blob: 1beb89673b0c475869964b1017ac5f99ecba6c94 [file] [log] [blame]
/*
* Copyright (c) 2008-2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/io.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include "hw.h"
#include "hw-ops.h"
#include "rc.h"
#include "ar9003_mac.h"
static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static int __init ath9k_init(void)
{
return 0;
}
module_init(ath9k_init);
static void __exit ath9k_exit(void)
{
return;
}
module_exit(ath9k_exit);
/* Private hardware callbacks */
static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
{
ath9k_hw_private_ops(ah)->init_cal_settings(ah);
}
static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
{
ath9k_hw_private_ops(ah)->init_mode_regs(ah);
}
static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
return priv_ops->macversion_supported(ah->hw_version.macVersion);
}
static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
}
static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
{
if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
return;
ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
}
static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
{
/* You will not have this callback if using the old ANI */
if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
return;
ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
}
/********************/
/* Helper Functions */
/********************/
static void ath9k_hw_set_clockrate(struct ath_hw *ah)
{
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
struct ath_common *common = ath9k_hw_common(ah);
unsigned int clockrate;
if (!ah->curchan) /* should really check for CCK instead */
clockrate = ATH9K_CLOCK_RATE_CCK;
else if (conf->channel->band == IEEE80211_BAND_2GHZ)
clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
else
clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
if (conf_is_ht40(conf))
clockrate *= 2;
common->clockrate = clockrate;
}
static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
{
struct ath_common *common = ath9k_hw_common(ah);
return usecs * common->clockrate;
}
bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
{
int i;
BUG_ON(timeout < AH_TIME_QUANTUM);
for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
if ((REG_READ(ah, reg) & mask) == val)
return true;
udelay(AH_TIME_QUANTUM);
}
ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
timeout, reg, REG_READ(ah, reg), mask, val);
return false;
}
EXPORT_SYMBOL(ath9k_hw_wait);
u32 ath9k_hw_reverse_bits(u32 val, u32 n)
{
u32 retval;
int i;
for (i = 0, retval = 0; i < n; i++) {
retval = (retval << 1) | (val & 1);
val >>= 1;
}
return retval;
}
bool ath9k_get_channel_edges(struct ath_hw *ah,
u16 flags, u16 *low,
u16 *high)
{
struct ath9k_hw_capabilities *pCap = &ah->caps;
if (flags & CHANNEL_5GHZ) {
*low = pCap->low_5ghz_chan;
*high = pCap->high_5ghz_chan;
return true;
}
if ((flags & CHANNEL_2GHZ)) {
*low = pCap->low_2ghz_chan;
*high = pCap->high_2ghz_chan;
return true;
}
return false;
}
u16 ath9k_hw_computetxtime(struct ath_hw *ah,
u8 phy, int kbps,
u32 frameLen, u16 rateix,
bool shortPreamble)
{
u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
if (kbps == 0)
return 0;
switch (phy) {
case WLAN_RC_PHY_CCK:
phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
if (shortPreamble)
phyTime >>= 1;
numBits = frameLen << 3;
txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
break;
case WLAN_RC_PHY_OFDM:
if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_QUARTER
+ OFDM_PREAMBLE_TIME_QUARTER
+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
} else if (ah->curchan &&
IS_CHAN_HALF_RATE(ah->curchan)) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_HALF +
OFDM_PREAMBLE_TIME_HALF
+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
} else {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
+ (numSymbols * OFDM_SYMBOL_TIME);
}
break;
default:
ath_err(ath9k_hw_common(ah),
"Unknown phy %u (rate ix %u)\n", phy, rateix);
txTime = 0;
break;
}
return txTime;
}
EXPORT_SYMBOL(ath9k_hw_computetxtime);
