blob: 94aa75e42702b0f82a9eca007e111bb6da4cbccb [file] [log] [blame]
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif
#include <asm/processor.h>
extern int msm_krait_need_wfe_fixup;
/*
* sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
* extensions, so when running on UP, we have to patch these instructions away.
*/
#define ALT_SMP(smp, up) \
"9998: " smp "\n" \
" .pushsection \".alt.smp.init\", \"a\"\n" \
" .long 9998b\n" \
" " up "\n" \
" .popsection\n"
#ifdef CONFIG_THUMB2_KERNEL
#define SEV ALT_SMP("sev.w", "nop.w")
/*
* Both instructions given to the ALT_SMP macro need to be the same size, to
* allow the SMP_ON_UP fixups to function correctly. Hence the explicit encoding
* specifications.
*/
#define WFE() ALT_SMP( \
"wfe.w", \
"nop.w" \
)
#else
#define SEV ALT_SMP("sev", "nop")
#define WFE() ALT_SMP("wfe", "nop")
#endif
/*
* The fixup involves disabling interrupts during execution of the WFE
* instruction. This could potentially lead to deadlock if a thread is trying
* to acquire a spinlock which is being released from an interrupt context.
*/
#ifdef CONFIG_MSM_KRAIT_WFE_FIXUP
#define WFE_SAFE(fixup, tmp) \
" mrs " tmp ", cpsr\n" \
" cmp " fixup ", #0\n" \
" wfeeq\n" \
" beq 10f\n" \
" cpsid if\n" \
" mrc p15, 7, " fixup ", c15, c0, 5\n" \
" bic " fixup ", " fixup ", #0x10000\n" \
" mcr p15, 7, " fixup ", c15, c0, 5\n" \
" isb\n" \
" wfe\n" \
" orr " fixup ", " fixup ", #0x10000\n" \
" mcr p15, 7, " fixup ", c15, c0, 5\n" \
" isb\n" \
"10: msr cpsr_cf, " tmp "\n"
#else
#define WFE_SAFE(fixup, tmp) " wfe\n"
#endif
static inline void dsb_sev(void)
{
#if __LINUX_ARM_ARCH__ >= 7
__asm__ __volatile__ (
"dsb\n"
SEV
);
#else
__asm__ __volatile__ (
"mcr p15, 0, %0, c7, c10, 4\n"
SEV
: : "r" (0)
);
#endif
}
#ifndef CONFIG_ARM_TICKET_LOCKS
/*
* ARMv6 Spin-locking.
*
* We exclusively read the old value. If it is zero, we may have
* won the lock, so we try exclusively storing it. A memory barrier
* is required after we get a lock, and before we release it, because
* V6 CPUs are assumed to have weakly ordered memory.
*
* Unlocked value: 0
* Locked value: 1
*/
#define arch_spin_is_locked(x) ((x)->lock != 0)
#define arch_spin_unlock_wait(lock) \
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned long tmp, fixup = msm_krait_need_wfe_fixup;
__asm__ __volatile__(
"1: ldrex %[tmp], [%[lock]]\n"
" teq %[tmp], #0\n"
" beq 2f\n"
WFE_SAFE("%[fixup]", "%[tmp]")
"2:\n"
" strexeq %[tmp], %[bit0], [%[lock]]\n"
" teqeq %[tmp], #0\n"
" bne 1b"
: [tmp] "=&r" (tmp), [fixup] "+r" (fixup)
: [lock] "r" (&lock->lock), [bit0] "r" (1)
: "cc");
smp_mb();
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
" ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
smp_mb();
__asm__ __volatile__(
" str %1, [%0]\n"
:
: "r" (&lock->lock), "r" (0)
: "cc");
dsb_sev();
}
#else
/*
* ARM Ticket spin-locking
*
* Ticket locks are conceptually two parts, one indicating the current head of
* the queue, and the other indicating the current tail. The lock is acquired
* by atomically noting the tail and incrementing it by one (thus adding
* ourself to the queue and noting our position), then waiting until the head
* becomes equal to the the initial value of the tail.
