| /* |
| * Xilinx SystemACE device driver |
| * |
| * Copyright 2007 Secret Lab Technologies Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| */ |
| |
| /* |
| * The SystemACE chip is designed to configure FPGAs by loading an FPGA |
| * bitstream from a file on a CF card and squirting it into FPGAs connected |
| * to the SystemACE JTAG chain. It also has the advantage of providing an |
| * MPU interface which can be used to control the FPGA configuration process |
| * and to use the attached CF card for general purpose storage. |
| * |
| * This driver is a block device driver for the SystemACE. |
| * |
| * Initialization: |
| * The driver registers itself as a platform_device driver at module |
| * load time. The platform bus will take care of calling the |
| * ace_probe() method for all SystemACE instances in the system. Any |
| * number of SystemACE instances are supported. ace_probe() calls |
| * ace_setup() which initialized all data structures, reads the CF |
| * id structure and registers the device. |
| * |
| * Processing: |
| * Just about all of the heavy lifting in this driver is performed by |
| * a Finite State Machine (FSM). The driver needs to wait on a number |
| * of events; some raised by interrupts, some which need to be polled |
| * for. Describing all of the behaviour in a FSM seems to be the |
| * easiest way to keep the complexity low and make it easy to |
| * understand what the driver is doing. If the block ops or the |
| * request function need to interact with the hardware, then they |
| * simply need to flag the request and kick of FSM processing. |
| * |
| * The FSM itself is atomic-safe code which can be run from any |
| * context. The general process flow is: |
| * 1. obtain the ace->lock spinlock. |
| * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is |
| * cleared. |
| * 3. release the lock. |
| * |
| * Individual states do not sleep in any way. If a condition needs to |
| * be waited for then the state much clear the fsm_continue flag and |
| * either schedule the FSM to be run again at a later time, or expect |
| * an interrupt to call the FSM when the desired condition is met. |
| * |
| * In normal operation, the FSM is processed at interrupt context |
| * either when the driver's tasklet is scheduled, or when an irq is |
| * raised by the hardware. The tasklet can be scheduled at any time. |
| * The request method in particular schedules the tasklet when a new |
| * request has been indicated by the block layer. Once started, the |
| * FSM proceeds as far as it can processing the request until it |
| * needs on a hardware event. At this point, it must yield execution. |
| * |
| * A state has two options when yielding execution: |
| * 1. ace_fsm_yield() |
| * - Call if need to poll for event. |
| * - clears the fsm_continue flag to exit the processing loop |
| * - reschedules the tasklet to run again as soon as possible |
| * 2. ace_fsm_yieldirq() |
| * - Call if an irq is expected from the HW |
| * - clears the fsm_continue flag to exit the processing loop |
| * - does not reschedule the tasklet so the FSM will not be processed |
| * again until an irq is received. |
| * After calling a yield function, the state must return control back |
| * to the FSM main loop. |
| * |
| * Additionally, the driver maintains a kernel timer which can process |
| * the FSM. If the FSM gets stalled, typically due to a missed |
| * interrupt, then the kernel timer will expire and the driver can |
| * continue where it left off. |
| * |
| * To Do: |
| * - Add FPGA configuration control interface. |
| * - Request major number from lanana |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/module.h> |
| #include <linux/ctype.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/hdreg.h> |
| #include <linux/platform_device.h> |
| |
| MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>"); |
| MODULE_DESCRIPTION("Xilinx SystemACE device driver"); |
| MODULE_LICENSE("GPL"); |
| |
| /* SystemACE register definitions */ |
| #define ACE_BUSMODE (0x00) |
| |
| #define ACE_STATUS (0x04) |
| #define ACE_STATUS_CFGLOCK (0x00000001) |
| #define ACE_STATUS_MPULOCK (0x00000002) |
| #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */ |
