blob: 3dbbf15bee9f8337deb32b784b3b83a8e08a4794 [file] [log] [blame]
/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* QUP driver for Qualcomm MSM platforms
*
*/
/* #define DEBUG */
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <mach/board.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/gpio.h>
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.2");
MODULE_ALIAS("platform:i2c_qup");
/* QUP Registers */
enum {
QUP_CONFIG = 0x0,
QUP_STATE = 0x4,
QUP_IO_MODE = 0x8,
QUP_SW_RESET = 0xC,
QUP_OPERATIONAL = 0x18,
QUP_ERROR_FLAGS = 0x1C,
QUP_ERROR_FLAGS_EN = 0x20,
QUP_MX_READ_CNT = 0x208,
QUP_MX_INPUT_CNT = 0x200,
QUP_MX_WR_CNT = 0x100,
QUP_OUT_DEBUG = 0x108,
QUP_OUT_FIFO_CNT = 0x10C,
QUP_OUT_FIFO_BASE = 0x110,
QUP_IN_READ_CUR = 0x20C,
QUP_IN_DEBUG = 0x210,
QUP_IN_FIFO_CNT = 0x214,
QUP_IN_FIFO_BASE = 0x218,
QUP_I2C_CLK_CTL = 0x400,
QUP_I2C_STATUS = 0x404,
};
/* QUP States and reset values */
enum {
QUP_RESET_STATE = 0,
QUP_RUN_STATE = 1U,
QUP_STATE_MASK = 3U,
QUP_PAUSE_STATE = 3U,
QUP_STATE_VALID = 1U << 2,
QUP_I2C_MAST_GEN = 1U << 4,
QUP_OPERATIONAL_RESET = 0xFF0,
QUP_I2C_STATUS_RESET = 0xFFFFFC,
};
/* QUP OPERATIONAL FLAGS */
enum {
QUP_OUT_SVC_FLAG = 1U << 8,
QUP_IN_SVC_FLAG = 1U << 9,
QUP_MX_INPUT_DONE = 1U << 11,
};
/* I2C mini core related values */
enum {
I2C_MINI_CORE = 2U << 8,
I2C_N_VAL = 0xF,
};
/* Packing Unpacking words in FIFOs , and IO modes*/
enum {
QUP_WR_BLK_MODE = 1U << 10,
QUP_RD_BLK_MODE = 1U << 12,
QUP_UNPACK_EN = 1U << 14,
QUP_PACK_EN = 1U << 15,
};
/* QUP tags */
enum {
QUP_OUT_NOP = 0,
QUP_OUT_START = 1U << 8,
QUP_OUT_DATA = 2U << 8,
QUP_OUT_STOP = 3U << 8,
QUP_OUT_REC = 4U << 8,
QUP_IN_DATA = 5U << 8,
QUP_IN_STOP = 6U << 8,
QUP_IN_NACK = 7U << 8,
};
/* Status, Error flags */
enum {
I2C_STATUS_WR_BUFFER_FULL = 1U << 0,
I2C_STATUS_BUS_ACTIVE = 1U << 8,
I2C_STATUS_ERROR_MASK = 0x38000FC,
QUP_I2C_NACK_FLAG = 1U << 3,
QUP_IN_NOT_EMPTY = 1U << 5,
QUP_STATUS_ERROR_FLAGS = 0x7C,
};
/* Master status clock states */
enum {
I2C_CLK_RESET_BUSIDLE_STATE = 0,
I2C_CLK_FORCED_LOW_STATE = 5,
};
#define QUP_MAX_CLK_STATE_RETRIES 300
static char const * const i2c_rsrcs[] = {"i2c_clk", "i2c_sda"};
struct qup_i2c_dev {
struct device *dev;
void __iomem *base; /* virtual */
void __iomem *gsbi; /* virtual */
int in_irq;
int out_irq;
int err_irq;
int num_irqs;
struct clk *clk;
struct clk *pclk;
struct i2c_adapter adapter;
struct i2c_msg *msg;
int pos;
int cnt;
int err;
int mode;
int clk_ctl;
int one_bit_t;
int out_fifo_sz;
int in_fifo_sz;
int out_blk_sz;
int in_blk_sz;
int wr_sz;
struct msm_i2c_platform_data *pdata;
int suspended;
int clk_state;
struct timer_list pwr_timer;
struct mutex mlock;
void *complete;
int i2c_gpios[ARRAY_SIZE(i2c_rsrcs)];
};
#ifdef DEBUG
static void
qup_print_status(struct qup_i2c_dev *dev)
{
uint32_t val;
val = readl_relaxed(dev->base+QUP_CONFIG);
dev_dbg(dev->dev, "Qup config is :0x%x\n", val);
val = readl_relaxed(dev->base+QUP_STATE);
dev_dbg(dev->dev, "Qup state is :0x%x\n", val);
val = readl_relaxed(dev->base+QUP_IO_MODE);
dev_dbg(dev->dev, "Qup mode is :0x%x\n", val);
}
#else
static inline void qup_print_status(struct qup_i2c_dev *dev)
{
}
#endif
static irqreturn_t
qup_i2c_interrupt(int irq, void *devid)
{
struct qup_i2c_dev *dev = devid;
uint32_t status = readl_relaxed(dev->base + QUP_I2C_STATUS);
uint32_t status1 = readl_relaxed(dev->base + QUP_ERROR_FLAGS);
uint32_t op_flgs = readl_relaxed(dev->base + QUP_OPERATIONAL);
int err = 0;
if (!dev->msg || !dev->complete) {
/* Clear Error interrupt if it's a level triggered interrupt*/
if (dev->num_irqs == 1) {
writel_relaxed(QUP_RESET_STATE, dev->base+QUP_STATE);
/* Ensure that state is written before ISR exits */
mb();
}
return IRQ_HANDLED;
}
if (status & I2C_STATUS_ERROR_MASK) {
