| /* | 
 |  * builtin-timechart.c - make an svg timechart of system activity | 
 |  * | 
 |  * (C) Copyright 2009 Intel Corporation | 
 |  * | 
 |  * Authors: | 
 |  *     Arjan van de Ven <arjan@linux.intel.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; version 2 | 
 |  * of the License. | 
 |  */ | 
 |  | 
 | #include "builtin.h" | 
 |  | 
 | #include "util/util.h" | 
 |  | 
 | #include "util/color.h" | 
 | #include <linux/list.h> | 
 | #include "util/cache.h" | 
 | #include <linux/rbtree.h> | 
 | #include "util/symbol.h" | 
 | #include "util/string.h" | 
 | #include "util/callchain.h" | 
 | #include "util/strlist.h" | 
 |  | 
 | #include "perf.h" | 
 | #include "util/header.h" | 
 | #include "util/parse-options.h" | 
 | #include "util/parse-events.h" | 
 | #include "util/svghelper.h" | 
 |  | 
 | static char		const *input_name = "perf.data"; | 
 | static char		const *output_name = "output.svg"; | 
 |  | 
 |  | 
 | static unsigned long	page_size; | 
 | static unsigned long	mmap_window = 32; | 
 | static u64		sample_type; | 
 |  | 
 | static unsigned int	numcpus; | 
 | static u64		min_freq;	/* Lowest CPU frequency seen */ | 
 | static u64		max_freq;	/* Highest CPU frequency seen */ | 
 | static u64		turbo_frequency; | 
 |  | 
 | static u64		first_time, last_time; | 
 |  | 
 |  | 
 | static struct perf_header	*header; | 
 |  | 
 | struct per_pid; | 
 | struct per_pidcomm; | 
 |  | 
 | struct cpu_sample; | 
 | struct power_event; | 
 | struct wake_event; | 
 |  | 
 | struct sample_wrapper; | 
 |  | 
 | /* | 
 |  * Datastructure layout: | 
 |  * We keep an list of "pid"s, matching the kernels notion of a task struct. | 
 |  * Each "pid" entry, has a list of "comm"s. | 
 |  *	this is because we want to track different programs different, while | 
 |  *	exec will reuse the original pid (by design). | 
 |  * Each comm has a list of samples that will be used to draw | 
 |  * final graph. | 
 |  */ | 
 |  | 
 | struct per_pid { | 
 | 	struct per_pid *next; | 
 |  | 
 | 	int		pid; | 
 | 	int		ppid; | 
 |  | 
 | 	u64		start_time; | 
 | 	u64		end_time; | 
 | 	u64		total_time; | 
 | 	int		display; | 
 |  | 
 | 	struct per_pidcomm *all; | 
 | 	struct per_pidcomm *current; | 
 |  | 
 | 	int painted; | 
 | }; | 
 |  | 
 |  | 
 | struct per_pidcomm { | 
 | 	struct per_pidcomm *next; | 
 |  | 
 | 	u64		start_time; | 
 | 	u64		end_time; | 
 | 	u64		total_time; | 
 |  | 
 | 	int		Y; | 
 | 	int		display; | 
 |  | 
 | 	long		state; | 
 | 	u64		state_since; | 
 |  | 
 | 	char		*comm; | 
 |  | 
 | 	struct cpu_sample *samples; | 
 | }; | 
 |  | 
 | struct sample_wrapper { | 
 | 	struct sample_wrapper *next; | 
 |  | 
 | 	u64		timestamp; | 
 | 	unsigned char	data[0]; | 
 | }; | 
 |  | 
 | #define TYPE_NONE	0 | 
 | #define TYPE_RUNNING	1 | 
 | #define TYPE_WAITING	2 | 
 | #define TYPE_BLOCKED	3 | 
 |  | 
 | struct cpu_sample { | 
 | 	struct cpu_sample *next; | 
 |  | 
 | 	u64 start_time; | 
 | 	u64 end_time; | 
 | 	int type; | 
 | 	int cpu; | 
 | }; | 
 |  | 
 | static struct per_pid *all_data; | 
 |  | 
 | #define CSTATE 1 | 
 | #define PSTATE 2 | 
 |  | 
 | struct power_event { | 
 | 	struct power_event *next; | 
 | 	int type; | 
 | 	int state; | 
 | 	u64 start_time; | 
 | 	u64 end_time; | 
 | 	int cpu; | 
 | }; | 
 |  | 
 | struct wake_event { | 
 | 	struct wake_event *next; | 
 | 	int waker; | 
 | 	int wakee; | 
 | 	u64 time; | 
 | }; | 
 |  | 
 | static struct power_event    *power_events; | 
 | static struct wake_event     *wake_events; | 
 |  | 
 | struct sample_wrapper *all_samples; | 
 |  | 
 | static struct per_pid *find_create_pid(int pid) | 
 | { | 
 | 	struct per_pid *cursor = all_data; | 
 |  | 
 | 	while (cursor) { | 
 | 		if (cursor->pid == pid) | 