| #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */ |
| #define ACE_STATUS_CFDETECT (0x00000010) |
| #define ACE_STATUS_DATABUFRDY (0x00000020) |
| #define ACE_STATUS_DATABUFMODE (0x00000040) |
| #define ACE_STATUS_CFGDONE (0x00000080) |
| #define ACE_STATUS_RDYFORCFCMD (0x00000100) |
| #define ACE_STATUS_CFGMODEPIN (0x00000200) |
| #define ACE_STATUS_CFGADDR_MASK (0x0000e000) |
| #define ACE_STATUS_CFBSY (0x00020000) |
| #define ACE_STATUS_CFRDY (0x00040000) |
| #define ACE_STATUS_CFDWF (0x00080000) |
| #define ACE_STATUS_CFDSC (0x00100000) |
| #define ACE_STATUS_CFDRQ (0x00200000) |
| #define ACE_STATUS_CFCORR (0x00400000) |
| #define ACE_STATUS_CFERR (0x00800000) |
| |
| #define ACE_ERROR (0x08) |
| #define ACE_CFGLBA (0x0c) |
| #define ACE_MPULBA (0x10) |
| |
| #define ACE_SECCNTCMD (0x14) |
| #define ACE_SECCNTCMD_RESET (0x0100) |
| #define ACE_SECCNTCMD_IDENTIFY (0x0200) |
| #define ACE_SECCNTCMD_READ_DATA (0x0300) |
| #define ACE_SECCNTCMD_WRITE_DATA (0x0400) |
| #define ACE_SECCNTCMD_ABORT (0x0600) |
| |
| #define ACE_VERSION (0x16) |
| #define ACE_VERSION_REVISION_MASK (0x00FF) |
| #define ACE_VERSION_MINOR_MASK (0x0F00) |
| #define ACE_VERSION_MAJOR_MASK (0xF000) |
| |
| #define ACE_CTRL (0x18) |
| #define ACE_CTRL_FORCELOCKREQ (0x0001) |
| #define ACE_CTRL_LOCKREQ (0x0002) |
| #define ACE_CTRL_FORCECFGADDR (0x0004) |
| #define ACE_CTRL_FORCECFGMODE (0x0008) |
| #define ACE_CTRL_CFGMODE (0x0010) |
| #define ACE_CTRL_CFGSTART (0x0020) |
| #define ACE_CTRL_CFGSEL (0x0040) |
| #define ACE_CTRL_CFGRESET (0x0080) |
| #define ACE_CTRL_DATABUFRDYIRQ (0x0100) |
| #define ACE_CTRL_ERRORIRQ (0x0200) |
| #define ACE_CTRL_CFGDONEIRQ (0x0400) |
| #define ACE_CTRL_RESETIRQ (0x0800) |
| #define ACE_CTRL_CFGPROG (0x1000) |
| #define ACE_CTRL_CFGADDR_MASK (0xe000) |
| |
| #define ACE_FATSTAT (0x1c) |
| |
| #define ACE_NUM_MINORS 16 |
| #define ACE_SECTOR_SIZE (512) |
| #define ACE_FIFO_SIZE (32) |
| #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE) |
| |
| struct ace_reg_ops; |
| |
| struct ace_device { |
| /* driver state data */ |
| int id; |
| int media_change; |
| int users; |
| struct list_head list; |
| |
| /* finite state machine data */ |
| struct tasklet_struct fsm_tasklet; |
| uint fsm_task; /* Current activity (ACE_TASK_*) */ |
| uint fsm_state; /* Current state (ACE_FSM_STATE_*) */ |
| uint fsm_continue_flag; /* cleared to exit FSM mainloop */ |
| uint fsm_iter_num; |
| struct timer_list stall_timer; |
| |
| /* Transfer state/result, use for both id and block request */ |
| struct request *req; /* request being processed */ |
| void *data_ptr; /* pointer to I/O buffer */ |
| int data_count; /* number of buffers remaining */ |
| int data_result; /* Result of transfer; 0 := success */ |
| |
| int id_req_count; /* count of id requests */ |
| int id_result; |
| struct completion id_completion; /* used when id req finishes */ |
| int in_irq; |
| |
| /* Details of hardware device */ |
| unsigned long physaddr; |
| void *baseaddr; |
| int irq; |
| int bus_width; /* 0 := 8 bit; 1 := 16 bit */ |
| struct ace_reg_ops *reg_ops; |
| int lock_count; |
| |
| /* Block device data structures */ |
| spinlock_t lock; |
| struct device *dev; |
| struct request_queue *queue; |
| struct gendisk *gd; |
| |
| /* Inserted CF card parameters */ |
| struct hd_driveid cf_id; |
| }; |
| |
| static int ace_major; |
| |
| /* --------------------------------------------------------------------- |
| * Low level register access |
| */ |
| |
| struct ace_reg_ops { |
| u16(*in) (struct ace_device * ace, int reg); |
| void (*out) (struct ace_device * ace, int reg, u16 val); |
| void (*datain) (struct ace_device * ace); |
| void (*dataout) (struct ace_device * ace); |
| }; |
| |
| /* 8 Bit bus width */ |
| static u16 ace_in_8(struct ace_device *ace, int reg) |
| { |
| void *r = ace->baseaddr + reg; |
| return in_8(r) | (in_8(r + 1) << 8); |
| } |
| |
| static void ace_out_8(struct ace_device *ace, int reg, u16 val) |
| { |
| void *r = ace->baseaddr + reg; |
| out_8(r, val); |
| out_8(r + 1, val >> 8); |
| } |
| |
| static void ace_datain_8(struct ace_device *ace) |
| { |
| void *r = ace->baseaddr + 0x40; |
| u8 *dst = ace->data_ptr; |
| int i = ACE_FIFO_SIZE; |
| while (i--) |