dev_err(dev->dev, "QUP: I2C status flags :0x%x, irq:%d\n",
status, irq);
err = status;
/* Clear Error interrupt if it's a level triggered interrupt*/
if (dev->num_irqs == 1) {
writel_relaxed(QUP_RESET_STATE, dev->base+QUP_STATE);
/* Ensure that state is written before ISR exits */
mb();
}
goto intr_done;
}
if (status1 & 0x7F) {
dev_err(dev->dev, "QUP: QUP status flags :0x%x\n", status1);
err = -status1;
/* Clear Error interrupt if it's a level triggered interrupt*/
if (dev->num_irqs == 1) {
writel_relaxed((status1 & QUP_STATUS_ERROR_FLAGS),
dev->base + QUP_ERROR_FLAGS);
/* Ensure that error flags are cleared before ISR
* exits
*/
mb();
}
goto intr_done;
}
if ((dev->num_irqs == 3) && (dev->msg->flags == I2C_M_RD)
&& (irq == dev->out_irq))
return IRQ_HANDLED;
if (op_flgs & QUP_OUT_SVC_FLAG) {
writel_relaxed(QUP_OUT_SVC_FLAG, dev->base + QUP_OPERATIONAL);
/* Ensure that service flag is acknowledged before ISR exits */
mb();
}
if (dev->msg->flags == I2C_M_RD) {
if ((op_flgs & QUP_MX_INPUT_DONE) ||
(op_flgs & QUP_IN_SVC_FLAG)) {
writel_relaxed(QUP_IN_SVC_FLAG, dev->base
+ QUP_OPERATIONAL);
/* Ensure that service flag is acknowledged before ISR
* exits
*/
mb();
} else
return IRQ_HANDLED;
}
intr_done:
dev_dbg(dev->dev, "QUP intr= %d, i2c status=0x%x, qup status = 0x%x\n",
irq, status, status1);
qup_print_status(dev);
dev->err = err;
complete(dev->complete);
return IRQ_HANDLED;
}
static int
qup_i2c_poll_state(struct qup_i2c_dev *dev, uint32_t req_state, bool only_valid)
{
uint32_t retries = 0;
dev_dbg(dev->dev, "Polling for state:0x%x, or valid-only:%d\n",
req_state, only_valid);
while (retries != 2000) {
uint32_t status = readl_relaxed(dev->base + QUP_STATE);
/*
* If only valid bit needs to be checked, requested state is
* 'don't care'
*/
if (status & QUP_STATE_VALID) {
if (only_valid)
return 0;
else if ((req_state & QUP_I2C_MAST_GEN) &&
(status & QUP_I2C_MAST_GEN))
return 0;
else if ((status & QUP_STATE_MASK) == req_state)
return 0;
}
if (retries++ == 1000)
udelay(100);
}
return -ETIMEDOUT;
}
static int
qup_update_state(struct qup_i2c_dev *dev, uint32_t state)
{
if (qup_i2c_poll_state(dev, 0, true) != 0)
return -EIO;
writel_relaxed(state, dev->base + QUP_STATE);
if (qup_i2c_poll_state(dev, state, false) != 0)
return -EIO;
return 0;
}
static void
qup_i2c_pwr_mgmt(struct qup_i2c_dev *dev, unsigned int state)
{
dev->clk_state = state;
if (state != 0) {
clk_enable(dev->clk);
clk_enable(dev->pclk);
} else {
qup_update_state(dev, QUP_RESET_STATE);
clk_disable(dev->clk);
clk_disable(dev->pclk);
}
}
static void
qup_i2c_pwr_timer(unsigned long data)
{
struct qup_i2c_dev *dev = (struct qup_i2c_dev *) data;
dev_dbg(dev->dev, "QUP_Power: Inactivity based power management\n");
if (dev->clk_state == 1)
qup_i2c_pwr_mgmt(dev, 0);
}
static int
qup_i2c_poll_writeready(struct qup_i2c_dev *dev, int rem)
{
uint32_t retries = 0;
while (retries != 2000) {
uint32_t status = readl_relaxed(dev->base + QUP_I2C_STATUS);
if (!(status & I2C_STATUS_WR_BUFFER_FULL)) {
if (((dev->msg->flags & I2C_M_RD) || (rem == 0)) &&
!(status & I2C_STATUS_BUS_ACTIVE))
return 0;
else if ((dev->msg->flags == 0) && (rem > 0))
return 0;
else /* 1-bit delay before we check for bus busy */
udelay(dev->one_bit_t);
}
if (retries++ == 1000) {
/*
* Wait for FIFO number of bytes to be absolutely sure
* that I2C write state machine is not idle. Each byte
* takes 9 clock cycles. (8 bits + 1 ack)
*/
usleep_range((dev->one_bit_t * (dev->out_fifo_sz * 9)),
(dev->one_bit_t * (dev->out_fifo_sz * 9)));
}
}
qup_print_status(dev);
return -ETIMEDOUT;
}
static int qup_i2c_poll_clock_ready(struct qup_i2c_dev *dev)
{
uint32_t retries = 0;
/*
* Wait for the clock state to transition to either IDLE or FORCED
* LOW. This will usually happen within one cycle of the i2c clock.
