| /* |
| * 2002-10-18 written by Jim Houston jim.houston@ccur.com |
| * Copyright (C) 2002 by Concurrent Computer Corporation |
| * Distributed under the GNU GPL license version 2. |
| * |
| * Modified by George Anzinger to reuse immediately and to use |
| * find bit instructions. Also removed _irq on spinlocks. |
| * |
| * Small id to pointer translation service. |
| * |
| * It uses a radix tree like structure as a sparse array indexed |
| * by the id to obtain the pointer. The bitmap makes allocating |
| * a new id quick. |
| * |
| * You call it to allocate an id (an int) an associate with that id a |
| * pointer or what ever, we treat it as a (void *). You can pass this |
| * id to a user for him to pass back at a later time. You then pass |
| * that id to this code and it returns your pointer. |
| |
| * You can release ids at any time. When all ids are released, most of |
| * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we |
| * don't need to go to the memory "store" during an id allocate, just |
| * so you don't need to be too concerned about locking and conflicts |
| * with the slab allocator. |
| */ |
| |
| #ifndef TEST // to test in user space... |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #endif |
| #include <linux/string.h> |
| #include <linux/idr.h> |
| |
| static kmem_cache_t *idr_layer_cache; |
| |
| static struct idr_layer *alloc_layer(struct idr *idp) |
| { |
| struct idr_layer *p; |
| |
| spin_lock(&idp->lock); |
| if ((p = idp->id_free)) { |
| idp->id_free = p->ary[0]; |
| idp->id_free_cnt--; |
| p->ary[0] = NULL; |
| } |
| spin_unlock(&idp->lock); |
| return(p); |
| } |
| |
| static void free_layer(struct idr *idp, struct idr_layer *p) |
| { |
| /* |
| * Depends on the return element being zeroed. |
| */ |
| spin_lock(&idp->lock); |
| p->ary[0] = idp->id_free; |
| idp->id_free = p; |
| idp->id_free_cnt++; |
| spin_unlock(&idp->lock); |
| } |
| |
| /** |
| * idr_pre_get - reserver resources for idr allocation |
| * @idp: idr handle |
| * @gfp_mask: memory allocation flags |
| * |
| * This function should be called prior to locking and calling the |
| * following function. It preallocates enough memory to satisfy |
| * the worst possible allocation. |
| * |
| * If the system is REALLY out of memory this function returns 0, |
| * otherwise 1. |
| */ |
| int idr_pre_get(struct idr *idp, unsigned gfp_mask) |
| { |
| while (idp->id_free_cnt < IDR_FREE_MAX) { |
| struct idr_layer *new; |
| new = kmem_cache_alloc(idr_layer_cache, gfp_mask); |
| if(new == NULL) |
| return (0); |
| free_layer(idp, new); |
| } |
| return 1; |
| } |
| EXPORT_SYMBOL(idr_pre_get); |
| |
| static int sub_alloc(struct idr *idp, void *ptr, int *starting_id) |
| { |
| int n, m, sh; |
| struct idr_layer *p, *new; |
| struct idr_layer *pa[MAX_LEVEL]; |
| int l, id; |
| long bm; |
| |
| id = *starting_id; |
| p = idp->top; |
| l = idp->layers; |
| pa[l--] = NULL; |
| while (1) { |
| /* |
| * We run around this while until we reach the leaf node... |
| */ |
| n = (id >> (IDR_BITS*l)) & IDR_MASK; |
| bm = ~p->bitmap; |
| m = find_next_bit(&bm, IDR_SIZE, n); |
| if (m == IDR_SIZE) { |
| /* no space available go back to previous layer. */ |
| l++; |
| id = (id | ((1 << (IDR_BITS*l))-1)) + 1; |
| if (!(p = pa[l])) { |
| *starting_id = id; |
| return -2; |
| } |
| continue; |
| } |
| if (m != n) { |
| sh = IDR_BITS*l; |
| id = ((id >> sh) ^ n ^ m) << sh; |
| } |
| if ((id >= MAX_ID_BIT) || (id < 0)) |
| return -3; |
| if (l == 0) |
| break; |
| /* |
| * Create the layer below if it is missing. |
| */ |
| if (!p->ary[m]) { |
| if (!(new = alloc_layer(idp))) |
