| /* -*- c-basic-offset: 8 -*- |
| * |
| * amdtp.c - Audio and Music Data Transmission Protocol Driver |
| * Copyright (C) 2001 Kristian Høgsberg |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* OVERVIEW |
| * -------- |
| * |
| * The AMDTP driver is designed to expose the IEEE1394 bus as a |
| * regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and |
| * then your favourite MP3 player, game or whatever sound program will |
| * output to an IEEE1394 isochronous channel. The signal destination |
| * could be a set of IEEE1394 loudspeakers (if and when such things |
| * become available) or an amplifier with IEEE1394 input (like the |
| * Sony STR-LSA1). The driver only handles the actual streaming, some |
| * connection management is also required for this to actually work. |
| * That is outside the scope of this driver, and furthermore it is not |
| * really standardized yet. |
| * |
| * The Audio and Music Data Tranmission Protocol is available at |
| * |
| * http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf |
| * |
| * |
| * TODO |
| * ---- |
| * |
| * - We should be able to change input sample format between LE/BE, as |
| * we already shift the bytes around when we construct the iso |
| * packets. |
| * |
| * - Fix DMA stop after bus reset! |
| * |
| * - Clean up iso context handling in ohci1394. |
| * |
| * |
| * MAYBE TODO |
| * ---------- |
| * |
| * - Receive data for local playback or recording. Playback requires |
| * soft syncing with the sound card. |
| * |
| * - Signal processing, i.e. receive packets, do some processing, and |
| * transmit them again using the same packet structure and timestamps |
| * offset by processing time. |
| * |
| * - Maybe make an ALSA interface, that is, create a file_ops |
| * implementation that recognizes ALSA ioctls and uses defaults for |
| * things that can't be controlled through ALSA (iso channel). |
| * |
| * Changes: |
| * |
| * - Audit copy_from_user in amdtp_write. |
| * Daniele Bellucci <bellucda@tiscali.it> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/list.h> |
| #include <linux/sched.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/ioctl.h> |
| #include <linux/wait.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/poll.h> |
| #include <linux/ioctl32.h> |
| #include <linux/compat.h> |
| #include <linux/cdev.h> |
| #include <asm/uaccess.h> |
| #include <asm/atomic.h> |
| |
| #include "hosts.h" |
| #include "highlevel.h" |
| #include "ieee1394.h" |
| #include "ieee1394_core.h" |
| #include "ohci1394.h" |
| |
| #include "amdtp.h" |
| #include "cmp.h" |
| |
| #define FMT_AMDTP 0x10 |
| #define FDF_AM824 0x00 |
| #define FDF_SFC_32KHZ 0x00 |
| #define FDF_SFC_44K1HZ 0x01 |
| #define FDF_SFC_48KHZ 0x02 |
| #define FDF_SFC_88K2HZ 0x03 |
| #define FDF_SFC_96KHZ 0x04 |
| #define FDF_SFC_176K4HZ 0x05 |
| #define FDF_SFC_192KHZ 0x06 |
| |
| struct descriptor_block { |
| struct output_more_immediate { |
| u32 control; |
| u32 pad0; |
| u32 skip; |
| u32 pad1; |
| u32 header[4]; |
| } header_desc; |
| |
| struct output_last { |
| u32 control; |
| u32 data_address; |
| u32 branch; |
| u32 status; |
| } payload_desc; |
| }; |
| |
| struct packet { |
| struct descriptor_block *db; |
| dma_addr_t db_bus; |
| struct iso_packet *payload; |
| dma_addr_t payload_bus; |
| }; |
| |
| #include <asm/byteorder.h> |
| |
| #if defined __BIG_ENDIAN_BITFIELD |
| |
| struct iso_packet { |
| /* First quadlet */ |
| unsigned int dbs : 8; |
| unsigned int eoh0 : 2; |
| unsigned int sid : 6; |
| |
| unsigned int dbc : 8; |
| unsigned int fn : 2; |
| unsigned int qpc : 3; |
| unsigned int sph : 1; |
| unsigned int reserved : 2; |
| |
| /* Second quadlet */ |
| unsigned int fdf : 8; |
| unsigned int eoh1 : 2; |
| unsigned int fmt : 6; |
| |
| unsigned int syt : 16; |
| |
| quadlet_t data[0]; |
| }; |
| |
| #elif defined __LITTLE_ENDIAN_BITFIELD |
| |
| struct iso_packet { |
| /* First quadlet */ |
| unsigned int sid : 6; |
| unsigned int eoh0 : 2; |
| unsigned int dbs : 8; |
| |
| unsigned int reserved : 2; |
| unsigned int sph : 1; |
| unsigned int qpc : 3; |
| unsigned int fn : 2; |
| unsigned int dbc : 8; |
| |
| /* Second quadlet */ |
| unsigned int fmt : 6; |
| unsigned int eoh1 : 2; |
| unsigned int fdf : 8; |
| |
| unsigned int syt : 16; |
| |
| quadlet_t data[0]; |
| }; |
| |
| #else |
| |
| #error Unknown bitfield type |
| |
| #endif |
| |
| struct fraction { |
| int integer; |
| int numerator; |
| int denominator; |
| }; |
| |
| #define PACKET_LIST_SIZE 256 |
| #define MAX_PACKET_LISTS 4 |
