| #ifndef __i386_UACCESS_H |
| #define __i386_UACCESS_H |
| |
| /* |
| * User space memory access functions |
| */ |
| #include <linux/errno.h> |
| #include <linux/thread_info.h> |
| #include <linux/prefetch.h> |
| #include <linux/string.h> |
| #include <asm/page.h> |
| |
| #define VERIFY_READ 0 |
| #define VERIFY_WRITE 1 |
| |
| /* |
| * The fs value determines whether argument validity checking should be |
| * performed or not. If get_fs() == USER_DS, checking is performed, with |
| * get_fs() == KERNEL_DS, checking is bypassed. |
| * |
| * For historical reasons, these macros are grossly misnamed. |
| */ |
| |
| #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) |
| |
| |
| #define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFFUL) |
| #define USER_DS MAKE_MM_SEG(PAGE_OFFSET) |
| |
| #define get_ds() (KERNEL_DS) |
| #define get_fs() (current_thread_info()->addr_limit) |
| #define set_fs(x) (current_thread_info()->addr_limit = (x)) |
| |
| #define segment_eq(a,b) ((a).seg == (b).seg) |
| |
| /* |
| * movsl can be slow when source and dest are not both 8-byte aligned |
| */ |
| #ifdef CONFIG_X86_INTEL_USERCOPY |
| extern struct movsl_mask { |
| int mask; |
| } ____cacheline_aligned_in_smp movsl_mask; |
| #endif |
| |
| #define __addr_ok(addr) ((unsigned long __force)(addr) < (current_thread_info()->addr_limit.seg)) |
| |
| /* |
| * Test whether a block of memory is a valid user space address. |
| * Returns 0 if the range is valid, nonzero otherwise. |
| * |
| * This is equivalent to the following test: |
| * (u33)addr + (u33)size >= (u33)current->addr_limit.seg |
| * |
| * This needs 33-bit arithmetic. We have a carry... |
| */ |
| #define __range_ok(addr,size) ({ \ |
| unsigned long flag,roksum; \ |
| __chk_user_ptr(addr); \ |
| asm("addl %3,%1 ; sbbl %0,%0; cmpl %1,%4; sbbl $0,%0" \ |
| :"=&r" (flag), "=r" (roksum) \ |
| :"1" (addr),"g" ((int)(size)),"rm" (current_thread_info()->addr_limit.seg)); \ |
| flag; }) |
| |
| /** |
| * access_ok: - Checks if a user space pointer is valid |
| * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that |
| * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe |
| * to write to a block, it is always safe to read from it. |
| * @addr: User space pointer to start of block to check |
| * @size: Size of block to check |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * Checks if a pointer to a block of memory in user space is valid. |
| * |
| * Returns true (nonzero) if the memory block may be valid, false (zero) |
| * if it is definitely invalid. |
| * |
| * Note that, depending on architecture, this function probably just |
| * checks that the pointer is in the user space range - after calling |
| * this function, memory access functions may still return -EFAULT. |
| */ |
| #define access_ok(type,addr,size) (likely(__range_ok(addr,size) == 0)) |
| |
| /* |
| * The exception table consists of pairs of addresses: the first is the |
| * address of an instruction that is allowed to fault, and the second is |
| * the address at which the program should continue. No registers are |
| * modified, so it is entirely up to the continuation code to figure out |
| * what to do. |
| * |
| * All the routines below use bits of fixup code that are out of line |
| * with the main instruction path. This means when everything is well, |
| * we don't even have to jump over them. Further, they do not intrude |
| * on our cache or tlb entries. |
| */ |
| |
| struct exception_table_entry |
| { |
| unsigned long insn, fixup; |
| }; |
| |
| extern int fixup_exception(struct pt_regs *regs); |
| |
| /* |
| * These are the main single-value transfer routines. They automatically |
| * use the right size if we just have the right pointer type. |