| *dst++ = in_8(r++); |
| ace->data_ptr = dst; |
| } |
| |
| static void ace_dataout_8(struct ace_device *ace) |
| { |
| void *r = ace->baseaddr + 0x40; |
| u8 *src = ace->data_ptr; |
| int i = ACE_FIFO_SIZE; |
| while (i--) |
| out_8(r++, *src++); |
| ace->data_ptr = src; |
| } |
| |
| static struct ace_reg_ops ace_reg_8_ops = { |
| .in = ace_in_8, |
| .out = ace_out_8, |
| .datain = ace_datain_8, |
| .dataout = ace_dataout_8, |
| }; |
| |
| /* 16 bit big endian bus attachment */ |
| static u16 ace_in_be16(struct ace_device *ace, int reg) |
| { |
| return in_be16(ace->baseaddr + reg); |
| } |
| |
| static void ace_out_be16(struct ace_device *ace, int reg, u16 val) |
| { |
| out_be16(ace->baseaddr + reg, val); |
| } |
| |
| static void ace_datain_be16(struct ace_device *ace) |
| { |
| int i = ACE_FIFO_SIZE / 2; |
| u16 *dst = ace->data_ptr; |
| while (i--) |
| *dst++ = in_le16(ace->baseaddr + 0x40); |
| ace->data_ptr = dst; |
| } |
| |
| static void ace_dataout_be16(struct ace_device *ace) |
| { |
| int i = ACE_FIFO_SIZE / 2; |
| u16 *src = ace->data_ptr; |
| while (i--) |
| out_le16(ace->baseaddr + 0x40, *src++); |
| ace->data_ptr = src; |
| } |
| |
| /* 16 bit little endian bus attachment */ |
| static u16 ace_in_le16(struct ace_device *ace, int reg) |
| { |
| return in_le16(ace->baseaddr + reg); |
| } |
| |
| static void ace_out_le16(struct ace_device *ace, int reg, u16 val) |
| { |
| out_le16(ace->baseaddr + reg, val); |
| } |
| |
| static void ace_datain_le16(struct ace_device *ace) |
| { |
| int i = ACE_FIFO_SIZE / 2; |
| u16 *dst = ace->data_ptr; |
| while (i--) |
| *dst++ = in_be16(ace->baseaddr + 0x40); |
| ace->data_ptr = dst; |
| } |
| |
| static void ace_dataout_le16(struct ace_device *ace) |
| { |
| int i = ACE_FIFO_SIZE / 2; |
| u16 *src = ace->data_ptr; |
| while (i--) |
| out_be16(ace->baseaddr + 0x40, *src++); |
| ace->data_ptr = src; |
| } |
| |
| static struct ace_reg_ops ace_reg_be16_ops = { |
| .in = ace_in_be16, |
| .out = ace_out_be16, |
| .datain = ace_datain_be16, |
| .dataout = ace_dataout_be16, |
| }; |
| |
| static struct ace_reg_ops ace_reg_le16_ops = { |
| .in = ace_in_le16, |
| .out = ace_out_le16, |
| .datain = ace_datain_le16, |
| .dataout = ace_dataout_le16, |
| }; |
| |
| static inline u16 ace_in(struct ace_device *ace, int reg) |
| { |
| return ace->reg_ops->in(ace, reg); |
| } |
| |
| static inline u32 ace_in32(struct ace_device *ace, int reg) |
| { |
| return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16); |
| } |
| |
| static inline void ace_out(struct ace_device *ace, int reg, u16 val) |
| { |
| ace->reg_ops->out(ace, reg, val); |
| } |
| |
| static inline void ace_out32(struct ace_device *ace, int reg, u32 val) |
| { |
| ace_out(ace, reg, val); |
| ace_out(ace, reg + 2, val >> 16); |
| } |
| |
| /* --------------------------------------------------------------------- |
| * Debug support functions |
| */ |
| |
| #if defined(DEBUG) |
| static void ace_dump_mem(void *base, int len) |
| { |
| const char *ptr = base; |
| int i, j; |
| |
| for (i = 0; i < len; i += 16) { |
| printk(KERN_INFO "%.8x:", i); |
| for (j = 0; j < 16; j++) { |
| if (!(j % 4)) |
| printk(" "); |
| printk("%.2x", ptr[i + j]); |
| } |
| printk(" "); |
| for (j = 0; j < 16; j++) |
| printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.'); |
| printk("\n"); |
| } |
| } |
| #else |
| static inline void ace_dump_mem(void *base, int len) |
| { |
| } |
| #endif |
| |
| static void ace_dump_regs(struct ace_device *ace) |
| { |
| dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n" |
| " status:%.8x mpu_lba:%.8x busmode:%4x\n" |
| " error: %.8x cfg_lba:%.8x fatstat:%.4x\n", |
| ace_in32(ace, ACE_CTRL), |
| ace_in(ace, ACE_SECCNTCMD), |
| ace_in(ace, ACE_VERSION), |
| ace_in32(ace, ACE_STATUS), |
| ace_in32(ace, ACE_MPULBA), |
| ace_in(ace, ACE_BUSMODE), |
| ace_in32(ace, ACE_ERROR), |
| ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT)); |
| } |
| |
| void ace_fix_driveid(struct hd_driveid *id) |
| { |
| #if defined(__BIG_ENDIAN) |
| u16 *buf = (void *)id; |
| int i; |
| |
| /* All half words have wrong byte order; swap the bytes */ |
| for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++) |
| *buf = le16_to_cpu(*buf); |
| |