| |
| struct packet_list { |
| struct list_head link; |
| int last_cycle_count; |
| struct packet packets[PACKET_LIST_SIZE]; |
| }; |
| |
| #define BUFFER_SIZE 128 |
| |
| /* This implements a circular buffer for incoming samples. */ |
| |
| struct buffer { |
| size_t head, tail, length, size; |
| unsigned char data[0]; |
| }; |
| |
| struct stream { |
| int iso_channel; |
| int format; |
| int rate; |
| int dimension; |
| int fdf; |
| int mode; |
| int sample_format; |
| struct cmp_pcr *opcr; |
| |
| /* Input samples are copied here. */ |
| struct buffer *input; |
| |
| /* ISO Packer state */ |
| unsigned char dbc; |
| struct packet_list *current_packet_list; |
| int current_packet; |
| struct fraction ready_samples, samples_per_cycle; |
| |
| /* We use these to generate control bits when we are packing |
| * iec958 data. |
| */ |
| int iec958_frame_count; |
| int iec958_rate_code; |
| |
| /* The cycle_count and cycle_offset fields are used for the |
| * synchronization timestamps (syt) in the cip header. They |
| * are incremented by at least a cycle every time we put a |
| * time stamp in a packet. As we don't time stamp all |
| * packages, cycle_count isn't updated in every cycle, and |
| * sometimes it's incremented by 2. Thus, we have |
| * cycle_count2, which is simply incremented by one with each |
| * packet, so we can compare it to the transmission time |
| * written back in the dma programs. |
| */ |
| atomic_t cycle_count, cycle_count2; |
| struct fraction cycle_offset, ticks_per_syt_offset; |
| int syt_interval; |
| int stale_count; |
| |
| /* Theses fields control the sample output to the DMA engine. |
| * The dma_packet_lists list holds packet lists currently |
| * queued for dma; the head of the list is currently being |
| * processed. The last program in a packet list generates an |
| * interrupt, which removes the head from dma_packet_lists and |
| * puts it back on the free list. |
| */ |
| struct list_head dma_packet_lists; |
| struct list_head free_packet_lists; |
| wait_queue_head_t packet_list_wait; |
| spinlock_t packet_list_lock; |
| struct ohci1394_iso_tasklet iso_tasklet; |
| struct pci_pool *descriptor_pool, *packet_pool; |
| |
| /* Streams at a host controller are chained through this field. */ |
| struct list_head link; |
| struct amdtp_host *host; |
| }; |
| |
| struct amdtp_host { |
| struct hpsb_host *host; |
| struct ti_ohci *ohci; |
| struct list_head stream_list; |
| spinlock_t stream_list_lock; |
| }; |
| |
| static struct hpsb_highlevel amdtp_highlevel; |
| |
| |
| /* FIXME: This doesn't belong here... */ |
| |
| #define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000 |
| #define OHCI1394_CONTEXT_RUN 0x00008000 |
| #define OHCI1394_CONTEXT_WAKE 0x00001000 |
| #define OHCI1394_CONTEXT_DEAD 0x00000800 |
| #define OHCI1394_CONTEXT_ACTIVE 0x00000400 |
| |
| static void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx, |
| dma_addr_t first_cmd, int z, int cycle_match) |
| { |
| reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx); |
| reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z); |
| reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0); |
| wmb(); |
| reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16, |
| OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) | |
| OHCI1394_CONTEXT_RUN); |
| } |
| |
| static void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx) |
| { |
| reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16, |
| OHCI1394_CONTEXT_WAKE); |
| } |
| |
| static void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous) |
| { |
| u32 control; |
| int wait; |
| |
| reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx); |
| reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, |
| OHCI1394_CONTEXT_RUN); |
| wmb(); |
| |
| if (synchronous) { |
| for (wait = 0; wait < 5; wait++) { |
| control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16); |
| if ((control & OHCI1394_CONTEXT_ACTIVE) == 0) |
| break; |
| |
| schedule_timeout_interruptible(1); |
| } |
| } |
| } |
| |
| /* Note: we can test if free_packet_lists is empty without aquiring |
| * the packet_list_lock. The interrupt handler only adds to the free |
| * list, there is no race condition between testing the list non-empty |
| * and acquiring the lock. |
| */ |
| |
| static struct packet_list *stream_get_free_packet_list(struct stream *s) |
| { |
| struct packet_list *pl; |
| unsigned long flags; |
| |
| if (list_empty(&s->free_packet_lists)) |
| return NULL; |
| |
