| /* |
| * inode.c |
| * |
| * PURPOSE |
| * Inode handling routines for the OSTA-UDF(tm) filesystem. |
| * |
| * COPYRIGHT |
| * This file is distributed under the terms of the GNU General Public |
| * License (GPL). Copies of the GPL can be obtained from: |
| * ftp://prep.ai.mit.edu/pub/gnu/GPL |
| * Each contributing author retains all rights to their own work. |
| * |
| * (C) 1998 Dave Boynton |
| * (C) 1998-2004 Ben Fennema |
| * (C) 1999-2000 Stelias Computing Inc |
| * |
| * HISTORY |
| * |
| * 10/04/98 dgb Added rudimentary directory functions |
| * 10/07/98 Fully working udf_block_map! It works! |
| * 11/25/98 bmap altered to better support extents |
| * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode |
| * 12/12/98 rewrote udf_block_map to handle next extents and descs across |
| * block boundaries (which is not actually allowed) |
| * 12/20/98 added support for strategy 4096 |
| * 03/07/99 rewrote udf_block_map (again) |
| * New funcs, inode_bmap, udf_next_aext |
| * 04/19/99 Support for writing device EA's for major/minor # |
| */ |
| |
| #include "udfdecl.h" |
| #include <linux/mm.h> |
| #include <linux/smp_lock.h> |
| #include <linux/module.h> |
| #include <linux/pagemap.h> |
| #include <linux/buffer_head.h> |
| #include <linux/writeback.h> |
| #include <linux/slab.h> |
| |
| #include "udf_i.h" |
| #include "udf_sb.h" |
| |
| MODULE_AUTHOR("Ben Fennema"); |
| MODULE_DESCRIPTION("Universal Disk Format Filesystem"); |
| MODULE_LICENSE("GPL"); |
| |
| #define EXTENT_MERGE_SIZE 5 |
| |
| static mode_t udf_convert_permissions(struct fileEntry *); |
| static int udf_update_inode(struct inode *, int); |
| static void udf_fill_inode(struct inode *, struct buffer_head *); |
| static struct buffer_head *inode_getblk(struct inode *, long, int *, |
| long *, int *); |
| static int8_t udf_insert_aext(struct inode *, kernel_lb_addr, int, |
| kernel_lb_addr, uint32_t, struct buffer_head *); |
| static void udf_split_extents(struct inode *, int *, int, int, |
| kernel_long_ad [EXTENT_MERGE_SIZE], int *); |
| static void udf_prealloc_extents(struct inode *, int, int, |
| kernel_long_ad [EXTENT_MERGE_SIZE], int *); |
| static void udf_merge_extents(struct inode *, |
| kernel_long_ad [EXTENT_MERGE_SIZE], int *); |
| static void udf_update_extents(struct inode *, |
| kernel_long_ad [EXTENT_MERGE_SIZE], int, int, |
| kernel_lb_addr, uint32_t, struct buffer_head **); |
| static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); |
| |
| /* |
| * udf_delete_inode |
| * |
| * PURPOSE |
| * Clean-up before the specified inode is destroyed. |
| * |
| * DESCRIPTION |
| * This routine is called when the kernel destroys an inode structure |
| * ie. when iput() finds i_count == 0. |
| * |
| * HISTORY |
| * July 1, 1997 - Andrew E. Mileski |
| * Written, tested, and released. |
| * |
| * Called at the last iput() if i_nlink is zero. |
| */ |
| void udf_delete_inode(struct inode * inode) |
| { |
| truncate_inode_pages(&inode->i_data, 0); |
| |
| if (is_bad_inode(inode)) |
| goto no_delete; |
| |
| inode->i_size = 0; |
| udf_truncate(inode); |
| lock_kernel(); |
| |
| udf_update_inode(inode, IS_SYNC(inode)); |
| udf_free_inode(inode); |
| |
| unlock_kernel(); |
| return; |
| no_delete: |
| clear_inode(inode); |
| } |
| |
| void udf_clear_inode(struct inode *inode) |
| { |
| if (!(inode->i_sb->s_flags & MS_RDONLY)) { |
| lock_kernel(); |
| udf_discard_prealloc(inode); |
| unlock_kernel(); |
| } |
| |
| kfree(UDF_I_DATA(inode)); |
| UDF_I_DATA(inode) = NULL; |
| } |
| |
| static int udf_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| return block_write_full_page(page, udf_get_block, wbc); |
| } |
| |
| static int udf_readpage(struct file *file, struct page *page) |
| { |
| return block_read_full_page(page, udf_get_block); |
| } |
| |
| static int udf_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to) |
| { |
| return block_prepare_write(page, from, to, udf_get_block); |
| } |
| |
| static sector_t udf_bmap(struct address_space *mapping, sector_t block) |
| { |
| return generic_block_bmap(mapping,block,udf_get_block); |
| } |
| |
| struct address_space_operations udf_aops = { |
| .readpage = udf_readpage, |
| .writepage = udf_writepage, |
| .sync_page = block_sync_page, |
| .prepare_write = udf_prepare_write, |
| .commit_write = generic_commit_write, |
| .bmap = udf_bmap, |
| }; |
| |
| void udf_expand_file_adinicb(struct inode * inode, int newsize, int * err) |
| { |
| struct page *page; |
| char *kaddr; |
| struct writeback_control udf_wbc = { |
| .sync_mode = WB_SYNC_NONE, |
| .nr_to_write = 1, |
| }; |
| |
| /* from now on we have normal address_space methods */ |
| inode->i_data.a_ops = &udf_aops; |
| |
| if (!UDF_I_LENALLOC(inode)) |
| { |
| if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) |
| UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; |
| else |
| UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; |
| mark_inode_dirty(inode); |
| return; |
| } |
| |
| page = grab_cache_page(inode->i_mapping, 0); |
| BUG_ON(!PageLocked(page)); |
| |
| if (!PageUptodate(page)) |
| { |
| kaddr = kmap(page); |
| memset(kaddr + UDF_I_LENALLOC(inode), 0x00, |
| PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode)); |
| memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), |
| UDF_I_LENALLOC(inode)); |
| flush_dcache_page(page); |
| SetPageUptodate(page); |
| kunmap(page); |
| } |
| memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00, |
| UDF_I_LENALLOC(inode)); |
| UDF_I_LENALLOC(inode) = 0; |
| if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) |
| UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; |
| else |
| UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; |
| |
| inode->i_data.a_ops->writepage(page, &udf_wbc); |
| page_cache_release(page); |
| |
| mark_inode_dirty(inode); |
| } |
| |
| struct buffer_head * udf_expand_dir_adinicb(struct inode *inode, int *block, int *err) |
| { |
| int newblock; |
| struct buffer_head *sbh = NULL, *dbh = NULL; |
| kernel_lb_addr bloc, eloc; |
| uint32_t elen, extoffset; |
| uint8_t alloctype; |
| |
| struct udf_fileident_bh sfibh, dfibh; |
| loff_t f_pos = udf_ext0_offset(inode) >> 2; |
| int size = (udf_ext0_offset(inode) + inode->i_size) >> 2; |
| struct fileIdentDesc cfi, *sfi, *dfi; |
| |
| if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) |
| alloctype = ICBTAG_FLAG_AD_SHORT; |
| else |
| alloctype = ICBTAG_FLAG_AD_LONG; |
| |
| if (!inode->i_size) |
| { |
| UDF_I_ALLOCTYPE(inode) = alloctype; |
| mark_inode_dirty(inode); |
| return NULL; |
| } |
| |
| /* alloc block, and copy data to it */ |
| *block = udf_new_block(inode->i_sb, inode, |
| UDF_I_LOCATION(inode).partitionReferenceNum, |
| UDF_I_LOCATION(inode).logicalBlockNum, err); |
| |
| if (!(*block)) |
| return NULL; |
| newblock = udf_get_pblock(inode->i_sb, *block, |
| UDF_I_LOCATION(inode).partitionReferenceNum, 0); |
| if (!newblock) |
| return NULL; |
| dbh = udf_tgetblk(inode->i_sb, newblock); |
| if (!dbh) |
| return NULL; |
| lock_buffer(dbh); |
| memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); |
| set_buffer_uptodate(dbh); |
| unlock_buffer(dbh); |
