| /* |
| * atari_scsi.c -- Device dependent functions for the Atari generic SCSI port |
| * |
| * Copyright 1994 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de> |
| * |
| * Loosely based on the work of Robert De Vries' team and added: |
| * - working real DMA |
| * - Falcon support (untested yet!) ++bjoern fixed and now it works |
| * - lots of extensions and bug fixes. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive |
| * for more details. |
| * |
| */ |
| |
| |
| /**************************************************************************/ |
| /* */ |
| /* Notes for Falcon SCSI: */ |
| /* ---------------------- */ |
| /* */ |
| /* Since the Falcon SCSI uses the ST-DMA chip, that is shared among */ |
| /* several device drivers, locking and unlocking the access to this */ |
| /* chip is required. But locking is not possible from an interrupt, */ |
| /* since it puts the process to sleep if the lock is not available. */ |
| /* This prevents "late" locking of the DMA chip, i.e. locking it just */ |
| /* before using it, since in case of disconnection-reconnection */ |
| /* commands, the DMA is started from the reselection interrupt. */ |
| /* */ |
| /* Two possible schemes for ST-DMA-locking would be: */ |
| /* 1) The lock is taken for each command separately and disconnecting */ |
| /* is forbidden (i.e. can_queue = 1). */ |
| /* 2) The DMA chip is locked when the first command comes in and */ |
| /* released when the last command is finished and all queues are */ |
| /* empty. */ |
| /* The first alternative would result in bad performance, since the */ |
| /* interleaving of commands would not be used. The second is unfair to */ |
| /* other drivers using the ST-DMA, because the queues will seldom be */ |
| /* totally empty if there is a lot of disk traffic. */ |
| /* */ |
| /* For this reasons I decided to employ a more elaborate scheme: */ |
| /* - First, we give up the lock every time we can (for fairness), this */ |
| /* means every time a command finishes and there are no other commands */ |
| /* on the disconnected queue. */ |
| /* - If there are others waiting to lock the DMA chip, we stop */ |
| /* issuing commands, i.e. moving them onto the issue queue. */ |
| /* Because of that, the disconnected queue will run empty in a */ |
| /* while. Instead we go to sleep on a 'fairness_queue'. */ |
| /* - If the lock is released, all processes waiting on the fairness */ |
| /* queue will be woken. The first of them tries to re-lock the DMA, */ |
| /* the others wait for the first to finish this task. After that, */ |
| /* they can all run on and do their commands... */ |
| /* This sounds complicated (and it is it :-(), but it seems to be a */ |
| /* good compromise between fairness and performance: As long as no one */ |
| /* else wants to work with the ST-DMA chip, SCSI can go along as */ |
| /* usual. If now someone else comes, this behaviour is changed to a */ |
| /* "fairness mode": just already initiated commands are finished and */ |
| /* then the lock is released. The other one waiting will probably win */ |
| /* the race for locking the DMA, since it was waiting for longer. And */ |
| /* after it has finished, SCSI can go ahead again. Finally: I hope I */ |
| /* have not produced any deadlock possibilities! */ |
| /* */ |
| /**************************************************************************/ |
| |
| |
| |
| #include <linux/module.h> |
| |
| #define NDEBUG (0) |
| |
| #define NDEBUG_ABORT 0x800000 |
| #define NDEBUG_TAGS 0x1000000 |
| #define NDEBUG_MERGING 0x2000000 |
| |
| #define AUTOSENSE |
| /* For the Atari version, use only polled IO or REAL_DMA */ |
| #define REAL_DMA |
| /* Support tagged queuing? (on devices that are able to... :-) */ |
| #define SUPPORT_TAGS |
| #define MAX_TAGS 32 |
| |
| #include <linux/types.h> |
| #include <linux/stddef.h> |
| #include <linux/ctype.h> |
| #include <linux/delay.h> |
| #include <linux/mm.h> |
| #include <linux/blkdev.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/nvram.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/setup.h> |
| #include <asm/atarihw.h> |
| #include <asm/atariints.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/irq.h> |
| #include <asm/traps.h> |
| |
| #include "scsi.h" |
| #include <scsi/scsi_host.h> |
| #include "atari_scsi.h" |
| #include "NCR5380.h" |
| #include <asm/atari_stdma.h> |
| #include <asm/atari_stram.h> |
| #include <asm/io.h> |
| |
| #include <linux/stat.h> |
| |
| #define IS_A_TT() ATARIHW_PRESENT(TT_SCSI) |
| |
| #define SCSI_DMA_WRITE_P(elt,val) \ |
| do { \ |
| unsigned long v = val; \ |
| tt_scsi_dma.elt##_lo = v & 0xff; \ |
| v >>= 8; \ |
| tt_scsi_dma.elt##_lmd = v & 0xff; \ |
| v >>= 8; \ |
| tt_scsi_dma.elt##_hmd = v & 0xff; \ |
| v >>= 8; \ |
| tt_scsi_dma.elt##_hi = v & 0xff; \ |
| } while(0) |
| |