| spin_lock_irqsave(&s->packet_list_lock, flags); |
| pl = list_entry(s->free_packet_lists.next, struct packet_list, link); |
| list_del(&pl->link); |
| spin_unlock_irqrestore(&s->packet_list_lock, flags); |
| |
| return pl; |
| } |
| |
| static void stream_start_dma(struct stream *s, struct packet_list *pl) |
| { |
| u32 syt_cycle, cycle_count, start_cycle; |
| |
| cycle_count = reg_read(s->host->ohci, |
| OHCI1394_IsochronousCycleTimer) >> 12; |
| syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f; |
| |
| /* We program the DMA controller to start transmission at |
| * least 17 cycles from now - this happens when the lower four |
| * bits of cycle_count is 0x0f and syt_cycle is 0, in this |
| * case the start cycle is cycle_count - 15 + 32. */ |
| start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle; |
| if ((start_cycle & 0x1fff) >= 8000) |
| start_cycle = start_cycle - 8000 + 0x2000; |
| |
| ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context, |
| pl->packets[0].db_bus, 3, |
| start_cycle & 0x7fff); |
| } |
| |
| static void stream_put_dma_packet_list(struct stream *s, |
| struct packet_list *pl) |
| { |
| unsigned long flags; |
| struct packet_list *prev; |
| |
| /* Remember the cycle_count used for timestamping the last packet. */ |
| pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1; |
| pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0; |
| |
| spin_lock_irqsave(&s->packet_list_lock, flags); |
| list_add_tail(&pl->link, &s->dma_packet_lists); |
| spin_unlock_irqrestore(&s->packet_list_lock, flags); |
| |
| prev = list_entry(pl->link.prev, struct packet_list, link); |
| if (pl->link.prev != &s->dma_packet_lists) { |
| struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1]; |
| last->db->payload_desc.branch = pl->packets[0].db_bus | 3; |
| last->db->header_desc.skip = pl->packets[0].db_bus | 3; |
| ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context); |
| } |
| else |
| stream_start_dma(s, pl); |
| } |
| |
| static void stream_shift_packet_lists(unsigned long l) |
| { |
| struct stream *s = (struct stream *) l; |
| struct packet_list *pl; |
| struct packet *last; |
| int diff; |
| |
| if (list_empty(&s->dma_packet_lists)) { |
| HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__); |
| return; |
| } |
| |
| /* Now that we know the list is non-empty, we can get the head |
| * of the list without locking, because the process context |
| * only adds to the tail. |
| */ |
| pl = list_entry(s->dma_packet_lists.next, struct packet_list, link); |
| last = &pl->packets[PACKET_LIST_SIZE - 1]; |
| |
| /* This is weird... if we stop dma processing in the middle of |
| * a packet list, the dma context immediately generates an |
| * interrupt if we enable it again later. This only happens |
| * when amdtp_release is interrupted while waiting for dma to |
| * complete, though. Anyway, we detect this by seeing that |
| * the status of the dma descriptor that we expected an |
| * interrupt from is still 0. |
| */ |
| if (last->db->payload_desc.status == 0) { |
| HPSB_INFO("weird interrupt..."); |
| return; |
| } |
| |
| /* If the last descriptor block does not specify a branch |
| * address, we have a sample underflow. |
| */ |
| if (last->db->payload_desc.branch == 0) |
| HPSB_INFO("FIXME: sample underflow..."); |
| |
| /* Here we check when (which cycle) the last packet was sent |
| * and compare it to what the iso packer was using at the |
| * time. If there is a mismatch, we adjust the cycle count in |
| * the iso packer. However, there are still up to |
| * MAX_PACKET_LISTS packet lists queued with bad time stamps, |
| * so we disable time stamp monitoring for the next |
| * MAX_PACKET_LISTS packet lists. |
| */ |
| diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf; |
| if (diff > 0 && s->stale_count == 0) { |
| atomic_add(diff, &s->cycle_count); |
| atomic_add(diff, &s->cycle_count2); |
| s->stale_count = MAX_PACKET_LISTS; |
| } |
| |
| if (s->stale_count > 0) |
| s->stale_count--; |
| |
| /* Finally, we move the packet list that was just processed |
| * back to the free list, and notify any waiters. |
| */ |
| spin_lock(&s->packet_list_lock); |
| list_del(&pl->link); |
| list_add_tail(&pl->link, &s->free_packet_lists); |
| spin_unlock(&s->packet_list_lock); |
| |
| wake_up_interruptible(&s->packet_list_wait); |
| } |
| |
| static struct packet *stream_current_packet(struct stream *s) |
| { |
| if (s->current_packet_list == NULL && |
| (s->current_packet_list = stream_get_free_packet_list(s)) == NULL) |