 | 			return cursor; | 
 | 		cursor = cursor->next; | 
 | 	} | 
 | 	cursor = malloc(sizeof(struct per_pid)); | 
 | 	assert(cursor != NULL); | 
 | 	memset(cursor, 0, sizeof(struct per_pid)); | 
 | 	cursor->pid = pid; | 
 | 	cursor->next = all_data; | 
 | 	all_data = cursor; | 
 | 	return cursor; | 
 | } | 
 |  | 
 | static void pid_set_comm(int pid, char *comm) | 
 | { | 
 | 	struct per_pid *p; | 
 | 	struct per_pidcomm *c; | 
 | 	p = find_create_pid(pid); | 
 | 	c = p->all; | 
 | 	while (c) { | 
 | 		if (c->comm && strcmp(c->comm, comm) == 0) { | 
 | 			p->current = c; | 
 | 			return; | 
 | 		} | 
 | 		if (!c->comm) { | 
 | 			c->comm = strdup(comm); | 
 | 			p->current = c; | 
 | 			return; | 
 | 		} | 
 | 		c = c->next; | 
 | 	} | 
 | 	c = malloc(sizeof(struct per_pidcomm)); | 
 | 	assert(c != NULL); | 
 | 	memset(c, 0, sizeof(struct per_pidcomm)); | 
 | 	c->comm = strdup(comm); | 
 | 	p->current = c; | 
 | 	c->next = p->all; | 
 | 	p->all = c; | 
 | } | 
 |  | 
 | static void pid_fork(int pid, int ppid, u64 timestamp) | 
 | { | 
 | 	struct per_pid *p, *pp; | 
 | 	p = find_create_pid(pid); | 
 | 	pp = find_create_pid(ppid); | 
 | 	p->ppid = ppid; | 
 | 	if (pp->current && pp->current->comm && !p->current) | 
 | 		pid_set_comm(pid, pp->current->comm); | 
 |  | 
 | 	p->start_time = timestamp; | 
 | 	if (p->current) { | 
 | 		p->current->start_time = timestamp; | 
 | 		p->current->state_since = timestamp; | 
 | 	} | 
 | } | 
 |  | 
 | static void pid_exit(int pid, u64 timestamp) | 
 | { | 
 | 	struct per_pid *p; | 
 | 	p = find_create_pid(pid); | 
 | 	p->end_time = timestamp; | 
 | 	if (p->current) | 
 | 		p->current->end_time = timestamp; | 
 | } | 
 |  | 
 | static void | 
 | pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) | 
 | { | 
 | 	struct per_pid *p; | 
 | 	struct per_pidcomm *c; | 
 | 	struct cpu_sample *sample; | 
 |  | 
 | 	p = find_create_pid(pid); | 
 | 	c = p->current; | 
 | 	if (!c) { | 
 | 		c = malloc(sizeof(struct per_pidcomm)); | 
 | 		assert(c != NULL); | 
 | 		memset(c, 0, sizeof(struct per_pidcomm)); | 
 | 		p->current = c; | 
 | 		c->next = p->all; | 
 | 		p->all = c; | 
 | 	} | 
 |  | 
 | 	sample = malloc(sizeof(struct cpu_sample)); | 
 | 	assert(sample != NULL); | 
 | 	memset(sample, 0, sizeof(struct cpu_sample)); | 
 | 	sample->start_time = start; | 
 | 	sample->end_time = end; | 
 | 	sample->type = type; | 
 | 	sample->next = c->samples; | 
 | 	sample->cpu = cpu; | 
 | 	c->samples = sample; | 
 |  | 
 | 	if (sample->type == TYPE_RUNNING && end > start && start > 0) { | 
 | 		c->total_time += (end-start); | 
 | 		p->total_time += (end-start); | 
 | 	} | 
 |  | 
 | 	if (c->start_time == 0 || c->start_time > start) | 
 | 		c->start_time = start; | 
 | 	if (p->start_time == 0 || p->start_time > start) | 
 | 		p->start_time = start; | 
 |  | 
 | 	if (cpu > numcpus) | 
 | 		numcpus = cpu; | 
 | } | 
 |  | 
 | #define MAX_CPUS 4096 | 
 |  | 
 | static u64 cpus_cstate_start_times[MAX_CPUS]; | 
 | static int cpus_cstate_state[MAX_CPUS]; | 
 | static u64 cpus_pstate_start_times[MAX_CPUS]; | 
 | static u64 cpus_pstate_state[MAX_CPUS]; | 
 |  | 
 | static int | 
 | process_comm_event(event_t *event) | 
 | { | 
 | 	pid_set_comm(event->comm.pid, event->comm.comm); | 
 | 	return 0; | 
 | } | 
 | static int | 
 | process_fork_event(event_t *event) | 
 | { | 
 | 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | process_exit_event(event_t *event) | 
 | { | 
 | 	pid_exit(event->fork.pid, event->fork.time); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct trace_entry { | 
 | 	u32			size; | 
 | 	unsigned short		type; | 
 | 	unsigned char		flags; | 
 | 	unsigned char		preempt_count; | 
 | 	int			pid; | 
 | 	int			tgid; | 