*
* Unlocked value: 0
* Locked value: now_serving != next_ticket
*
* 31 17 16 15 14 0
* +----------------------------------------------------+
* | now_serving | next_ticket |
* +----------------------------------------------------+
*/
#define TICKET_SHIFT 16
#define TICKET_BITS 16
#define TICKET_MASK 0xFFFF
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned long tmp, ticket, next_ticket;
unsigned long fixup = msm_krait_need_wfe_fixup;
/* Grab the next ticket and wait for it to be "served" */
__asm__ __volatile__(
"1: ldrex %[ticket], [%[lockaddr]]\n"
" uadd16 %[next_ticket], %[ticket], %[val1]\n"
" strex %[tmp], %[next_ticket], [%[lockaddr]]\n"
" teq %[tmp], #0\n"
" bne 1b\n"
" uxth %[ticket], %[ticket]\n"
"2:\n"
#ifdef CONFIG_CPU_32v6K
" beq 3f\n"
WFE_SAFE("%[fixup]", "%[tmp]")
"3:\n"
#endif
" ldr %[tmp], [%[lockaddr]]\n"
" cmp %[ticket], %[tmp], lsr #16\n"
" bne 2b"
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp),
[next_ticket]"=&r" (next_ticket), [fixup]"+r" (fixup)
: [lockaddr]"r" (&lock->lock), [val1]"r" (1)
: "cc");
smp_mb();
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp, ticket, next_ticket;
/* Grab lock if now_serving == next_ticket and access is exclusive */
__asm__ __volatile__(
" ldrex %[ticket], [%[lockaddr]]\n"
" ror %[tmp], %[ticket], #16\n"
" eors %[tmp], %[tmp], %[ticket]\n"
" bne 1f\n"
" uadd16 %[next_ticket], %[ticket], %[val1]\n"
" strex %[tmp], %[next_ticket], [%[lockaddr]]\n"
"1:"
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp),
[next_ticket]"=&r" (next_ticket)
: [lockaddr]"r" (&lock->lock), [val1]"r" (1)
: "cc");
if (!tmp)
smp_mb();
return !tmp;
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
unsigned long ticket, tmp;
smp_mb();
/* Bump now_serving by 1 */
__asm__ __volatile__(
"1: ldrex %[ticket], [%[lockaddr]]\n"
" uadd16 %[ticket], %[ticket], %[serving1]\n"
" strex %[tmp], %[ticket], [%[lockaddr]]\n"
" teq %[tmp], #0\n"
" bne 1b"
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp)
: [lockaddr]"r" (&lock->lock), [serving1]"r" (0x00010000)
: "cc");
dsb_sev();
}
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
unsigned long ticket, tmp, fixup = msm_krait_need_wfe_fixup;
/* Wait for now_serving == next_ticket */
__asm__ __volatile__(
#ifdef CONFIG_CPU_32v6K
" cmpne %[lockaddr], %[lockaddr]\n"
"1:\n"
" beq 2f\n"
WFE_SAFE("%[fixup]", "%[tmp]")
"2:\n"
#else
"1:\n"
#endif
" ldr %[ticket], [%[lockaddr]]\n"
" eor %[ticket], %[ticket], %[ticket], lsr #16\n"
" uxth %[ticket], %[ticket]\n"
" cmp %[ticket], #0\n"
" bne 1b"
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp),
[fixup]"+r" (fixup)
: [lockaddr]"r" (&lock->lock)
: "cc");
}
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
unsigned long tmp = ACCESS_ONCE(lock->lock);
return (((tmp >> TICKET_SHIFT) ^ tmp) & TICKET_MASK) != 0;
}
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
{
unsigned long tmp = ACCESS_ONCE(lock->lock);
return ((tmp - (tmp >> TICKET_SHIFT)) & TICKET_MASK) > 1;
}
#endif
/*
* RWLOCKS
*
*
* Write locks are easy - we just set bit 31. When unlocking, we can
* just write zero since the lock is exclusively held.
*/
static inline void arch_write_lock(arch_rwlock_t *rw)
{
unsigned long tmp, fixup = msm_krait_need_wfe_fixup;
__asm__ __volatile__(
"1: ldrex %[tmp], [%[lock]]\n"
" teq %[tmp], #0\n"
" beq 2f\n"
WFE_SAFE("%[fixup]", "%[tmp]")
"2:\n"
" strexeq %[tmp], %[bit31], [%[lock]]\n"
" teq %[tmp], #0\n"
" bne 1b"
: [tmp] "=&r" (tmp), [fixup] "+r" (fixup)
: [lock] "r" (&rw->lock), [bit31] "r" (0x80000000)
: "cc");
smp_mb();
}
static inline int arch_write_trylock(arch_rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
smp_mb();
__asm__ __volatile__(
"str %1, [%0]\n"
:
: "r" (&rw->lock), "r" (0)
: "cc");
dsb_sev();
}
/* write_can_lock - would write_trylock() succeed? */
#define arch_write_can_lock(x) ((x)->lock == 0)
/*
* Read locks are a bit more hairy:
* - Exclusively load the lock value.
* - Increment it.
* - Store new lock value if positive, and we still own this location.
* If the value is negative, we've already failed.
* - If we failed to store the value, we want a negative result.
* - If we failed, try again.
* Unlocking is similarly hairy. We may have multiple read locks
* currently active. However, we know we won't have any write
* locks.
*/
static inline void arch_read_lock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2, fixup = msm_krait_need_wfe_fixup;
__asm__ __volatile__(
"1: ldrex %[tmp], [%[lock]]\n"
" adds %[tmp], %[tmp], #1\n"
" strexpl %[tmp2], %[tmp], [%[lock]]\n"
" bpl 2f\n"
WFE_SAFE("%[fixup]", "%[tmp]")
"2:\n"
" rsbpls %[tmp], %[tmp2], #0\n"
" bmi 1b"
: [tmp] "=&r" (tmp), [tmp2] "=&r" (tmp2), [fixup] "+r" (fixup)
: [lock] "r" (&rw->lock)
: "cc");
smp_mb();
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2;
smp_mb();
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" sub %0, %0, #1\n"
" strex %1, %0, [%2]\n"
" teq %1, #0\n"
" bne 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
if (tmp == 0)
dsb_sev();
}
static inline int arch_read_trylock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2 = 1;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
: "=&r" (tmp), "+r" (tmp2)
: "r" (&rw->lock)
: "cc");
smp_mb();
return tmp2 == 0;
}
/* read_can_lock - would read_trylock() succeed? */
#define arch_read_can_lock(x) ((x)->lock < 0x80000000)
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* __ASM_SPINLOCK_H */