| return NULL; |
| |
| return &s->current_packet_list->packets[s->current_packet]; |
| } |
| |
| static void stream_queue_packet(struct stream *s) |
| { |
| s->current_packet++; |
| if (s->current_packet == PACKET_LIST_SIZE) { |
| stream_put_dma_packet_list(s, s->current_packet_list); |
| s->current_packet_list = NULL; |
| s->current_packet = 0; |
| } |
| } |
| |
| /* Integer fractional math. When we transmit a 44k1Hz signal we must |
| * send 5 41/80 samples per isochronous cycle, as these occur 8000 |
| * times a second. Of course, we must send an integral number of |
| * samples in a packet, so we use the integer math to alternate |
| * between sending 5 and 6 samples per packet. |
| */ |
| |
| static void fraction_init(struct fraction *f, int numerator, int denominator) |
| { |
| f->integer = numerator / denominator; |
| f->numerator = numerator % denominator; |
| f->denominator = denominator; |
| } |
| |
| static __inline__ void fraction_add(struct fraction *dst, |
| struct fraction *src1, |
| struct fraction *src2) |
| { |
| /* assert: src1->denominator == src2->denominator */ |
| |
| int sum, denom; |
| |
| /* We use these two local variables to allow gcc to optimize |
| * the division and the modulo into only one division. */ |
| |
| sum = src1->numerator + src2->numerator; |
| denom = src1->denominator; |
| dst->integer = src1->integer + src2->integer + sum / denom; |
| dst->numerator = sum % denom; |
| dst->denominator = denom; |
| } |
| |
| static __inline__ void fraction_sub_int(struct fraction *dst, |
| struct fraction *src, int integer) |
| { |
| dst->integer = src->integer - integer; |
| dst->numerator = src->numerator; |
| dst->denominator = src->denominator; |
| } |
| |
| static __inline__ int fraction_floor(struct fraction *frac) |
| { |
| return frac->integer; |
| } |
| |
| static __inline__ int fraction_ceil(struct fraction *frac) |
| { |
| return frac->integer + (frac->numerator > 0 ? 1 : 0); |
| } |
| |
| static void packet_initialize(struct packet *p, struct packet *next) |
| { |
| /* Here we initialize the dma descriptor block for |
| * transferring one iso packet. We use two descriptors per |
| * packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the |
| * IEEE1394 iso packet header and an OUTPUT_LAST descriptor |
| * for the payload. |
| */ |
| |
| p->db->header_desc.control = |
| DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8; |
| |
| if (next) { |
| p->db->payload_desc.control = |
| DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH; |
| p->db->payload_desc.branch = next->db_bus | 3; |
| p->db->header_desc.skip = next->db_bus | 3; |
| } |
| else { |
| p->db->payload_desc.control = |
| DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH | |
| DMA_CTL_UPDATE | DMA_CTL_IRQ; |
| p->db->payload_desc.branch = 0; |
| p->db->header_desc.skip = 0; |
| } |
| p->db->payload_desc.data_address = p->payload_bus; |
| p->db->payload_desc.status = 0; |
| } |
| |
| static struct packet_list *packet_list_alloc(struct stream *s) |
| { |
| int i; |
| struct packet_list *pl; |
| struct packet *next; |
| |
| pl = kmalloc(sizeof *pl, SLAB_KERNEL); |
| if (pl == NULL) |
| return NULL; |
| |
| for (i = 0; i < PACKET_LIST_SIZE; i++) { |
| struct packet *p = &pl->packets[i]; |
| p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL, |
| &p->db_bus); |
| p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL, |
| &p->payload_bus); |
| } |
| |
| for (i = 0; i < PACKET_LIST_SIZE; i++) { |
| if (i < PACKET_LIST_SIZE - 1) |
| next = &pl->packets[i + 1]; |
| else |
| next = NULL; |
| packet_initialize(&pl->packets[i], next); |
| } |
| |
| return pl; |
| } |
| |
| static void packet_list_free(struct packet_list *pl, struct stream *s) |
| { |
| int i; |
| |
| for (i = 0; i < PACKET_LIST_SIZE; i++) { |
| struct packet *p = &pl->packets[i]; |
| pci_pool_free(s->descriptor_pool, p->db, p->db_bus); |
| pci_pool_free(s->packet_pool, p->payload, p->payload_bus); |
| } |
| kfree(pl); |
| } |
| |
| static struct buffer *buffer_alloc(int size) |
| { |
| struct buffer *b; |
| |
| b = kmalloc(sizeof *b + size, SLAB_KERNEL); |
| if (b == NULL) |
| return NULL; |
| b->head = 0; |
| b->tail = 0; |
| b->length = 0; |
| b->size = size; |
| |
| return b; |
| } |
| |
| static unsigned char *buffer_get_bytes(struct buffer *buffer, int size) |
| { |
| unsigned char *p; |
| |
| if (buffer->head + size > buffer->size) |
| BUG(); |
| |
| p = &buffer->data[buffer->head]; |
| buffer->head += size; |
| if (buffer->head == buffer->size) |
| buffer->head = 0; |