| return -1; |
| p->ary[m] = new; |
| p->count++; |
| } |
| pa[l--] = p; |
| p = p->ary[m]; |
| } |
| /* |
| * We have reached the leaf node, plant the |
| * users pointer and return the raw id. |
| */ |
| p->ary[m] = (struct idr_layer *)ptr; |
| __set_bit(m, &p->bitmap); |
| p->count++; |
| /* |
| * If this layer is full mark the bit in the layer above |
| * to show that this part of the radix tree is full. |
| * This may complete the layer above and require walking |
| * up the radix tree. |
| */ |
| n = id; |
| while (p->bitmap == IDR_FULL) { |
| if (!(p = pa[++l])) |
| break; |
| n = n >> IDR_BITS; |
| __set_bit((n & IDR_MASK), &p->bitmap); |
| } |
| return(id); |
| } |
| |
| static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) |
| { |
| struct idr_layer *p, *new; |
| int layers, v, id; |
| |
| id = starting_id; |
| build_up: |
| p = idp->top; |
| layers = idp->layers; |
| if (unlikely(!p)) { |
| if (!(p = alloc_layer(idp))) |
| return -1; |
| layers = 1; |
| } |
| /* |
| * Add a new layer to the top of the tree if the requested |
| * id is larger than the currently allocated space. |
| */ |
| while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { |
| layers++; |
| if (!p->count) |
| continue; |
| if (!(new = alloc_layer(idp))) { |
| /* |
| * The allocation failed. If we built part of |
| * the structure tear it down. |
| */ |
| for (new = p; p && p != idp->top; new = p) { |
| p = p->ary[0]; |
| new->ary[0] = NULL; |
| new->bitmap = new->count = 0; |
| free_layer(idp, new); |
| } |
| return -1; |
| } |
| new->ary[0] = p; |
| new->count = 1; |
| if (p->bitmap == IDR_FULL) |
| __set_bit(0, &new->bitmap); |
| p = new; |
| } |
| idp->top = p; |
| idp->layers = layers; |
| v = sub_alloc(idp, ptr, &id); |
| if (v == -2) |
| goto build_up; |
| return(v); |
| } |
| |
| /** |
| * idr_get_new_above - allocate new idr entry above or equal to a start id |
| * @idp: idr handle |
| * @ptr: pointer you want associated with the ide |
| * @start_id: id to start search at |
| * @id: pointer to the allocated handle |
| * |
| * This is the allocate id function. It should be called with any |
| * required locks. |
| * |
| * If memory is required, it will return -EAGAIN, you should unlock |
| * and go back to the idr_pre_get() call. If the idr is full, it will |
| * return -ENOSPC. |
| * |
| * @id returns a value in the range 0 ... 0x7fffffff |
| */ |
| int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) |
| { |
| int rv; |
| rv = idr_get_new_above_int(idp, ptr, starting_id); |
| /* |
| * This is a cheap hack until the IDR code can be fixed to |
| * return proper error values. |
| */ |
| if (rv < 0) { |
| if (rv == -1) |
| return -EAGAIN; |
| else /* Will be -3 */ |
| return -ENOSPC; |
| } |
| *id = rv; |
| return 0; |
| } |
| EXPORT_SYMBOL(idr_get_new_above); |
| |
| /** |
| * idr_get_new - allocate new idr entry |
| * @idp: idr handle |
| * @ptr: pointer you want associated with the ide |
| * @id: pointer to the allocated handle |
| * |
| * This is the allocate id function. It should be called with any |
| * required locks. |
| * |
| * If memory is required, it will return -EAGAIN, you should unlock |
| * and go back to the idr_pre_get() call. If the idr is full, it will |
| * return -ENOSPC. |
| * |
| * @id returns a value in the range 0 ... 0x7fffffff |
| */ |
| int idr_get_new(struct idr *idp, void *ptr, int *id) |
| { |
| int rv; |
| rv = idr_get_new_above_int(idp, ptr, 0); |
| /* |
| * This is a cheap hack until the IDR code can be fixed to |
| * return proper error values. |
| */ |
| if (rv < 0) { |
| if (rv == -1) |
| return -EAGAIN; |