| mark_buffer_dirty_inode(dbh, inode); |
| |
| sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2; |
| sbh = sfibh.sbh = sfibh.ebh = NULL; |
| dfibh.soffset = dfibh.eoffset = 0; |
| dfibh.sbh = dfibh.ebh = dbh; |
| while ( (f_pos < size) ) |
| { |
| UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; |
| sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL, NULL, NULL); |
| if (!sfi) |
| { |
| udf_release_data(dbh); |
| return NULL; |
| } |
| UDF_I_ALLOCTYPE(inode) = alloctype; |
| sfi->descTag.tagLocation = cpu_to_le32(*block); |
| dfibh.soffset = dfibh.eoffset; |
| dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); |
| dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); |
| if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, |
| sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) |
| { |
| UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; |
| udf_release_data(dbh); |
| return NULL; |
| } |
| } |
| mark_buffer_dirty_inode(dbh, inode); |
| |
| memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode)); |
| UDF_I_LENALLOC(inode) = 0; |
| bloc = UDF_I_LOCATION(inode); |
| eloc.logicalBlockNum = *block; |
| eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum; |
| elen = inode->i_size; |
| UDF_I_LENEXTENTS(inode) = elen; |
| extoffset = udf_file_entry_alloc_offset(inode); |
| udf_add_aext(inode, &bloc, &extoffset, eloc, elen, &sbh, 0); |
| /* UniqueID stuff */ |
| |
| udf_release_data(sbh); |
| mark_inode_dirty(inode); |
| return dbh; |
| } |
| |
| static int udf_get_block(struct inode *inode, sector_t block, struct buffer_head *bh_result, int create) |
| { |
| int err, new; |
| struct buffer_head *bh; |
| unsigned long phys; |
| |
| if (!create) |
| { |
| phys = udf_block_map(inode, block); |
| if (phys) |
| map_bh(bh_result, inode->i_sb, phys); |
| return 0; |
| } |
| |
| err = -EIO; |
| new = 0; |
| bh = NULL; |
| |
| lock_kernel(); |
| |
| if (block < 0) |
| goto abort_negative; |
| |
| if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) |
| { |
| UDF_I_NEXT_ALLOC_BLOCK(inode) ++; |
| UDF_I_NEXT_ALLOC_GOAL(inode) ++; |
| } |
| |
| err = 0; |
| |
| bh = inode_getblk(inode, block, &err, &phys, &new); |
| if (bh) |
| BUG(); |
| if (err) |
| goto abort; |
| if (!phys) |
| BUG(); |
| |
| if (new) |
| set_buffer_new(bh_result); |
| map_bh(bh_result, inode->i_sb, phys); |
| abort: |
| unlock_kernel(); |
| return err; |
| |
| abort_negative: |
| udf_warning(inode->i_sb, "udf_get_block", "block < 0"); |
| goto abort; |
| } |
| |
| static struct buffer_head * |
| udf_getblk(struct inode *inode, long block, int create, int *err) |
| { |
| struct buffer_head dummy; |
| |
| dummy.b_state = 0; |
| dummy.b_blocknr = -1000; |
| *err = udf_get_block(inode, block, &dummy, create); |
| if (!*err && buffer_mapped(&dummy)) |
| { |
| struct buffer_head *bh; |
| bh = sb_getblk(inode->i_sb, dummy.b_blocknr); |
| if (buffer_new(&dummy)) |
| { |
| lock_buffer(bh); |
| memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); |
| set_buffer_uptodate(bh); |
| unlock_buffer(bh); |
| mark_buffer_dirty_inode(bh, inode); |
| } |
| return bh; |
| } |
| return NULL; |
| } |
| |
| static struct buffer_head * inode_getblk(struct inode * inode, long block, |
| int *err, long *phys, int *new) |
| { |
| struct buffer_head *pbh = NULL, *cbh = NULL, *nbh = NULL, *result = NULL; |
| kernel_long_ad laarr[EXTENT_MERGE_SIZE]; |
| uint32_t pextoffset = 0, cextoffset = 0, nextoffset = 0; |
| int count = 0, startnum = 0, endnum = 0; |
| uint32_t elen = 0; |
| kernel_lb_addr eloc, pbloc, cbloc, nbloc; |
| int c = 1; |
| uint64_t lbcount = 0, b_off = 0; |
| uint32_t newblocknum, newblock, offset = 0; |
| int8_t etype; |
| int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum; |
| char lastblock = 0; |
| |
| pextoffset = cextoffset = nextoffset = udf_file_entry_alloc_offset(inode); |
| b_off = (uint64_t)block << inode->i_sb->s_blocksize_bits; |
| pbloc = cbloc = nbloc = UDF_I_LOCATION(inode); |
| |
| /* find the extent which contains the block we are looking for. |
| alternate between laarr[0] and laarr[1] for locations of the |
| current extent, and the previous extent */ |
| do |
| { |
| if (pbh != cbh) |
| { |
| udf_release_data(pbh); |
| atomic_inc(&cbh->b_count); |
| pbh = cbh; |
| } |
| if (cbh != nbh) |
| { |
| udf_release_data(cbh); |
| atomic_inc(&nbh->b_count); |
| cbh = nbh; |
| } |
| |
| lbcount += elen; |
| |
| pbloc = cbloc; |
| cbloc = nbloc; |
| |
| pextoffset = cextoffset; |
| cextoffset = nextoffset; |
| |
| if ((etype = udf_next_aext(inode, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) == -1) |
| break; |
| |
| c = !c; |
| |
| laarr[c].extLength = (etype << 30) | elen; |
| laarr[c].extLocation = eloc; |
| |
| if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) |
| pgoal = eloc.logicalBlockNum + |
| ((elen + inode->i_sb->s_blocksize - 1) >> |
| inode->i_sb->s_blocksize_bits); |
| |
| count ++; |
| } while (lbcount + elen <= b_off); |
| |
| b_off -= lbcount; |
| offset = b_off >> inode->i_sb->s_blocksize_bits; |
| |
| /* if the extent is allocated and recorded, return the block |
| if the extent is not a multiple of the blocksize, round up */ |
| |
| if (etype == (EXT_RECORDED_ALLOCATED >> 30)) |
| { |
| if (elen & (inode->i_sb->s_blocksize - 1)) |
| { |
| elen = EXT_RECORDED_ALLOCATED | |
| ((elen + inode->i_sb->s_blocksize - 1) & |
| ~(inode->i_sb->s_blocksize - 1)); |
| etype = udf_write_aext(inode, nbloc, &cextoffset, eloc, elen, nbh, 1); |
| } |
| udf_release_data(pbh); |
| udf_release_data(cbh); |
| udf_release_data(nbh); |
| newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); |
| *phys = newblock; |
| return NULL; |
| } |
| |
| if (etype == -1) |
| { |
| endnum = startnum = ((count > 1) ? 1 : count); |
| if (laarr[c].extLength & (inode->i_sb->s_blocksize - 1)) |
| { |
| laarr[c].extLength = |
| (laarr[c].extLength & UDF_EXTENT_FLAG_MASK) | |
| (((laarr[c].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) & |
| ~(inode->i_sb->s_blocksize - 1)); |
| UDF_I_LENEXTENTS(inode) = |
| (UDF_I_LENEXTENTS(inode) + inode->i_sb->s_blocksize - 1) & |
| ~(inode->i_sb->s_blocksize - 1); |
| } |
| c = !c; |
| laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | |
| ((offset + 1) << inode->i_sb->s_blocksize_bits); |
| memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr)); |
| count ++; |
| endnum ++; |
| lastblock = 1; |
| } |
| else |
| endnum = startnum = ((count > 2) ? 2 : count); |
| |
| /* if the current extent is in position 0, swap it with the previous */ |
| if (!c && count != 1) |
| { |
| laarr[2] = laarr[0]; |
| laarr[0] = laarr[1]; |
| laarr[1] = laarr[2]; |
| c = 1; |
| } |
| |
| /* if the current block is located in a extent, read the next extent */ |
| if (etype != -1) |
| { |
| if ((etype = udf_next_aext(inode, &nbloc, &nextoffset, &eloc, &elen, &nbh, 0)) != -1) |
| { |
| laarr[c+1].extLength = (etype << 30) | elen; |
| laarr[c+1].extLocation = eloc; |
| count ++; |
| startnum ++; |
| endnum ++; |
| } |
| else |
| lastblock = 1; |
| } |
| udf_release_data(cbh); |
| udf_release_data(nbh); |
| |
| /* if the current extent is not recorded but allocated, get the |