void ath9k_hw_get_channel_centers(struct ath_hw *ah,
struct ath9k_channel *chan,
struct chan_centers *centers)
{
int8_t extoff;
if (!IS_CHAN_HT40(chan)) {
centers->ctl_center = centers->ext_center =
centers->synth_center = chan->channel;
return;
}
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS)) {
centers->synth_center =
chan->channel + HT40_CHANNEL_CENTER_SHIFT;
extoff = 1;
} else {
centers->synth_center =
chan->channel - HT40_CHANNEL_CENTER_SHIFT;
extoff = -1;
}
centers->ctl_center =
centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
/* 25 MHz spacing is supported by hw but not on upper layers */
centers->ext_center =
centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
}
/******************/
/* Chip Revisions */
/******************/
static void ath9k_hw_read_revisions(struct ath_hw *ah)
{
u32 val;
val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
if (val == 0xFF) {
val = REG_READ(ah, AR_SREV);
ah->hw_version.macVersion =
(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
} else {
if (!AR_SREV_9100(ah))
ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
ah->hw_version.macRev = val & AR_SREV_REVISION;
if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
ah->is_pciexpress = true;
}
}
/************************************/
/* HW Attach, Detach, Init Routines */
/************************************/
static void ath9k_hw_disablepcie(struct ath_hw *ah)
{
if (AR_SREV_9100(ah))
return;
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
REGWRITE_BUFFER_FLUSH(ah);
}
/* This should work for all families including legacy */
static bool ath9k_hw_chip_test(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 regAddr[2] = { AR_STA_ID0 };
u32 regHold[2];
static const u32 patternData[4] = {
0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
};
int i, j, loop_max;
if (!AR_SREV_9300_20_OR_LATER(ah)) {
loop_max = 2;
regAddr[1] = AR_PHY_BASE + (8 << 2);
} else
loop_max = 1;
for (i = 0; i < loop_max; i++) {
u32 addr = regAddr[i];
u32 wrData, rdData;
regHold[i] = REG_READ(ah, addr);
for (j = 0; j < 0x100; j++) {
wrData = (j << 16) | j;
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (rdData != wrData) {
ath_err(common,
"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
addr, wrData, rdData);
return false;
}
}
for (j = 0; j < 4; j++) {
wrData = patternData[j];
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (wrData != rdData) {
ath_err(common,
"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
addr, wrData, rdData);
return false;
}
}
REG_WRITE(ah, regAddr[i], regHold[i]);
}
udelay(100);
return true;
}
static void ath9k_hw_init_config(struct ath_hw *ah)
{
int i;
ah->config.dma_beacon_response_time = 2;
ah->config.sw_beacon_response_time = 10;
ah->config.additional_swba_backoff = 0;
ah->config.ack_6mb = 0x0;
ah->config.cwm_ignore_extcca = 0;
ah->config.pcie_powersave_enable = 0;
ah->config.pcie_clock_req = 0;
ah->config.pcie_waen = 0;
ah->config.analog_shiftreg = 1;
ah->config.enable_ani = true;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
ah->config.spurchans[i][0] = AR_NO_SPUR;
ah->config.spurchans[i][1] = AR_NO_SPUR;
}
if (ah->hw_version.devid != AR2427_DEVID_PCIE)
ah->config.ht_enable = 1;
else
ah->config.ht_enable = 0;
ah->config.rx_intr_mitigation = true;
ah->config.pcieSerDesWrite = true;
/*
* We need this for PCI devices only (Cardbus, PCI, miniPCI)
* _and_ if on non-uniprocessor systems (Multiprocessor/HT).
* This means we use it for all AR5416 devices, and the few
* minor PCI AR9280 devices out there.
*
* Serialization is required because these devices do not handle
* well the case of two concurrent reads/writes due to the latency
* involved. During one read/write another read/write can be issued
* on another CPU while the previous read/write may still be working
* on our hardware, if we hit this case the hardware poops in a loop.
* We prevent this by serializing reads and writes.
*
* This issue is not present on PCI-Express devices or pre-AR5416
* devices (legacy, 802.11abg).