| #define SCSI_DMA_READ_P(elt) \ |
| (((((((unsigned long)tt_scsi_dma.elt##_hi << 8) | \ |
| (unsigned long)tt_scsi_dma.elt##_hmd) << 8) | \ |
| (unsigned long)tt_scsi_dma.elt##_lmd) << 8) | \ |
| (unsigned long)tt_scsi_dma.elt##_lo) |
| |
| |
| static inline void SCSI_DMA_SETADR(unsigned long adr) |
| { |
| st_dma.dma_lo = (unsigned char)adr; |
| MFPDELAY(); |
| adr >>= 8; |
| st_dma.dma_md = (unsigned char)adr; |
| MFPDELAY(); |
| adr >>= 8; |
| st_dma.dma_hi = (unsigned char)adr; |
| MFPDELAY(); |
| } |
| |
| static inline unsigned long SCSI_DMA_GETADR(void) |
| { |
| unsigned long adr; |
| adr = st_dma.dma_lo; |
| MFPDELAY(); |
| adr |= (st_dma.dma_md & 0xff) << 8; |
| MFPDELAY(); |
| adr |= (st_dma.dma_hi & 0xff) << 16; |
| MFPDELAY(); |
| return adr; |
| } |
| |
| static inline void ENABLE_IRQ(void) |
| { |
| if (IS_A_TT()) |
| atari_enable_irq(IRQ_TT_MFP_SCSI); |
| else |
| atari_enable_irq(IRQ_MFP_FSCSI); |
| } |
| |
| static inline void DISABLE_IRQ(void) |
| { |
| if (IS_A_TT()) |
| atari_disable_irq(IRQ_TT_MFP_SCSI); |
| else |
| atari_disable_irq(IRQ_MFP_FSCSI); |
| } |
| |
| |
| #define HOSTDATA_DMALEN (((struct NCR5380_hostdata *) \ |
| (atari_scsi_host->hostdata))->dma_len) |
| |
| /* Time (in jiffies) to wait after a reset; the SCSI standard calls for 250ms, |
| * we usually do 0.5s to be on the safe side. But Toshiba CD-ROMs once more |
| * need ten times the standard value... */ |
| #ifndef CONFIG_ATARI_SCSI_TOSHIBA_DELAY |
| #define AFTER_RESET_DELAY (HZ/2) |
| #else |
| #define AFTER_RESET_DELAY (5*HZ/2) |
| #endif |
| |
| /***************************** Prototypes *****************************/ |
| |
| #ifdef REAL_DMA |
| static int scsi_dma_is_ignored_buserr( unsigned char dma_stat ); |
| static void atari_scsi_fetch_restbytes( void ); |
| static long atari_scsi_dma_residual( struct Scsi_Host *instance ); |
| static int falcon_classify_cmd( Scsi_Cmnd *cmd ); |
| static unsigned long atari_dma_xfer_len( unsigned long wanted_len, |
| Scsi_Cmnd *cmd, int write_flag ); |
| #endif |
| static irqreturn_t scsi_tt_intr( int irq, void *dummy); |
| static irqreturn_t scsi_falcon_intr( int irq, void *dummy); |
| static void falcon_release_lock_if_possible( struct NCR5380_hostdata * |
| hostdata ); |
| static void falcon_get_lock( void ); |
| #ifdef CONFIG_ATARI_SCSI_RESET_BOOT |
| static void atari_scsi_reset_boot( void ); |
| #endif |
| static unsigned char atari_scsi_tt_reg_read( unsigned char reg ); |
| static void atari_scsi_tt_reg_write( unsigned char reg, unsigned char value); |
| static unsigned char atari_scsi_falcon_reg_read( unsigned char reg ); |
| static void atari_scsi_falcon_reg_write( unsigned char reg, unsigned char value ); |
| |
| /************************* End of Prototypes **************************/ |
| |
| |
| static struct Scsi_Host *atari_scsi_host = NULL; |
| static unsigned char (*atari_scsi_reg_read)( unsigned char reg ); |
| static void (*atari_scsi_reg_write)( unsigned char reg, unsigned char value ); |
| |
| #ifdef REAL_DMA |
| static unsigned long atari_dma_residual, atari_dma_startaddr; |
| static short atari_dma_active; |
| /* pointer to the dribble buffer */ |
| static char *atari_dma_buffer = NULL; |
| /* precalculated physical address of the dribble buffer */ |
| static unsigned long atari_dma_phys_buffer; |
| /* != 0 tells the Falcon int handler to copy data from the dribble buffer */ |
| static char *atari_dma_orig_addr; |
| /* size of the dribble buffer; 4k seems enough, since the Falcon cannot use |
| * scatter-gather anyway, so most transfers are 1024 byte only. In the rare |
| * cases where requests to physical contiguous buffers have been merged, this |
| * request is <= 4k (one page). So I don't think we have to split transfers |
| * just due to this buffer size... |
| */ |
| #define STRAM_BUFFER_SIZE (4096) |
| /* mask for address bits that can't be used with the ST-DMA */ |
| static unsigned long atari_dma_stram_mask; |
| #define STRAM_ADDR(a) (((a) & atari_dma_stram_mask) == 0) |
| /* number of bytes to cut from a transfer to handle NCR overruns */ |
| static int atari_read_overruns = 0; |
| #endif |
| |
| static int setup_can_queue = -1; |
| module_param(setup_can_queue, int, 0); |
| static int setup_cmd_per_lun = -1; |
| module_param(setup_cmd_per_lun, int, 0); |
| static int setup_sg_tablesize = -1; |
| module_param(setup_sg_tablesize, int, 0); |
| #ifdef SUPPORT_TAGS |
| static int setup_use_tagged_queuing = -1; |
| module_param(setup_use_tagged_queuing, int, 0); |
| #endif |
| static int setup_hostid = -1; |
| module_param(setup_hostid, int, 0); |
| |
| |
| #if defined(CONFIG_TT_DMA_EMUL) |
| #include "atari_dma_emul.c" |
| #endif |
| |
| #if defined(REAL_DMA) |
| |
| static int scsi_dma_is_ignored_buserr( unsigned char dma_stat ) |
| { |
| int i; |
| unsigned long addr = SCSI_DMA_READ_P( dma_addr ), end_addr; |