| block in the extent corresponding to the requested block */ |
| if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) |
| newblocknum = laarr[c].extLocation.logicalBlockNum + offset; |
| else /* otherwise, allocate a new block */ |
| { |
| if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block) |
| goal = UDF_I_NEXT_ALLOC_GOAL(inode); |
| |
| if (!goal) |
| { |
| if (!(goal = pgoal)) |
| goal = UDF_I_LOCATION(inode).logicalBlockNum + 1; |
| } |
| |
| if (!(newblocknum = udf_new_block(inode->i_sb, inode, |
| UDF_I_LOCATION(inode).partitionReferenceNum, goal, err))) |
| { |
| udf_release_data(pbh); |
| *err = -ENOSPC; |
| return NULL; |
| } |
| UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize; |
| } |
| |
| /* if the extent the requsted block is located in contains multiple blocks, |
| split the extent into at most three extents. blocks prior to requested |
| block, requested block, and blocks after requested block */ |
| udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); |
| |
| #ifdef UDF_PREALLOCATE |
| /* preallocate blocks */ |
| udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); |
| #endif |
| |
| /* merge any continuous blocks in laarr */ |
| udf_merge_extents(inode, laarr, &endnum); |
| |
| /* write back the new extents, inserting new extents if the new number |
| of extents is greater than the old number, and deleting extents if |
| the new number of extents is less than the old number */ |
| udf_update_extents(inode, laarr, startnum, endnum, pbloc, pextoffset, &pbh); |
| |
| udf_release_data(pbh); |
| |
| if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum, |
| UDF_I_LOCATION(inode).partitionReferenceNum, 0))) |
| { |
| return NULL; |
| } |
| *phys = newblock; |
| *err = 0; |
| *new = 1; |
| UDF_I_NEXT_ALLOC_BLOCK(inode) = block; |
| UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum; |
| inode->i_ctime = current_fs_time(inode->i_sb); |
| |
| if (IS_SYNC(inode)) |
| udf_sync_inode(inode); |
| else |
| mark_inode_dirty(inode); |
| return result; |
| } |
| |
| static void udf_split_extents(struct inode *inode, int *c, int offset, int newblocknum, |
| kernel_long_ad laarr[EXTENT_MERGE_SIZE], int *endnum) |
| { |
| if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || |
| (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) |
| { |
| int curr = *c; |
| int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; |
| int8_t etype = (laarr[curr].extLength >> 30); |
| |
| if (blen == 1) |
| ; |
| else if (!offset || blen == offset + 1) |
| { |
| laarr[curr+2] = laarr[curr+1]; |
| laarr[curr+1] = laarr[curr]; |
| } |
| else |
| { |
| laarr[curr+3] = laarr[curr+1]; |
| laarr[curr+2] = laarr[curr+1] = laarr[curr]; |
| } |
| |
| if (offset) |
| { |
| if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) |
| { |
| udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset); |
| laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | |
| (offset << inode->i_sb->s_blocksize_bits); |
| laarr[curr].extLocation.logicalBlockNum = 0; |
| laarr[curr].extLocation.partitionReferenceNum = 0; |
| } |
| else |
| laarr[curr].extLength = (etype << 30) | |
| (offset << inode->i_sb->s_blocksize_bits); |
| curr ++; |
| (*c) ++; |
| (*endnum) ++; |
| } |
| |
| laarr[curr].extLocation.logicalBlockNum = newblocknum; |
| if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) |
| laarr[curr].extLocation.partitionReferenceNum = |
| UDF_I_LOCATION(inode).partitionReferenceNum; |
| laarr[curr].extLength = EXT_RECORDED_ALLOCATED | |
| inode->i_sb->s_blocksize; |
| curr ++; |
| |
| if (blen != offset + 1) |
| { |
| if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) |
| laarr[curr].extLocation.logicalBlockNum += (offset + 1); |
| laarr[curr].extLength = (etype << 30) | |
| ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits); |
| curr ++; |
| (*endnum) ++; |
| } |
| } |
| } |
| |
| static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, |
| kernel_long_ad laarr[EXTENT_MERGE_SIZE], int *endnum) |
| { |
| int start, length = 0, currlength = 0, i; |
| |
| if (*endnum >= (c+1)) |
| { |
| if (!lastblock) |
| return; |
| else |
| start = c; |
| } |
| else |
| { |
| if ((laarr[c+1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) |
| { |
| start = c+1; |
| length = currlength = (((laarr[c+1].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); |
| } |
| else |
| start = c; |
| } |
| |
| for (i=start+1; i<=*endnum; i++) |
| { |
| if (i == *endnum) |
| { |
| if (lastblock) |
| length += UDF_DEFAULT_PREALLOC_BLOCKS; |
| } |
| else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) |
| length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); |
| else |
| break; |
| } |
| |
| if (length) |
| { |
| int next = laarr[start].extLocation.logicalBlockNum + |
| (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); |
| int numalloc = udf_prealloc_blocks(inode->i_sb, inode, |
| laarr[start].extLocation.partitionReferenceNum, |
| next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length : |
| UDF_DEFAULT_PREALLOC_BLOCKS) - currlength); |
| |
| if (numalloc) |
| { |
| if (start == (c+1)) |
| laarr[start].extLength += |
| (numalloc << inode->i_sb->s_blocksize_bits); |
| else |
| { |
| memmove(&laarr[c+2], &laarr[c+1], |
| sizeof(long_ad) * (*endnum - (c+1))); |
| (*endnum) ++; |
| laarr[c+1].extLocation.logicalBlockNum = next; |
| laarr[c+1].extLocation.partitionReferenceNum = |
| laarr[c].extLocation.partitionReferenceNum; |
| laarr[c+1].extLength = EXT_NOT_RECORDED_ALLOCATED | |
| (numalloc << inode->i_sb->s_blocksize_bits); |
| start = c+1; |
| } |
| |
| for (i=start+1; numalloc && i<*endnum; i++) |
| { |
| int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; |
| |
| if (elen > numalloc) |
| { |
| laarr[i].extLength -= |
| (numalloc << inode->i_sb->s_blocksize_bits); |
| numalloc = 0; |
| } |
| else |
| { |
| numalloc -= elen; |
| if (*endnum > (i+1)) |
| memmove(&laarr[i], &laarr[i+1], |
| sizeof(long_ad) * (*endnum - (i+1))); |
| i --; |
| (*endnum) --; |
| } |
| } |
| UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits; |
| } |
| } |
| } |
| |
| static void udf_merge_extents(struct inode *inode, |
| kernel_long_ad laarr[EXTENT_MERGE_SIZE], int *endnum) |
| { |
| int i; |
| |
| for (i=0; i<(*endnum-1); i++) |
| { |
| if ((laarr[i].extLength >> 30) == (laarr[i+1].extLength >> 30)) |
| { |
| if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || |
| ((laarr[i+1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) == |
| (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) |
| { |
| if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| (laarr[i+1].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) |
| { |
| laarr[i+1].extLength = (laarr[i+1].extLength - |
| (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize-1); |
| laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) + |
| (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize; |
| laarr[i+1].extLocation.logicalBlockNum = |
| laarr[i].extLocation.logicalBlockNum + |
| ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >> |
| inode->i_sb->s_blocksize_bits); |