| else /* Will be -3 */ |
| return -ENOSPC; |
| } |
| *id = rv; |
| return 0; |
| } |
| EXPORT_SYMBOL(idr_get_new); |
| |
| static void idr_remove_warning(int id) |
| { |
| printk("idr_remove called for id=%d which is not allocated.\n", id); |
| dump_stack(); |
| } |
| |
| static void sub_remove(struct idr *idp, int shift, int id) |
| { |
| struct idr_layer *p = idp->top; |
| struct idr_layer **pa[MAX_LEVEL]; |
| struct idr_layer ***paa = &pa[0]; |
| int n; |
| |
| *paa = NULL; |
| *++paa = &idp->top; |
| |
| while ((shift > 0) && p) { |
| n = (id >> shift) & IDR_MASK; |
| __clear_bit(n, &p->bitmap); |
| *++paa = &p->ary[n]; |
| p = p->ary[n]; |
| shift -= IDR_BITS; |
| } |
| n = id & IDR_MASK; |
| if (likely(p != NULL && test_bit(n, &p->bitmap))){ |
| __clear_bit(n, &p->bitmap); |
| p->ary[n] = NULL; |
| while(*paa && ! --((**paa)->count)){ |
| free_layer(idp, **paa); |
| **paa-- = NULL; |
| } |
| if ( ! *paa ) |
| idp->layers = 0; |
| } else { |
| idr_remove_warning(id); |
| } |
| } |
| |
| /** |
| * idr_remove - remove the given id and free it's slot |
| * idp: idr handle |
| * id: uniqueue key |
| */ |
| void idr_remove(struct idr *idp, int id) |
| { |
| struct idr_layer *p; |
| |
| /* Mask off upper bits we don't use for the search. */ |
| id &= MAX_ID_MASK; |
| |
| sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); |
| if ( idp->top && idp->top->count == 1 && |
| (idp->layers > 1) && |
| idp->top->ary[0]){ // We can drop a layer |
| |
| p = idp->top->ary[0]; |
| idp->top->bitmap = idp->top->count = 0; |
| free_layer(idp, idp->top); |
| idp->top = p; |
| --idp->layers; |
| } |
| while (idp->id_free_cnt >= IDR_FREE_MAX) { |
| |
| p = alloc_layer(idp); |
| kmem_cache_free(idr_layer_cache, p); |
| return; |
| } |
| } |
| EXPORT_SYMBOL(idr_remove); |
| |
| /** |
| * idr_destroy - release all cached layers within an idr tree |
| * idp: idr handle |
| */ |
| void idr_destroy(struct idr *idp) |
| { |
| while (idp->id_free_cnt) { |
| struct idr_layer *p = alloc_layer(idp); |
| kmem_cache_free(idr_layer_cache, p); |
| } |
| } |
| EXPORT_SYMBOL(idr_destroy); |
| |
| /** |
| * idr_find - return pointer for given id |
| * @idp: idr handle |
| * @id: lookup key |
| * |
| * Return the pointer given the id it has been registered with. A %NULL |
| * return indicates that @id is not valid or you passed %NULL in |
| * idr_get_new(). |
| * |
| * The caller must serialize idr_find() vs idr_get_new() and idr_remove(). |
| */ |
| void *idr_find(struct idr *idp, int id) |
| { |
| int n; |
| struct idr_layer *p; |
| |
| n = idp->layers * IDR_BITS; |
| p = idp->top; |
| |
| /* Mask off upper bits we don't use for the search. */ |
| id &= MAX_ID_MASK; |
| |
| if (id >= (1 << n)) |
| return NULL; |
| |
| while (n > 0 && p) { |
| n -= IDR_BITS; |
| p = p->ary[(id >> n) & IDR_MASK]; |
| } |
| return((void *)p); |
| } |
| EXPORT_SYMBOL(idr_find); |
| |
| static void idr_cache_ctor(void * idr_layer, |
| kmem_cache_t *idr_layer_cache, unsigned long flags) |
| { |
| memset(idr_layer, 0, sizeof(struct idr_layer)); |
| } |
| |
| static int init_id_cache(void) |
| { |
| if (!idr_layer_cache) |
| idr_layer_cache = kmem_cache_create("idr_layer_cache", |
| sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL); |
| return 0; |
| } |
| |
| /** |
| * idr_init - initialize idr handle |
| * @idp: idr handle |
| * |
| * This function is use to set up the handle (@idp) that you will pass |
| * to the rest of the functions. |
| */ |
| void idr_init(struct idr *idp) |
| { |
| init_id_cache(); |
| memset(idp, 0, sizeof(struct idr)); |
| spin_lock_init(&idp->lock); |
| } |
| EXPORT_SYMBOL(idr_init); |