| |
| if (dma_stat & 0x01) { |
| |
| /* A bus error happens when DMA-ing from the last page of a |
| * physical memory chunk (DMA prefetch!), but that doesn't hurt. |
| * Check for this case: |
| */ |
| |
| for( i = 0; i < m68k_num_memory; ++i ) { |
| end_addr = m68k_memory[i].addr + |
| m68k_memory[i].size; |
| if (end_addr <= addr && addr <= end_addr + 4) |
| return( 1 ); |
| } |
| } |
| return( 0 ); |
| } |
| |
| |
| #if 0 |
| /* Dead code... wasn't called anyway :-) and causes some trouble, because at |
| * end-of-DMA, both SCSI ints are triggered simultaneously, so the NCR int has |
| * to clear the DMA int pending bit before it allows other level 6 interrupts. |
| */ |
| static void scsi_dma_buserr (int irq, void *dummy) |
| { |
| unsigned char dma_stat = tt_scsi_dma.dma_ctrl; |
| |
| /* Don't do anything if a NCR interrupt is pending. Probably it's just |
| * masked... */ |
| if (atari_irq_pending( IRQ_TT_MFP_SCSI )) |
| return; |
| |
| printk("Bad SCSI DMA interrupt! dma_addr=0x%08lx dma_stat=%02x dma_cnt=%08lx\n", |
| SCSI_DMA_READ_P(dma_addr), dma_stat, SCSI_DMA_READ_P(dma_cnt)); |
| if (dma_stat & 0x80) { |
| if (!scsi_dma_is_ignored_buserr( dma_stat )) |
| printk( "SCSI DMA bus error -- bad DMA programming!\n" ); |
| } |
| else { |
| /* Under normal circumstances we never should get to this point, |
| * since both interrupts are triggered simultaneously and the 5380 |
| * int has higher priority. When this irq is handled, that DMA |
| * interrupt is cleared. So a warning message is printed here. |
| */ |
| printk( "SCSI DMA intr ?? -- this shouldn't happen!\n" ); |
| } |
| } |
| #endif |
| |
| #endif |
| |
| |
| static irqreturn_t scsi_tt_intr (int irq, void *dummy) |
| { |
| #ifdef REAL_DMA |
| int dma_stat; |
| |
| dma_stat = tt_scsi_dma.dma_ctrl; |
| |
| INT_PRINTK("scsi%d: NCR5380 interrupt, DMA status = %02x\n", |
| atari_scsi_host->host_no, dma_stat & 0xff); |
| |
| /* Look if it was the DMA that has interrupted: First possibility |
| * is that a bus error occurred... |
| */ |
| if (dma_stat & 0x80) { |
| if (!scsi_dma_is_ignored_buserr( dma_stat )) { |
| printk(KERN_ERR "SCSI DMA caused bus error near 0x%08lx\n", |
| SCSI_DMA_READ_P(dma_addr)); |
| printk(KERN_CRIT "SCSI DMA bus error -- bad DMA programming!"); |
| } |
| } |
| |
| /* If the DMA is active but not finished, we have the case |
| * that some other 5380 interrupt occurred within the DMA transfer. |
| * This means we have residual bytes, if the desired end address |
| * is not yet reached. Maybe we have to fetch some bytes from the |
| * rest data register, too. The residual must be calculated from |
| * the address pointer, not the counter register, because only the |
| * addr reg counts bytes not yet written and pending in the rest |
| * data reg! |
| */ |
| if ((dma_stat & 0x02) && !(dma_stat & 0x40)) { |
| atari_dma_residual = HOSTDATA_DMALEN - (SCSI_DMA_READ_P( dma_addr ) - |
| atari_dma_startaddr); |
| |
| DMA_PRINTK("SCSI DMA: There are %ld residual bytes.\n", |
| atari_dma_residual); |
| |
| if ((signed int)atari_dma_residual < 0) |
| atari_dma_residual = 0; |
| if ((dma_stat & 1) == 0) { |
| /* After read operations, we maybe have to |
| transport some rest bytes */ |
| atari_scsi_fetch_restbytes(); |
| } |
| else { |
| /* There seems to be a nasty bug in some SCSI-DMA/NCR |
| combinations: If a target disconnects while a write |
| operation is going on, the address register of the |
| DMA may be a few bytes farer than it actually read. |
| This is probably due to DMA prefetching and a delay |
| between DMA and NCR. Experiments showed that the |
| dma_addr is 9 bytes to high, but this could vary. |
| The problem is, that the residual is thus calculated |
| wrong and the next transfer will start behind where |
| it should. So we round up the residual to the next |
| multiple of a sector size, if it isn't already a |
| multiple and the originally expected transfer size |
| was. The latter condition is there to ensure that |
| the correction is taken only for "real" data |
| transfers and not for, e.g., the parameters of some |
| other command. These shouldn't disconnect anyway. |
| */ |
| if (atari_dma_residual & 0x1ff) { |
| DMA_PRINTK("SCSI DMA: DMA bug corrected, " |
| "difference %ld bytes\n", |
| 512 - (atari_dma_residual & 0x1ff)); |
| atari_dma_residual = (atari_dma_residual + 511) & ~0x1ff; |
| } |
| } |
| tt_scsi_dma.dma_ctrl = 0; |
| } |
| |
| /* If the DMA is finished, fetch the rest bytes and turn it off */ |
| if (dma_stat & 0x40) { |
| atari_dma_residual = 0; |
| if ((dma_stat & 1) == 0) |
| atari_scsi_fetch_restbytes(); |
| tt_scsi_dma.dma_ctrl = 0; |
| } |
| |
| #endif /* REAL_DMA */ |
| |
| NCR5380_intr (0, 0, 0); |
| |
| #if 0 |
| /* To be sure the int is not masked */ |
| atari_enable_irq( IRQ_TT_MFP_SCSI ); |
| #endif |