*/
while (retries++ < QUP_MAX_CLK_STATE_RETRIES) {
uint32_t status = readl_relaxed(dev->base + QUP_I2C_STATUS);
uint32_t clk_state = (status >> 13) & 0x7;
if (clk_state == I2C_CLK_RESET_BUSIDLE_STATE ||
clk_state == I2C_CLK_FORCED_LOW_STATE)
return 0;
/* 1-bit delay before we check again */
udelay(dev->one_bit_t);
}
dev_err(dev->dev, "Error waiting for clk ready\n");
return -ETIMEDOUT;
}
static inline int qup_i2c_request_gpios(struct qup_i2c_dev *dev)
{
int i;
int result = 0;
for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) {
if (dev->i2c_gpios[i] >= 0) {
result = gpio_request(dev->i2c_gpios[i], i2c_rsrcs[i]);
if (result) {
dev_err(dev->dev,
"gpio_request for pin %d failed\
with error %d\n", dev->i2c_gpios[i],
result);
goto error;
}
}
}
return 0;
error:
for (; --i >= 0;) {
if (dev->i2c_gpios[i] >= 0)
gpio_free(dev->i2c_gpios[i]);
}
return result;
}
static inline void qup_i2c_free_gpios(struct qup_i2c_dev *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) {
if (dev->i2c_gpios[i] >= 0)
gpio_free(dev->i2c_gpios[i]);
}
}
#ifdef DEBUG
static void qup_verify_fifo(struct qup_i2c_dev *dev, uint32_t val,
uint32_t addr, int rdwr)
{
if (rdwr)
dev_dbg(dev->dev, "RD:Wrote 0x%x to out_ff:0x%x\n", val, addr);
else
dev_dbg(dev->dev, "WR:Wrote 0x%x to out_ff:0x%x\n", val, addr);
}
#else
static inline void qup_verify_fifo(struct qup_i2c_dev *dev, uint32_t val,
uint32_t addr, int rdwr)
{
}
#endif
static void
qup_issue_read(struct qup_i2c_dev *dev, struct i2c_msg *msg, int *idx,
uint32_t carry_over)
{
uint16_t addr = (msg->addr << 1) | 1;
/* QUP limit 256 bytes per read. By HW design, 0 in the 8-bit field
* is treated as 256 byte read.
*/
uint16_t rd_len = ((dev->cnt == 256) ? 0 : dev->cnt);
if (*idx % 4) {
writel_relaxed(carry_over | ((QUP_OUT_START | addr) << 16),
dev->base + QUP_OUT_FIFO_BASE);/* + (*idx-2)); */
qup_verify_fifo(dev, carry_over |
((QUP_OUT_START | addr) << 16), (uint32_t)dev->base
+ QUP_OUT_FIFO_BASE + (*idx - 2), 1);
writel_relaxed((QUP_OUT_REC | rd_len),
dev->base + QUP_OUT_FIFO_BASE);/* + (*idx+2)); */
qup_verify_fifo(dev, (QUP_OUT_REC | rd_len),
(uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx + 2), 1);
} else {
writel_relaxed(((QUP_OUT_REC | rd_len) << 16)
| QUP_OUT_START | addr,
dev->base + QUP_OUT_FIFO_BASE);/* + (*idx)); */
qup_verify_fifo(dev, QUP_OUT_REC << 16 | rd_len << 16 |
QUP_OUT_START | addr,
(uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx), 1);
}
*idx += 4;
}
static void
qup_issue_write(struct qup_i2c_dev *dev, struct i2c_msg *msg, int rem,
int *idx, uint32_t *carry_over)
{
int entries = dev->cnt;
int empty_sl = dev->wr_sz - ((*idx) >> 1);
int i = 0;
uint32_t val = 0;
uint32_t last_entry = 0;
uint16_t addr = msg->addr << 1;
if (dev->pos == 0) {
if (*idx % 4) {
writel_relaxed(*carry_over | ((QUP_OUT_START |
addr) << 16),
dev->base + QUP_OUT_FIFO_BASE);
qup_verify_fifo(dev, *carry_over | QUP_OUT_START << 16 |
addr << 16, (uint32_t)dev->base +
QUP_OUT_FIFO_BASE + (*idx) - 2, 0);
} else
val = QUP_OUT_START | addr;
*idx += 2;
i++;
entries++;
} else {
/* Avoid setp time issue by adding 1 NOP when number of bytes
* are more than FIFO/BLOCK size. setup time issue can't appear
* otherwise since next byte to be written will always be ready
*/
val = (QUP_OUT_NOP | 1);
*idx += 2;
i++;
entries++;
}
if (entries > empty_sl)
entries = empty_sl;
for (; i < (entries - 1); i++) {
if (*idx % 4) {
writel_relaxed(val | ((QUP_OUT_DATA |
msg->buf[dev->pos]) << 16),
dev->base + QUP_OUT_FIFO_BASE);
qup_verify_fifo(dev, val | QUP_OUT_DATA << 16 |
msg->buf[dev->pos] << 16, (uint32_t)dev->base +
QUP_OUT_FIFO_BASE + (*idx) - 2, 0);
} else
val = QUP_OUT_DATA | msg->buf[dev->pos];
(*idx) += 2;
dev->pos++;
}
if (dev->pos < (msg->len - 1))
last_entry = QUP_OUT_DATA;
else if (rem > 1) /* not last array entry */
last_entry = QUP_OUT_DATA;
else
last_entry = QUP_OUT_STOP;
if ((*idx % 4) == 0) {
/*
* If read-start and read-command end up in different fifos, it
* may result in extra-byte being read due to extra-read cycle.