*/
if (num_possible_cpus() > 1)
ah->config.serialize_regmode = SER_REG_MODE_AUTO;
}
static void ath9k_hw_init_defaults(struct ath_hw *ah)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
regulatory->country_code = CTRY_DEFAULT;
regulatory->power_limit = MAX_RATE_POWER;
regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
ah->hw_version.magic = AR5416_MAGIC;
ah->hw_version.subvendorid = 0;
ah->atim_window = 0;
ah->sta_id1_defaults =
AR_STA_ID1_CRPT_MIC_ENABLE |
AR_STA_ID1_MCAST_KSRCH;
ah->beacon_interval = 100;
ah->enable_32kHz_clock = DONT_USE_32KHZ;
ah->slottime = (u32) -1;
ah->globaltxtimeout = (u32) -1;
ah->power_mode = ATH9K_PM_UNDEFINED;
}
static int ath9k_hw_init_macaddr(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 sum;
int i;
u16 eeval;
static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
sum = 0;
for (i = 0; i < 3; i++) {
eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
sum += eeval;
common->macaddr[2 * i] = eeval >> 8;
common->macaddr[2 * i + 1] = eeval & 0xff;
}
if (sum == 0 || sum == 0xffff * 3)
return -EADDRNOTAVAIL;
return 0;
}
static int ath9k_hw_post_init(struct ath_hw *ah)
{
int ecode;
if (!AR_SREV_9271(ah)) {
if (!ath9k_hw_chip_test(ah))
return -ENODEV;
}
if (!AR_SREV_9300_20_OR_LATER(ah)) {
ecode = ar9002_hw_rf_claim(ah);
if (ecode != 0)
return ecode;
}
ecode = ath9k_hw_eeprom_init(ah);
if (ecode != 0)
return ecode;
ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
"Eeprom VER: %d, REV: %d\n",
ah->eep_ops->get_eeprom_ver(ah),
ah->eep_ops->get_eeprom_rev(ah));
ecode = ath9k_hw_rf_alloc_ext_banks(ah);
if (ecode) {
ath_err(ath9k_hw_common(ah),
"Failed allocating banks for external radio\n");
ath9k_hw_rf_free_ext_banks(ah);
return ecode;
}
if (!AR_SREV_9100(ah)) {
ath9k_hw_ani_setup(ah);
ath9k_hw_ani_init(ah);
}
return 0;
}
static void ath9k_hw_attach_ops(struct ath_hw *ah)
{
if (AR_SREV_9300_20_OR_LATER(ah))
ar9003_hw_attach_ops(ah);
else
ar9002_hw_attach_ops(ah);
}
/* Called for all hardware families */
static int __ath9k_hw_init(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
int r = 0;
if (ah->hw_version.devid == AR5416_AR9100_DEVID)
ah->hw_version.macVersion = AR_SREV_VERSION_9100;
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
ath_err(common, "Couldn't reset chip\n");
return -EIO;
}
ath9k_hw_init_defaults(ah);
ath9k_hw_init_config(ah);
ath9k_hw_attach_ops(ah);
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
ath_err(common, "Couldn't wakeup chip\n");
return -EIO;
}
if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
!ah->is_pciexpress)) {
ah->config.serialize_regmode =
SER_REG_MODE_ON;
} else {
ah->config.serialize_regmode =
SER_REG_MODE_OFF;
}
}
ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
ah->config.serialize_regmode);
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
else
ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
if (!ath9k_hw_macversion_supported(ah)) {
ath_err(common,
"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
ah->hw_version.macVersion, ah->hw_version.macRev);
return -EOPNOTSUPP;
}
if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
ah->is_pciexpress = false;
ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
ath9k_hw_init_cal_settings(ah);
ah->ani_function = ATH9K_ANI_ALL;
if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
if (!AR_SREV_9300_20_OR_LATER(ah))
ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
ath9k_hw_init_mode_regs(ah);
/*
* Read back AR_WA into a permanent copy and set bits 14 and 17.
* We need to do this to avoid RMW of this register. We cannot
* read the reg when chip is asleep.