| return IRQ_HANDLED; |
| } |
| |
| |
| static irqreturn_t scsi_falcon_intr (int irq, void *dummy) |
| { |
| #ifdef REAL_DMA |
| int dma_stat; |
| |
| /* Turn off DMA and select sector counter register before |
| * accessing the status register (Atari recommendation!) |
| */ |
| st_dma.dma_mode_status = 0x90; |
| dma_stat = st_dma.dma_mode_status; |
| |
| /* Bit 0 indicates some error in the DMA process... don't know |
| * what happened exactly (no further docu). |
| */ |
| if (!(dma_stat & 0x01)) { |
| /* DMA error */ |
| printk(KERN_CRIT "SCSI DMA error near 0x%08lx!\n", SCSI_DMA_GETADR()); |
| } |
| |
| /* If the DMA was active, but now bit 1 is not clear, it is some |
| * other 5380 interrupt that finishes the DMA transfer. We have to |
| * calculate the number of residual bytes and give a warning if |
| * bytes are stuck in the ST-DMA fifo (there's no way to reach them!) |
| */ |
| if (atari_dma_active && (dma_stat & 0x02)) { |
| unsigned long transferred; |
| |
| transferred = SCSI_DMA_GETADR() - atari_dma_startaddr; |
| /* The ST-DMA address is incremented in 2-byte steps, but the |
| * data are written only in 16-byte chunks. If the number of |
| * transferred bytes is not divisible by 16, the remainder is |
| * lost somewhere in outer space. |
| */ |
| if (transferred & 15) |
| printk(KERN_ERR "SCSI DMA error: %ld bytes lost in " |
| "ST-DMA fifo\n", transferred & 15); |
| |
| atari_dma_residual = HOSTDATA_DMALEN - transferred; |
| DMA_PRINTK("SCSI DMA: There are %ld residual bytes.\n", |
| atari_dma_residual); |
| } |
| else |
| atari_dma_residual = 0; |
| atari_dma_active = 0; |
| |
| if (atari_dma_orig_addr) { |
| /* If the dribble buffer was used on a read operation, copy the DMA-ed |
| * data to the original destination address. |
| */ |
| memcpy(atari_dma_orig_addr, phys_to_virt(atari_dma_startaddr), |
| HOSTDATA_DMALEN - atari_dma_residual); |
| atari_dma_orig_addr = NULL; |
| } |
| |
| #endif /* REAL_DMA */ |
| |
| NCR5380_intr (0, 0, 0); |
| return IRQ_HANDLED; |
| } |
| |
| |
| #ifdef REAL_DMA |
| static void atari_scsi_fetch_restbytes( void ) |
| { |
| int nr; |
| char *src, *dst; |
| unsigned long phys_dst; |
| |
| /* fetch rest bytes in the DMA register */ |
| phys_dst = SCSI_DMA_READ_P(dma_addr); |
| nr = phys_dst & 3; |
| if (nr) { |
| /* there are 'nr' bytes left for the last long address |
| before the DMA pointer */ |
| phys_dst ^= nr; |
| DMA_PRINTK("SCSI DMA: there are %d rest bytes for phys addr 0x%08lx", |
| nr, phys_dst); |
| /* The content of the DMA pointer is a physical address! */ |
| dst = phys_to_virt(phys_dst); |
| DMA_PRINTK(" = virt addr %p\n", dst); |
| for (src = (char *)&tt_scsi_dma.dma_restdata; nr != 0; --nr) |
| *dst++ = *src++; |
| } |
| } |
| #endif /* REAL_DMA */ |
| |
| |
| static int falcon_got_lock = 0; |
| static DECLARE_WAIT_QUEUE_HEAD(falcon_fairness_wait); |
| static int falcon_trying_lock = 0; |
| static DECLARE_WAIT_QUEUE_HEAD(falcon_try_wait); |
| static int falcon_dont_release = 0; |
| |
| /* This function releases the lock on the DMA chip if there is no |
| * connected command and the disconnected queue is empty. On |
| * releasing, instances of falcon_get_lock are awoken, that put |
| * themselves to sleep for fairness. They can now try to get the lock |
| * again (but others waiting longer more probably will win). |
| */ |
| |
| static void |
| falcon_release_lock_if_possible( struct NCR5380_hostdata * hostdata ) |
| { |
| unsigned long flags; |
| |
| if (IS_A_TT()) return; |
| |
| local_irq_save(flags); |
| |
| if (falcon_got_lock && |
| !hostdata->disconnected_queue && |
| !hostdata->issue_queue && |
| !hostdata->connected) { |
| |
| if (falcon_dont_release) { |
| #if 0 |
| printk("WARNING: Lock release not allowed. Ignored\n"); |
| #endif |
| local_irq_restore(flags); |
| return; |
| } |
| falcon_got_lock = 0; |
| stdma_release(); |
| wake_up( &falcon_fairness_wait ); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /* This function manages the locking of the ST-DMA. |
| * If the DMA isn't locked already for SCSI, it tries to lock it by |
| * calling stdma_lock(). But if the DMA is locked by the SCSI code and |
| * there are other drivers waiting for the chip, we do not issue the |
| * command immediately but wait on 'falcon_fairness_queue'. We will be |
| * waked up when the DMA is unlocked by some SCSI interrupt. After that |
| * we try to get the lock again. |
| * But we must be prepared that more than one instance of |
| * falcon_get_lock() is waiting on the fairness queue. They should not |
| * try all at once to call stdma_lock(), one is enough! For that, the |
| * first one sets 'falcon_trying_lock', others that see that variable |
| * set wait on the queue 'falcon_try_wait'. |
| * Complicated, complicated.... Sigh... |
| */ |
| |
| static void falcon_get_lock( void ) |
| { |
