| /* Common capabilities, needed by capability.o and root_plug.o |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/capability.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/security.h> |
| #include <linux/file.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/skbuff.h> |
| #include <linux/netlink.h> |
| #include <linux/ptrace.h> |
| #include <linux/xattr.h> |
| #include <linux/hugetlb.h> |
| #include <linux/mount.h> |
| |
| int cap_netlink_send(struct sock *sk, struct sk_buff *skb) |
| { |
| NETLINK_CB(skb).eff_cap = current->cap_effective; |
| return 0; |
| } |
| |
| int cap_netlink_recv(struct sk_buff *skb, int cap) |
| { |
| if (!cap_raised(NETLINK_CB(skb).eff_cap, cap)) |
| return -EPERM; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(cap_netlink_recv); |
| |
| int cap_capable (struct task_struct *tsk, int cap) |
| { |
| /* Derived from include/linux/sched.h:capable. */ |
| if (cap_raised(tsk->cap_effective, cap)) |
| return 0; |
| return -EPERM; |
| } |
| |
| int cap_settime(struct timespec *ts, struct timezone *tz) |
| { |
| if (!capable(CAP_SYS_TIME)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_ptrace (struct task_struct *parent, struct task_struct *child) |
| { |
| /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ |
| if (!cap_issubset(child->cap_permitted, parent->cap_permitted) && |
| !__capable(parent, CAP_SYS_PTRACE)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_capget (struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| { |
| /* Derived from kernel/capability.c:sys_capget. */ |
| *effective = cap_t (target->cap_effective); |
| *inheritable = cap_t (target->cap_inheritable); |
| *permitted = cap_t (target->cap_permitted); |
| return 0; |
| } |
| |
| int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| { |
| /* Derived from kernel/capability.c:sys_capset. */ |
| /* verify restrictions on target's new Inheritable set */ |
| if (!cap_issubset (*inheritable, |
| cap_combine (target->cap_inheritable, |
| current->cap_permitted))) { |
| return -EPERM; |
| } |
| |
| /* verify restrictions on target's new Permitted set */ |
| if (!cap_issubset (*permitted, |
| cap_combine (target->cap_permitted, |
| current->cap_permitted))) { |
| return -EPERM; |
| } |
| |
| /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ |
| if (!cap_issubset (*effective, *permitted)) { |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| { |
| target->cap_effective = *effective; |
| target->cap_inheritable = *inheritable; |
| target->cap_permitted = *permitted; |
| } |
| |
| static inline void bprm_clear_caps(struct linux_binprm *bprm) |
| { |
| cap_clear(bprm->cap_inheritable); |
| cap_clear(bprm->cap_permitted); |
| bprm->cap_effective = false; |
| } |
| |
| #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| |
| int cap_inode_need_killpriv(struct dentry *dentry) |
| { |
| struct inode *inode = dentry->d_inode; |
| int error; |
| |
| if (!inode->i_op || !inode->i_op->getxattr) |
| return 0; |
| |
| error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); |
| if (error <= 0) |
| return 0; |
| return 1; |
| } |
| |
| int cap_inode_killpriv(struct dentry *dentry) |
| { |
| struct inode *inode = dentry->d_inode; |
| |
| if (!inode->i_op || !inode->i_op->removexattr) |
| return 0; |
| |
| return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); |
| } |
| |
| static inline int cap_from_disk(__le32 *caps, struct linux_binprm *bprm, |
| int size) |
| { |
| __u32 magic_etc; |
| |
| if (size != XATTR_CAPS_SZ) |
| return -EINVAL; |
| |
| magic_etc = le32_to_cpu(caps[0]); |
| |
| switch ((magic_etc & VFS_CAP_REVISION_MASK)) { |
| case VFS_CAP_REVISION: |
| if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) |
| bprm->cap_effective = true; |
| else |
| bprm->cap_effective = false; |
| bprm->cap_permitted = to_cap_t( le32_to_cpu(caps[1]) ); |
| bprm->cap_inheritable = to_cap_t( le32_to_cpu(caps[2]) ); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* Locate any VFS capabilities: */ |
| static int get_file_caps(struct linux_binprm *bprm) |
| { |
| struct dentry *dentry; |
| int rc = 0; |
| __le32 v1caps[XATTR_CAPS_SZ]; |
| struct inode *inode; |
| |
| if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) { |
| bprm_clear_caps(bprm); |
| return 0; |
| } |
| |
| dentry = dget(bprm->file->f_dentry); |
| inode = dentry->d_inode; |
| if (!inode->i_op || !inode->i_op->getxattr) |
| goto out; |
| |
| rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &v1caps, |
| XATTR_CAPS_SZ); |
| if (rc == -ENODATA || rc == -EOPNOTSUPP) { |