| buffer->length -= size; |
| |
| return p; |
| } |
| |
| static unsigned char *buffer_put_bytes(struct buffer *buffer, |
| size_t max, size_t *actual) |
| { |
| size_t length; |
| unsigned char *p; |
| |
| p = &buffer->data[buffer->tail]; |
| length = min(buffer->size - buffer->length, max); |
| if (buffer->tail + length < buffer->size) { |
| *actual = length; |
| buffer->tail += length; |
| } |
| else { |
| *actual = buffer->size - buffer->tail; |
| buffer->tail = 0; |
| } |
| |
| buffer->length += *actual; |
| return p; |
| } |
| |
| static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample) |
| { |
| int csi, parity, shift; |
| int block_start; |
| u32 bits; |
| |
| switch (s->iec958_frame_count) { |
| case 1: |
| csi = s->format == AMDTP_FORMAT_IEC958_AC3; |
| break; |
| case 2: |
| case 9: |
| csi = 1; |
| break; |
| case 24 ... 27: |
| csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01; |
| break; |
| default: |
| csi = 0; |
| break; |
| } |
| |
| block_start = (s->iec958_frame_count == 0 && sub_frame == 0); |
| |
| /* The parity bit is the xor of the sample bits and the |
| * channel status info bit. */ |
| for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1) |
| parity ^= (parity >> shift); |
| |
| bits = (block_start << 5) | /* Block start bit */ |
| ((sub_frame == 0) << 4) | /* Subframe bit */ |
| ((parity & 1) << 3) | /* Parity bit */ |
| (csi << 2); /* Channel status info bit */ |
| |
| return bits; |
| } |
| |
| static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample) |
| { |
| switch (s->format) { |
| case AMDTP_FORMAT_IEC958_PCM: |
| case AMDTP_FORMAT_IEC958_AC3: |
| return get_iec958_header_bits(s, sub_frame, sample); |
| |
| case AMDTP_FORMAT_RAW: |
| return 0x40; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents) |
| { |
| quadlet_t *event, sample, bits; |
| unsigned char *p; |
| int i, j; |
| |
| for (i = 0, event = data; i < nevents; i++) { |
| |
| for (j = 0; j < s->dimension; j++) { |
| p = buffer_get_bytes(s->input, 2); |
| sample = (p[1] << 16) | (p[0] << 8); |
| bits = get_header_bits(s, j, sample); |
| event[j] = cpu_to_be32((bits << 24) | sample); |
| } |
| |
| event += s->dimension; |
| if (++s->iec958_frame_count == 192) |
| s->iec958_frame_count = 0; |
| } |
| } |
| |
| static void fill_packet(struct stream *s, struct packet *packet, int nevents) |
| { |
| int syt_index, syt, size; |
| u32 control; |
| |
| size = (nevents * s->dimension + 2) * sizeof(quadlet_t); |
| |
| /* Update DMA descriptors */ |
| packet->db->payload_desc.status = 0; |
| control = packet->db->payload_desc.control & 0xffff0000; |
| packet->db->payload_desc.control = control | size; |
| |
| /* Fill IEEE1394 headers */ |
| packet->db->header_desc.header[0] = |
| (IEEE1394_SPEED_100 << 16) | (0x01 << 14) | |
| (s->iso_channel << 8) | (TCODE_ISO_DATA << 4); |
| packet->db->header_desc.header[1] = size << 16; |
| |
| /* Calculate synchronization timestamp (syt). First we |
| * determine syt_index, that is, the index in the packet of |
| * the sample for which the timestamp is valid. */ |
| syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1); |
| if (syt_index < nevents) { |
| syt = ((atomic_read(&s->cycle_count) << 12) | |
| s->cycle_offset.integer) & 0xffff; |
| fraction_add(&s->cycle_offset, |
| &s->cycle_offset, &s->ticks_per_syt_offset); |
| |
| /* This next addition should be modulo 8000 (0x1f40), |
| * but we only use the lower 4 bits of cycle_count, so |
| * we don't need the modulo. */ |
| atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count); |
| s->cycle_offset.integer %= 3072; |
| } |
| else |
| syt = 0xffff; |
| |
| atomic_inc(&s->cycle_count2); |
| |
| /* Fill cip header */ |
| packet->payload->eoh0 = 0; |
| packet->payload->sid = s->host->host->node_id & 0x3f; |
| packet->payload->dbs = s->dimension; |
| packet->payload->fn = 0; |
| packet->payload->qpc = 0; |
| packet->payload->sph = 0; |
| packet->payload->reserved = 0; |
| packet->payload->dbc = s->dbc; |
| packet->payload->eoh1 = 2; |
| packet->payload->fmt = FMT_AMDTP; |
| packet->payload->fdf = s->fdf; |
| packet->payload->syt = cpu_to_be16(syt); |
| |
| switch (s->sample_format) { |
| case AMDTP_INPUT_LE16: |
| fill_payload_le16(s, packet->payload->data, nevents); |
| break; |
| } |
| |
| s->dbc += nevents; |
| } |
| |
| static void stream_flush(struct stream *s) |
| { |
| struct packet *p; |
| int nevents; |
| struct fraction next; |
| |
| /* The AMDTP specifies two transmission modes: blocking and |
| * non-blocking. In blocking mode you always transfer |