| } |
| else |
| { |
| laarr[i].extLength = laarr[i+1].extLength + |
| (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize-1)); |
| if (*endnum > (i+2)) |
| memmove(&laarr[i+1], &laarr[i+2], |
| sizeof(long_ad) * (*endnum - (i+2))); |
| i --; |
| (*endnum) --; |
| } |
| } |
| } |
| else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) && |
| ((laarr[i+1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) |
| { |
| udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0, |
| ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); |
| laarr[i].extLocation.logicalBlockNum = 0; |
| laarr[i].extLocation.partitionReferenceNum = 0; |
| |
| if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| (laarr[i+1].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) |
| { |
| laarr[i+1].extLength = (laarr[i+1].extLength - |
| (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize-1); |
| laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) + |
| (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize; |
| } |
| else |
| { |
| laarr[i].extLength = laarr[i+1].extLength + |
| (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize-1)); |
| if (*endnum > (i+2)) |
| memmove(&laarr[i+1], &laarr[i+2], |
| sizeof(long_ad) * (*endnum - (i+2))); |
| i --; |
| (*endnum) --; |
| } |
| } |
| else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) |
| { |
| udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0, |
| ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + |
| inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); |
| laarr[i].extLocation.logicalBlockNum = 0; |
| laarr[i].extLocation.partitionReferenceNum = 0; |
| laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) | |
| EXT_NOT_RECORDED_NOT_ALLOCATED; |
| } |
| } |
| } |
| |
| static void udf_update_extents(struct inode *inode, |
| kernel_long_ad laarr[EXTENT_MERGE_SIZE], int startnum, int endnum, |
| kernel_lb_addr pbloc, uint32_t pextoffset, struct buffer_head **pbh) |
| { |
| int start = 0, i; |
| kernel_lb_addr tmploc; |
| uint32_t tmplen; |
| |
| if (startnum > endnum) |
| { |
| for (i=0; i<(startnum-endnum); i++) |
| { |
| udf_delete_aext(inode, pbloc, pextoffset, laarr[i].extLocation, |
| laarr[i].extLength, *pbh); |
| } |
| } |
| else if (startnum < endnum) |
| { |
| for (i=0; i<(endnum-startnum); i++) |
| { |
| udf_insert_aext(inode, pbloc, pextoffset, laarr[i].extLocation, |
| laarr[i].extLength, *pbh); |
| udf_next_aext(inode, &pbloc, &pextoffset, &laarr[i].extLocation, |
| &laarr[i].extLength, pbh, 1); |
| start ++; |
| } |
| } |
| |
| for (i=start; i<endnum; i++) |
| { |
| udf_next_aext(inode, &pbloc, &pextoffset, &tmploc, &tmplen, pbh, 0); |
| udf_write_aext(inode, pbloc, &pextoffset, laarr[i].extLocation, |
| laarr[i].extLength, *pbh, 1); |
| } |
| } |
| |
| struct buffer_head * udf_bread(struct inode * inode, int block, |
| int create, int * err) |
| { |
| struct buffer_head * bh = NULL; |
| |
| bh = udf_getblk(inode, block, create, err); |
| if (!bh) |
| return NULL; |
| |
| if (buffer_uptodate(bh)) |
| return bh; |
| ll_rw_block(READ, 1, &bh); |
| wait_on_buffer(bh); |
| if (buffer_uptodate(bh)) |
| return bh; |
| brelse(bh); |
| *err = -EIO; |
| return NULL; |
| } |
| |
| void udf_truncate(struct inode * inode) |
| { |
| int offset; |
| int err; |
| |
| if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || |
| S_ISLNK(inode->i_mode))) |
| return; |
| if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) |
| return; |
| |
| lock_kernel(); |
| if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) |
| { |
| if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) + |
| inode->i_size)) |
| { |
| udf_expand_file_adinicb(inode, inode->i_size, &err); |
| if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) |
| { |
| inode->i_size = UDF_I_LENALLOC(inode); |
| unlock_kernel(); |
| return; |
| } |
| else |
| udf_truncate_extents(inode); |
| } |
| else |
| { |
| offset = inode->i_size & (inode->i_sb->s_blocksize - 1); |
| memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00, inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode)); |
| UDF_I_LENALLOC(inode) = inode->i_size; |
| } |
| } |
| else |
| { |
| block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block); |
| udf_truncate_extents(inode); |
| } |
| |
| inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); |
| if (IS_SYNC(inode)) |
| udf_sync_inode (inode); |
| else |
| mark_inode_dirty(inode); |
| unlock_kernel(); |
| } |
| |
| static void |
| __udf_read_inode(struct inode *inode) |
| { |
| struct buffer_head *bh = NULL; |
| struct fileEntry *fe; |
| uint16_t ident; |
| |
| /* |
| * Set defaults, but the inode is still incomplete! |
| * Note: get_new_inode() sets the following on a new inode: |
| * i_sb = sb |
| * i_no = ino |
| * i_flags = sb->s_flags |
| * i_state = 0 |
| * clean_inode(): zero fills and sets |
| * i_count = 1 |
| * i_nlink = 1 |
| * i_op = NULL; |
| */ |
| inode->i_blksize = PAGE_SIZE; |
| |
| bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident); |
| |
| if (!bh) |
| { |
| printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", |
| inode->i_ino); |
| make_bad_inode(inode); |
| return; |
| } |
| |
| if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && |
| ident != TAG_IDENT_USE) |
| { |
| printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n", |
| inode->i_ino, ident); |
| udf_release_data(bh); |
| make_bad_inode(inode); |
| return; |
| } |
| |
| fe = (struct fileEntry *)bh->b_data; |
| |
| if (le16_to_cpu(fe->icbTag.strategyType) == 4096) |
| { |
| struct buffer_head *ibh = NULL, *nbh = NULL; |
| struct indirectEntry *ie; |
| |
| ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident); |
| if (ident == TAG_IDENT_IE) |
| { |
| if (ibh) |
| { |
| kernel_lb_addr loc; |
| ie = (struct indirectEntry *)ibh->b_data; |
| |
| loc = lelb_to_cpu(ie->indirectICB.extLocation); |
| |
| if (ie->indirectICB.extLength && |
| (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) |
| { |
| if (ident == TAG_IDENT_FE || |
| ident == TAG_IDENT_EFE) |
| { |
| memcpy(&UDF_I_LOCATION(inode), &loc, sizeof(kernel_lb_addr)); |
| udf_release_data(bh); |
| udf_release_data(ibh); |
| udf_release_data(nbh); |
| __udf_read_inode(inode); |
| return; |
| } |
| else |
| { |
| udf_release_data(nbh); |
| udf_release_data(ibh); |
| } |
| } |
| else |
| udf_release_data(ibh); |
| } |
| } |
| else |
| udf_release_data(ibh); |
| } |
| else if (le16_to_cpu(fe->icbTag.strategyType) != 4) |
| { |
| printk(KERN_ERR "udf: unsupported strategy type: %d\n", |
| le16_to_cpu(fe->icbTag.strategyType)); |
| udf_release_data(bh); |
| make_bad_inode(inode); |
| return; |
| } |
| udf_fill_inode(inode, bh); |
| udf_release_data(bh); |
| } |
| |
| static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) |
| { |
| struct fileEntry *fe; |
| struct extendedFileEntry *efe; |
| time_t convtime; |
| long convtime_usec; |
| int offset; |
| |
| fe = (struct fileEntry *)bh->b_data; |
| efe = (struct extendedFileEntry *)bh->b_data; |
| |
| if (le16_to_cpu(fe->icbTag.strategyType) == 4) |
| UDF_I_STRAT4096(inode) = 0; |