| /* Some of the data values are 32bit; swap the half words */ |
| id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) | |
| ((id->lba_capacity << 16) & 0xFFFF0000); |
| id->spg = ((id->spg >> 16) & 0x0000FFFF) | |
| ((id->spg << 16) & 0xFFFF0000); |
| #endif |
| } |
| |
| /* --------------------------------------------------------------------- |
| * Finite State Machine (FSM) implementation |
| */ |
| |
| /* FSM tasks; used to direct state transitions */ |
| #define ACE_TASK_IDLE 0 |
| #define ACE_TASK_IDENTIFY 1 |
| #define ACE_TASK_READ 2 |
| #define ACE_TASK_WRITE 3 |
| #define ACE_FSM_NUM_TASKS 4 |
| |
| /* FSM state definitions */ |
| #define ACE_FSM_STATE_IDLE 0 |
| #define ACE_FSM_STATE_REQ_LOCK 1 |
| #define ACE_FSM_STATE_WAIT_LOCK 2 |
| #define ACE_FSM_STATE_WAIT_CFREADY 3 |
| #define ACE_FSM_STATE_IDENTIFY_PREPARE 4 |
| #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5 |
| #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6 |
| #define ACE_FSM_STATE_REQ_PREPARE 7 |
| #define ACE_FSM_STATE_REQ_TRANSFER 8 |
| #define ACE_FSM_STATE_REQ_COMPLETE 9 |
| #define ACE_FSM_STATE_ERROR 10 |
| #define ACE_FSM_NUM_STATES 11 |
| |
| /* Set flag to exit FSM loop and reschedule tasklet */ |
| static inline void ace_fsm_yield(struct ace_device *ace) |
| { |
| dev_dbg(ace->dev, "ace_fsm_yield()\n"); |
| tasklet_schedule(&ace->fsm_tasklet); |
| ace->fsm_continue_flag = 0; |
| } |
| |
| /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */ |
| static inline void ace_fsm_yieldirq(struct ace_device *ace) |
| { |
| dev_dbg(ace->dev, "ace_fsm_yieldirq()\n"); |
| |
| if (ace->irq == NO_IRQ) |
| /* No IRQ assigned, so need to poll */ |
| tasklet_schedule(&ace->fsm_tasklet); |
| ace->fsm_continue_flag = 0; |
| } |
| |
| /* Get the next read/write request; ending requests that we don't handle */ |
| struct request *ace_get_next_request(struct request_queue * q) |
| { |
| struct request *req; |
| |
| while ((req = elv_next_request(q)) != NULL) { |
| if (blk_fs_request(req)) |
| break; |
| end_request(req, 0); |
| } |
| return req; |
| } |
| |
| static void ace_fsm_dostate(struct ace_device *ace) |
| { |
| struct request *req; |
| u32 status; |
| u16 val; |
| int count; |
| int i; |
| |
| #if defined(DEBUG) |
| dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n", |
| ace->fsm_state, ace->id_req_count); |
| #endif |
| |
| switch (ace->fsm_state) { |
| case ACE_FSM_STATE_IDLE: |
| /* See if there is anything to do */ |
| if (ace->id_req_count || ace_get_next_request(ace->queue)) { |
| ace->fsm_iter_num++; |
| ace->fsm_state = ACE_FSM_STATE_REQ_LOCK; |
| mod_timer(&ace->stall_timer, jiffies + HZ); |
| if (!timer_pending(&ace->stall_timer)) |
| add_timer(&ace->stall_timer); |
| break; |
| } |
| del_timer(&ace->stall_timer); |
| ace->fsm_continue_flag = 0; |
| break; |
| |
| case ACE_FSM_STATE_REQ_LOCK: |
| if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) { |
| /* Already have the lock, jump to next state */ |
| ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY; |
| break; |
| } |
| |
| /* Request the lock */ |
| val = ace_in(ace, ACE_CTRL); |
| ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ); |
| ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK; |
| break; |
| |
| case ACE_FSM_STATE_WAIT_LOCK: |
| if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) { |
| /* got the lock; move to next state */ |
| ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY; |
| break; |
| } |
| |
| /* wait a bit for the lock */ |
| ace_fsm_yield(ace); |
| break; |
| |
| case ACE_FSM_STATE_WAIT_CFREADY: |
| status = ace_in32(ace, ACE_STATUS); |
| if (!(status & ACE_STATUS_RDYFORCFCMD) || |
| (status & ACE_STATUS_CFBSY)) { |
| /* CF card isn't ready; it needs to be polled */ |
| ace_fsm_yield(ace); |
| break; |
| } |
| |
| /* Device is ready for command; determine what to do next */ |
| if (ace->id_req_count) |
| ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE; |
| else |
| ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE; |
| break; |
| |
| case ACE_FSM_STATE_IDENTIFY_PREPARE: |
| /* Send identify command */ |
| ace->fsm_task = ACE_TASK_IDENTIFY; |
| ace->data_ptr = &ace->cf_id; |
| ace->data_count = ACE_BUF_PER_SECTOR; |
| ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY); |
| |
| /* As per datasheet, put config controller in reset */ |
| val = ace_in(ace, ACE_CTRL); |
| ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET); |
| |
| /* irq handler takes over from this point; wait for the |
| * transfer to complete */ |
| ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER; |
| ace_fsm_yieldirq(ace); |
| break; |
| |
| case ACE_FSM_STATE_IDENTIFY_TRANSFER: |
| /* Check that the sysace is ready to receive data */ |
| status = ace_in32(ace, ACE_STATUS); |
| if (status & ACE_STATUS_CFBSY) { |
| dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n", |
| ace->fsm_task, ace->fsm_iter_num, |
| ace->data_count); |
| ace_fsm_yield(ace); |
| break; |
| } |
| if (!(status & ACE_STATUS_DATABUFRDY)) { |
| ace_fsm_yield(ace); |
| break; |
| } |
| |
| /* Transfer the next buffer */ |
| ace->reg_ops->datain(ace); |
| ace->data_count--; |
| |
| /* If there are still buffers to be transfers; jump out here */ |
| if (ace->data_count != 0) { |
| ace_fsm_yieldirq(ace); |
| break; |
| } |
| |
| /* transfer finished; kick state machine */ |
| dev_dbg(ace->dev, "identify finished\n"); |
| ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE; |
| break; |
| |
| case ACE_FSM_STATE_IDENTIFY_COMPLETE: |
| ace_fix_driveid(&ace->cf_id); |
| ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */ |
| |
| if (ace->data_result) { |
| /* Error occured, disable the disk */ |
| ace->media_change = 1; |
| set_capacity(ace->gd, 0); |
| dev_err(ace->dev, "error fetching CF id (%i)\n", |
| ace->data_result); |
| } else { |
| ace->media_change = 0; |
| |
| /* Record disk parameters */ |
| set_capacity(ace->gd, ace->cf_id.lba_capacity); |
| dev_info(ace->dev, "capacity: %i sectors\n", |
| ace->cf_id.lba_capacity); |
| } |
| |
| /* We're done, drop to IDLE state and notify waiters */ |
| ace->fsm_state = ACE_FSM_STATE_IDLE; |
| ace->id_result = ace->data_result; |
| while (ace->id_req_count) { |
| complete(&ace->id_completion); |
| ace->id_req_count--; |
| } |
| break; |
| |
| case ACE_FSM_STATE_REQ_PREPARE: |
| req = ace_get_next_request(ace->queue); |
| if (!req) { |
| ace->fsm_state = ACE_FSM_STATE_IDLE; |
| break; |
| } |
| |
| /* Okay, it's a data request, set it up for transfer */ |
| dev_dbg(ace->dev, |
| "request: sec=%lx hcnt=%lx, ccnt=%x, dir=%i\n", |
| req->sector, req->hard_nr_sectors, |
| req->current_nr_sectors, rq_data_dir(req)); |
| |
| ace->req = req; |
| ace->data_ptr = req->buffer; |
| ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR; |
| ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF); |
| |
| count = req->hard_nr_sectors; |
| if (rq_data_dir(req)) { |
| /* Kick off write request */ |
| dev_dbg(ace->dev, "write data\n"); |
| ace->fsm_task = ACE_TASK_WRITE; |
| ace_out(ace, ACE_SECCNTCMD, |
| count | ACE_SECCNTCMD_WRITE_DATA); |
| } else { |
| /* Kick off read request */ |
| dev_dbg(ace->dev, "read data\n"); |
| ace->fsm_task = ACE_TASK_READ; |
| ace_out(ace, ACE_SECCNTCMD, |
| count | ACE_SECCNTCMD_READ_DATA); |
| } |
| |
| /* As per datasheet, put config controller in reset */ |
| val = ace_in(ace, ACE_CTRL); |
| ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET); |
| |
| /* Move to the transfer state. The systemace will raise |
| * an interrupt once there is something to do |
| */ |
| ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER; |
| if (ace->fsm_task == ACE_TASK_READ) |
| ace_fsm_yieldirq(ace); /* wait for data ready */ |
| break; |
| |
| case ACE_FSM_STATE_REQ_TRANSFER: |
| /* Check that the sysace is ready to receive data */ |
| status = ace_in32(ace, ACE_STATUS); |
| if (status & ACE_STATUS_CFBSY) { |
| dev_dbg(ace->dev, |
| "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n", |
| ace->fsm_task, ace->fsm_iter_num, |
| ace->req->current_nr_sectors * 16, |
| ace->data_count, ace->in_irq); |
| ace_fsm_yield(ace); /* need to poll CFBSY bit */ |
| break; |
| } |
| if (!(status & ACE_STATUS_DATABUFRDY)) { |
| dev_dbg(ace->dev, |
| "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n", |
| ace->fsm_task, ace->fsm_iter_num, |
| ace->req->current_nr_sectors * 16, |
| ace->data_count, ace->in_irq); |
| ace_fsm_yieldirq(ace); |
| break; |
| } |
| |
| /* Transfer the next buffer */ |