| unsigned long flags; |
| |
| if (IS_A_TT()) return; |
| |
| local_irq_save(flags); |
| |
| while( !in_interrupt() && falcon_got_lock && stdma_others_waiting() ) |
| sleep_on( &falcon_fairness_wait ); |
| |
| while (!falcon_got_lock) { |
| if (in_interrupt()) |
| panic( "Falcon SCSI hasn't ST-DMA lock in interrupt" ); |
| if (!falcon_trying_lock) { |
| falcon_trying_lock = 1; |
| stdma_lock(scsi_falcon_intr, NULL); |
| falcon_got_lock = 1; |
| falcon_trying_lock = 0; |
| wake_up( &falcon_try_wait ); |
| } |
| else { |
| sleep_on( &falcon_try_wait ); |
| } |
| } |
| |
| local_irq_restore(flags); |
| if (!falcon_got_lock) |
| panic("Falcon SCSI: someone stole the lock :-(\n"); |
| } |
| |
| |
| /* This is the wrapper function for NCR5380_queue_command(). It just |
| * tries to get the lock on the ST-DMA (see above) and then calls the |
| * original function. |
| */ |
| |
| #if 0 |
| int atari_queue_command (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *)) |
| { |
| /* falcon_get_lock(); |
| * ++guenther: moved to NCR5380_queue_command() to prevent |
| * race condition, see there for an explanation. |
| */ |
| return( NCR5380_queue_command( cmd, done ) ); |
| } |
| #endif |
| |
| |
| int atari_scsi_detect (struct scsi_host_template *host) |
| { |
| static int called = 0; |
| struct Scsi_Host *instance; |
| |
| if (!MACH_IS_ATARI || |
| (!ATARIHW_PRESENT(ST_SCSI) && !ATARIHW_PRESENT(TT_SCSI)) || |
| called) |
| return( 0 ); |
| |
| host->proc_name = "Atari"; |
| |
| atari_scsi_reg_read = IS_A_TT() ? atari_scsi_tt_reg_read : |
| atari_scsi_falcon_reg_read; |
| atari_scsi_reg_write = IS_A_TT() ? atari_scsi_tt_reg_write : |
| atari_scsi_falcon_reg_write; |
| |
| /* setup variables */ |
| host->can_queue = |
| (setup_can_queue > 0) ? setup_can_queue : |
| IS_A_TT() ? ATARI_TT_CAN_QUEUE : ATARI_FALCON_CAN_QUEUE; |
| host->cmd_per_lun = |
| (setup_cmd_per_lun > 0) ? setup_cmd_per_lun : |
| IS_A_TT() ? ATARI_TT_CMD_PER_LUN : ATARI_FALCON_CMD_PER_LUN; |
| /* Force sg_tablesize to 0 on a Falcon! */ |
| host->sg_tablesize = |
| !IS_A_TT() ? ATARI_FALCON_SG_TABLESIZE : |
| (setup_sg_tablesize >= 0) ? setup_sg_tablesize : ATARI_TT_SG_TABLESIZE; |
| |
| if (setup_hostid >= 0) |
| host->this_id = setup_hostid; |
| else { |
| /* use 7 as default */ |
| host->this_id = 7; |
| /* Test if a host id is set in the NVRam */ |
| if (ATARIHW_PRESENT(TT_CLK) && nvram_check_checksum()) { |
| unsigned char b = nvram_read_byte( 14 ); |
| /* Arbitration enabled? (for TOS) If yes, use configured host ID */ |
| if (b & 0x80) |
| host->this_id = b & 7; |
| } |
| } |
| |
| #ifdef SUPPORT_TAGS |
| if (setup_use_tagged_queuing < 0) |
| setup_use_tagged_queuing = DEFAULT_USE_TAGGED_QUEUING; |
| #endif |
| #ifdef REAL_DMA |
| /* If running on a Falcon and if there's TT-Ram (i.e., more than one |
| * memory block, since there's always ST-Ram in a Falcon), then allocate a |
| * STRAM_BUFFER_SIZE byte dribble buffer for transfers from/to alternative |
| * Ram. |
| */ |
| if (MACH_IS_ATARI && ATARIHW_PRESENT(ST_SCSI) && |
| !ATARIHW_PRESENT(EXTD_DMA) && m68k_num_memory > 1) { |
| atari_dma_buffer = atari_stram_alloc(STRAM_BUFFER_SIZE, "SCSI"); |
| if (!atari_dma_buffer) { |
| printk( KERN_ERR "atari_scsi_detect: can't allocate ST-RAM " |
| "double buffer\n" ); |
| return( 0 ); |
| } |
| atari_dma_phys_buffer = virt_to_phys( atari_dma_buffer ); |
| atari_dma_orig_addr = 0; |
| } |
| #endif |
| instance = scsi_register (host, sizeof (struct NCR5380_hostdata)); |
| if(instance == NULL) |
| { |
| atari_stram_free(atari_dma_buffer); |
| atari_dma_buffer = 0; |
| return 0; |
| } |
| atari_scsi_host = instance; |
| /* Set irq to 0, to avoid that the mid-level code disables our interrupt |
| * during queue_command calls. This is completely unnecessary, and even |
| * worse causes bad problems on the Falcon, where the int is shared with |
| * IDE and floppy! */ |
| instance->irq = 0; |
| |
| #ifdef CONFIG_ATARI_SCSI_RESET_BOOT |
| atari_scsi_reset_boot(); |
| #endif |
| NCR5380_init (instance, 0); |
| |
| if (IS_A_TT()) { |
| |
| /* This int is actually "pseudo-slow", i.e. it acts like a slow |
| * interrupt after having cleared the pending flag for the DMA |
| * interrupt. */ |
| if (request_irq(IRQ_TT_MFP_SCSI, scsi_tt_intr, IRQ_TYPE_SLOW, |
| "SCSI NCR5380", scsi_tt_intr)) { |
| printk(KERN_ERR "atari_scsi_detect: cannot allocate irq %d, aborting",IRQ_TT_MFP_SCSI); |
| scsi_unregister(atari_scsi_host); |
| atari_stram_free(atari_dma_buffer); |
| atari_dma_buffer = 0; |
| return 0; |
| } |
| tt_mfp.active_edge |= 0x80; /* SCSI int on L->H */ |
| #ifdef REAL_DMA |
| tt_scsi_dma.dma_ctrl = 0; |
| atari_dma_residual = 0; |
| #ifdef CONFIG_TT_DMA_EMUL |
| if (MACH_IS_HADES) { |
| if (request_irq(IRQ_AUTO_2, hades_dma_emulator, |
| IRQ_TYPE_PRIO, "Hades DMA emulator", |
| hades_dma_emulator)) { |