| * |
| * This gets kind of ugly. We want to return _two_ values in "get_user()" |
| * and yet we don't want to do any pointers, because that is too much |
| * of a performance impact. Thus we have a few rather ugly macros here, |
| * and hide all the ugliness from the user. |
| * |
| * The "__xxx" versions of the user access functions are versions that |
| * do not verify the address space, that must have been done previously |
| * with a separate "access_ok()" call (this is used when we do multiple |
| * accesses to the same area of user memory). |
| */ |
| |
| extern void __get_user_1(void); |
| extern void __get_user_2(void); |
| extern void __get_user_4(void); |
| |
| #define __get_user_x(size,ret,x,ptr) \ |
| __asm__ __volatile__("call __get_user_" #size \ |
| :"=a" (ret),"=d" (x) \ |
| :"0" (ptr)) |
| |
| |
| /* Careful: we have to cast the result to the type of the pointer for sign reasons */ |
| /** |
| * get_user: - Get a simple variable from user space. |
| * @x: Variable to store result. |
| * @ptr: Source address, in user space. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * This macro copies a single simple variable from user space to kernel |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and the result of |
| * dereferencing @ptr must be assignable to @x without a cast. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| * On error, the variable @x is set to zero. |
| */ |
| #define get_user(x,ptr) \ |
| ({ int __ret_gu; \ |
| unsigned long __val_gu; \ |
| __chk_user_ptr(ptr); \ |
| switch(sizeof (*(ptr))) { \ |
| case 1: __get_user_x(1,__ret_gu,__val_gu,ptr); break; \ |
| case 2: __get_user_x(2,__ret_gu,__val_gu,ptr); break; \ |
| case 4: __get_user_x(4,__ret_gu,__val_gu,ptr); break; \ |
| default: __get_user_x(X,__ret_gu,__val_gu,ptr); break; \ |
| } \ |
| (x) = (__typeof__(*(ptr)))__val_gu; \ |
| __ret_gu; \ |
| }) |
| |
| extern void __put_user_bad(void); |
| |
| /* |
| * Strange magic calling convention: pointer in %ecx, |
| * value in %eax(:%edx), return value in %eax, no clobbers. |
| */ |
| extern void __put_user_1(void); |
| extern void __put_user_2(void); |
| extern void __put_user_4(void); |
| extern void __put_user_8(void); |
| |
| #define __put_user_1(x, ptr) __asm__ __volatile__("call __put_user_1":"=a" (__ret_pu):"0" ((typeof(*(ptr)))(x)), "c" (ptr)) |
| #define __put_user_2(x, ptr) __asm__ __volatile__("call __put_user_2":"=a" (__ret_pu):"0" ((typeof(*(ptr)))(x)), "c" (ptr)) |
| #define __put_user_4(x, ptr) __asm__ __volatile__("call __put_user_4":"=a" (__ret_pu):"0" ((typeof(*(ptr)))(x)), "c" (ptr)) |
| #define __put_user_8(x, ptr) __asm__ __volatile__("call __put_user_8":"=a" (__ret_pu):"A" ((typeof(*(ptr)))(x)), "c" (ptr)) |
| #define __put_user_X(x, ptr) __asm__ __volatile__("call __put_user_X":"=a" (__ret_pu):"c" (ptr)) |
| |
| /** |
| * put_user: - Write a simple value into user space. |
| * @x: Value to copy to user space. |
| * @ptr: Destination address, in user space. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * This macro copies a single simple value from kernel space to user |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and @x must be assignable |
| * to the result of dereferencing @ptr. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| */ |
| #ifdef CONFIG_X86_WP_WORKS_OK |
| |
| #define put_user(x,ptr) \ |
| ({ int __ret_pu; \ |
| __typeof__(*(ptr)) __pu_val; \ |
| __chk_user_ptr(ptr); \ |
| __pu_val = x; \ |
| switch(sizeof(*(ptr))) { \ |
| case 1: __put_user_1(__pu_val, ptr); break; \ |
| case 2: __put_user_2(__pu_val, ptr); break; \ |
| case 4: __put_user_4(__pu_val, ptr); break; \ |
| case 8: __put_user_8(__pu_val, ptr); break; \ |