* Avoid that by inserting NOP as the last entry of fifo only
* if write command(s) leave 1 space in fifo.
*/
if (rem > 1) {
struct i2c_msg *next = msg + 1;
if (next->addr == msg->addr && (next->flags & I2C_M_RD)
&& *idx == ((dev->wr_sz*2) - 4)) {
writel_relaxed(((last_entry |
msg->buf[dev->pos]) |
((1 | QUP_OUT_NOP) << 16)), dev->base +
QUP_OUT_FIFO_BASE);/* + (*idx) - 2); */
qup_verify_fifo(dev,
((last_entry | msg->buf[dev->pos]) |
((1 | QUP_OUT_NOP) << 16)),
(uint32_t)dev->base +
QUP_OUT_FIFO_BASE + (*idx), 0);
*idx += 2;
} else if (next->flags == 0 && dev->pos == msg->len - 1
&& *idx < (dev->wr_sz*2) &&
(next->addr != msg->addr)) {
/* Last byte of an intermittent write */
writel_relaxed((QUP_OUT_STOP |
msg->buf[dev->pos]),
dev->base + QUP_OUT_FIFO_BASE);
qup_verify_fifo(dev,
QUP_OUT_STOP | msg->buf[dev->pos],
(uint32_t)dev->base +
QUP_OUT_FIFO_BASE + (*idx), 0);
*idx += 2;
} else
*carry_over = (last_entry | msg->buf[dev->pos]);
} else {
writel_relaxed((last_entry | msg->buf[dev->pos]),
dev->base + QUP_OUT_FIFO_BASE);/* + (*idx) - 2); */
qup_verify_fifo(dev, last_entry | msg->buf[dev->pos],
(uint32_t)dev->base + QUP_OUT_FIFO_BASE +
(*idx), 0);
}
} else {
writel_relaxed(val | ((last_entry | msg->buf[dev->pos]) << 16),
dev->base + QUP_OUT_FIFO_BASE);/* + (*idx) - 2); */
qup_verify_fifo(dev, val | (last_entry << 16) |
(msg->buf[dev->pos] << 16), (uint32_t)dev->base +
QUP_OUT_FIFO_BASE + (*idx) - 2, 0);
}
*idx += 2;
dev->pos++;
dev->cnt = msg->len - dev->pos;
}
static void
qup_set_read_mode(struct qup_i2c_dev *dev, int rd_len)
{
uint32_t wr_mode = (dev->wr_sz < dev->out_fifo_sz) ?
QUP_WR_BLK_MODE : 0;
if (rd_len > 256) {
dev_dbg(dev->dev, "HW limit: Breaking reads in chunk of 256\n");
rd_len = 256;
}
if (rd_len <= dev->in_fifo_sz) {
writel_relaxed(wr_mode | QUP_PACK_EN | QUP_UNPACK_EN,
dev->base + QUP_IO_MODE);
writel_relaxed(rd_len, dev->base + QUP_MX_READ_CNT);
} else {
writel_relaxed(wr_mode | QUP_RD_BLK_MODE |
QUP_PACK_EN | QUP_UNPACK_EN, dev->base + QUP_IO_MODE);
writel_relaxed(rd_len, dev->base + QUP_MX_INPUT_CNT);
}
}
static int
qup_set_wr_mode(struct qup_i2c_dev *dev, int rem)
{
int total_len = 0;
int ret = 0;
int len = dev->msg->len;
struct i2c_msg *next = NULL;
if (rem > 1)
next = dev->msg + 1;
while (rem > 1 && next->flags == 0 && (next->addr == dev->msg->addr)) {
len += next->len + 1;
next = next + 1;
rem--;
}
if (len >= (dev->out_fifo_sz - 1)) {
total_len = len + 1 + (len/(dev->out_blk_sz-1));
writel_relaxed(QUP_WR_BLK_MODE | QUP_PACK_EN | QUP_UNPACK_EN,
dev->base + QUP_IO_MODE);
dev->wr_sz = dev->out_blk_sz;
} else
writel_relaxed(QUP_PACK_EN | QUP_UNPACK_EN,
dev->base + QUP_IO_MODE);
if (rem > 1) {
if (next->addr == dev->msg->addr &&
next->flags == I2C_M_RD) {
qup_set_read_mode(dev, next->len);
/* make sure read start & read command are in 1 blk */
if ((total_len % dev->out_blk_sz) ==
(dev->out_blk_sz - 1))
total_len += 3;
else
total_len += 2;
}
}
/* WRITE COUNT register valid/used only in block mode */
if (dev->wr_sz == dev->out_blk_sz)
writel_relaxed(total_len, dev->base + QUP_MX_WR_CNT);
return ret;
}
static int
qup_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
DECLARE_COMPLETION_ONSTACK(complete);
struct qup_i2c_dev *dev = i2c_get_adapdata(adap);
int ret;
int rem = num;
long timeout;
int err;
del_timer_sync(&dev->pwr_timer);
mutex_lock(&dev->mlock);
if (dev->suspended) {
mutex_unlock(&dev->mlock);
return -EIO;
}
if (dev->clk_state == 0) {
if (dev->clk_ctl == 0) {
if (dev->pdata->src_clk_rate > 0)
clk_set_rate(dev->clk,
dev->pdata->src_clk_rate);
else
dev->pdata->src_clk_rate = 19200000;
}
qup_i2c_pwr_mgmt(dev, 1);
}
/* Initialize QUP registers during first transfer */
if (dev->clk_ctl == 0) {