| printk(KERN_ERR "atari_scsi_detect: cannot allocate irq %d, aborting (MACH_IS_HADES)",IRQ_AUTO_2); |
| free_irq(IRQ_TT_MFP_SCSI, scsi_tt_intr); |
| scsi_unregister(atari_scsi_host); |
| atari_stram_free(atari_dma_buffer); |
| atari_dma_buffer = 0; |
| return 0; |
| } |
| } |
| #endif |
| if (MACH_IS_MEDUSA || MACH_IS_HADES) { |
| /* While the read overruns (described by Drew Eckhardt in |
| * NCR5380.c) never happened on TTs, they do in fact on the Medusa |
| * (This was the cause why SCSI didn't work right for so long |
| * there.) Since handling the overruns slows down a bit, I turned |
| * the #ifdef's into a runtime condition. |
| * |
| * In principle it should be sufficient to do max. 1 byte with |
| * PIO, but there is another problem on the Medusa with the DMA |
| * rest data register. So 'atari_read_overruns' is currently set |
| * to 4 to avoid having transfers that aren't a multiple of 4. If |
| * the rest data bug is fixed, this can be lowered to 1. |
| */ |
| atari_read_overruns = 4; |
| } |
| #endif /*REAL_DMA*/ |
| } |
| else { /* ! IS_A_TT */ |
| |
| /* Nothing to do for the interrupt: the ST-DMA is initialized |
| * already by atari_init_INTS() |
| */ |
| |
| #ifdef REAL_DMA |
| atari_dma_residual = 0; |
| atari_dma_active = 0; |
| atari_dma_stram_mask = (ATARIHW_PRESENT(EXTD_DMA) ? 0x00000000 |
| : 0xff000000); |
| #endif |
| } |
| |
| printk(KERN_INFO "scsi%d: options CAN_QUEUE=%d CMD_PER_LUN=%d SCAT-GAT=%d " |
| #ifdef SUPPORT_TAGS |
| "TAGGED-QUEUING=%s " |
| #endif |
| "HOSTID=%d", |
| instance->host_no, instance->hostt->can_queue, |
| instance->hostt->cmd_per_lun, |
| instance->hostt->sg_tablesize, |
| #ifdef SUPPORT_TAGS |
| setup_use_tagged_queuing ? "yes" : "no", |
| #endif |
| instance->hostt->this_id ); |
| NCR5380_print_options (instance); |
| printk ("\n"); |
| |
| called = 1; |
| return( 1 ); |
| } |
| |
| #ifdef MODULE |
| int atari_scsi_release (struct Scsi_Host *sh) |
| { |
| if (IS_A_TT()) |
| free_irq(IRQ_TT_MFP_SCSI, scsi_tt_intr); |
| if (atari_dma_buffer) |
| atari_stram_free (atari_dma_buffer); |
| return 1; |
| } |
| #endif |
| |
| void __init atari_scsi_setup(char *str, int *ints) |
| { |
| /* Format of atascsi parameter is: |
| * atascsi=<can_queue>,<cmd_per_lun>,<sg_tablesize>,<hostid>,<use_tags> |
| * Defaults depend on TT or Falcon, hostid determined at run time. |
| * Negative values mean don't change. |
| */ |
| |
| if (ints[0] < 1) { |
| printk( "atari_scsi_setup: no arguments!\n" ); |
| return; |
| } |
| |
| if (ints[0] >= 1) { |
| if (ints[1] > 0) |
| /* no limits on this, just > 0 */ |
| setup_can_queue = ints[1]; |
| } |
| if (ints[0] >= 2) { |
| if (ints[2] > 0) |
| setup_cmd_per_lun = ints[2]; |
| } |
| if (ints[0] >= 3) { |
| if (ints[3] >= 0) { |
| setup_sg_tablesize = ints[3]; |
| /* Must be <= SG_ALL (255) */ |
| if (setup_sg_tablesize > SG_ALL) |
| setup_sg_tablesize = SG_ALL; |
| } |
| } |
| if (ints[0] >= 4) { |
| /* Must be between 0 and 7 */ |
| if (ints[4] >= 0 && ints[4] <= 7) |
| setup_hostid = ints[4]; |
| else if (ints[4] > 7) |
| printk( "atari_scsi_setup: invalid host ID %d !\n", ints[4] ); |
| } |
| #ifdef SUPPORT_TAGS |
| if (ints[0] >= 5) { |
| if (ints[5] >= 0) |
| setup_use_tagged_queuing = !!ints[5]; |
| } |
| #endif |
| } |
| |
| int atari_scsi_bus_reset(Scsi_Cmnd *cmd) |
| { |
| int rv; |
| struct NCR5380_hostdata *hostdata = |
| (struct NCR5380_hostdata *)cmd->device->host->hostdata; |
| |
| /* For doing the reset, SCSI interrupts must be disabled first, |
| * since the 5380 raises its IRQ line while _RST is active and we |
| * can't disable interrupts completely, since we need the timer. |
| */ |
| /* And abort a maybe active DMA transfer */ |
| if (IS_A_TT()) { |
| atari_turnoff_irq( IRQ_TT_MFP_SCSI ); |
| #ifdef REAL_DMA |
| tt_scsi_dma.dma_ctrl = 0; |
| #endif /* REAL_DMA */ |
| } |
| else { |
| atari_turnoff_irq( IRQ_MFP_FSCSI ); |
| #ifdef REAL_DMA |
| st_dma.dma_mode_status = 0x90; |
| atari_dma_active = 0; |
| atari_dma_orig_addr = NULL; |
| #endif /* REAL_DMA */ |
| } |
| |
| rv = NCR5380_bus_reset(cmd); |
| |
| /* Re-enable ints */ |
| if (IS_A_TT()) { |
| atari_turnon_irq( IRQ_TT_MFP_SCSI ); |
| } |
| else { |
| atari_turnon_irq( IRQ_MFP_FSCSI ); |
| } |
| if ((rv & SCSI_RESET_ACTION) == SCSI_RESET_SUCCESS) |
| falcon_release_lock_if_possible(hostdata); |
| |
| return( rv ); |
| } |
| |
| |
| #ifdef CONFIG_ATARI_SCSI_RESET_BOOT |
| static void __init atari_scsi_reset_boot(void) |
| { |
| unsigned long end; |
| |
| /* |
| * Do a SCSI reset to clean up the bus during initialization. No messing |
| * with the queues, interrupts, or locks necessary here. |
| */ |
| |
| printk( "Atari SCSI: resetting the SCSI bus..." ); |
| |
| /* get in phase */ |
| NCR5380_write( TARGET_COMMAND_REG, |
| PHASE_SR_TO_TCR( NCR5380_read(STATUS_REG) )); |
| |
| /* assert RST */ |