| default:__put_user_X(__pu_val, ptr); break; \ |
| } \ |
| __ret_pu; \ |
| }) |
| |
| #else |
| #define put_user(x,ptr) \ |
| ({ \ |
| int __ret_pu; \ |
| __typeof__(*(ptr)) __pus_tmp = x; \ |
| __ret_pu=0; \ |
| if(unlikely(__copy_to_user_ll(ptr, &__pus_tmp, \ |
| sizeof(*(ptr))) != 0)) \ |
| __ret_pu=-EFAULT; \ |
| __ret_pu; \ |
| }) |
| |
| |
| #endif |
| |
| /** |
| * __get_user: - Get a simple variable from user space, with less checking. |
| * @x: Variable to store result. |
| * @ptr: Source address, in user space. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * This macro copies a single simple variable from user space to kernel |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and the result of |
| * dereferencing @ptr must be assignable to @x without a cast. |
| * |
| * Caller must check the pointer with access_ok() before calling this |
| * function. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| * On error, the variable @x is set to zero. |
| */ |
| #define __get_user(x,ptr) \ |
| __get_user_nocheck((x),(ptr),sizeof(*(ptr))) |
| |
| |
| /** |
| * __put_user: - Write a simple value into user space, with less checking. |
| * @x: Value to copy to user space. |
| * @ptr: Destination address, in user space. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * This macro copies a single simple value from kernel space to user |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and @x must be assignable |
| * to the result of dereferencing @ptr. |
| * |
| * Caller must check the pointer with access_ok() before calling this |
| * function. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| */ |
| #define __put_user(x,ptr) \ |
| __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) |
| |
| #define __put_user_nocheck(x,ptr,size) \ |
| ({ \ |
| long __pu_err; \ |
| __put_user_size((x),(ptr),(size),__pu_err,-EFAULT); \ |
| __pu_err; \ |
| }) |
| |
| |
| #define __put_user_u64(x, addr, err) \ |
| __asm__ __volatile__( \ |
| "1: movl %%eax,0(%2)\n" \ |
| "2: movl %%edx,4(%2)\n" \ |
| "3:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "4: movl %3,%0\n" \ |
| " jmp 3b\n" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .align 4\n" \ |
| " .long 1b,4b\n" \ |
| " .long 2b,4b\n" \ |
| ".previous" \ |
| : "=r"(err) \ |
| : "A" (x), "r" (addr), "i"(-EFAULT), "0"(err)) |
| |
| #ifdef CONFIG_X86_WP_WORKS_OK |
| |
| #define __put_user_size(x,ptr,size,retval,errret) \ |
| do { \ |
| retval = 0; \ |
| __chk_user_ptr(ptr); \ |
| switch (size) { \ |
| case 1: __put_user_asm(x,ptr,retval,"b","b","iq",errret);break; \ |
| case 2: __put_user_asm(x,ptr,retval,"w","w","ir",errret);break; \ |
| case 4: __put_user_asm(x,ptr,retval,"l","","ir",errret); break; \ |
| case 8: __put_user_u64((__typeof__(*ptr))(x),ptr,retval); break;\ |
| default: __put_user_bad(); \ |
| } \ |
| } while (0) |
| |
| #else |
| |
| #define __put_user_size(x,ptr,size,retval,errret) \ |
| do { \ |
| __typeof__(*(ptr)) __pus_tmp = x; \ |
| retval = 0; \ |
| \ |
| if(unlikely(__copy_to_user_ll(ptr, &__pus_tmp, size) != 0)) \ |
| retval = errret; \ |
| } while (0) |
| |
| #endif |
| struct __large_struct { unsigned long buf[100]; }; |
| #define __m(x) (*(struct __large_struct __user *)(x)) |
| |
| /* |
| * Tell gcc we read from memory instead of writing: this is because |
| * we do not write to any memory gcc knows about, so there are no |
| * aliasing issues. |
| */ |
| #define __put_user_asm(x, addr, err, itype, rtype, ltype, errret) \ |
| __asm__ __volatile__( \ |
| "1: mov"itype" %"rtype"1,%2\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl %3,%0\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .align 4\n" \ |
| " .long 1b,3b\n" \ |
| ".previous" \ |
| : "=r"(err) \ |