int fs_div;
int hs_div;
uint32_t fifo_reg;
if (dev->gsbi) {
writel_relaxed(0x2 << 4, dev->gsbi);
/* GSBI memory is not in the same 1K region as other
* QUP registers. mb() here ensures that the GSBI
* register is updated in correct order and that the
* write has gone through before programming QUP core
* registers
*/
mb();
}
fs_div = ((dev->pdata->src_clk_rate
/ dev->pdata->clk_freq) / 2) - 3;
hs_div = 3;
dev->clk_ctl = ((hs_div & 0x7) << 8) | (fs_div & 0xff);
fifo_reg = readl_relaxed(dev->base + QUP_IO_MODE);
if (fifo_reg & 0x3)
dev->out_blk_sz = (fifo_reg & 0x3) * 16;
else
dev->out_blk_sz = 16;
if (fifo_reg & 0x60)
dev->in_blk_sz = ((fifo_reg & 0x60) >> 5) * 16;
else
dev->in_blk_sz = 16;
/*
* The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
* associated with each byte written/received
*/
dev->out_blk_sz /= 2;
dev->in_blk_sz /= 2;
dev->out_fifo_sz = dev->out_blk_sz *
(2 << ((fifo_reg & 0x1C) >> 2));
dev->in_fifo_sz = dev->in_blk_sz *
(2 << ((fifo_reg & 0x380) >> 7));
dev_dbg(dev->dev, "QUP IN:bl:%d, ff:%d, OUT:bl:%d, ff:%d\n",
dev->in_blk_sz, dev->in_fifo_sz,
dev->out_blk_sz, dev->out_fifo_sz);
}
writel_relaxed(1, dev->base + QUP_SW_RESET);
ret = qup_i2c_poll_state(dev, QUP_RESET_STATE, false);
if (ret) {
dev_err(dev->dev, "QUP Busy:Trying to recover\n");
goto out_err;
}
if (dev->num_irqs == 3) {
enable_irq(dev->in_irq);
enable_irq(dev->out_irq);
}
enable_irq(dev->err_irq);
/* Initialize QUP registers */
writel_relaxed(0, dev->base + QUP_CONFIG);
writel_relaxed(QUP_OPERATIONAL_RESET, dev->base + QUP_OPERATIONAL);
writel_relaxed(QUP_STATUS_ERROR_FLAGS, dev->base + QUP_ERROR_FLAGS_EN);
writel_relaxed(I2C_MINI_CORE | I2C_N_VAL, dev->base + QUP_CONFIG);
/* Initialize I2C mini core registers */
writel_relaxed(0, dev->base + QUP_I2C_CLK_CTL);
writel_relaxed(QUP_I2C_STATUS_RESET, dev->base + QUP_I2C_STATUS);
while (rem) {
bool filled = false;
dev->cnt = msgs->len - dev->pos;
dev->msg = msgs;
dev->wr_sz = dev->out_fifo_sz;
dev->err = 0;
dev->complete = &complete;
if (qup_i2c_poll_state(dev, QUP_I2C_MAST_GEN, false) != 0) {
ret = -EIO;
goto out_err;
}
qup_print_status(dev);
/* HW limits Read upto 256 bytes in 1 read without stop */
if (dev->msg->flags & I2C_M_RD) {
qup_set_read_mode(dev, dev->cnt);
if (dev->cnt > 256)
dev->cnt = 256;
} else {
ret = qup_set_wr_mode(dev, rem);
if (ret != 0)
goto out_err;
/* Don't fill block till we get interrupt */
if (dev->wr_sz == dev->out_blk_sz)
filled = true;
}
err = qup_update_state(dev, QUP_RUN_STATE);
if (err < 0) {
ret = err;
goto out_err;
}
qup_print_status(dev);
writel_relaxed(dev->clk_ctl, dev->base + QUP_I2C_CLK_CTL);
/* CLK_CTL register is not in the same 1K region as other QUP
* registers. Ensure that clock control is written before
* programming other QUP registers
*/
mb();
do {
int idx = 0;
uint32_t carry_over = 0;
/* Transition to PAUSE state only possible from RUN */
err = qup_update_state(dev, QUP_PAUSE_STATE);
if (err < 0) {
ret = err;
goto out_err;
}
qup_print_status(dev);
/* This operation is Write, check the next operation
* and decide mode
*/
while (filled == false) {
if ((msgs->flags & I2C_M_RD))
qup_issue_read(dev, msgs, &idx,
carry_over);
else if (!(msgs->flags & I2C_M_RD))
qup_issue_write(dev, msgs, rem, &idx,
&carry_over);
if (idx >= (dev->wr_sz << 1))
filled = true;
/* Start new message */
if (filled == false) {
if (msgs->flags & I2C_M_RD)
filled = true;
else if (rem > 1) {
/* Only combine operations with
* same address
*/
struct i2c_msg *next = msgs + 1;
if (next->addr != msgs->addr)
filled = true;
else {
rem--;
msgs++;
dev->msg = msgs;
dev->pos = 0;
dev->cnt = msgs->len;
if (msgs->len > 256)
dev->cnt = 256;
}
} else
filled = true;
}
}