| NCR5380_write( INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_RST ); |
| /* The min. reset hold time is 25us, so 40us should be enough */ |
| udelay( 50 ); |
| /* reset RST and interrupt */ |
| NCR5380_write( INITIATOR_COMMAND_REG, ICR_BASE ); |
| NCR5380_read( RESET_PARITY_INTERRUPT_REG ); |
| |
| end = jiffies + AFTER_RESET_DELAY; |
| while (time_before(jiffies, end)) |
| barrier(); |
| |
| printk( " done\n" ); |
| } |
| #endif |
| |
| |
| const char * atari_scsi_info (struct Scsi_Host *host) |
| { |
| /* atari_scsi_detect() is verbose enough... */ |
| static const char string[] = "Atari native SCSI"; |
| return string; |
| } |
| |
| |
| #if defined(REAL_DMA) |
| |
| unsigned long atari_scsi_dma_setup( struct Scsi_Host *instance, void *data, |
| unsigned long count, int dir ) |
| { |
| unsigned long addr = virt_to_phys( data ); |
| |
| DMA_PRINTK("scsi%d: setting up dma, data = %p, phys = %lx, count = %ld, " |
| "dir = %d\n", instance->host_no, data, addr, count, dir); |
| |
| if (!IS_A_TT() && !STRAM_ADDR(addr)) { |
| /* If we have a non-DMAable address on a Falcon, use the dribble |
| * buffer; 'orig_addr' != 0 in the read case tells the interrupt |
| * handler to copy data from the dribble buffer to the originally |
| * wanted address. |
| */ |
| if (dir) |
| memcpy( atari_dma_buffer, data, count ); |
| else |
| atari_dma_orig_addr = data; |
| addr = atari_dma_phys_buffer; |
| } |
| |
| atari_dma_startaddr = addr; /* Needed for calculating residual later. */ |
| |
| /* Cache cleanup stuff: On writes, push any dirty cache out before sending |
| * it to the peripheral. (Must be done before DMA setup, since at least |
| * the ST-DMA begins to fill internal buffers right after setup. For |
| * reads, invalidate any cache, may be altered after DMA without CPU |
| * knowledge. |
| * |
| * ++roman: For the Medusa, there's no need at all for that cache stuff, |
| * because the hardware does bus snooping (fine!). |
| */ |
| dma_cache_maintenance( addr, count, dir ); |
| |
| if (count == 0) |
| printk(KERN_NOTICE "SCSI warning: DMA programmed for 0 bytes !\n"); |
| |
| if (IS_A_TT()) { |
| tt_scsi_dma.dma_ctrl = dir; |
| SCSI_DMA_WRITE_P( dma_addr, addr ); |
| SCSI_DMA_WRITE_P( dma_cnt, count ); |
| tt_scsi_dma.dma_ctrl = dir | 2; |
| } |
| else { /* ! IS_A_TT */ |
| |
| /* set address */ |
| SCSI_DMA_SETADR( addr ); |
| |
| /* toggle direction bit to clear FIFO and set DMA direction */ |
| dir <<= 8; |
| st_dma.dma_mode_status = 0x90 | dir; |
| st_dma.dma_mode_status = 0x90 | (dir ^ 0x100); |
| st_dma.dma_mode_status = 0x90 | dir; |
| udelay(40); |
| /* On writes, round up the transfer length to the next multiple of 512 |
| * (see also comment at atari_dma_xfer_len()). */ |
| st_dma.fdc_acces_seccount = (count + (dir ? 511 : 0)) >> 9; |
| udelay(40); |
| st_dma.dma_mode_status = 0x10 | dir; |
| udelay(40); |
| /* need not restore value of dir, only boolean value is tested */ |
| atari_dma_active = 1; |
| } |
| |
| return( count ); |
| } |
| |
| |
| static long atari_scsi_dma_residual( struct Scsi_Host *instance ) |
| { |
| return( atari_dma_residual ); |
| } |
| |
| |
| #define CMD_SURELY_BLOCK_MODE 0 |
| #define CMD_SURELY_BYTE_MODE 1 |
| #define CMD_MODE_UNKNOWN 2 |
| |
| static int falcon_classify_cmd( Scsi_Cmnd *cmd ) |
| { |
| unsigned char opcode = cmd->cmnd[0]; |
| |
| if (opcode == READ_DEFECT_DATA || opcode == READ_LONG || |
| opcode == READ_BUFFER) |
| return( CMD_SURELY_BYTE_MODE ); |
| else if (opcode == READ_6 || opcode == READ_10 || |
| opcode == 0xa8 /* READ_12 */ || opcode == READ_REVERSE || |
| opcode == RECOVER_BUFFERED_DATA) { |
| /* In case of a sequential-access target (tape), special care is |
| * needed here: The transfer is block-mode only if the 'fixed' bit is |
| * set! */ |
| if (cmd->device->type == TYPE_TAPE && !(cmd->cmnd[1] & 1)) |
| return( CMD_SURELY_BYTE_MODE ); |
| else |
| return( CMD_SURELY_BLOCK_MODE ); |
| } |
| else |
| return( CMD_MODE_UNKNOWN ); |
| } |
| |
| |
| /* This function calculates the number of bytes that can be transferred via |
| * DMA. On the TT, this is arbitrary, but on the Falcon we have to use the |
| * ST-DMA chip. There are only multiples of 512 bytes possible and max. |
| * 255*512 bytes :-( This means also, that defining READ_OVERRUNS is not |
| * possible on the Falcon, since that would require to program the DMA for |
| * n*512 - atari_read_overrun bytes. But it seems that the Falcon doesn't have |
| * the overrun problem, so this question is academic :-) |
| */ |
| |
| static unsigned long atari_dma_xfer_len( unsigned long wanted_len, |
| Scsi_Cmnd *cmd, |
| int write_flag ) |
| { |
| unsigned long possible_len, limit; |
| #ifndef CONFIG_TT_DMA_EMUL |
| if (MACH_IS_HADES) |
| /* Hades has no SCSI DMA at all :-( Always force use of PIO */ |
| return( 0 ); |
| #endif |
| if (IS_A_TT()) |