*/
ah->WARegVal = REG_READ(ah, AR_WA);
ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
AR_WA_ASPM_TIMER_BASED_DISABLE);
if (ah->is_pciexpress)
ath9k_hw_configpcipowersave(ah, 0, 0);
else
ath9k_hw_disablepcie(ah);
if (!AR_SREV_9300_20_OR_LATER(ah))
ar9002_hw_cck_chan14_spread(ah);
r = ath9k_hw_post_init(ah);
if (r)
return r;
ath9k_hw_init_mode_gain_regs(ah);
r = ath9k_hw_fill_cap_info(ah);
if (r)
return r;
r = ath9k_hw_init_macaddr(ah);
if (r) {
ath_err(common, "Failed to initialize MAC address\n");
return r;
}
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
else
ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
ah->bb_watchdog_timeout_ms = 25;
common->state = ATH_HW_INITIALIZED;
return 0;
}
int ath9k_hw_init(struct ath_hw *ah)
{
int ret;
struct ath_common *common = ath9k_hw_common(ah);
/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
switch (ah->hw_version.devid) {
case AR5416_DEVID_PCI:
case AR5416_DEVID_PCIE:
case AR5416_AR9100_DEVID:
case AR9160_DEVID_PCI:
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
case AR9285_DEVID_PCIE:
case AR9287_DEVID_PCI:
case AR9287_DEVID_PCIE:
case AR2427_DEVID_PCIE:
case AR9300_DEVID_PCIE:
case AR9300_DEVID_AR9485_PCIE:
break;
default:
if (common->bus_ops->ath_bus_type == ATH_USB)
break;
ath_err(common, "Hardware device ID 0x%04x not supported\n",
ah->hw_version.devid);
return -EOPNOTSUPP;
}
ret = __ath9k_hw_init(ah);
if (ret) {
ath_err(common,
"Unable to initialize hardware; initialization status: %d\n",
ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL(ath9k_hw_init);
static void ath9k_hw_init_qos(struct ath_hw *ah)
{
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
REG_WRITE(ah, AR_QOS_NO_ACK,
SM(2, AR_QOS_NO_ACK_TWO_BIT) |
SM(5, AR_QOS_NO_ACK_BIT_OFF) |
SM(0, AR_QOS_NO_ACK_BYTE_OFF));
REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
REGWRITE_BUFFER_FLUSH(ah);
}
static void ath9k_hw_init_pll(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 pll;
if (AR_SREV_9485(ah))
REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
pll = ath9k_hw_compute_pll_control(ah, chan);
REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
/* Switch the core clock for ar9271 to 117Mhz */
if (AR_SREV_9271(ah)) {
udelay(500);
REG_WRITE(ah, 0x50040, 0x304);
}
udelay(RTC_PLL_SETTLE_DELAY);
REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
}
static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
enum nl80211_iftype opmode)
{
u32 imr_reg = AR_IMR_TXERR |
AR_IMR_TXURN |
AR_IMR_RXERR |
AR_IMR_RXORN |
AR_IMR_BCNMISC;
if (AR_SREV_9300_20_OR_LATER(ah)) {
imr_reg |= AR_IMR_RXOK_HP;
if (ah->config.rx_intr_mitigation)
imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
else
imr_reg |= AR_IMR_RXOK_LP;
} else {
if (ah->config.rx_intr_mitigation)
imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
else
imr_reg |= AR_IMR_RXOK;
}
if (ah->config.tx_intr_mitigation)
imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
else
imr_reg |= AR_IMR_TXOK;
if (opmode == NL80211_IFTYPE_AP)
imr_reg |= AR_IMR_MIB;
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_IMR, imr_reg);
ah->imrs2_reg |= AR_IMR_S2_GTT;
REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
}
REGWRITE_BUFFER_FLUSH(ah);
if (AR_SREV_9300_20_OR_LATER(ah)) {
REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
}
}
static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
{
u32 val = ath9k_hw_mac_to_clks(ah, us);
val = min(val, (u32) 0xFFFF);
REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
}
static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
{
u32 val = ath9k_hw_mac_to_clks(ah, us);
val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
}
static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
{
u32 val = ath9k_hw_mac_to_clks(ah, us);
val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
}
static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
{
if (tu > 0xFFFF) {
ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
"bad global tx timeout %u\n", tu);
ah->globaltxtimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ah->globaltxtimeout = tu;
return true;
}
}
void ath9k_hw_init_global_settings(struct ath_hw *ah)
{
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
int acktimeout;
int slottime;
int sifstime;
ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
ah->misc_mode);
if (ah->misc_mode != 0)
REG_WRITE(ah, AR_PCU_MISC,
REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
sifstime = 16;
else
sifstime = 10;
/* As defined by IEEE 802.11-2007 17.3.8.6 */
slottime = ah->slottime + 3 * ah->coverage_class;
acktimeout = slottime + sifstime;
/*
* Workaround for early ACK timeouts, add an offset to match the
* initval's 64us ack timeout value.
* This was initially only meant to work around an issue with delayed
* BA frames in some implementations, but it has been found to fix ACK
* timeout issues in other cases as well.