err = qup_update_state(dev, QUP_RUN_STATE);
if (err < 0) {
ret = err;
goto out_err;
}
dev_dbg(dev->dev, "idx:%d, rem:%d, num:%d, mode:%d\n",
idx, rem, num, dev->mode);
qup_print_status(dev);
timeout = wait_for_completion_timeout(&complete, HZ);
if (!timeout) {
uint32_t istatus = readl_relaxed(dev->base +
QUP_I2C_STATUS);
uint32_t qstatus = readl_relaxed(dev->base +
QUP_ERROR_FLAGS);
uint32_t op_flgs = readl_relaxed(dev->base +
QUP_OPERATIONAL);
dev_err(dev->dev, "Transaction timed out\n");
dev_err(dev->dev, "I2C Status: %x\n", istatus);
dev_err(dev->dev, "QUP Status: %x\n", qstatus);
dev_err(dev->dev, "OP Flags: %x\n", op_flgs);
writel_relaxed(1, dev->base + QUP_SW_RESET);
/* Make sure that the write has gone through
* before returning from the function
*/
mb();
ret = -ETIMEDOUT;
goto out_err;
}
if (dev->err) {
if (dev->err > 0 &&
dev->err & QUP_I2C_NACK_FLAG)
dev_err(dev->dev,
"I2C slave addr:0x%x not connected\n",
dev->msg->addr);
else if (dev->err < 0) {
dev_err(dev->dev,
"QUP data xfer error %d\n", dev->err);
ret = dev->err;
goto out_err;
}
ret = -dev->err;
goto out_err;
}
if (dev->msg->flags & I2C_M_RD) {
int i;
uint32_t dval = 0;
for (i = 0; dev->pos < dev->msg->len; i++,
dev->pos++) {
uint32_t rd_status =
readl_relaxed(dev->base
+ QUP_OPERATIONAL);
if (i % 2 == 0) {
if ((rd_status &
QUP_IN_NOT_EMPTY) == 0)
break;
dval = readl_relaxed(dev->base +
QUP_IN_FIFO_BASE);
dev->msg->buf[dev->pos] =
dval & 0xFF;
} else
dev->msg->buf[dev->pos] =
((dval & 0xFF0000) >>
16);
}
dev->cnt -= i;
} else
filled = false; /* refill output FIFO */
dev_dbg(dev->dev, "pos:%d, len:%d, cnt:%d\n",
dev->pos, msgs->len, dev->cnt);
} while (dev->cnt > 0);
if (dev->cnt == 0) {
if (msgs->len == dev->pos) {
rem--;
msgs++;
dev->pos = 0;
}
if (rem) {
err = qup_i2c_poll_clock_ready(dev);
if (err < 0) {
ret = err;
goto out_err;
}
err = qup_update_state(dev, QUP_RESET_STATE);
if (err < 0) {
ret = err;
goto out_err;
}
}
}
/* Wait for I2C bus to be idle */
ret = qup_i2c_poll_writeready(dev, rem);
if (ret) {
dev_err(dev->dev,
"Error waiting for write ready\n");
goto out_err;
}
}
ret = num;
out_err:
disable_irq(dev->err_irq);
if (dev->num_irqs == 3) {
disable_irq(dev->in_irq);
disable_irq(dev->out_irq);
}
dev->complete = NULL;
dev->msg = NULL;
dev->pos = 0;
dev->err = 0;
dev->cnt = 0;
dev->pwr_timer.expires = jiffies + 3*HZ;
add_timer(&dev->pwr_timer);
mutex_unlock(&dev->mlock);
return ret;
}
static u32
qup_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm qup_i2c_algo = {
.master_xfer = qup_i2c_xfer,
.functionality = qup_i2c_func,
};
static int __devinit
qup_i2c_probe(struct platform_device *pdev)
{
struct qup_i2c_dev *dev;
struct resource *qup_mem, *gsbi_mem, *qup_io, *gsbi_io, *res;
struct resource *in_irq, *out_irq, *err_irq;
struct clk *clk, *pclk;
int ret = 0;
int i;
struct msm_i2c_platform_data *pdata;
gsbi_mem = NULL;
dev_dbg(&pdev->dev, "qup_i2c_probe\n");
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "platform data not initialized\n");
return -ENOSYS;
}
qup_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"qup_phys_addr");
if (!qup_mem) {
dev_err(&pdev->dev, "no qup mem resource?\n");
return -ENODEV;
}
/*
* We only have 1 interrupt for new hardware targets and in_irq,
* out_irq will be NULL for those platforms
*/
in_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"qup_in_intr");
out_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"qup_out_intr");
err_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"qup_err_intr");
if (!err_irq) {
dev_err(&pdev->dev, "no error irq resource?\n");
return -ENODEV;
}
qup_io = request_mem_region(qup_mem->start, resource_size(qup_mem),
pdev->name);
if (!qup_io) {
dev_err(&pdev->dev, "QUP region already claimed\n");