| : ltype (x), "m"(__m(addr)), "i"(errret), "0"(err)) |
| |
| |
| #define __get_user_nocheck(x,ptr,size) \ |
| ({ \ |
| long __gu_err; \ |
| unsigned long __gu_val; \ |
| __get_user_size(__gu_val,(ptr),(size),__gu_err,-EFAULT);\ |
| (x) = (__typeof__(*(ptr)))__gu_val; \ |
| __gu_err; \ |
| }) |
| |
| extern long __get_user_bad(void); |
| |
| #define __get_user_size(x,ptr,size,retval,errret) \ |
| do { \ |
| retval = 0; \ |
| __chk_user_ptr(ptr); \ |
| switch (size) { \ |
| case 1: __get_user_asm(x,ptr,retval,"b","b","=q",errret);break; \ |
| case 2: __get_user_asm(x,ptr,retval,"w","w","=r",errret);break; \ |
| case 4: __get_user_asm(x,ptr,retval,"l","","=r",errret);break; \ |
| default: (x) = __get_user_bad(); \ |
| } \ |
| } while (0) |
| |
| #define __get_user_asm(x, addr, err, itype, rtype, ltype, errret) \ |
| __asm__ __volatile__( \ |
| "1: mov"itype" %2,%"rtype"1\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl %3,%0\n" \ |
| " xor"itype" %"rtype"1,%"rtype"1\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .align 4\n" \ |
| " .long 1b,3b\n" \ |
| ".previous" \ |
| : "=r"(err), ltype (x) \ |
| : "m"(__m(addr)), "i"(errret), "0"(err)) |
| |
| |
| unsigned long __must_check __copy_to_user_ll(void __user *to, |
| const void *from, unsigned long n); |
| unsigned long __must_check __copy_from_user_ll(void *to, |
| const void __user *from, unsigned long n); |
| unsigned long __must_check __copy_from_user_ll_nozero(void *to, |
| const void __user *from, unsigned long n); |
| unsigned long __must_check __copy_from_user_ll_nocache(void *to, |
| const void __user *from, unsigned long n); |
| unsigned long __must_check __copy_from_user_ll_nocache_nozero(void *to, |
| const void __user *from, unsigned long n); |
| |
| /* |
| * Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault |
| * we return the initial request size (1, 2 or 4), as copy_*_user should do. |
| * If a store crosses a page boundary and gets a fault, the x86 will not write |
| * anything, so this is accurate. |
| */ |
| |
| static __always_inline unsigned long __must_check |
| __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) |
| { |
| if (__builtin_constant_p(n)) { |
| unsigned long ret; |
| |
| switch (n) { |
| case 1: |
| __put_user_size(*(u8 *)from, (u8 __user *)to, 1, ret, 1); |
| return ret; |
| case 2: |
| __put_user_size(*(u16 *)from, (u16 __user *)to, 2, ret, 2); |
| return ret; |
| case 4: |
| __put_user_size(*(u32 *)from, (u32 __user *)to, 4, ret, 4); |
| return ret; |
| } |
| } |
| return __copy_to_user_ll(to, from, n); |
| } |
| |
| /** |
| * __copy_to_user: - Copy a block of data into user space, with less checking. |
| * @to: Destination address, in user space. |
| * @from: Source address, in kernel space. |
| * @n: Number of bytes to copy. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * Copy data from kernel space to user space. Caller must check |
| * the specified block with access_ok() before calling this function. |
| * |
| * Returns number of bytes that could not be copied. |
| * On success, this will be zero. |
| */ |
| static __always_inline unsigned long __must_check |
| __copy_to_user(void __user *to, const void *from, unsigned long n) |
| { |
| might_sleep(); |
| return __copy_to_user_inatomic(to, from, n); |
| } |
| |
| static __always_inline unsigned long |
| __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) |
| { |
| /* Avoid zeroing the tail if the copy fails.. |
| * If 'n' is constant and 1, 2, or 4, we do still zero on a failure, |
| * but as the zeroing behaviour is only significant when n is not |
| * constant, that shouldn't be a problem. |
| */ |
| if (__builtin_constant_p(n)) { |
| unsigned long ret; |
| |