| * syt_interval or zero samples, whereas in non-blocking mode |
| * you send as many samples as you have available at transfer |
| * time. |
| * |
| * The fraction samples_per_cycle specifies the number of |
| * samples that become available per cycle. We add this to |
| * the fraction ready_samples, which specifies the number of |
| * leftover samples from the previous transmission. The sum, |
| * stored in the fraction next, specifies the number of |
| * samples available for transmission, and from this we |
| * determine the number of samples to actually transmit. |
| */ |
| |
| while (1) { |
| fraction_add(&next, &s->ready_samples, &s->samples_per_cycle); |
| if (s->mode == AMDTP_MODE_BLOCKING) { |
| if (fraction_floor(&next) >= s->syt_interval) |
| nevents = s->syt_interval; |
| else |
| nevents = 0; |
| } |
| else |
| nevents = fraction_floor(&next); |
| |
| p = stream_current_packet(s); |
| if (s->input->length < nevents * s->dimension * 2 || p == NULL) |
| break; |
| |
| fill_packet(s, p, nevents); |
| stream_queue_packet(s); |
| |
| /* Now that we have successfully queued the packet for |
| * transmission, we update the fraction ready_samples. */ |
| fraction_sub_int(&s->ready_samples, &next, nevents); |
| } |
| } |
| |
| static int stream_alloc_packet_lists(struct stream *s) |
| { |
| int max_nevents, max_packet_size, i; |
| |
| if (s->mode == AMDTP_MODE_BLOCKING) |
| max_nevents = s->syt_interval; |
| else |
| max_nevents = fraction_ceil(&s->samples_per_cycle); |
| |
| max_packet_size = max_nevents * s->dimension * 4 + 8; |
| s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev, |
| max_packet_size, 0, 0); |
| |
| if (s->packet_pool == NULL) |
| return -1; |
| |
| INIT_LIST_HEAD(&s->free_packet_lists); |
| INIT_LIST_HEAD(&s->dma_packet_lists); |
| for (i = 0; i < MAX_PACKET_LISTS; i++) { |
| struct packet_list *pl = packet_list_alloc(s); |
| if (pl == NULL) |
| break; |
| list_add_tail(&pl->link, &s->free_packet_lists); |
| } |
| |
| return i < MAX_PACKET_LISTS ? -1 : 0; |
| } |
| |
| static void stream_free_packet_lists(struct stream *s) |
| { |
| struct packet_list *packet_l, *packet_l_next; |
| |
| if (s->current_packet_list != NULL) |
| packet_list_free(s->current_packet_list, s); |
| list_for_each_entry_safe(packet_l, packet_l_next, &s->dma_packet_lists, link) |
| packet_list_free(packet_l, s); |
| list_for_each_entry_safe(packet_l, packet_l_next, &s->free_packet_lists, link) |
| packet_list_free(packet_l, s); |
| if (s->packet_pool != NULL) |
| pci_pool_destroy(s->packet_pool); |
| |
| s->current_packet_list = NULL; |
| INIT_LIST_HEAD(&s->free_packet_lists); |
| INIT_LIST_HEAD(&s->dma_packet_lists); |
| s->packet_pool = NULL; |
| } |
| |
| static void plug_update(struct cmp_pcr *plug, void *data) |
| { |
| struct stream *s = data; |
| |
| HPSB_INFO("plug update: p2p_count=%d, channel=%d", |
| plug->p2p_count, plug->channel); |
| s->iso_channel = plug->channel; |
| if (plug->p2p_count > 0) { |
| struct packet_list *pl; |
| |
| pl = list_entry(s->dma_packet_lists.next, struct packet_list, link); |
| stream_start_dma(s, pl); |
| } |
| else { |
| ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0); |
| } |
| } |
| |
| static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg) |
| { |
| const int transfer_delay = 9000; |
| |
| if (cfg->format <= AMDTP_FORMAT_IEC958_AC3) |
| s->format = cfg->format; |
| else |
| return -EINVAL; |
| |
| switch (cfg->rate) { |
| case 32000: |
| s->syt_interval = 8; |
| s->fdf = FDF_SFC_32KHZ; |
| s->iec958_rate_code = 0x0c; |
| break; |
| case 44100: |
| s->syt_interval = 8; |
| s->fdf = FDF_SFC_44K1HZ; |
| s->iec958_rate_code = 0x00; |
| break; |
| case 48000: |
| s->syt_interval = 8; |
| s->fdf = FDF_SFC_48KHZ; |
| s->iec958_rate_code = 0x04; |
| break; |
| case 88200: |
| s->syt_interval = 16; |
| s->fdf = FDF_SFC_88K2HZ; |
| s->iec958_rate_code = 0x00; |
| break; |
| case 96000: |
| s->syt_interval = 16; |
| s->fdf = FDF_SFC_96KHZ; |
| s->iec958_rate_code = 0x00; |
| break; |
| case 176400: |
| s->syt_interval = 32; |
| s->fdf = FDF_SFC_176K4HZ; |
| s->iec958_rate_code = 0x00; |
| break; |
| case 192000: |
| s->syt_interval = 32; |
| s->fdf = FDF_SFC_192KHZ; |
| s->iec958_rate_code = 0x00; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| s->rate = cfg->rate; |
| fraction_init(&s->samples_per_cycle, s->rate, 8000); |
| fraction_init(&s->ready_samples, 0, 8000); |
| |
| /* The ticks_per_syt_offset is initialized to the number of |
