| /* Stand alone funtions for QSpan Tundra support. |
| */ |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <asm/mpc8xx.h> |
| |
| extern void puthex(unsigned long val); |
| extern void puts(const char *); |
| |
| /* To map PCI devices, you first write 0xffffffff into the device |
| * base address registers. When the register is read back, the |
| * number of most significant '1' bits describes the amount of address |
| * space needed for mapping. If the most significant bit is not set, |
| * either the device does not use that address register, or it has |
| * a fixed address that we can't change. After the address is assigned, |
| * the command register has to be written to enable the card. |
| */ |
| typedef struct { |
| u_char pci_bus; |
| u_char pci_devfn; |
| ushort pci_command; |
| uint pci_addrs[6]; |
| } pci_map_t; |
| |
| /* We should probably dynamically allocate these structures. |
| */ |
| #define MAX_PCI_DEVS 32 |
| int pci_dev_cnt; |
| pci_map_t pci_map[MAX_PCI_DEVS]; |
| |
| void pci_conf_write(int bus, int device, int func, int reg, uint writeval); |
| void pci_conf_read(int bus, int device, int func, int reg, void *readval); |
| void probe_addresses(int bus, int devfn); |
| void map_pci_addrs(void); |
| |
| extern int |
| qs_pci_read_config_byte(unsigned char bus, unsigned char dev_fn, |
| unsigned char offset, unsigned char *val); |
| extern int |
| qs_pci_read_config_word(unsigned char bus, unsigned char dev_fn, |
| unsigned char offset, unsigned short *val); |
| extern int |
| qs_pci_read_config_dword(unsigned char bus, unsigned char dev_fn, |
| unsigned char offset, unsigned int *val); |
| extern int |
| qs_pci_write_config_byte(unsigned char bus, unsigned char dev_fn, |
| unsigned char offset, unsigned char val); |
| extern int |
| qs_pci_write_config_word(unsigned char bus, unsigned char dev_fn, |
| unsigned char offset, unsigned short val); |
| extern int |
| qs_pci_write_config_dword(unsigned char bus, unsigned char dev_fn, |
| unsigned char offset, unsigned int val); |
| |
| |
| /* This is a really stripped version of PCI bus scan. All we are |
| * looking for are devices that exist. |
| */ |
| void |
| pci_scanner(int addr_probe) |
| { |
| unsigned int devfn, l, class, bus_number; |
| unsigned char hdr_type, is_multi; |
| |
| is_multi = 0; |
| bus_number = 0; |
| for (devfn = 0; devfn < 0xff; ++devfn) { |
| /* The device numbers are comprised of upper 5 bits of |
| * device number and lower 3 bits of multi-function number. |
| */ |
| if ((devfn & 7) && !is_multi) { |
| /* Don't scan multifunction addresses if this is |
| * not a multifunction device. |
| */ |
| continue; |
| } |
| |
| /* Read the header to determine card type. |
| */ |
| qs_pci_read_config_byte(bus_number, devfn, PCI_HEADER_TYPE, |
| &hdr_type); |
| |
| /* If this is a base device number, check the header to |
| * determine if it is mulifunction. |
| */ |
| if ((devfn & 7) == 0) |
| is_multi = hdr_type & 0x80; |
| |
| /* Check to see if the board is really in the slot. |
| */ |
| qs_pci_read_config_dword(bus_number, devfn, PCI_VENDOR_ID, &l); |
| /* some broken boards return 0 if a slot is empty: */ |
| if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || |
| l == 0xffff0000) { |
| /* Nothing there. |
| */ |
| is_multi = 0; |
| continue; |
| } |
| |
| /* If we are not performing an address probe, |
| * just simply print out some information. |
| */ |
| if (!addr_probe) { |
| qs_pci_read_config_dword(bus_number, devfn, |
| PCI_CLASS_REVISION, &class); |
| |
| class >>= 8; /* upper 3 bytes */ |
| |
| #if 0 |
| printf("Found (%3d:%d): vendor 0x%04x, device 0x%04x, class 0x%06x\n", |
| (devfn >> 3), (devfn & 7), |
| (l & 0xffff), (l >> 16) & 0xffff, class); |
| #else |
| puts("Found ("); puthex(devfn >> 3); |
| puts(":"); puthex(devfn & 7); |
| puts("): vendor "); puthex(l & 0xffff); |
| puts(", device "); puthex((l >> 16) & 0xffff); |
| puts(", class "); puthex(class); puts("\n"); |
| #endif |
| } |
| else { |
| /* If this is a "normal" device, build address list. |
| */ |
| if ((hdr_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) |