| switch (n) { |
| case 1: |
| __get_user_size(*(u8 *)to, from, 1, ret, 1); |
| return ret; |
| case 2: |
| __get_user_size(*(u16 *)to, from, 2, ret, 2); |
| return ret; |
| case 4: |
| __get_user_size(*(u32 *)to, from, 4, ret, 4); |
| return ret; |
| } |
| } |
| return __copy_from_user_ll_nozero(to, from, n); |
| } |
| |
| /** |
| * __copy_from_user: - Copy a block of data from user space, with less checking. |
| * @to: Destination address, in kernel space. |
| * @from: Source address, in user space. |
| * @n: Number of bytes to copy. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * Copy data from user space to kernel space. Caller must check |
| * the specified block with access_ok() before calling this function. |
| * |
| * Returns number of bytes that could not be copied. |
| * On success, this will be zero. |
| * |
| * If some data could not be copied, this function will pad the copied |
| * data to the requested size using zero bytes. |
| * |
| * An alternate version - __copy_from_user_inatomic() - may be called from |
| * atomic context and will fail rather than sleep. In this case the |
| * uncopied bytes will *NOT* be padded with zeros. See fs/filemap.h |
| * for explanation of why this is needed. |
| */ |
| static __always_inline unsigned long |
| __copy_from_user(void *to, const void __user *from, unsigned long n) |
| { |
| might_sleep(); |
| if (__builtin_constant_p(n)) { |
| unsigned long ret; |
| |
| switch (n) { |
| case 1: |
| __get_user_size(*(u8 *)to, from, 1, ret, 1); |
| return ret; |
| case 2: |
| __get_user_size(*(u16 *)to, from, 2, ret, 2); |
| return ret; |
| case 4: |
| __get_user_size(*(u32 *)to, from, 4, ret, 4); |
| return ret; |
| } |
| } |
| return __copy_from_user_ll(to, from, n); |
| } |
| |
| #define ARCH_HAS_NOCACHE_UACCESS |
| |
| static __always_inline unsigned long __copy_from_user_nocache(void *to, |
| const void __user *from, unsigned long n) |
| { |
| might_sleep(); |
| if (__builtin_constant_p(n)) { |
| unsigned long ret; |
| |
| switch (n) { |
| case 1: |
| __get_user_size(*(u8 *)to, from, 1, ret, 1); |
| return ret; |
| case 2: |
| __get_user_size(*(u16 *)to, from, 2, ret, 2); |
| return ret; |
| case 4: |
| __get_user_size(*(u32 *)to, from, 4, ret, 4); |
| return ret; |
| } |
| } |
| return __copy_from_user_ll_nocache(to, from, n); |
| } |
| |
| static __always_inline unsigned long |
| __copy_from_user_inatomic_nocache(void *to, const void __user *from, unsigned long n) |
| { |
| return __copy_from_user_ll_nocache_nozero(to, from, n); |
| } |
| |
| unsigned long __must_check copy_to_user(void __user *to, |
| const void *from, unsigned long n); |
| unsigned long __must_check copy_from_user(void *to, |
| const void __user *from, unsigned long n); |
| long __must_check strncpy_from_user(char *dst, const char __user *src, |
| long count); |
| long __must_check __strncpy_from_user(char *dst, |
| const char __user *src, long count); |
| |
| /** |
| * strlen_user: - Get the size of a string in user space. |
| * @str: The string to measure. |
| * |
| * Context: User context only. This function may sleep. |
| * |
| * Get the size of a NUL-terminated string in user space. |
| * |
| * Returns the size of the string INCLUDING the terminating NUL. |
| * On exception, returns 0. |
| * |
| * If there is a limit on the length of a valid string, you may wish to |
| * consider using strnlen_user() instead. |
| */ |
| #define strlen_user(str) strnlen_user(str, ~0UL >> 1) |
| |
| long strnlen_user(const char __user *str, long n); |
| unsigned long __must_check clear_user(void __user *mem, unsigned long len); |
| unsigned long __must_check __clear_user(void __user *mem, unsigned long len); |
| |
| #endif /* __i386_UACCESS_H */ |