| * ticks between syt_interval events. The number of ticks per |
| * second is 24.576e6, so the number of ticks between |
| * syt_interval events is 24.576e6 * syt_interval / rate. |
| */ |
| fraction_init(&s->ticks_per_syt_offset, |
| 24576000 * s->syt_interval, s->rate); |
| fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate); |
| atomic_set(&s->cycle_count, transfer_delay / 3072); |
| atomic_set(&s->cycle_count2, 0); |
| |
| s->mode = cfg->mode; |
| s->sample_format = AMDTP_INPUT_LE16; |
| |
| /* When using the AM824 raw subformat we can stream signals of |
| * any dimension. The IEC958 subformat, however, only |
| * supports 2 channels. |
| */ |
| if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2) |
| s->dimension = cfg->dimension; |
| else |
| return -EINVAL; |
| |
| if (s->opcr != NULL) { |
| cmp_unregister_opcr(s->host->host, s->opcr); |
| s->opcr = NULL; |
| } |
| |
| switch(cmd) { |
| case AMDTP_IOC_PLUG: |
| s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug, |
| /*payload*/ 12, plug_update, s); |
| if (s->opcr == NULL) |
| return -EINVAL; |
| s->iso_channel = s->opcr->channel; |
| break; |
| |
| case AMDTP_IOC_CHANNEL: |
| if (cfg->u.channel >= 0 && cfg->u.channel < 64) |
| s->iso_channel = cfg->u.channel; |
| else |
| return -EINVAL; |
| break; |
| } |
| |
| /* The ioctl settings were all valid, so we realloc the packet |
| * lists to make sure the packet size is big enough. |
| */ |
| if (s->packet_pool != NULL) |
| stream_free_packet_lists(s); |
| |
| if (stream_alloc_packet_lists(s) < 0) { |
| stream_free_packet_lists(s); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static struct stream *stream_alloc(struct amdtp_host *host) |
| { |
| struct stream *s; |
| unsigned long flags; |
| |
| s = kmalloc(sizeof(struct stream), SLAB_KERNEL); |
| if (s == NULL) |
| return NULL; |
| |
| memset(s, 0, sizeof(struct stream)); |
| s->host = host; |
| |
| s->input = buffer_alloc(BUFFER_SIZE); |
| if (s->input == NULL) { |
| kfree(s); |
| return NULL; |
| } |
| |
| s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev, |
| sizeof(struct descriptor_block), |
| 16, 0); |
| |
| if (s->descriptor_pool == NULL) { |
| kfree(s->input); |
| kfree(s); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&s->free_packet_lists); |
| INIT_LIST_HEAD(&s->dma_packet_lists); |
| |
| init_waitqueue_head(&s->packet_list_wait); |
| spin_lock_init(&s->packet_list_lock); |
| |
| ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT, |
| stream_shift_packet_lists, |
| (unsigned long) s); |
| |
| if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) { |
| pci_pool_destroy(s->descriptor_pool); |
| kfree(s->input); |
| kfree(s); |
| return NULL; |
| } |
| |
| spin_lock_irqsave(&host->stream_list_lock, flags); |
| list_add_tail(&s->link, &host->stream_list); |
| spin_unlock_irqrestore(&host->stream_list_lock, flags); |
| |
| return s; |
| } |
| |
| static void stream_free(struct stream *s) |
| { |
| unsigned long flags; |
| |
| /* Stop the DMA. We wait for the dma packet list to become |
| * empty and let the dma controller run out of programs. This |
| * seems to be more reliable than stopping it directly, since |
| * that sometimes generates an it transmit interrupt if we |
| * later re-enable the context. |
| */ |
| wait_event_interruptible(s->packet_list_wait, |
| list_empty(&s->dma_packet_lists)); |
| |
| ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1); |
| ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet); |
| |
| if (s->opcr != NULL) |
| cmp_unregister_opcr(s->host->host, s->opcr); |
| |
| spin_lock_irqsave(&s->host->stream_list_lock, flags); |
| list_del(&s->link); |
| spin_unlock_irqrestore(&s->host->stream_list_lock, flags); |
| |
| kfree(s->input); |
| |
| stream_free_packet_lists(s); |
| pci_pool_destroy(s->descriptor_pool); |
| |
| kfree(s); |
| } |
| |
| /* File operations */ |
| |
| static ssize_t amdtp_write(struct file *file, const char __user *buffer, size_t count, |
| loff_t *offset_is_ignored) |
| { |
| struct stream *s = file->private_data; |
| unsigned char *p; |
| int i; |
| size_t length; |
| |
| if (s->packet_pool == NULL) |
| return -EBADFD; |
| |
| /* Fill the circular buffer from the input buffer and call the |
| * iso packer when the buffer is full. The iso packer may |
| * leave bytes in the buffer for two reasons: either the |
| * remaining bytes wasn't enough to build a new packet, or |
| * there were no free packet lists. In the first case we |
| * re-fill the buffer and call the iso packer again or return |