| /* no data, that's ok */ |
| rc = 0; |
| goto out; |
| } |
| if (rc < 0) |
| goto out; |
| |
| rc = cap_from_disk(v1caps, bprm, rc); |
| if (rc) |
| printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", |
| __FUNCTION__, rc, bprm->filename); |
| |
| out: |
| dput(dentry); |
| if (rc) |
| bprm_clear_caps(bprm); |
| |
| return rc; |
| } |
| |
| #else |
| int cap_inode_need_killpriv(struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| int cap_inode_killpriv(struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline int get_file_caps(struct linux_binprm *bprm) |
| { |
| bprm_clear_caps(bprm); |
| return 0; |
| } |
| #endif |
| |
| int cap_bprm_set_security (struct linux_binprm *bprm) |
| { |
| int ret; |
| |
| ret = get_file_caps(bprm); |
| if (ret) |
| printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n", |
| __FUNCTION__, ret, bprm->filename); |
| |
| /* To support inheritance of root-permissions and suid-root |
| * executables under compatibility mode, we raise all three |
| * capability sets for the file. |
| * |
| * If only the real uid is 0, we only raise the inheritable |
| * and permitted sets of the executable file. |
| */ |
| |
| if (!issecure (SECURE_NOROOT)) { |
| if (bprm->e_uid == 0 || current->uid == 0) { |
| cap_set_full (bprm->cap_inheritable); |
| cap_set_full (bprm->cap_permitted); |
| } |
| if (bprm->e_uid == 0) |
| bprm->cap_effective = true; |
| } |
| |
| return ret; |
| } |
| |
| void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) |
| { |
| /* Derived from fs/exec.c:compute_creds. */ |
| kernel_cap_t new_permitted, working; |
| |
| new_permitted = cap_intersect (bprm->cap_permitted, cap_bset); |
| working = cap_intersect (bprm->cap_inheritable, |
| current->cap_inheritable); |
| new_permitted = cap_combine (new_permitted, working); |
| |
| if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || |
| !cap_issubset (new_permitted, current->cap_permitted)) { |
| set_dumpable(current->mm, suid_dumpable); |
| current->pdeath_signal = 0; |
| |
| if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { |
| if (!capable(CAP_SETUID)) { |
| bprm->e_uid = current->uid; |
| bprm->e_gid = current->gid; |
| } |
| if (!capable (CAP_SETPCAP)) { |
| new_permitted = cap_intersect (new_permitted, |
| current->cap_permitted); |
| } |
| } |
| } |
| |
| current->suid = current->euid = current->fsuid = bprm->e_uid; |
| current->sgid = current->egid = current->fsgid = bprm->e_gid; |
| |
| /* For init, we want to retain the capabilities set |
| * in the init_task struct. Thus we skip the usual |
| * capability rules */ |
| if (!is_init(current)) { |
| current->cap_permitted = new_permitted; |
| current->cap_effective = bprm->cap_effective ? |
| new_permitted : 0; |
| } |
| |
| /* AUD: Audit candidate if current->cap_effective is set */ |
| |
| current->keep_capabilities = 0; |
| } |
| |
| int cap_bprm_secureexec (struct linux_binprm *bprm) |
| { |
| if (current->uid != 0) { |
| if (bprm->cap_effective) |
| return 1; |
| if (!cap_isclear(bprm->cap_permitted)) |
| return 1; |
| if (!cap_isclear(bprm->cap_inheritable)) |
| return 1; |
| } |
| |
| return (current->euid != current->uid || |
| current->egid != current->gid); |
| } |
| |
| int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, |
| size_t size, int flags) |
| { |
| if (!strcmp(name, XATTR_NAME_CAPS)) { |
| if (!capable(CAP_SETFCAP)) |
| return -EPERM; |
| return 0; |
| } else if (!strncmp(name, XATTR_SECURITY_PREFIX, |
| sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_inode_removexattr(struct dentry *dentry, char *name) |
| { |
| if (!strcmp(name, XATTR_NAME_CAPS)) { |
| if (!capable(CAP_SETFCAP)) |
| return -EPERM; |
| return 0; |
| } else if (!strncmp(name, XATTR_SECURITY_PREFIX, |
| sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| } |
| |
| /* moved from kernel/sys.c. */ |
| /* |
| * cap_emulate_setxuid() fixes the effective / permitted capabilities of |
| * a process after a call to setuid, setreuid, or setresuid. |
| * |
| * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of |
| * {r,e,s}uid != 0, the permitted and effective capabilities are |
| * cleared. |
| * |
| * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective |
| * capabilities of the process are cleared. |
| * |
| * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective |
| * capabilities are set to the permitted capabilities. |
| * |
| * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should |
| * never happen. |
| * |
| * -astor |
| * |
| * cevans - New behaviour, Oct '99 |