return -EBUSY;
}
if (!pdata->use_gsbi_shared_mode) {
gsbi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"gsbi_qup_i2c_addr");
if (!gsbi_mem) {
dev_err(&pdev->dev, "no gsbi mem resource?\n");
ret = -ENODEV;
goto err_res_failed;
}
gsbi_io = request_mem_region(gsbi_mem->start,
resource_size(gsbi_mem),
pdev->name);
if (!gsbi_io) {
dev_err(&pdev->dev, "GSBI region already claimed\n");
ret = -EBUSY;
goto err_res_failed;
}
}
clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "Could not get core_clk\n");
ret = PTR_ERR(clk);
goto err_clk_get_failed;
}
pclk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(pclk)) {
dev_err(&pdev->dev, "Could not get iface_clk\n");
ret = PTR_ERR(pclk);
clk_put(clk);
goto err_clk_get_failed;
}
/* We support frequencies upto FAST Mode(400KHz) */
if (pdata->clk_freq <= 0 ||
pdata->clk_freq > 400000) {
dev_err(&pdev->dev, "clock frequency not supported\n");
ret = -EIO;
goto err_config_failed;
}
dev = kzalloc(sizeof(struct qup_i2c_dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err_alloc_dev_failed;
}
dev->dev = &pdev->dev;
if (in_irq)
dev->in_irq = in_irq->start;
if (out_irq)
dev->out_irq = out_irq->start;
dev->err_irq = err_irq->start;
if (in_irq && out_irq)
dev->num_irqs = 3;
else
dev->num_irqs = 1;
dev->clk = clk;
dev->pclk = pclk;
dev->base = ioremap(qup_mem->start, resource_size(qup_mem));
if (!dev->base) {
ret = -ENOMEM;
goto err_ioremap_failed;
}
/* Configure GSBI block to use I2C functionality */
if (gsbi_mem) {
dev->gsbi = ioremap(gsbi_mem->start, resource_size(gsbi_mem));
if (!dev->gsbi) {
ret = -ENOMEM;
goto err_gsbi_failed;
}
}
for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) {
res = platform_get_resource_byname(pdev, IORESOURCE_IO,
i2c_rsrcs[i]);
dev->i2c_gpios[i] = res ? res->start : -1;
}
ret = qup_i2c_request_gpios(dev);
if (ret)
goto err_request_gpio_failed;
platform_set_drvdata(pdev, dev);
dev->one_bit_t = (USEC_PER_SEC/pdata->clk_freq) + 1;
dev->pdata = pdata;
dev->clk_ctl = 0;
dev->pos = 0;
/*
* We use num_irqs to also indicate if we got 3 interrupts or just 1.
* If we have just 1, we use err_irq as the general purpose irq
* and handle the changes in ISR accordingly
* Per Hardware guidelines, if we have 3 interrupts, they are always
* edge triggering, and if we have 1, it's always level-triggering
*/
if (dev->num_irqs == 3) {
ret = request_irq(dev->in_irq, qup_i2c_interrupt,
IRQF_TRIGGER_RISING, "qup_in_intr", dev);
if (ret) {
dev_err(&pdev->dev, "request_in_irq failed\n");
goto err_request_irq_failed;
}
/*
* We assume out_irq exists if in_irq does since platform
* configuration either has 3 interrupts assigned to QUP or 1
*/
ret = request_irq(dev->out_irq, qup_i2c_interrupt,
IRQF_TRIGGER_RISING, "qup_out_intr", dev);
if (ret) {
dev_err(&pdev->dev, "request_out_irq failed\n");
free_irq(dev->in_irq, dev);
goto err_request_irq_failed;
}
ret = request_irq(dev->err_irq, qup_i2c_interrupt,
IRQF_TRIGGER_RISING, "qup_err_intr", dev);
if (ret) {
dev_err(&pdev->dev, "request_err_irq failed\n");
free_irq(dev->out_irq, dev);
free_irq(dev->in_irq, dev);
goto err_request_irq_failed;
}
} else {
ret = request_irq(dev->err_irq, qup_i2c_interrupt,
IRQF_TRIGGER_HIGH, "qup_err_intr", dev);
if (ret) {
dev_err(&pdev->dev, "request_err_irq failed\n");
goto err_request_irq_failed;
}
}
disable_irq(dev->err_irq);
if (dev->num_irqs == 3) {
disable_irq(dev->in_irq);
disable_irq(dev->out_irq);
}
i2c_set_adapdata(&dev->adapter, dev);
dev->adapter.algo = &qup_i2c_algo;
strlcpy(dev->adapter.name,
"QUP I2C adapter",
sizeof(dev->adapter.name));
dev->adapter.nr = pdev->id;
if (pdata->msm_i2c_config_gpio)
pdata->msm_i2c_config_gpio(dev->adapter.nr, 1);