| * if we used all the data from userspace. In the second |
| * case, the wait_event_interruptible will block until the irq |
| * handler frees a packet list. |
| */ |
| |
| for (i = 0; i < count; i += length) { |
| p = buffer_put_bytes(s->input, count - i, &length); |
| if (copy_from_user(p, buffer + i, length)) |
| return -EFAULT; |
| if (s->input->length < s->input->size) |
| continue; |
| |
| stream_flush(s); |
| |
| if (s->current_packet_list != NULL) |
| continue; |
| |
| if (file->f_flags & O_NONBLOCK) |
| return i + length > 0 ? i + length : -EAGAIN; |
| |
| if (wait_event_interruptible(s->packet_list_wait, |
| !list_empty(&s->free_packet_lists))) |
| return -EINTR; |
| } |
| |
| return count; |
| } |
| |
| static long amdtp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct stream *s = file->private_data; |
| struct amdtp_ioctl cfg; |
| int err; |
| lock_kernel(); |
| switch(cmd) |
| { |
| case AMDTP_IOC_PLUG: |
| case AMDTP_IOC_CHANNEL: |
| if (copy_from_user(&cfg, (struct amdtp_ioctl __user *) arg, sizeof cfg)) |
| err = -EFAULT; |
| else |
| err = stream_configure(s, cmd, &cfg); |
| break; |
| |
| default: |
| err = -EINVAL; |
| break; |
| } |
| unlock_kernel(); |
| return err; |
| } |
| |
| static unsigned int amdtp_poll(struct file *file, poll_table *pt) |
| { |
| struct stream *s = file->private_data; |
| |
| poll_wait(file, &s->packet_list_wait, pt); |
| |
| if (!list_empty(&s->free_packet_lists)) |
| return POLLOUT | POLLWRNORM; |
| else |
| return 0; |
| } |
| |
| static int amdtp_open(struct inode *inode, struct file *file) |
| { |
| struct amdtp_host *host; |
| int i = ieee1394_file_to_instance(file); |
| |
| host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i); |
| if (host == NULL) |
| return -ENODEV; |
| |
| file->private_data = stream_alloc(host); |
| if (file->private_data == NULL) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int amdtp_release(struct inode *inode, struct file *file) |
| { |
| struct stream *s = file->private_data; |
| |
| stream_free(s); |
| |
| return 0; |
| } |
| |
| static struct cdev amdtp_cdev; |
| static struct file_operations amdtp_fops = |
| { |
| .owner = THIS_MODULE, |
| .write = amdtp_write, |
| .poll = amdtp_poll, |
| .unlocked_ioctl = amdtp_ioctl, |
| .compat_ioctl = amdtp_ioctl, /* All amdtp ioctls are compatible */ |
| .open = amdtp_open, |
| .release = amdtp_release |
| }; |
| |
| /* IEEE1394 Subsystem functions */ |
| |
| static void amdtp_add_host(struct hpsb_host *host) |
| { |
| struct amdtp_host *ah; |
| int minor; |
| |
| if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0) |
| return; |
| |
| ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah)); |
| if (!ah) { |
| HPSB_ERR("amdtp: Unable able to alloc hostinfo"); |
| return; |
| } |
| |
| ah->host = host; |
| ah->ohci = host->hostdata; |
| |
| hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->host->id); |
| |
| minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->host->id; |
| |
| INIT_LIST_HEAD(&ah->stream_list); |
| spin_lock_init(&ah->stream_list_lock); |
| |
| devfs_mk_cdev(MKDEV(IEEE1394_MAJOR, minor), |
| S_IFCHR|S_IRUSR|S_IWUSR, "amdtp/%d", ah->host->id); |
| } |
| |
| static void amdtp_remove_host(struct hpsb_host *host) |
| { |
| struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host); |
| |
| if (ah) |
| devfs_remove("amdtp/%d", ah->host->id); |
| |
| return; |
| } |
| |
| static struct hpsb_highlevel amdtp_highlevel = { |
| .name = "amdtp", |
| .add_host = amdtp_add_host, |
| .remove_host = amdtp_remove_host, |
| }; |
| |
| /* Module interface */ |
| |
| MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>"); |
| MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol " |
| "on OHCI boards."); |
| MODULE_SUPPORTED_DEVICE("amdtp"); |
| MODULE_LICENSE("GPL"); |
| |
| static int __init amdtp_init_module (void) |
| { |
| cdev_init(&amdtp_cdev, &amdtp_fops); |
| amdtp_cdev.owner = THIS_MODULE; |
| kobject_set_name(&amdtp_cdev.kobj, "amdtp"); |
| if (cdev_add(&amdtp_cdev, IEEE1394_AMDTP_DEV, 16)) { |
| HPSB_ERR("amdtp: unable to add char device"); |
| return -EIO; |
| } |
| |
| devfs_mk_dir("amdtp"); |
| |
| hpsb_register_highlevel(&amdtp_highlevel); |
| |
| HPSB_INFO("Loaded AMDTP driver"); |
| |
| return 0; |
| } |
| |
| static void __exit amdtp_exit_module (void) |
| { |
| hpsb_unregister_highlevel(&amdtp_highlevel); |
| devfs_remove("amdtp"); |
| cdev_del(&amdtp_cdev); |
| |
| HPSB_INFO("Unloaded AMDTP driver"); |
| } |
| |
| module_init(amdtp_init_module); |
| module_exit(amdtp_exit_module); |