| else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */ |
| UDF_I_STRAT4096(inode) = 1; |
| |
| UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK; |
| UDF_I_UNIQUE(inode) = 0; |
| UDF_I_LENEATTR(inode) = 0; |
| UDF_I_LENEXTENTS(inode) = 0; |
| UDF_I_LENALLOC(inode) = 0; |
| UDF_I_NEXT_ALLOC_BLOCK(inode) = 0; |
| UDF_I_NEXT_ALLOC_GOAL(inode) = 0; |
| if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) |
| { |
| UDF_I_EFE(inode) = 1; |
| UDF_I_USE(inode) = 0; |
| UDF_I_DATA(inode) = kmalloc(inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry), GFP_KERNEL); |
| memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry), inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); |
| } |
| else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) |
| { |
| UDF_I_EFE(inode) = 0; |
| UDF_I_USE(inode) = 0; |
| UDF_I_DATA(inode) = kmalloc(inode->i_sb->s_blocksize - sizeof(struct fileEntry), GFP_KERNEL); |
| memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry), inode->i_sb->s_blocksize - sizeof(struct fileEntry)); |
| } |
| else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) |
| { |
| UDF_I_EFE(inode) = 0; |
| UDF_I_USE(inode) = 1; |
| UDF_I_LENALLOC(inode) = |
| le32_to_cpu( |
| ((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs); |
| UDF_I_DATA(inode) = kmalloc(inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry), GFP_KERNEL); |
| memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry), inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); |
| return; |
| } |
| |
| inode->i_uid = le32_to_cpu(fe->uid); |
| if ( inode->i_uid == -1 ) inode->i_uid = UDF_SB(inode->i_sb)->s_uid; |
| |
| inode->i_gid = le32_to_cpu(fe->gid); |
| if ( inode->i_gid == -1 ) inode->i_gid = UDF_SB(inode->i_sb)->s_gid; |
| |
| inode->i_nlink = le16_to_cpu(fe->fileLinkCount); |
| if (!inode->i_nlink) |
| inode->i_nlink = 1; |
| |
| inode->i_size = le64_to_cpu(fe->informationLength); |
| UDF_I_LENEXTENTS(inode) = inode->i_size; |
| |
| inode->i_mode = udf_convert_permissions(fe); |
| inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; |
| |
| if (UDF_I_EFE(inode) == 0) |
| { |
| inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << |
| (inode->i_sb->s_blocksize_bits - 9); |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(fe->accessTime)) ) |
| { |
| inode->i_atime.tv_sec = convtime; |
| inode->i_atime.tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(fe->modificationTime)) ) |
| { |
| inode->i_mtime.tv_sec = convtime; |
| inode->i_mtime.tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(fe->attrTime)) ) |
| { |
| inode->i_ctime.tv_sec = convtime; |
| inode->i_ctime.tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID); |
| UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr); |
| UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs); |
| offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode); |
| } |
| else |
| { |
| inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << |
| (inode->i_sb->s_blocksize_bits - 9); |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(efe->accessTime)) ) |
| { |
| inode->i_atime.tv_sec = convtime; |
| inode->i_atime.tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(efe->modificationTime)) ) |
| { |
| inode->i_mtime.tv_sec = convtime; |
| inode->i_mtime.tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(efe->createTime)) ) |
| { |
| UDF_I_CRTIME(inode).tv_sec = convtime; |
| UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| if ( udf_stamp_to_time(&convtime, &convtime_usec, |
| lets_to_cpu(efe->attrTime)) ) |
| { |
| inode->i_ctime.tv_sec = convtime; |
| inode->i_ctime.tv_nsec = convtime_usec * 1000; |
| } |
| else |
| { |
| inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb); |
| } |
| |
| UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID); |
| UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr); |
| UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs); |
| offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode); |
| } |
| |
| switch (fe->icbTag.fileType) |
| { |
| case ICBTAG_FILE_TYPE_DIRECTORY: |
| { |
| inode->i_op = &udf_dir_inode_operations; |
| inode->i_fop = &udf_dir_operations; |
| inode->i_mode |= S_IFDIR; |
| inode->i_nlink ++; |
| break; |
| } |
| case ICBTAG_FILE_TYPE_REALTIME: |
| case ICBTAG_FILE_TYPE_REGULAR: |
| case ICBTAG_FILE_TYPE_UNDEF: |
| { |
| if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) |
| inode->i_data.a_ops = &udf_adinicb_aops; |
| else |
| inode->i_data.a_ops = &udf_aops; |
| inode->i_op = &udf_file_inode_operations; |
| inode->i_fop = &udf_file_operations; |
| inode->i_mode |= S_IFREG; |
| break; |
| } |
| case ICBTAG_FILE_TYPE_BLOCK: |
| { |
| inode->i_mode |= S_IFBLK; |
| break; |
| } |
| case ICBTAG_FILE_TYPE_CHAR: |
| { |
| inode->i_mode |= S_IFCHR; |
| break; |
| } |
| case ICBTAG_FILE_TYPE_FIFO: |
| { |
| init_special_inode(inode, inode->i_mode | S_IFIFO, 0); |
| break; |
| } |
| case ICBTAG_FILE_TYPE_SOCKET: |
| { |
| init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); |
| break; |
| } |
| case ICBTAG_FILE_TYPE_SYMLINK: |
| { |
| inode->i_data.a_ops = &udf_symlink_aops; |
| inode->i_op = &page_symlink_inode_operations; |
| inode->i_mode = S_IFLNK|S_IRWXUGO; |
| break; |
| } |
| default: |
| { |
| printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n", |
| inode->i_ino, fe->icbTag.fileType); |
| make_bad_inode(inode); |
| return; |
| } |
| } |
| if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) |
| { |
| struct deviceSpec *dsea = |
| (struct deviceSpec *) |
| udf_get_extendedattr(inode, 12, 1); |
| |
| if (dsea) |
| { |
| init_special_inode(inode, inode->i_mode, MKDEV( |
| le32_to_cpu(dsea->majorDeviceIdent), |
| le32_to_cpu(dsea->minorDeviceIdent))); |
| /* Developer ID ??? */ |
| } |
| else |
| { |
| make_bad_inode(inode); |
| } |
| } |
| } |
| |
| static mode_t |
| udf_convert_permissions(struct fileEntry *fe) |
| { |
| mode_t mode; |
| uint32_t permissions; |
| uint32_t flags; |
| |
| permissions = le32_to_cpu(fe->permissions); |
| flags = le16_to_cpu(fe->icbTag.flags); |
| |
| mode = (( permissions ) & S_IRWXO) | |
| (( permissions >> 2 ) & S_IRWXG) | |
| (( permissions >> 4 ) & S_IRWXU) | |
| (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | |
| (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | |
| (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); |
| |
| return mode; |
| } |
| |
| /* |
| * udf_write_inode |
| * |
| * PURPOSE |
| * Write out the specified inode. |
| * |
| * DESCRIPTION |
| * This routine is called whenever an inode is synced. |
| * Currently this routine is just a placeholder. |
| * |
| * HISTORY |
| * July 1, 1997 - Andrew E. Mileski |
| * Written, tested, and released. |
| */ |
| |
| int udf_write_inode(struct inode * inode, int sync) |
| { |
| int ret; |
| lock_kernel(); |
| ret = udf_update_inode(inode, sync); |
| unlock_kernel(); |
| return ret; |
| } |
| |
| int udf_sync_inode(struct inode * inode) |
| { |
| return udf_update_inode(inode, 1); |
| } |
| |
| static int |
| udf_update_inode(struct inode *inode, int do_sync) |
| { |
| struct buffer_head *bh = NULL; |
| struct fileEntry *fe; |