| probe_addresses(bus_number, devfn); |
| } |
| } |
| |
| /* Now map the boards. |
| */ |
| if (addr_probe) |
| map_pci_addrs(); |
| } |
| |
| /* Probe addresses for the specified device. This is a destructive |
| * operation because it writes the registers. |
| */ |
| void |
| probe_addresses(bus, devfn) |
| { |
| int i; |
| uint pciaddr; |
| ushort pcicmd; |
| pci_map_t *pm; |
| |
| if (pci_dev_cnt >= MAX_PCI_DEVS) { |
| puts("Too many PCI devices\n"); |
| return; |
| } |
| |
| pm = &pci_map[pci_dev_cnt++]; |
| |
| pm->pci_bus = bus; |
| pm->pci_devfn = devfn; |
| |
| for (i=0; i<6; i++) { |
| qs_pci_write_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), -1); |
| qs_pci_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), |
| &pciaddr); |
| pm->pci_addrs[i] = pciaddr; |
| qs_pci_read_config_word(bus, devfn, PCI_COMMAND, &pcicmd); |
| pm->pci_command = pcicmd; |
| } |
| } |
| |
| /* Map the cards into the PCI space. The PCI has separate memory |
| * and I/O spaces. In addition, some memory devices require mapping |
| * below 1M. The least significant 4 bits of the address register |
| * provide information. If this is an I/O device, only the LS bit |
| * is used to indicate that, so I/O devices can be mapped to a two byte |
| * boundard. Memory addresses can be mapped to a 32 byte boundary. |
| * The QSpan implementations usually have a 1Gbyte space for each |
| * memory and I/O spaces. |
| * |
| * This isn't a terribly fancy algorithm. I just map the spaces from |
| * the top starting with the largest address space. When finished, |
| * the registers are written and the card enabled. |
| * |
| * While the Tundra can map a large address space on most boards, we |
| * need to be careful because it may overlap other devices (like IMMR). |
| */ |
| #define MEMORY_SPACE_SIZE 0x20000000 |
| #define IO_SPACE_SIZE 0x20000000 |
| |
| void |
| map_pci_addrs() |
| { |
| uint pci_mem_top, pci_mem_low; |
| uint pci_io_top; |
| uint addr_mask, reg_addr, space; |
| int i, j; |
| pci_map_t *pm; |
| |
| pci_mem_top = MEMORY_SPACE_SIZE; |
| pci_io_top = IO_SPACE_SIZE; |
| pci_mem_low = (1 * 1024 * 1024); /* Below one meg addresses */ |
| |
| /* We can't map anything more than the maximum space, but test |
| * for it anyway to catch devices out of range. |
| */ |
| addr_mask = 0x80000000; |
| |
| do { |
| space = (~addr_mask) + 1; /* Size of the space */ |
| for (i=0; i<pci_dev_cnt; i++) { |
| pm = &pci_map[i]; |
| for (j=0; j<6; j++) { |
| /* If the MS bit is not set, this has either |
| * already been mapped, or is not used. |
| */ |
| reg_addr = pm->pci_addrs[j]; |
| if ((reg_addr & 0x80000000) == 0) |
| continue; |
| if (reg_addr & PCI_BASE_ADDRESS_SPACE_IO) { |
| if ((reg_addr & PCI_BASE_ADDRESS_IO_MASK) != addr_mask) |
| continue; |
| if (pci_io_top < space) { |
| puts("Out of PCI I/O space\n"); |
| } |
| else { |
| pci_io_top -= space; |
| pm->pci_addrs[j] = pci_io_top; |
| pm->pci_command |= PCI_COMMAND_IO; |
| } |
| } |
| else { |
| if ((reg_addr & PCI_BASE_ADDRESS_MEM_MASK) != addr_mask) |
| continue; |
| |
| /* Memory space. Test if below 1M. |
| */ |
| if (reg_addr & PCI_BASE_ADDRESS_MEM_TYPE_1M) { |
| if (pci_mem_low < space) { |
| puts("Out of PCI 1M space\n"); |
| } |
| else { |
| pci_mem_low -= space; |
| pm->pci_addrs[j] = pci_mem_low; |
| } |
| } |
| else { |
| if (pci_mem_top < space) { |
| puts("Out of PCI Mem space\n"); |
| } |
| else { |
| pci_mem_top -= space; |
| pm->pci_addrs[j] = pci_mem_top; |
| } |
| } |
| pm->pci_command |= PCI_COMMAND_MEMORY; |
| } |
| } |
| } |
| addr_mask >>= 1; |
| addr_mask |= 0x80000000; |
| } while (addr_mask != 0xfffffffe); |
| |
| /* Now, run the list one more time and map everything. |
| */ |
| for (i=0; i<pci_dev_cnt; i++) { |
| pm = &pci_map[i]; |
| for (j=0; j<6; j++) { |
| qs_pci_write_config_dword(pm->pci_bus, pm->pci_devfn, |
| PCI_BASE_ADDRESS_0 + (j * 4), pm->pci_addrs[j]); |
| } |
| |
| /* Enable memory or address mapping. |
| */ |
| qs_pci_write_config_word(pm->pci_bus, pm->pci_devfn, PCI_COMMAND, |
| pm->pci_command); |
| } |
| } |
| |