*/
if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
acktimeout += 64 - sifstime - ah->slottime;
ath9k_hw_setslottime(ah, slottime);
ath9k_hw_set_ack_timeout(ah, acktimeout);
ath9k_hw_set_cts_timeout(ah, acktimeout);
if (ah->globaltxtimeout != (u32) -1)
ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
}
EXPORT_SYMBOL(ath9k_hw_init_global_settings);
void ath9k_hw_deinit(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
if (common->state < ATH_HW_INITIALIZED)
goto free_hw;
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
free_hw:
ath9k_hw_rf_free_ext_banks(ah);
}
EXPORT_SYMBOL(ath9k_hw_deinit);
/*******/
/* INI */
/*******/
u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
{
u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
if (IS_CHAN_B(chan))
ctl |= CTL_11B;
else if (IS_CHAN_G(chan))
ctl |= CTL_11G;
else
ctl |= CTL_11A;
return ctl;
}
/****************************************/
/* Reset and Channel Switching Routines */
/****************************************/
static inline void ath9k_hw_set_dma(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 regval;
ENABLE_REGWRITE_BUFFER(ah);
/*
* set AHB_MODE not to do cacheline prefetches
*/
if (!AR_SREV_9300_20_OR_LATER(ah)) {
regval = REG_READ(ah, AR_AHB_MODE);
REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
}
/*
* let mac dma reads be in 128 byte chunks
*/
regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
REGWRITE_BUFFER_FLUSH(ah);
/*
* Restore TX Trigger Level to its pre-reset value.
* The initial value depends on whether aggregation is enabled, and is
* adjusted whenever underruns are detected.
*/
if (!AR_SREV_9300_20_OR_LATER(ah))
REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
ENABLE_REGWRITE_BUFFER(ah);
/*
* let mac dma writes be in 128 byte chunks
*/
regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
/*
* Setup receive FIFO threshold to hold off TX activities
*/
REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
if (AR_SREV_9300_20_OR_LATER(ah)) {
REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
ah->caps.rx_status_len);
}
/*
* reduce the number of usable entries in PCU TXBUF to avoid
* wrap around issues.
*/
if (AR_SREV_9285(ah)) {
/* For AR9285 the number of Fifos are reduced to half.
* So set the usable tx buf size also to half to
* avoid data/delimiter underruns
*/
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
} else if (!AR_SREV_9271(ah)) {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
REGWRITE_BUFFER_FLUSH(ah);
if (AR_SREV_9300_20_OR_LATER(ah))
ath9k_hw_reset_txstatus_ring(ah);
}
static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
{
u32 val;
val = REG_READ(ah, AR_STA_ID1);
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
switch (opmode) {
case NL80211_IFTYPE_AP:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
| AR_STA_ID1_KSRCH_MODE);
REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
| AR_STA_ID1_KSRCH_MODE);
REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case NL80211_IFTYPE_STATION:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
break;
default:
if (ah->is_monitoring)
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
break;
}
}
void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
u32 *coef_mantissa, u32 *coef_exponent)
{
u32 coef_exp, coef_man;
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
}
static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
{
u32 rst_flags;
u32 tmpReg;
if (AR_SREV_9100(ah)) {
u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
val &= ~AR_RTC_DERIVED_CLK_PERIOD;
val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
}
ENABLE_REGWRITE_BUFFER(ah);
if (AR_SREV_9300_20_OR_LATER(ah)) {
REG_WRITE(ah, AR_WA, ah->WARegVal);
udelay(10);
}
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
if (AR_SREV_9100(ah)) {
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
} else {
tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg &
(AR_INTR_SYNC_LOCAL_TIMEOUT |
AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
u32 val;
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
val = AR_RC_HOSTIF;
if (!AR_SREV_9300_20_OR_LATER(ah))
val |= AR_RC_AHB;
REG_WRITE(ah, AR_RC, val);
} else if (!AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_RC, AR_RC_AHB);
rst_flags = AR_RTC_RC_MAC_WARM;
if (type == ATH9K_RESET_COLD)
rst_flags |= AR_RTC_RC_MAC_COLD;
}