 | }; | 
 |  | 
 | struct power_entry { | 
 | 	struct trace_entry te; | 
 | 	s64	type; | 
 | 	s64	value; | 
 | }; | 
 |  | 
 | #define TASK_COMM_LEN 16 | 
 | struct wakeup_entry { | 
 | 	struct trace_entry te; | 
 | 	char comm[TASK_COMM_LEN]; | 
 | 	int   pid; | 
 | 	int   prio; | 
 | 	int   success; | 
 | }; | 
 |  | 
 | /* | 
 |  * trace_flag_type is an enumeration that holds different | 
 |  * states when a trace occurs. These are: | 
 |  *  IRQS_OFF            - interrupts were disabled | 
 |  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags | 
 |  *  NEED_RESCED         - reschedule is requested | 
 |  *  HARDIRQ             - inside an interrupt handler | 
 |  *  SOFTIRQ             - inside a softirq handler | 
 |  */ | 
 | enum trace_flag_type { | 
 | 	TRACE_FLAG_IRQS_OFF		= 0x01, | 
 | 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02, | 
 | 	TRACE_FLAG_NEED_RESCHED		= 0x04, | 
 | 	TRACE_FLAG_HARDIRQ		= 0x08, | 
 | 	TRACE_FLAG_SOFTIRQ		= 0x10, | 
 | }; | 
 |  | 
 |  | 
 |  | 
 | struct sched_switch { | 
 | 	struct trace_entry te; | 
 | 	char prev_comm[TASK_COMM_LEN]; | 
 | 	int  prev_pid; | 
 | 	int  prev_prio; | 
 | 	long prev_state; /* Arjan weeps. */ | 
 | 	char next_comm[TASK_COMM_LEN]; | 
 | 	int  next_pid; | 
 | 	int  next_prio; | 
 | }; | 
 |  | 
 | static void c_state_start(int cpu, u64 timestamp, int state) | 
 | { | 
 | 	cpus_cstate_start_times[cpu] = timestamp; | 
 | 	cpus_cstate_state[cpu] = state; | 
 | } | 
 |  | 
 | static void c_state_end(int cpu, u64 timestamp) | 
 | { | 
 | 	struct power_event *pwr; | 
 | 	pwr = malloc(sizeof(struct power_event)); | 
 | 	if (!pwr) | 
 | 		return; | 
 | 	memset(pwr, 0, sizeof(struct power_event)); | 
 |  | 
 | 	pwr->state = cpus_cstate_state[cpu]; | 
 | 	pwr->start_time = cpus_cstate_start_times[cpu]; | 
 | 	pwr->end_time = timestamp; | 
 | 	pwr->cpu = cpu; | 
 | 	pwr->type = CSTATE; | 
 | 	pwr->next = power_events; | 
 |  | 
 | 	power_events = pwr; | 
 | } | 
 |  | 
 | static void p_state_change(int cpu, u64 timestamp, u64 new_freq) | 
 | { | 
 | 	struct power_event *pwr; | 
 | 	pwr = malloc(sizeof(struct power_event)); | 
 |  | 
 | 	if (new_freq > 8000000) /* detect invalid data */ | 
 | 		return; | 
 |  | 
 | 	if (!pwr) | 
 | 		return; | 
 | 	memset(pwr, 0, sizeof(struct power_event)); | 
 |  | 
 | 	pwr->state = cpus_pstate_state[cpu]; | 
 | 	pwr->start_time = cpus_pstate_start_times[cpu]; | 
 | 	pwr->end_time = timestamp; | 
 | 	pwr->cpu = cpu; | 
 | 	pwr->type = PSTATE; | 
 | 	pwr->next = power_events; | 
 |  | 
 | 	if (!pwr->start_time) | 
 | 		pwr->start_time = first_time; | 
 |  | 
 | 	power_events = pwr; | 
 |  | 
 | 	cpus_pstate_state[cpu] = new_freq; | 
 | 	cpus_pstate_start_times[cpu] = timestamp; | 
 |  | 
 | 	if ((u64)new_freq > max_freq) | 
 | 		max_freq = new_freq; | 
 |  | 
 | 	if (new_freq < min_freq || min_freq == 0) | 
 | 		min_freq = new_freq; | 
 |  | 
 | 	if (new_freq == max_freq - 1000) | 
 | 			turbo_frequency = max_freq; | 
 | } | 
 |  | 
 | static void | 
 | sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) | 
 | { | 
 | 	struct wake_event *we; | 
 | 	struct per_pid *p; | 
 | 	struct wakeup_entry *wake = (void *)te; | 
 |  | 
 | 	we = malloc(sizeof(struct wake_event)); | 
 | 	if (!we) | 
 | 		return; | 
 |  | 
 | 	memset(we, 0, sizeof(struct wake_event)); | 
 | 	we->time = timestamp; | 
 | 	we->waker = pid; | 
 |  | 
 | 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) | 
 | 		we->waker = -1; | 
 |  | 
 | 	we->wakee = wake->pid; | 
 | 	we->next = wake_events; | 
 | 	wake_events = we; | 
 | 	p = find_create_pid(we->wakee); | 
 |  | 
 | 	if (p && p->current && p->current->state == TYPE_NONE) { | 
 | 		p->current->state_since = timestamp; | 
