device *dev = |
| (struct net_device *) pci_get_drvdata(pdev); |
| nic_t *sp; |
| |
| if (dev == NULL) { |
| DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); |
| return; |
| } |
| |
| sp = dev->priv; |
| unregister_netdev(dev); |
| |
| free_shared_mem(sp); |
| iounmap(sp->bar0); |
| iounmap(sp->bar1); |
| pci_disable_device(pdev); |
| if (sp->intr_type != MSI_X) |
| pci_release_regions(pdev); |
| else { |
| release_mem_region(pci_resource_start(pdev, 0), |
| pci_resource_len(pdev, 0)); |
| release_mem_region(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2)); |
| } |
| pci_set_drvdata(pdev, NULL); |
| free_netdev(dev); |
| } |
| |
| /** |
| * s2io_starter - Entry point for the driver |
| * Description: This function is the entry point for the driver. It verifies |
| * the module loadable parameters and initializes PCI configuration space. |
| */ |
| |
| int __init s2io_starter(void) |
| { |
| return pci_module_init(&s2io_driver); |
| } |
| |
| /** |
| * s2io_closer - Cleanup routine for the driver |
| * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. |
| */ |
| |
| void s2io_closer(void) |
| { |
| pci_unregister_driver(&s2io_driver); |
| DBG_PRINT(INIT_DBG, "cleanup done\n"); |
| } |
| |
| module_init(s2io_starter); |
| module_exit(s2io_closer); |