| i = 16; |
| if (ace->fsm_task == ACE_TASK_WRITE) |
| ace->reg_ops->dataout(ace); |
| else |
| ace->reg_ops->datain(ace); |
| ace->data_count--; |
| |
| /* If there are still buffers to be transfers; jump out here */ |
| if (ace->data_count != 0) { |
| ace_fsm_yieldirq(ace); |
| break; |
| } |
| |
| /* bio finished; is there another one? */ |
| i = ace->req->current_nr_sectors; |
| if (end_that_request_first(ace->req, 1, i)) { |
| /* dev_dbg(ace->dev, "next block; h=%li c=%i\n", |
| * ace->req->hard_nr_sectors, |
| * ace->req->current_nr_sectors); |
| */ |
| ace->data_ptr = ace->req->buffer; |
| ace->data_count = ace->req->current_nr_sectors * 16; |
| ace_fsm_yieldirq(ace); |
| break; |
| } |
| |
| ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE; |
| break; |
| |
| case ACE_FSM_STATE_REQ_COMPLETE: |
| /* Complete the block request */ |
| blkdev_dequeue_request(ace->req); |
| end_that_request_last(ace->req, 1); |
| ace->req = NULL; |
| |
| /* Finished request; go to idle state */ |
| ace->fsm_state = ACE_FSM_STATE_IDLE; |
| break; |
| |
| default: |
| ace->fsm_state = ACE_FSM_STATE_IDLE; |
| break; |
| } |
| } |
| |
| static void ace_fsm_tasklet(unsigned long data) |
| { |
| struct ace_device *ace = (void *)data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ace->lock, flags); |
| |
| /* Loop over state machine until told to stop */ |
| ace->fsm_continue_flag = 1; |
| while (ace->fsm_continue_flag) |
| ace_fsm_dostate(ace); |
| |
| spin_unlock_irqrestore(&ace->lock, flags); |
| } |
| |
| static void ace_stall_timer(unsigned long data) |
| { |
| struct ace_device *ace = (void *)data; |
| unsigned long flags; |
| |
| dev_warn(ace->dev, |
| "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n", |
| ace->fsm_state, ace->fsm_task, ace->fsm_iter_num, |
| ace->data_count); |
| spin_lock_irqsave(&ace->lock, flags); |
| |
| /* Rearm the stall timer *before* entering FSM (which may then |
| * delete the timer) */ |
| mod_timer(&ace->stall_timer, jiffies + HZ); |
| |
| /* Loop over state machine until told to stop */ |
| ace->fsm_continue_flag = 1; |
| while (ace->fsm_continue_flag) |
| ace_fsm_dostate(ace); |
| |
| spin_unlock_irqrestore(&ace->lock, flags); |
| } |
| |
| /* --------------------------------------------------------------------- |
| * Interrupt handling routines |
| */ |
| static int ace_interrupt_checkstate(struct ace_device *ace) |
| { |
| u32 sreg = ace_in32(ace, ACE_STATUS); |
| u16 creg = ace_in(ace, ACE_CTRL); |
| |
| /* Check for error occurance */ |
| if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) && |
| (creg & ACE_CTRL_ERRORIRQ)) { |
| dev_err(ace->dev, "transfer failure\n"); |
| ace_dump_regs(ace); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t ace_interrupt(int irq, void *dev_id) |
| { |
| u16 creg; |
| struct ace_device *ace = dev_id; |
| |
| /* be safe and get the lock */ |
| spin_lock(&ace->lock); |
| ace->in_irq = 1; |
| |
| /* clear the interrupt */ |
| creg = ace_in(ace, ACE_CTRL); |
| ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ); |
| ace_out(ace, ACE_CTRL, creg); |
| |
| /* check for IO failures */ |
| if (ace_interrupt_checkstate(ace)) |
| ace->data_result = -EIO; |
| |
| if (ace->fsm_task == 0) { |
| dev_err(ace->dev, |
| "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n", |
| ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL), |
| ace_in(ace, ACE_SECCNTCMD)); |
| dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n", |
| ace->fsm_task, ace->fsm_state, ace->data_count); |
| } |
| |
| /* Loop over state machine until told to stop */ |
| ace->fsm_continue_flag = 1; |
| while (ace->fsm_continue_flag) |
| ace_fsm_dostate(ace); |
| |
| /* done with interrupt; drop the lock */ |
| ace->in_irq = 0; |
| spin_unlock(&ace->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* --------------------------------------------------------------------- |
| * Block ops |
| */ |
| static void ace_request(struct request_queue * q) |
| { |
| struct request *req; |
| struct ace_device *ace; |
| |
| req = ace_get_next_request(q); |
| |
| if (req) { |
| ace = req->rq_disk->private_data; |
| tasklet_schedule(&ace->fsm_tasklet); |
| } |
| } |
| |
| static int ace_media_changed(struct gendisk *gd) |