 | 		p->current->state = TYPE_WAITING; | 
 | 	} | 
 | 	if (p && p->current && p->current->state == TYPE_BLOCKED) { | 
 | 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); | 
 | 		p->current->state_since = timestamp; | 
 | 		p->current->state = TYPE_WAITING; | 
 | 	} | 
 | } | 
 |  | 
 | static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) | 
 | { | 
 | 	struct per_pid *p = NULL, *prev_p; | 
 | 	struct sched_switch *sw = (void *)te; | 
 |  | 
 |  | 
 | 	prev_p = find_create_pid(sw->prev_pid); | 
 |  | 
 | 	p = find_create_pid(sw->next_pid); | 
 |  | 
 | 	if (prev_p->current && prev_p->current->state != TYPE_NONE) | 
 | 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); | 
 | 	if (p && p->current) { | 
 | 		if (p->current->state != TYPE_NONE) | 
 | 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); | 
 |  | 
 | 			p->current->state_since = timestamp; | 
 | 			p->current->state = TYPE_RUNNING; | 
 | 	} | 
 |  | 
 | 	if (prev_p->current) { | 
 | 		prev_p->current->state = TYPE_NONE; | 
 | 		prev_p->current->state_since = timestamp; | 
 | 		if (sw->prev_state & 2) | 
 | 			prev_p->current->state = TYPE_BLOCKED; | 
 | 		if (sw->prev_state == 0) | 
 | 			prev_p->current->state = TYPE_WAITING; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | process_sample_event(event_t *event) | 
 | { | 
 | 	int cursor = 0; | 
 | 	u64 addr = 0; | 
 | 	u64 stamp = 0; | 
 | 	u32 cpu = 0; | 
 | 	u32 pid = 0; | 
 | 	struct trace_entry *te; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		cursor++; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) { | 
 | 		pid = event->sample.array[cursor]>>32; | 
 | 		cursor++; | 
 | 	} | 
 | 	if (sample_type & PERF_SAMPLE_TIME) { | 
 | 		stamp = event->sample.array[cursor++]; | 
 |  | 
 | 		if (!first_time || first_time > stamp) | 
 | 			first_time = stamp; | 
 | 		if (last_time < stamp) | 
 | 			last_time = stamp; | 
 |  | 
 | 	} | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		addr = event->sample.array[cursor++]; | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		cursor++; | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		cursor++; | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		cpu = event->sample.array[cursor++] & 0xFFFFFFFF; | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		cursor++; | 
 |  | 
 | 	te = (void *)&event->sample.array[cursor]; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW && te->size > 0) { | 
 | 		char *event_str; | 
 | 		struct power_entry *pe; | 
 |  | 
 | 		pe = (void *)te; | 
 |  | 
 | 		event_str = perf_header__find_event(te->type); | 
 |  | 
 | 		if (!event_str) | 
 | 			return 0; | 
 |  | 
 | 		if (strcmp(event_str, "power:power_start") == 0) | 
 | 			c_state_start(cpu, stamp, pe->value); | 
 |  | 
 | 		if (strcmp(event_str, "power:power_end") == 0) | 
 | 			c_state_end(cpu, stamp); | 
 |  | 
 | 		if (strcmp(event_str, "power:power_frequency") == 0) | 
 | 			p_state_change(cpu, stamp, pe->value); | 
 |  | 
 | 		if (strcmp(event_str, "sched:sched_wakeup") == 0) | 
 | 			sched_wakeup(cpu, stamp, pid, te); | 
 |  | 
 | 		if (strcmp(event_str, "sched:sched_switch") == 0) | 
 | 			sched_switch(cpu, stamp, te); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * After the last sample we need to wrap up the current C/P state | 
 |  * and close out each CPU for these. | 
 |  */ | 
 | static void end_sample_processing(void) | 
 | { | 
 | 	u64 cpu; | 
 | 	struct power_event *pwr; | 
 |  | 
 | 	for (cpu = 0; cpu < numcpus; cpu++) { | 
 | 		pwr = malloc(sizeof(struct power_event)); | 
 | 		if (!pwr) | 
 | 			return; | 
 | 		memset(pwr, 0, sizeof(struct power_event)); | 
 |  | 
 | 		/* C state */ | 
 | #if 0 | 
 | 		pwr->state = cpus_cstate_state[cpu]; | 