| struct extendedFileEntry *efe; |
| uint32_t udfperms; |
| uint16_t icbflags; |
| uint16_t crclen; |
| int i; |
| kernel_timestamp cpu_time; |
| int err = 0; |
| |
| bh = udf_tread(inode->i_sb, |
| udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0)); |
| |
| if (!bh) |
| { |
| udf_debug("bread failure\n"); |
| return -EIO; |
| } |
| |
| memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); |
| |
| fe = (struct fileEntry *)bh->b_data; |
| efe = (struct extendedFileEntry *)bh->b_data; |
| |
| if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) |
| { |
| struct unallocSpaceEntry *use = |
| (struct unallocSpaceEntry *)bh->b_data; |
| |
| use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); |
| memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode), inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); |
| crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - |
| sizeof(tag); |
| use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum); |
| use->descTag.descCRCLength = cpu_to_le16(crclen); |
| use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0)); |
| |
| use->descTag.tagChecksum = 0; |
| for (i=0; i<16; i++) |
| if (i != 4) |
| use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i]; |
| |
| mark_buffer_dirty(bh); |
| udf_release_data(bh); |
| return err; |
| } |
| |
| if (inode->i_uid != UDF_SB(inode->i_sb)->s_uid) |
| fe->uid = cpu_to_le32(inode->i_uid); |
| |
| if (inode->i_gid != UDF_SB(inode->i_sb)->s_gid) |
| fe->gid = cpu_to_le32(inode->i_gid); |
| |
| udfperms = ((inode->i_mode & S_IRWXO) ) | |
| ((inode->i_mode & S_IRWXG) << 2) | |
| ((inode->i_mode & S_IRWXU) << 4); |
| |
| udfperms |= (le32_to_cpu(fe->permissions) & |
| (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | |
| FE_PERM_G_DELETE | FE_PERM_G_CHATTR | |
| FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); |
| fe->permissions = cpu_to_le32(udfperms); |
| |
| if (S_ISDIR(inode->i_mode)) |
| fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); |
| else |
| fe->fileLinkCount = cpu_to_le16(inode->i_nlink); |
| |
| fe->informationLength = cpu_to_le64(inode->i_size); |
| |
| if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) |
| { |
| regid *eid; |
| struct deviceSpec *dsea = |
| (struct deviceSpec *) |
| udf_get_extendedattr(inode, 12, 1); |
| |
| if (!dsea) |
| { |
| dsea = (struct deviceSpec *) |
| udf_add_extendedattr(inode, |
| sizeof(struct deviceSpec) + |
| sizeof(regid), 12, 0x3); |
| dsea->attrType = cpu_to_le32(12); |
| dsea->attrSubtype = 1; |
| dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) + |
| sizeof(regid)); |
| dsea->impUseLength = cpu_to_le32(sizeof(regid)); |
| } |
| eid = (regid *)dsea->impUse; |
| memset(eid, 0, sizeof(regid)); |
| strcpy(eid->ident, UDF_ID_DEVELOPER); |
| eid->identSuffix[0] = UDF_OS_CLASS_UNIX; |
| eid->identSuffix[1] = UDF_OS_ID_LINUX; |
| dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); |
| dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); |
| } |
| |
| if (UDF_I_EFE(inode) == 0) |
| { |
| memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode), inode->i_sb->s_blocksize - sizeof(struct fileEntry)); |
| fe->logicalBlocksRecorded = cpu_to_le64( |
| (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >> |
| (inode->i_sb->s_blocksize_bits - 9)); |
| |
| if (udf_time_to_stamp(&cpu_time, inode->i_atime)) |
| fe->accessTime = cpu_to_lets(cpu_time); |
| if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) |
| fe->modificationTime = cpu_to_lets(cpu_time); |
| if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) |
| fe->attrTime = cpu_to_lets(cpu_time); |
| memset(&(fe->impIdent), 0, sizeof(regid)); |
| strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); |
| fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; |
| fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; |
| fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode)); |
| fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode)); |
| fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); |
| fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); |
| crclen = sizeof(struct fileEntry); |
| } |
| else |
| { |
| memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode), inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); |
| efe->objectSize = cpu_to_le64(inode->i_size); |
| efe->logicalBlocksRecorded = cpu_to_le64( |
| (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >> |
| (inode->i_sb->s_blocksize_bits - 9)); |
| |
| if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec || |
| (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec && |
| UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) |
| { |
| UDF_I_CRTIME(inode) = inode->i_atime; |
| } |
| if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec || |
| (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec && |
| UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) |
| { |
| UDF_I_CRTIME(inode) = inode->i_mtime; |
| } |
| if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec || |
| (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec && |
| UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) |
| { |
| UDF_I_CRTIME(inode) = inode->i_ctime; |
| } |
| |
| if (udf_time_to_stamp(&cpu_time, inode->i_atime)) |
| efe->accessTime = cpu_to_lets(cpu_time); |
| if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) |
| efe->modificationTime = cpu_to_lets(cpu_time); |
| if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode))) |
| efe->createTime = cpu_to_lets(cpu_time); |
| if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) |
| efe->attrTime = cpu_to_lets(cpu_time); |
| |
| memset(&(efe->impIdent), 0, sizeof(regid)); |
| strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); |
| efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; |
| efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; |
| efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode)); |
| efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode)); |
| efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); |
| efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); |
| crclen = sizeof(struct extendedFileEntry); |
| } |
| if (UDF_I_STRAT4096(inode)) |
| { |
| fe->icbTag.strategyType = cpu_to_le16(4096); |
| fe->icbTag.strategyParameter = cpu_to_le16(1); |
| fe->icbTag.numEntries = cpu_to_le16(2); |
| } |
| else |
| { |
| fe->icbTag.strategyType = cpu_to_le16(4); |
| fe->icbTag.numEntries = cpu_to_le16(1); |
| } |
| |
| if (S_ISDIR(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; |
| else if (S_ISREG(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; |
| else if (S_ISLNK(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; |
| else if (S_ISBLK(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; |
| else if (S_ISCHR(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; |
| else if (S_ISFIFO(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; |
| else if (S_ISSOCK(inode->i_mode)) |
| fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; |
| |
| icbflags = UDF_I_ALLOCTYPE(inode) | |
| ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | |
| ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | |
| ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | |
| (le16_to_cpu(fe->icbTag.flags) & |
| ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | |
| ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); |
| |
| fe->icbTag.flags = cpu_to_le16(icbflags); |
| if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200) |
| fe->descTag.descVersion = cpu_to_le16(3); |
| else |
| fe->descTag.descVersion = cpu_to_le16(2); |
| fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb)); |
| fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum); |
| crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag); |
| fe->descTag.descCRCLength = cpu_to_le16(crclen); |
| fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0)); |
| |
| fe->descTag.tagChecksum = 0; |
| for (i=0; i<16; i++) |
| if (i != 4) |
| fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i]; |
| |
| /* write the data blocks */ |
| mark_buffer_dirty(bh); |
| if (do_sync) |
| { |
| sync_dirty_buffer(bh); |
| if (buffer_req(bh) && !buffer_uptodate(bh)) |
| { |
| printk("IO error syncing udf inode [%s:%08lx]\n", |
| inode->i_sb->s_id, inode->i_ino); |
| err = -EIO; |
| } |
| } |
| udf_release_data(bh); |
| return err; |
| } |
| |
| struct inode * |
| udf_iget(struct super_block *sb, kernel_lb_addr ino) |
| { |
| unsigned long block = udf_get_lb_pblock(sb, ino, 0); |
| struct inode *inode = iget_locked(sb, block); |
| |
| if (!inode) |
| return NULL; |
| |
| if (inode->i_state & I_NEW) { |
| memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr)); |
| __udf_read_inode(inode); |
| unlock_new_inode(inode); |
| } |
| |
| if (is_bad_inode(inode)) |
| goto out_iput; |
| |
| if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) { |
| udf_debug("block=%d, partition=%d out of range\n", |
| ino.logicalBlockNum, ino.partitionReferenceNum); |
| make_bad_inode(inode); |
| goto out_iput; |
| } |
| |
| return inode; |
| |
| out_iput: |
| iput(inode); |
| return NULL; |
| } |
| |
| int8_t udf_add_aext(struct inode *inode, kernel_lb_addr *bloc, int *extoffset, |
| kernel_lb_addr eloc, uint32_t elen, struct buffer_head **bh, int inc) |
| { |
| int adsize; |
| short_ad *sad = NULL; |
| long_ad *lad = NULL; |
| struct allocExtDesc *aed; |
| int8_t etype; |
| uint8_t *ptr; |
| |
| if (!*bh) |
| ptr = UDF_I_DATA(inode) + *extoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); |
| else |
| ptr = (*bh)->b_data + *extoffset; |
| |
| if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) |
| adsize = sizeof(short_ad); |
| else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) |
| adsize = sizeof(long_ad); |
| else |
| return -1; |
| |
| if (*extoffset + (2 * adsize) > inode->i_sb->s_blocksize) |
| { |
| char *sptr, *dptr; |
| struct buffer_head *nbh; |
| int err, loffset; |
| kernel_lb_addr obloc = *bloc; |
| |
| if (!(bloc->logicalBlockNum = udf_new_block(inode->i_sb, NULL, |
| obloc.partitionReferenceNum, obloc.logicalBlockNum, &err))) |
| { |
| return -1; |
| } |
| if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, |
| *bloc, 0)))) |
| { |
| return -1; |
| } |
| lock_buffer(nbh); |
| memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); |
| set_buffer_uptodate(nbh); |
| unlock_buffer(nbh); |
| mark_buffer_dirty_inode(nbh, inode); |
| |
| aed = (struct allocExtDesc *)(nbh->b_data); |
| if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) |
| aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); |
| if (*extoffset + adsize > inode->i_sb->s_blocksize) |
| { |
| loffset = *extoffset; |
| aed->lengthAllocDescs = cpu_to_le32(adsize); |
| sptr = ptr - adsize; |
| dptr = nbh->b_data + sizeof(struct allocExtDesc); |
| memcpy(dptr, sptr, adsize); |
| *extoffset = sizeof(struct allocExtDesc) + adsize; |
| } |
| else |
| { |
| loffset = *extoffset + adsize; |
| aed->lengthAllocDescs = cpu_to_le32(0); |
| sptr = ptr; |
| *extoffset = sizeof(struct allocExtDesc); |
| |
| if (*bh) |
| { |
| aed = (struct allocExtDesc *)(*bh)->b_data; |
| aed->lengthAllocDescs = |
| cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); |
| } |
| else |
| { |
| UDF_I_LENALLOC(inode) += adsize; |
| mark_inode_dirty(inode); |
| } |
| } |
| if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200) |
| udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, |
| bloc->logicalBlockNum, sizeof(tag)); |
| else |
| udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, |
| bloc->logicalBlockNum, sizeof(tag)); |
| switch (UDF_I_ALLOCTYPE(inode)) |
| { |
| case ICBTAG_FLAG_AD_SHORT: |
| { |
| sad = (short_ad *)sptr; |
| sad->extLength = cpu_to_le32( |
| EXT_NEXT_EXTENT_ALLOCDECS | |
| inode->i_sb->s_blocksize); |
| sad->extPosition = cpu_to_le32(bloc->logicalBlockNum); |
| break; |
| } |
| case ICBTAG_FLAG_AD_LONG: |
| { |
| lad = (long_ad *)sptr; |
| lad->extLength = cpu_to_le32( |
| EXT_NEXT_EXTENT_ALLOCDECS | |
| inode->i_sb->s_blocksize); |
| lad->extLocation = cpu_to_lelb(*bloc); |
| memset(lad->impUse, 0x00, sizeof(lad->impUse)); |
| break; |
| } |
| } |
| if (*bh) |
| { |
| if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) |
| udf_update_tag((*bh)->b_data, loffset); |
| else |
| udf_update_tag((*bh)->b_data, sizeof(struct allocExtDesc)); |
| mark_buffer_dirty_inode(*bh, inode); |
| udf_release_data(*bh); |
| } |
| else |
| mark_inode_dirty(inode); |
| *bh = nbh; |
| } |
| |
| etype = udf_write_aext(inode, *bloc, extoffset, eloc, elen, *bh, inc); |
| |
| if (!*bh) |
| { |
| UDF_I_LENALLOC(inode) += adsize; |
| mark_inode_dirty(inode); |
| } |
| else |
| { |
| aed = (struct allocExtDesc *)(*bh)->b_data; |
| aed->lengthAllocDescs = |
| cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); |
| if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) |
| udf_update_tag((*bh)->b_data, *extoffset + (inc ? 0 : adsize)); |
| else |
| udf_update_tag((*bh)->b_data, sizeof(struct allocExtDesc)); |
| mark_buffer_dirty_inode(*bh, inode); |
| } |
| |
| return etype; |
| } |
| |
| int8_t udf_write_aext(struct inode *inode, kernel_lb_addr bloc, int *extoffset, |
| kernel_lb_addr eloc, uint32_t elen, struct buffer_head *bh, int inc) |
| { |
| int adsize; |
| uint8_t *ptr; |
| |
| if (!bh) |
| ptr = UDF_I_DATA(inode) + *extoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); |
| else |
| { |
| ptr = bh->b_data + *extoffset; |
| atomic_inc(&bh->b_count); |
| } |
| |
| switch (UDF_I_ALLOCTYPE(inode)) |
| { |
| case ICBTAG_FLAG_AD_SHORT: |
| { |
| short_ad *sad = (short_ad *)ptr; |
| sad->extLength = cpu_to_le32(elen); |
| sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); |
| adsize = sizeof(short_ad); |
| break; |
| } |
| case ICBTAG_FLAG_AD_LONG: |
| { |
| long_ad *lad = (long_ad *)ptr; |
| lad->extLength = cpu_to_le32(elen); |
| lad->extLocation = cpu_to_lelb(eloc); |
| memset(lad->impUse, 0x00, sizeof(lad->impUse)); |
| adsize = sizeof(long_ad); |
| break; |
| } |
| default: |
| return -1; |
| } |
| |
| if (bh) |
| { |
| if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) |
| { |
| struct allocExtDesc *aed = (struct allocExtDesc *)(bh)->b_data; |
| udf_update_tag((bh)->b_data, |