| { |
| struct ace_device *ace = gd->private_data; |
| dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change); |
| |
| return ace->media_change; |
| } |
| |
| static int ace_revalidate_disk(struct gendisk *gd) |
| { |
| struct ace_device *ace = gd->private_data; |
| unsigned long flags; |
| |
| dev_dbg(ace->dev, "ace_revalidate_disk()\n"); |
| |
| if (ace->media_change) { |
| dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n"); |
| |
| spin_lock_irqsave(&ace->lock, flags); |
| ace->id_req_count++; |
| spin_unlock_irqrestore(&ace->lock, flags); |
| |
| tasklet_schedule(&ace->fsm_tasklet); |
| wait_for_completion(&ace->id_completion); |
| } |
| |
| dev_dbg(ace->dev, "revalidate complete\n"); |
| return ace->id_result; |
| } |
| |
| static int ace_open(struct inode *inode, struct file *filp) |
| { |
| struct ace_device *ace = inode->i_bdev->bd_disk->private_data; |
| unsigned long flags; |
| |
| dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1); |
| |
| filp->private_data = ace; |
| spin_lock_irqsave(&ace->lock, flags); |
| ace->users++; |
| spin_unlock_irqrestore(&ace->lock, flags); |
| |
| check_disk_change(inode->i_bdev); |
| return 0; |
| } |
| |
| static int ace_release(struct inode *inode, struct file *filp) |
| { |
| struct ace_device *ace = inode->i_bdev->bd_disk->private_data; |
| unsigned long flags; |
| u16 val; |
| |
| dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1); |
| |
| spin_lock_irqsave(&ace->lock, flags); |
| ace->users--; |
| if (ace->users == 0) { |
| val = ace_in(ace, ACE_CTRL); |
| ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ); |
| } |
| spin_unlock_irqrestore(&ace->lock, flags); |
| return 0; |
| } |
| |
| static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| struct ace_device *ace = bdev->bd_disk->private_data; |
| |
| dev_dbg(ace->dev, "ace_getgeo()\n"); |
| |
| geo->heads = ace->cf_id.heads; |
| geo->sectors = ace->cf_id.sectors; |
| geo->cylinders = ace->cf_id.cyls; |
| |
| return 0; |
| } |
| |
| static struct block_device_operations ace_fops = { |
| .owner = THIS_MODULE, |
| .open = ace_open, |
| .release = ace_release, |
| .media_changed = ace_media_changed, |
| .revalidate_disk = ace_revalidate_disk, |
| .getgeo = ace_getgeo, |
| }; |
| |
| /* -------------------------------------------------------------------- |
| * SystemACE device setup/teardown code |
| */ |
| static int __devinit ace_setup(struct ace_device *ace) |
| { |
| u16 version; |
| u16 val; |
| |
| int rc; |
| |
| spin_lock_init(&ace->lock); |
| init_completion(&ace->id_completion); |
| |
| /* |
| * Map the device |
| */ |
| ace->baseaddr = ioremap(ace->physaddr, 0x80); |
| if (!ace->baseaddr) |
| goto err_ioremap; |
| |
| if (ace->irq != NO_IRQ) { |
| rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace); |
| if (rc) { |
| /* Failure - fall back to polled mode */ |
| dev_err(ace->dev, "request_irq failed\n"); |
| ace->irq = NO_IRQ; |
| } |
| } |
| |
| /* |
| * Initialize the state machine tasklet and stall timer |
| */ |
| tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace); |
| setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace); |
| |
| /* |
| * Initialize the request queue |
| */ |
| ace->queue = blk_init_queue(ace_request, &ace->lock); |
| if (ace->queue == NULL) |
| goto err_blk_initq; |
| blk_queue_hardsect_size(ace->queue, 512); |
| |
| /* |
| * Allocate and initialize GD structure |
| */ |
| ace->gd = alloc_disk(ACE_NUM_MINORS); |
| if (!ace->gd) |
| goto err_alloc_disk; |
| |
| ace->gd->major = ace_major; |
| ace->gd->first_minor = ace->id * ACE_NUM_MINORS; |
| ace->gd->fops = &ace_fops; |
| ace->gd->queue = ace->queue; |
| ace->gd->private_data = ace; |
| snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a'); |
| |
| /* set bus width */ |
| if (ace->bus_width == 1) { |
| /* 0x0101 should work regardless of endianess */ |
| ace_out_le16(ace, ACE_BUSMODE, 0x0101); |
| |
| /* read it back to determine endianess */ |
| if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001) |
| ace->reg_ops = &ace_reg_le16_ops; |
| else |
| ace->reg_ops = &ace_reg_be16_ops; |
| } else { |
| ace_out_8(ace, ACE_BUSMODE, 0x00); |
| ace->reg_ops = &ace_reg_8_ops; |
| } |
| |