 | 		pwr->start_time = cpus_cstate_start_times[cpu]; | 
 | 		pwr->end_time = last_time; | 
 | 		pwr->cpu = cpu; | 
 | 		pwr->type = CSTATE; | 
 | 		pwr->next = power_events; | 
 |  | 
 | 		power_events = pwr; | 
 | #endif | 
 | 		/* P state */ | 
 |  | 
 | 		pwr = malloc(sizeof(struct power_event)); | 
 | 		if (!pwr) | 
 | 			return; | 
 | 		memset(pwr, 0, sizeof(struct power_event)); | 
 |  | 
 | 		pwr->state = cpus_pstate_state[cpu]; | 
 | 		pwr->start_time = cpus_pstate_start_times[cpu]; | 
 | 		pwr->end_time = last_time; | 
 | 		pwr->cpu = cpu; | 
 | 		pwr->type = PSTATE; | 
 | 		pwr->next = power_events; | 
 |  | 
 | 		if (!pwr->start_time) | 
 | 			pwr->start_time = first_time; | 
 | 		if (!pwr->state) | 
 | 			pwr->state = min_freq; | 
 | 		power_events = pwr; | 
 | 	} | 
 | } | 
 |  | 
 | static u64 sample_time(event_t *event) | 
 | { | 
 | 	int cursor; | 
 |  | 
 | 	cursor = 0; | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		cursor++; | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		cursor++; | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		return event->sample.array[cursor]; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * We first queue all events, sorted backwards by insertion. | 
 |  * The order will get flipped later. | 
 |  */ | 
 | static int | 
 | queue_sample_event(event_t *event) | 
 | { | 
 | 	struct sample_wrapper *copy, *prev; | 
 | 	int size; | 
 |  | 
 | 	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8; | 
 |  | 
 | 	copy = malloc(size); | 
 | 	if (!copy) | 
 | 		return 1; | 
 |  | 
 | 	memset(copy, 0, size); | 
 |  | 
 | 	copy->next = NULL; | 
 | 	copy->timestamp = sample_time(event); | 
 |  | 
 | 	memcpy(©->data, event, event->sample.header.size); | 
 |  | 
 | 	/* insert in the right place in the list */ | 
 |  | 
 | 	if (!all_samples) { | 
 | 		/* first sample ever */ | 
 | 		all_samples = copy; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (all_samples->timestamp < copy->timestamp) { | 
 | 		/* insert at the head of the list */ | 
 | 		copy->next = all_samples; | 
 | 		all_samples = copy; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	prev = all_samples; | 
 | 	while (prev->next) { | 
 | 		if (prev->next->timestamp < copy->timestamp) { | 
 | 			copy->next = prev->next; | 
 | 			prev->next = copy; | 
 | 			return 0; | 
 | 		} | 
 | 		prev = prev->next; | 
 | 	} | 
 | 	/* insert at the end of the list */ | 
 | 	prev->next = copy; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sort_queued_samples(void) | 
 | { | 
 | 	struct sample_wrapper *cursor, *next; | 
 |  | 
 | 	cursor = all_samples; | 
 | 	all_samples = NULL; | 
 |  | 
 | 	while (cursor) { | 
 | 		next = cursor->next; | 
 | 		cursor->next = all_samples; | 
 | 		all_samples = cursor; | 
 | 		cursor = next; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Sort the pid datastructure | 
 |  */ | 
 | static void sort_pids(void) | 
 | { | 
 | 	struct per_pid *new_list, *p, *cursor, *prev; | 
 | 	/* sort by ppid first, then by pid, lowest to highest */ | 
 |  | 
 | 	new_list = NULL; | 
 |  | 
 | 	while (all_data) { | 
 | 		p = all_data; | 
 | 		all_data = p->next; | 
 | 		p->next = NULL; | 
 |  | 
 | 		if (new_list == NULL) { | 
 | 			new_list = p; | 
 | 			p->next = NULL; | 
 | 			continue; | 
 | 		} | 
 | 		prev = NULL; | 
 | 		cursor = new_list; | 
 | 		while (cursor) { | 
 | 			if (cursor->ppid > p->ppid || | 
 | 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) { | 
 | 				/* must insert before */ | 
 | 				if (prev) { | 
 | 					p->next = prev->next; | 
 | 					prev->next = p; | 
 | 					cursor = NULL; | 
 | 					continue; | 
 | 				} else { | 
 | 					p->next = new_list; | 
 | 					new_list = p; | 