| * A process may, via prctl(), elect to keep its capabilities when it |
| * calls setuid() and switches away from uid==0. Both permitted and |
| * effective sets will be retained. |
| * Without this change, it was impossible for a daemon to drop only some |
| * of its privilege. The call to setuid(!=0) would drop all privileges! |
| * Keeping uid 0 is not an option because uid 0 owns too many vital |
| * files.. |
| * Thanks to Olaf Kirch and Peter Benie for spotting this. |
| */ |
| static inline void cap_emulate_setxuid (int old_ruid, int old_euid, |
| int old_suid) |
| { |
| if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) && |
| (current->uid != 0 && current->euid != 0 && current->suid != 0) && |
| !current->keep_capabilities) { |
| cap_clear (current->cap_permitted); |
| cap_clear (current->cap_effective); |
| } |
| if (old_euid == 0 && current->euid != 0) { |
| cap_clear (current->cap_effective); |
| } |
| if (old_euid != 0 && current->euid == 0) { |
| current->cap_effective = current->cap_permitted; |
| } |
| } |
| |
| int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, |
| int flags) |
| { |
| switch (flags) { |
| case LSM_SETID_RE: |
| case LSM_SETID_ID: |
| case LSM_SETID_RES: |
| /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */ |
| if (!issecure (SECURE_NO_SETUID_FIXUP)) { |
| cap_emulate_setxuid (old_ruid, old_euid, old_suid); |
| } |
| break; |
| case LSM_SETID_FS: |
| { |
| uid_t old_fsuid = old_ruid; |
| |
| /* Copied from kernel/sys.c:setfsuid. */ |
| |
| /* |
| * FIXME - is fsuser used for all CAP_FS_MASK capabilities? |
| * if not, we might be a bit too harsh here. |
| */ |
| |
| if (!issecure (SECURE_NO_SETUID_FIXUP)) { |
| if (old_fsuid == 0 && current->fsuid != 0) { |
| cap_t (current->cap_effective) &= |
| ~CAP_FS_MASK; |
| } |
| if (old_fsuid != 0 && current->fsuid == 0) { |
| cap_t (current->cap_effective) |= |
| (cap_t (current->cap_permitted) & |
| CAP_FS_MASK); |
| } |
| } |
| break; |
| } |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| /* |
| * Rationale: code calling task_setscheduler, task_setioprio, and |
| * task_setnice, assumes that |
| * . if capable(cap_sys_nice), then those actions should be allowed |
| * . if not capable(cap_sys_nice), but acting on your own processes, |
| * then those actions should be allowed |
| * This is insufficient now since you can call code without suid, but |
| * yet with increased caps. |
| * So we check for increased caps on the target process. |
| */ |
| static inline int cap_safe_nice(struct task_struct *p) |
| { |
| if (!cap_issubset(p->cap_permitted, current->cap_permitted) && |
| !__capable(current, CAP_SYS_NICE)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_task_setscheduler (struct task_struct *p, int policy, |
| struct sched_param *lp) |
| { |
| return cap_safe_nice(p); |
| } |
| |
| int cap_task_setioprio (struct task_struct *p, int ioprio) |
| { |
| return cap_safe_nice(p); |
| } |
| |
| int cap_task_setnice (struct task_struct *p, int nice) |
| { |
| return cap_safe_nice(p); |
| } |
| |
| int cap_task_kill(struct task_struct *p, struct siginfo *info, |
| int sig, u32 secid) |
| { |
| if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) |
| return 0; |
| |
| if (secid) |
| /* |
| * Signal sent as a particular user. |
| * Capabilities are ignored. May be wrong, but it's the |
| * only thing we can do at the moment. |
| * Used only by usb drivers? |
| */ |
| return 0; |
| if (cap_issubset(p->cap_permitted, current->cap_permitted)) |
| return 0; |
| if (capable(CAP_KILL)) |
| return 0; |
| |
| return -EPERM; |
| } |
| #else |
| int cap_task_setscheduler (struct task_struct *p, int policy, |
| struct sched_param *lp) |
| { |
| return 0; |
| } |
| int cap_task_setioprio (struct task_struct *p, int ioprio) |
| { |
| return 0; |
| } |
| int cap_task_setnice (struct task_struct *p, int nice) |
| { |
| return 0; |
| } |
| int cap_task_kill(struct task_struct *p, struct siginfo *info, |
| int sig, u32 secid) |
| { |
| return 0; |
| } |
| #endif |
| |
| void cap_task_reparent_to_init (struct task_struct *p) |
| { |
| p->cap_effective = CAP_INIT_EFF_SET; |
| p->cap_inheritable = CAP_INIT_INH_SET; |
| p->cap_permitted = CAP_FULL_SET; |
| p->keep_capabilities = 0; |
| return; |
| } |
| |
| int cap_syslog (int type) |
| { |
| if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_vm_enough_memory(struct mm_struct *mm, long pages) |
| { |
| int cap_sys_admin = 0; |
| |
| if (cap_capable(current, CAP_SYS_ADMIN) == 0) |
| cap_sys_admin = 1; |
| return __vm_enough_memory(mm, pages, cap_sys_admin); |
| } |
| |