| le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc)); |
| } |
| mark_buffer_dirty_inode(bh, inode); |
| udf_release_data(bh); |
| } |
| else |
| mark_inode_dirty(inode); |
| |
| if (inc) |
| *extoffset += adsize; |
| return (elen >> 30); |
| } |
| |
| int8_t udf_next_aext(struct inode *inode, kernel_lb_addr *bloc, int *extoffset, |
| kernel_lb_addr *eloc, uint32_t *elen, struct buffer_head **bh, int inc) |
| { |
| int8_t etype; |
| |
| while ((etype = udf_current_aext(inode, bloc, extoffset, eloc, elen, bh, inc)) == |
| (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) |
| { |
| *bloc = *eloc; |
| *extoffset = sizeof(struct allocExtDesc); |
| udf_release_data(*bh); |
| if (!(*bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, *bloc, 0)))) |
| { |
| udf_debug("reading block %d failed!\n", |
| udf_get_lb_pblock(inode->i_sb, *bloc, 0)); |
| return -1; |
| } |
| } |
| |
| return etype; |
| } |
| |
| int8_t udf_current_aext(struct inode *inode, kernel_lb_addr *bloc, int *extoffset, |
| kernel_lb_addr *eloc, uint32_t *elen, struct buffer_head **bh, int inc) |
| { |
| int alen; |
| int8_t etype; |
| uint8_t *ptr; |
| |
| if (!*bh) |
| { |
| if (!(*extoffset)) |
| *extoffset = udf_file_entry_alloc_offset(inode); |
| ptr = UDF_I_DATA(inode) + *extoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); |
| alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode); |
| } |
| else |
| { |
| if (!(*extoffset)) |
| *extoffset = sizeof(struct allocExtDesc); |
| ptr = (*bh)->b_data + *extoffset; |
| alen = sizeof(struct allocExtDesc) + le32_to_cpu(((struct allocExtDesc *)(*bh)->b_data)->lengthAllocDescs); |
| } |
| |
| switch (UDF_I_ALLOCTYPE(inode)) |
| { |
| case ICBTAG_FLAG_AD_SHORT: |
| { |
| short_ad *sad; |
| |
| if (!(sad = udf_get_fileshortad(ptr, alen, extoffset, inc))) |
| return -1; |
| |
| etype = le32_to_cpu(sad->extLength) >> 30; |
| eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); |
| eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum; |
| *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; |
| break; |
| } |
| case ICBTAG_FLAG_AD_LONG: |
| { |
| long_ad *lad; |
| |
| if (!(lad = udf_get_filelongad(ptr, alen, extoffset, inc))) |
| return -1; |
| |
| etype = le32_to_cpu(lad->extLength) >> 30; |
| *eloc = lelb_to_cpu(lad->extLocation); |
| *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; |
| break; |
| } |
| default: |
| { |
| udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode)); |
| return -1; |
| } |
| } |
| |
| return etype; |
| } |
| |
| static int8_t |
| udf_insert_aext(struct inode *inode, kernel_lb_addr bloc, int extoffset, |
| kernel_lb_addr neloc, uint32_t nelen, struct buffer_head *bh) |
| { |
| kernel_lb_addr oeloc; |
| uint32_t oelen; |
| int8_t etype; |
| |
| if (bh) |
| atomic_inc(&bh->b_count); |
| |
| while ((etype = udf_next_aext(inode, &bloc, &extoffset, &oeloc, &oelen, &bh, 0)) != -1) |
| { |
| udf_write_aext(inode, bloc, &extoffset, neloc, nelen, bh, 1); |
| |
| neloc = oeloc; |
| nelen = (etype << 30) | oelen; |
| } |
| udf_add_aext(inode, &bloc, &extoffset, neloc, nelen, &bh, 1); |
| udf_release_data(bh); |
| return (nelen >> 30); |
| } |
| |
| int8_t udf_delete_aext(struct inode *inode, kernel_lb_addr nbloc, int nextoffset, |
| kernel_lb_addr eloc, uint32_t elen, struct buffer_head *nbh) |
| { |
| struct buffer_head *obh; |
| kernel_lb_addr obloc; |
| int oextoffset, adsize; |
| int8_t etype; |
| struct allocExtDesc *aed; |
| |
| if (nbh) |
| { |
| atomic_inc(&nbh->b_count); |
| atomic_inc(&nbh->b_count); |
| } |
| |
| if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) |
| adsize = sizeof(short_ad); |
| else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) |
| adsize = sizeof(long_ad); |
| else |
| adsize = 0; |
| |
| obh = nbh; |
| obloc = nbloc; |
| oextoffset = nextoffset; |
| |
| if (udf_next_aext(inode, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1) == -1) |
| return -1; |
| |
| while ((etype = udf_next_aext(inode, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1) |
| { |
| udf_write_aext(inode, obloc, &oextoffset, eloc, (etype << 30) | elen, obh, 1); |
| if (obh != nbh) |
| { |
| obloc = nbloc; |
| udf_release_data(obh); |
| atomic_inc(&nbh->b_count); |
| obh = nbh; |
| oextoffset = nextoffset - adsize; |
| } |
| } |
| memset(&eloc, 0x00, sizeof(kernel_lb_addr)); |
| elen = 0; |
| |
| if (nbh != obh) |
| { |
| udf_free_blocks(inode->i_sb, inode, nbloc, 0, 1); |
| udf_write_aext(inode, obloc, &oextoffset, eloc, elen, obh, 1); |
| udf_write_aext(inode, obloc, &oextoffset, eloc, elen, obh, 1); |
| if (!obh) |
| { |
| UDF_I_LENALLOC(inode) -= (adsize * 2); |
| mark_inode_dirty(inode); |
| } |
| else |
| { |
| aed = (struct allocExtDesc *)(obh)->b_data; |
| aed->lengthAllocDescs = |
| cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2*adsize)); |
| if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) |
| udf_update_tag((obh)->b_data, oextoffset - (2*adsize)); |
| else |
| udf_update_tag((obh)->b_data, sizeof(struct allocExtDesc)); |
| mark_buffer_dirty_inode(obh, inode); |
| } |
| } |
| else |
| { |
| udf_write_aext(inode, obloc, &oextoffset, eloc, elen, obh, 1); |
| if (!obh) |
| { |
| UDF_I_LENALLOC(inode) -= adsize; |
| mark_inode_dirty(inode); |
| } |
| else |
| { |
| aed = (struct allocExtDesc *)(obh)->b_data; |
| aed->lengthAllocDescs = |
| cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize); |
| if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) |
| udf_update_tag((obh)->b_data, oextoffset - adsize); |
| else |
| udf_update_tag((obh)->b_data, sizeof(struct allocExtDesc)); |
| mark_buffer_dirty_inode(obh, inode); |
| } |
| } |
| |
| udf_release_data(nbh); |
| udf_release_data(obh); |
| return (elen >> 30); |
| } |
| |
| int8_t inode_bmap(struct inode *inode, int block, kernel_lb_addr *bloc, uint32_t *extoffset, |
| kernel_lb_addr *eloc, uint32_t *elen, uint32_t *offset, struct buffer_head **bh) |
| { |
| uint64_t lbcount = 0, bcount = (uint64_t)block << inode->i_sb->s_blocksize_bits; |
| int8_t etype; |
| |
| if (block < 0) |
| { |
| printk(KERN_ERR "udf: inode_bmap: block < 0\n"); |
| return -1; |
| } |
| |
| *extoffset = 0; |
| *elen = 0; |
| *bloc = UDF_I_LOCATION(inode); |
| |
| do |
| { |
| if ((etype = udf_next_aext(inode, bloc, extoffset, eloc, elen, bh, 1)) == -1) |
| { |
| *offset = bcount - lbcount; |
| UDF_I_LENEXTENTS(inode) = lbcount; |
| return -1; |
| } |
| lbcount += *elen; |
| } while (lbcount <= bcount); |
| |
| *offset = bcount + *elen - lbcount; |
| |
| return etype; |
| } |
| |
| long udf_block_map(struct inode *inode, long block) |
| { |
| kernel_lb_addr eloc, bloc; |
| uint32_t offset, extoffset, elen; |
| struct buffer_head *bh = NULL; |
| int ret; |
| |
| lock_kernel(); |
| |
| if (inode_bmap(inode, block, &bloc, &extoffset, &eloc, &elen, &offset, &bh) == (EXT_RECORDED_ALLOCATED >> 30)) |
| ret = udf_get_lb_pblock(inode->i_sb, eloc, offset >> inode->i_sb->s_blocksize_bits); |
| else |
| ret = 0; |
| |
| unlock_kernel(); |
| udf_release_data(bh); |
| |
| if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) |
| return udf_fixed_to_variable(ret); |
| else |
| return ret; |
| } |