 | 					cursor = NULL; | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			prev = cursor; | 
 | 			cursor = cursor->next; | 
 | 			if (!cursor) | 
 | 				prev->next = p; | 
 | 		} | 
 | 	} | 
 | 	all_data = new_list; | 
 | } | 
 |  | 
 |  | 
 | static void draw_c_p_states(void) | 
 | { | 
 | 	struct power_event *pwr; | 
 | 	pwr = power_events; | 
 |  | 
 | 	/* | 
 | 	 * two pass drawing so that the P state bars are on top of the C state blocks | 
 | 	 */ | 
 | 	while (pwr) { | 
 | 		if (pwr->type == CSTATE) | 
 | 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); | 
 | 		pwr = pwr->next; | 
 | 	} | 
 |  | 
 | 	pwr = power_events; | 
 | 	while (pwr) { | 
 | 		if (pwr->type == PSTATE) { | 
 | 			if (!pwr->state) | 
 | 				pwr->state = min_freq; | 
 | 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); | 
 | 		} | 
 | 		pwr = pwr->next; | 
 | 	} | 
 | } | 
 |  | 
 | static void draw_wakeups(void) | 
 | { | 
 | 	struct wake_event *we; | 
 | 	struct per_pid *p; | 
 | 	struct per_pidcomm *c; | 
 |  | 
 | 	we = wake_events; | 
 | 	while (we) { | 
 | 		int from = 0, to = 0; | 
 | 		char *task_from = NULL, *task_to = NULL; | 
 |  | 
 | 		/* locate the column of the waker and wakee */ | 
 | 		p = all_data; | 
 | 		while (p) { | 
 | 			if (p->pid == we->waker || p->pid == we->wakee) { | 
 | 				c = p->all; | 
 | 				while (c) { | 
 | 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { | 
 | 						if (p->pid == we->waker) { | 
 | 							from = c->Y; | 
 | 							task_from = c->comm; | 
 | 						} | 
 | 						if (p->pid == we->wakee) { | 
 | 							to = c->Y; | 
 | 							task_to = c->comm; | 
 | 						} | 
 | 					} | 
 | 					c = c->next; | 
 | 				} | 
 | 			} | 
 | 			p = p->next; | 
 | 		} | 
 |  | 
 | 		if (we->waker == -1) | 
 | 			svg_interrupt(we->time, to); | 
 | 		else if (from && to && abs(from - to) == 1) | 
 | 			svg_wakeline(we->time, from, to); | 
 | 		else | 
 | 			svg_partial_wakeline(we->time, from, task_from, to, task_to); | 
 | 		we = we->next; | 
 | 	} | 
 | } | 
 |  | 
 | static void draw_cpu_usage(void) | 
 | { | 
 | 	struct per_pid *p; | 
 | 	struct per_pidcomm *c; | 
 | 	struct cpu_sample *sample; | 
 | 	p = all_data; | 
 | 	while (p) { | 
 | 		c = p->all; | 
 | 		while (c) { | 
 | 			sample = c->samples; | 
 | 			while (sample) { | 
 | 				if (sample->type == TYPE_RUNNING) | 
 | 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); | 
 |  | 
 | 				sample = sample->next; | 
 | 			} | 
 | 			c = c->next; | 
 | 		} | 
 | 		p = p->next; | 
 | 	} | 
 | } | 
 |  | 
 | static void draw_process_bars(void) | 
 | { | 
 | 	struct per_pid *p; | 
 | 	struct per_pidcomm *c; | 
 | 	struct cpu_sample *sample; | 
 | 	int Y = 0; | 
 |  | 
 | 	Y = 2 * numcpus + 2; | 
 |  | 
 | 	p = all_data; | 
 | 	while (p) { | 
 | 		c = p->all; | 
 | 		while (c) { | 
 | 			if (!c->display) { | 
 | 				c->Y = 0; | 
 | 				c = c->next; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			svg_box(Y, c->start_time, c->end_time, "process"); | 
 | 			sample = c->samples; | 
 | 			while (sample) { | 
 | 				if (sample->type == TYPE_RUNNING) | 
 | 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); | 
 | 				if (sample->type == TYPE_BLOCKED) | 
 | 					svg_box(Y, sample->start_time, sample->end_time, "blocked"); | 
 | 				if (sample->type == TYPE_WAITING) | 
 | 					svg_waiting(Y, sample->start_time, sample->end_time); | 
 | 				sample = sample->next; | 
 | 			} | 
 |  | 
 | 			if (c->comm) { | 
 | 				char comm[256]; | 
 | 				if (c->total_time > 5000000000) /* 5 seconds */ | 
 | 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); | 
 | 				else | 
 | 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); | 
 |  | 
 | 				svg_text(Y, c->start_time, comm); | 