| /* TT SCSI DMA can transfer arbitrary #bytes */ |
| return( wanted_len ); |
| |
| /* ST DMA chip is stupid -- only multiples of 512 bytes! (and max. |
| * 255*512 bytes, but this should be enough) |
| * |
| * ++roman: Aaargl! Another Falcon-SCSI problem... There are some commands |
| * that return a number of bytes which cannot be known beforehand. In this |
| * case, the given transfer length is an "allocation length". Now it |
| * can happen that this allocation length is a multiple of 512 bytes and |
| * the DMA is used. But if not n*512 bytes really arrive, some input data |
| * will be lost in the ST-DMA's FIFO :-( Thus, we have to distinguish |
| * between commands that do block transfers and those that do byte |
| * transfers. But this isn't easy... there are lots of vendor specific |
| * commands, and the user can issue any command via the |
| * SCSI_IOCTL_SEND_COMMAND. |
| * |
| * The solution: We classify SCSI commands in 1) surely block-mode cmd.s, |
| * 2) surely byte-mode cmd.s and 3) cmd.s with unknown mode. In case 1) |
| * and 3), the thing to do is obvious: allow any number of blocks via DMA |
| * or none. In case 2), we apply some heuristic: Byte mode is assumed if |
| * the transfer (allocation) length is < 1024, hoping that no cmd. not |
| * explicitly known as byte mode have such big allocation lengths... |
| * BTW, all the discussion above applies only to reads. DMA writes are |
| * unproblematic anyways, since the targets aborts the transfer after |
| * receiving a sufficient number of bytes. |
| * |
| * Another point: If the transfer is from/to an non-ST-RAM address, we |
| * use the dribble buffer and thus can do only STRAM_BUFFER_SIZE bytes. |
| */ |
| |
| if (write_flag) { |
| /* Write operation can always use the DMA, but the transfer size must |
| * be rounded up to the next multiple of 512 (atari_dma_setup() does |
| * this). |
| */ |
| possible_len = wanted_len; |
| } |
| else { |
| /* Read operations: if the wanted transfer length is not a multiple of |
| * 512, we cannot use DMA, since the ST-DMA cannot split transfers |
| * (no interrupt on DMA finished!) |
| */ |
| if (wanted_len & 0x1ff) |
| possible_len = 0; |
| else { |
| /* Now classify the command (see above) and decide whether it is |
| * allowed to do DMA at all */ |
| switch( falcon_classify_cmd( cmd )) { |
| case CMD_SURELY_BLOCK_MODE: |
| possible_len = wanted_len; |
| break; |
| case CMD_SURELY_BYTE_MODE: |
| possible_len = 0; /* DMA prohibited */ |
| break; |
| case CMD_MODE_UNKNOWN: |
| default: |
| /* For unknown commands assume block transfers if the transfer |
| * size/allocation length is >= 1024 */ |
| possible_len = (wanted_len < 1024) ? 0 : wanted_len; |
| break; |
| } |
| } |
| } |
| |
| /* Last step: apply the hard limit on DMA transfers */ |
| limit = (atari_dma_buffer && !STRAM_ADDR( virt_to_phys(cmd->SCp.ptr) )) ? |
| STRAM_BUFFER_SIZE : 255*512; |
| if (possible_len > limit) |
| possible_len = limit; |
| |
| if (possible_len != wanted_len) |
| DMA_PRINTK("Sorry, must cut DMA transfer size to %ld bytes " |
| "instead of %ld\n", possible_len, wanted_len); |
| |
| return( possible_len ); |
| } |
| |
| |
| #endif /* REAL_DMA */ |
| |
| |
| /* NCR5380 register access functions |
| * |
| * There are separate functions for TT and Falcon, because the access |
| * methods are quite different. The calling macros NCR5380_read and |
| * NCR5380_write call these functions via function pointers. |
| */ |
| |
| static unsigned char atari_scsi_tt_reg_read( unsigned char reg ) |
| { |
| return( tt_scsi_regp[reg * 2] ); |
| } |
| |
| static void atari_scsi_tt_reg_write( unsigned char reg, unsigned char value ) |
| { |
| tt_scsi_regp[reg * 2] = value; |
| } |
| |
| static unsigned char atari_scsi_falcon_reg_read( unsigned char reg ) |
| { |
| dma_wd.dma_mode_status= (u_short)(0x88 + reg); |
| return( (u_char)dma_wd.fdc_acces_seccount ); |
| } |
| |
| static void atari_scsi_falcon_reg_write( unsigned char reg, unsigned char value ) |
| { |
| dma_wd.dma_mode_status = (u_short)(0x88 + reg); |
| dma_wd.fdc_acces_seccount = (u_short)value; |
| } |
| |
| |
| #include "atari_NCR5380.c" |
| |
| static struct scsi_host_template driver_template = { |
| .proc_info = atari_scsi_proc_info, |
| .name = "Atari native SCSI", |
| .detect = atari_scsi_detect, |
| .release = atari_scsi_release, |
| .info = atari_scsi_info, |
| .queuecommand = atari_scsi_queue_command, |
| .eh_abort_handler = atari_scsi_abort, |
| .eh_bus_reset_handler = atari_scsi_bus_reset, |
| .can_queue = 0, /* initialized at run-time */ |
| .this_id = 0, /* initialized at run-time */ |
| .sg_tablesize = 0, /* initialized at run-time */ |
| .cmd_per_lun = 0, /* initialized at run-time */ |
| .use_clustering = DISABLE_CLUSTERING |
| }; |
| |
| |
| #include "scsi_module.c" |
| |
| MODULE_LICENSE("GPL"); |