| /* Make sure version register is sane */ |
| version = ace_in(ace, ACE_VERSION); |
| if ((version == 0) || (version == 0xFFFF)) |
| goto err_read; |
| |
| /* Put sysace in a sane state by clearing most control reg bits */ |
| ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE | |
| ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ); |
| |
| /* Enable interrupts */ |
| val = ace_in(ace, ACE_CTRL); |
| val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ; |
| ace_out(ace, ACE_CTRL, val); |
| |
| /* Print the identification */ |
| dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n", |
| (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff); |
| dev_dbg(ace->dev, "physaddr 0x%lx, mapped to 0x%p, irq=%i\n", |
| ace->physaddr, ace->baseaddr, ace->irq); |
| |
| ace->media_change = 1; |
| ace_revalidate_disk(ace->gd); |
| |
| /* Make the sysace device 'live' */ |
| add_disk(ace->gd); |
| |
| return 0; |
| |
| err_read: |
| put_disk(ace->gd); |
| err_alloc_disk: |
| blk_cleanup_queue(ace->queue); |
| err_blk_initq: |
| iounmap(ace->baseaddr); |
| if (ace->irq != NO_IRQ) |
| free_irq(ace->irq, ace); |
| err_ioremap: |
| printk(KERN_INFO "xsysace: error initializing device at 0x%lx\n", |
| ace->physaddr); |
| return -ENOMEM; |
| } |
| |
| static void __devexit ace_teardown(struct ace_device *ace) |
| { |
| if (ace->gd) { |
| del_gendisk(ace->gd); |
| put_disk(ace->gd); |
| } |
| |
| if (ace->queue) |
| blk_cleanup_queue(ace->queue); |
| |
| tasklet_kill(&ace->fsm_tasklet); |
| |
| if (ace->irq != NO_IRQ) |
| free_irq(ace->irq, ace); |
| |
| iounmap(ace->baseaddr); |
| } |
| |
| /* --------------------------------------------------------------------- |
| * Platform Bus Support |
| */ |
| |
| static int __devinit ace_probe(struct platform_device *dev) |
| { |
| struct ace_device *ace; |
| int i; |
| |
| dev_dbg(&dev->dev, "ace_probe(%p)\n", dev); |
| |
| /* |
| * Allocate the ace device structure |
| */ |
| ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL); |
| if (!ace) |
| goto err_alloc; |
| |
| ace->dev = &dev->dev; |
| ace->id = dev->id; |
| ace->irq = NO_IRQ; |
| |
| for (i = 0; i < dev->num_resources; i++) { |
| if (dev->resource[i].flags & IORESOURCE_MEM) |
| ace->physaddr = dev->resource[i].start; |
| if (dev->resource[i].flags & IORESOURCE_IRQ) |
| ace->irq = dev->resource[i].start; |
| } |
| |
| /* FIXME: Should get bus_width from the platform_device struct */ |
| ace->bus_width = 1; |
| |
| platform_set_drvdata(dev, ace); |
| |
| /* Call the bus-independant setup code */ |
| if (ace_setup(ace) != 0) |
| goto err_setup; |
| |
| return 0; |
| |
| err_setup: |
| platform_set_drvdata(dev, NULL); |
| kfree(ace); |
| err_alloc: |
| printk(KERN_ERR "xsysace: could not initialize device\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Platform bus remove() method |
| */ |
| static int __devexit ace_remove(struct platform_device *dev) |
| { |
| struct ace_device *ace = platform_get_drvdata(dev); |
| dev_dbg(&dev->dev, "ace_remove(%p)\n", dev); |
| |
| if (ace) { |
| ace_teardown(ace); |
| platform_set_drvdata(dev, NULL); |
| kfree(ace); |
| } |
| |
| return 0; |
| } |
| |
| static struct platform_driver ace_platform_driver = { |
| .probe = ace_probe, |
| .remove = __devexit_p(ace_remove), |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "xsysace", |
| }, |
| }; |
| |
| /* --------------------------------------------------------------------- |
| * Module init/exit routines |
| */ |
| static int __init ace_init(void) |
| { |
| int rc; |
| |
| ace_major = register_blkdev(ace_major, "xsysace"); |
| if (ace_major <= 0) { |
| rc = -ENOMEM; |
| goto err_blk; |
| } |
| |
| if ((rc = platform_driver_register(&ace_platform_driver)) != 0) |
| goto err_plat; |
| |
| pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major); |
| return 0; |
| |
| err_plat: |
| unregister_blkdev(ace_major, "xsysace"); |
| err_blk: |
| printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc); |
| return rc; |
| } |
| |
| static void __exit ace_exit(void) |
| { |
| pr_debug("Unregistering Xilinx SystemACE driver\n"); |
| platform_driver_unregister(&ace_platform_driver); |
| unregister_blkdev(ace_major, "xsysace"); |
| } |
| |
| module_init(ace_init); |
| module_exit(ace_exit); |