 | 			} | 
 | 			c->Y = Y; | 
 | 			Y++; | 
 | 			c = c->next; | 
 | 		} | 
 | 		p = p->next; | 
 | 	} | 
 | } | 
 |  | 
 | static int determine_display_tasks(u64 threshold) | 
 | { | 
 | 	struct per_pid *p; | 
 | 	struct per_pidcomm *c; | 
 | 	int count = 0; | 
 |  | 
 | 	p = all_data; | 
 | 	while (p) { | 
 | 		p->display = 0; | 
 | 		if (p->start_time == 1) | 
 | 			p->start_time = first_time; | 
 |  | 
 | 		/* no exit marker, task kept running to the end */ | 
 | 		if (p->end_time == 0) | 
 | 			p->end_time = last_time; | 
 | 		if (p->total_time >= threshold) | 
 | 			p->display = 1; | 
 |  | 
 | 		c = p->all; | 
 |  | 
 | 		while (c) { | 
 | 			c->display = 0; | 
 |  | 
 | 			if (c->start_time == 1) | 
 | 				c->start_time = first_time; | 
 |  | 
 | 			if (c->total_time >= threshold) { | 
 | 				c->display = 1; | 
 | 				count++; | 
 | 			} | 
 |  | 
 | 			if (c->end_time == 0) | 
 | 				c->end_time = last_time; | 
 |  | 
 | 			c = c->next; | 
 | 		} | 
 | 		p = p->next; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | #define TIME_THRESH 10000000 | 
 |  | 
 | static void write_svg_file(const char *filename) | 
 | { | 
 | 	u64 i; | 
 | 	int count; | 
 |  | 
 | 	numcpus++; | 
 |  | 
 |  | 
 | 	count = determine_display_tasks(TIME_THRESH); | 
 |  | 
 | 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */ | 
 | 	if (count < 15) | 
 | 		count = determine_display_tasks(TIME_THRESH / 10); | 
 |  | 
 | 	open_svg(filename, numcpus, count, first_time, last_time); | 
 |  | 
 | 	svg_time_grid(); | 
 | 	svg_legenda(); | 
 |  | 
 | 	for (i = 0; i < numcpus; i++) | 
 | 		svg_cpu_box(i, max_freq, turbo_frequency); | 
 |  | 
 | 	draw_cpu_usage(); | 
 | 	draw_process_bars(); | 
 | 	draw_c_p_states(); | 
 | 	draw_wakeups(); | 
 |  | 
 | 	svg_close(); | 
 | } | 
 |  | 
 | static int | 
 | process_event(event_t *event) | 
 | { | 
 |  | 
 | 	switch (event->header.type) { | 
 |  | 
 | 	case PERF_RECORD_COMM: | 
 | 		return process_comm_event(event); | 
 | 	case PERF_RECORD_FORK: | 
 | 		return process_fork_event(event); | 
 | 	case PERF_RECORD_EXIT: | 
 | 		return process_exit_event(event); | 
 | 	case PERF_RECORD_SAMPLE: | 
 | 		return queue_sample_event(event); | 
 |  | 
 | 	/* | 
 | 	 * We dont process them right now but they are fine: | 
 | 	 */ | 
 | 	case PERF_RECORD_MMAP: | 
 | 	case PERF_RECORD_THROTTLE: | 
 | 	case PERF_RECORD_UNTHROTTLE: | 
 | 		return 0; | 
 |  | 
 | 	default: | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void process_samples(void) | 
 | { | 
 | 	struct sample_wrapper *cursor; | 
 | 	event_t *event; | 
 |  | 
 | 	sort_queued_samples(); | 
 |  | 
 | 	cursor = all_samples; | 
 | 	while (cursor) { | 
 | 		event = (void *)&cursor->data; | 
 | 		cursor = cursor->next; | 
 | 		process_sample_event(event); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int __cmd_timechart(void) | 
 | { | 
 | 	int ret, rc = EXIT_FAILURE; | 
 | 	unsigned long offset = 0; | 
 | 	unsigned long head, shift; | 
 | 	struct stat statbuf; | 
 | 	event_t *event; | 
 | 	uint32_t size; | 
 | 	char *buf; | 
 | 	int input; | 
 |  | 
 | 	input = open(input_name, O_RDONLY); | 
 | 	if (input < 0) { | 
 | 		fprintf(stderr, " failed to open file: %s", input_name); | 
 | 		if (!strcmp(input_name, "perf.data")) | 
 | 			fprintf(stderr, "  (try 'perf record' first)"); | 
 | 		fprintf(stderr, "\n"); | 
 | 		exit(-1); | 
 | 	} | 
 |  | 
 | 	ret = fstat(input, &statbuf); | 
 | 	if (ret < 0) { | 
 | 		perror("failed to stat file"); | 
 | 		exit(-1); | 
 | 	} | 
 |  | 
 | 	if (!statbuf.st_size) { | 
 | 		fprintf(stderr, "zero-sized file, nothing to do!\n"); | 
 | 		exit(0); | 
 | 	} | 
 |  | 
 | 	header = perf_header__read(input); | 
 | 	head = header->data_offset; | 