dev->suspended = 0;
mutex_init(&dev->mlock);
dev->clk_state = 0;
setup_timer(&dev->pwr_timer, qup_i2c_pwr_timer, (unsigned long) dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = i2c_add_numbered_adapter(&dev->adapter);
if (ret) {
dev_err(&pdev->dev, "i2c_add_adapter failed\n");
if (dev->num_irqs == 3) {
free_irq(dev->out_irq, dev);
free_irq(dev->in_irq, dev);
}
free_irq(dev->err_irq, dev);
} else
return 0;
err_request_irq_failed:
qup_i2c_free_gpios(dev);
if (dev->gsbi)
iounmap(dev->gsbi);
err_request_gpio_failed:
err_gsbi_failed:
iounmap(dev->base);
err_ioremap_failed:
kfree(dev);
err_alloc_dev_failed:
err_config_failed:
clk_put(clk);
clk_put(pclk);
err_clk_get_failed:
if (gsbi_mem)
release_mem_region(gsbi_mem->start, resource_size(gsbi_mem));
err_res_failed:
release_mem_region(qup_mem->start, resource_size(qup_mem));
return ret;
}
static int __devexit
qup_i2c_remove(struct platform_device *pdev)
{
struct qup_i2c_dev *dev = platform_get_drvdata(pdev);
struct resource *qup_mem, *gsbi_mem;
/* Grab mutex to ensure ongoing transaction is over */
mutex_lock(&dev->mlock);
dev->suspended = 1;
mutex_unlock(&dev->mlock);
mutex_destroy(&dev->mlock);
del_timer_sync(&dev->pwr_timer);
if (dev->clk_state != 0)
qup_i2c_pwr_mgmt(dev, 0);
platform_set_drvdata(pdev, NULL);
if (dev->num_irqs == 3) {
free_irq(dev->out_irq, dev);
free_irq(dev->in_irq, dev);
}
free_irq(dev->err_irq, dev);
i2c_del_adapter(&dev->adapter);
clk_put(dev->clk);
clk_put(dev->pclk);
qup_i2c_free_gpios(dev);
if (dev->gsbi)
iounmap(dev->gsbi);
iounmap(dev->base);
pm_runtime_disable(&pdev->dev);
if (!(dev->pdata->use_gsbi_shared_mode)) {
gsbi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"gsbi_qup_i2c_addr");
release_mem_region(gsbi_mem->start, resource_size(gsbi_mem));
}
qup_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"qup_phys_addr");
release_mem_region(qup_mem->start, resource_size(qup_mem));
kfree(dev);
return 0;
}
#ifdef CONFIG_PM
static int qup_i2c_suspend(struct device *device)
{
struct platform_device *pdev = to_platform_device(device);
struct qup_i2c_dev *dev = platform_get_drvdata(pdev);
/* Grab mutex to ensure ongoing transaction is over */
mutex_lock(&dev->mlock);
dev->suspended = 1;
mutex_unlock(&dev->mlock);
del_timer_sync(&dev->pwr_timer);
if (dev->clk_state != 0)
qup_i2c_pwr_mgmt(dev, 0);
qup_i2c_free_gpios(dev);
return 0;
}
static int qup_i2c_resume(struct device *device)
{
struct platform_device *pdev = to_platform_device(device);
struct qup_i2c_dev *dev = platform_get_drvdata(pdev);
BUG_ON(qup_i2c_request_gpios(dev) != 0);
dev->suspended = 0;
return 0;
}
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_RUNTIME
static int i2c_qup_runtime_idle(struct device *dev)
{
dev_dbg(dev, "pm_runtime: idle...\n");
return 0;
}
static int i2c_qup_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...\n");
return 0;
}
static int i2c_qup_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...\n");
return 0;
}
#endif
static const struct dev_pm_ops i2c_qup_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(
qup_i2c_suspend,
qup_i2c_resume
)
SET_RUNTIME_PM_OPS(
i2c_qup_runtime_suspend,
i2c_qup_runtime_resume,
i2c_qup_runtime_idle
)
};
static struct platform_driver qup_i2c_driver = {
.probe = qup_i2c_probe,
.remove = __devexit_p(qup_i2c_remove),
.driver = {
.name = "qup_i2c",
.owner = THIS_MODULE,
.pm = &i2c_qup_dev_pm_ops,
},
};
/* QUP may be needed to bring up other drivers */
static int __init
qup_i2c_init_driver(void)
{
return platform_driver_register(&qup_i2c_driver);
}
arch_initcall(qup_i2c_init_driver);
static void __exit qup_i2c_exit_driver(void)
{
platform_driver_unregister(&qup_i2c_driver);
}
module_exit(qup_i2c_exit_driver);