 |  | 
 | 	sample_type = perf_header__sample_type(header); | 
 |  | 
 | 	shift = page_size * (head / page_size); | 
 | 	offset += shift; | 
 | 	head -= shift; | 
 |  | 
 | remap: | 
 | 	buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ, | 
 | 			   MAP_SHARED, input, offset); | 
 | 	if (buf == MAP_FAILED) { | 
 | 		perror("failed to mmap file"); | 
 | 		exit(-1); | 
 | 	} | 
 |  | 
 | more: | 
 | 	event = (event_t *)(buf + head); | 
 |  | 
 | 	size = event->header.size; | 
 | 	if (!size) | 
 | 		size = 8; | 
 |  | 
 | 	if (head + event->header.size >= page_size * mmap_window) { | 
 | 		int ret2; | 
 |  | 
 | 		shift = page_size * (head / page_size); | 
 |  | 
 | 		ret2 = munmap(buf, page_size * mmap_window); | 
 | 		assert(ret2 == 0); | 
 |  | 
 | 		offset += shift; | 
 | 		head -= shift; | 
 | 		goto remap; | 
 | 	} | 
 |  | 
 | 	size = event->header.size; | 
 |  | 
 | 	if (!size || process_event(event) < 0) { | 
 |  | 
 | 		printf("%p [%p]: skipping unknown header type: %d\n", | 
 | 			(void *)(offset + head), | 
 | 			(void *)(long)(event->header.size), | 
 | 			event->header.type); | 
 |  | 
 | 		/* | 
 | 		 * assume we lost track of the stream, check alignment, and | 
 | 		 * increment a single u64 in the hope to catch on again 'soon'. | 
 | 		 */ | 
 |  | 
 | 		if (unlikely(head & 7)) | 
 | 			head &= ~7ULL; | 
 |  | 
 | 		size = 8; | 
 | 	} | 
 |  | 
 | 	head += size; | 
 |  | 
 | 	if (offset + head >= header->data_offset + header->data_size) | 
 | 		goto done; | 
 |  | 
 | 	if (offset + head < (unsigned long)statbuf.st_size) | 
 | 		goto more; | 
 |  | 
 | done: | 
 | 	rc = EXIT_SUCCESS; | 
 | 	close(input); | 
 |  | 
 |  | 
 | 	process_samples(); | 
 |  | 
 | 	end_sample_processing(); | 
 |  | 
 | 	sort_pids(); | 
 |  | 
 | 	write_svg_file(output_name); | 
 |  | 
 | 	printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static const char * const timechart_usage[] = { | 
 | 	"perf timechart [<options>] {record}", | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const char *record_args[] = { | 
 | 	"record", | 
 | 	"-a", | 
 | 	"-R", | 
 | 	"-M", | 
 | 	"-f", | 
 | 	"-c", "1", | 
 | 	"-e", "power:power_start", | 
 | 	"-e", "power:power_end", | 
 | 	"-e", "power:power_frequency", | 
 | 	"-e", "sched:sched_wakeup", | 
 | 	"-e", "sched:sched_switch", | 
 | }; | 
 |  | 
 | static int __cmd_record(int argc, const char **argv) | 
 | { | 
 | 	unsigned int rec_argc, i, j; | 
 | 	const char **rec_argv; | 
 |  | 
 | 	rec_argc = ARRAY_SIZE(record_args) + argc - 1; | 
 | 	rec_argv = calloc(rec_argc + 1, sizeof(char *)); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(record_args); i++) | 
 | 		rec_argv[i] = strdup(record_args[i]); | 
 |  | 
 | 	for (j = 1; j < (unsigned int)argc; j++, i++) | 
 | 		rec_argv[i] = argv[j]; | 
 |  | 
 | 	return cmd_record(i, rec_argv, NULL); | 
 | } | 
 |  | 
 | static const struct option options[] = { | 
 | 	OPT_STRING('i', "input", &input_name, "file", | 
 | 		    "input file name"), | 
 | 	OPT_STRING('o', "output", &output_name, "file", | 
 | 		    "output file name"), | 
 | 	OPT_INTEGER('w', "width", &svg_page_width, | 
 | 		    "page width"), | 
 | 	OPT_END() | 
 | }; | 
 |  | 
 |  | 
 | int cmd_timechart(int argc, const char **argv, const char *prefix __used) | 
 | { | 
 | 	symbol__init(); | 
 |  | 
 | 	page_size = getpagesize(); | 
 |  | 
 | 	argc = parse_options(argc, argv, options, timechart_usage, | 
 | 			PARSE_OPT_STOP_AT_NON_OPTION); | 
 |  | 
 | 	if (argc && !strncmp(argv[0], "rec", 3)) | 
 | 		return __cmd_record(argc, argv); | 
 | 	else if (argc) | 
 | 		usage_with_options(timechart_usage, options); | 
 |  | 
 | 	setup_pager(); | 
 |  | 
 | 	return __cmd_timechart(); | 
 | } |