REG_WRITE(ah, AR_RTC_RC, rst_flags);
REGWRITE_BUFFER_FLUSH(ah);
udelay(50);
REG_WRITE(ah, AR_RTC_RC, 0);
if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
"RTC stuck in MAC reset\n");
return false;
}
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, 0);
if (AR_SREV_9100(ah))
udelay(50);
return true;
}
static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
{
ENABLE_REGWRITE_BUFFER(ah);
if (AR_SREV_9300_20_OR_LATER(ah)) {
REG_WRITE(ah, AR_WA, ah->WARegVal);
udelay(10);
}
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_RC, AR_RC_AHB);
REG_WRITE(ah, AR_RTC_RESET, 0);
udelay(2);
REGWRITE_BUFFER_FLUSH(ah);
if (!AR_SREV_9300_20_OR_LATER(ah))
udelay(2);
if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_RC, 0);
REG_WRITE(ah, AR_RTC_RESET, 1);
if (!ath9k_hw_wait(ah,
AR_RTC_STATUS,
AR_RTC_STATUS_M,
AR_RTC_STATUS_ON,
AH_WAIT_TIMEOUT)) {
ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
"RTC not waking up\n");
return false;
}
ath9k_hw_read_revisions(ah);
return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
}
static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
{
if (AR_SREV_9300_20_OR_LATER(ah)) {
REG_WRITE(ah, AR_WA, ah->WARegVal);
udelay(10);
}
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
switch (type) {
case ATH9K_RESET_POWER_ON:
return ath9k_hw_set_reset_power_on(ah);
case ATH9K_RESET_WARM:
case ATH9K_RESET_COLD:
return ath9k_hw_set_reset(ah, type);
default:
return false;
}
}
static bool ath9k_hw_chip_reset(struct ath_hw *ah,
struct ath9k_channel *chan)
{
if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
return false;
} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
return false;
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
ah->chip_fullsleep = false;
ath9k_hw_init_pll(ah, chan);
ath9k_hw_set_rfmode(ah, chan);
return true;
}
static bool ath9k_hw_channel_change(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_channel *channel = chan->chan;
u32 qnum;
int r;
for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
if (ath9k_hw_numtxpending(ah, qnum)) {
ath_dbg(common, ATH_DBG_QUEUE,
"Transmit frames pending on queue %d\n", qnum);
return false;
}
}
if (!ath9k_hw_rfbus_req(ah)) {
ath_err(common, "Could not kill baseband RX\n");
return false;
}
ath9k_hw_set_channel_regs(ah, chan);
r = ath9k_hw_rf_set_freq(ah, chan);
if (r) {
ath_err(common, "Failed to set channel\n");
return false;
}
ath9k_hw_set_clockrate(ah);
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) regulatory->power_limit), false);
ath9k_hw_rfbus_done(ah);
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
ath9k_hw_spur_mitigate_freq(ah, chan);
return true;
}
bool ath9k_hw_check_alive(struct ath_hw *ah)
{
int count = 50;
u32 reg;
if (AR_SREV_9285_12_OR_LATER(ah))
return true;
do {
reg = REG_READ(ah, AR_OBS_BUS_1);
if ((reg & 0x7E7FFFEF) == 0x00702400)
continue;
switch (reg & 0x7E000B00) {
case 0x1E000000:
case 0x52000B00:
case 0x18000B00:
continue;
default:
return true;
}
} while (count-- > 0);
return false;
}
EXPORT_SYMBOL(ath9k_hw_check_alive);
int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
struct ath9k_hw_cal_data *caldata, bool bChannelChange)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 saveLedState;
struct ath9k_channel *curchan = ah->curchan;
u32 saveDefAntenna;
u32 macStaId1;
u64 tsf = 0;
int i, r;
ah->txchainmask = common->tx_chainmask;
ah->rxchainmask = common->rx_chainmask;
if (!ah->chip_fullsleep) {
ath9k_hw_abortpcurecv(ah);
if (!ath9k_hw_stopdmarecv(ah)) {
ath_dbg(common, ATH_DBG_XMIT,
"Failed to stop receive dma\n");
bChannelChange = false;
}
}
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return -EIO;
if (curchan && !ah->chip_fullsleep)
ath9k_hw_getnf(ah, curchan);
ah->caldata = caldata;
if (caldata &&
(chan->channel != caldata->channel ||
(chan->channelFlags & ~CHANNEL_CW_INT) !=
(caldata->channelFlags & ~CHANNEL_CW_INT))) {
/* Operating channel changed, reset channel calibration data */
memset(caldata, 0, sizeof(*caldata));
ath9k_init_nfcal_hist_buffer(ah, chan);
}
if (bChannelChange &&
(ah->chip_fullsleep != true) &&
(ah->curchan != NULL) &&
(chan->channel != ah->curchan->channel) &&
((chan->channelFlags & CHANNEL_ALL) ==
(ah->curchan->channelFlags & CHANNEL_ALL)) &&
(!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
if (ath9k_hw_channel_change(ah, chan)) {
ath9k_hw_loadnf(ah, ah->curchan);
ath9k_hw_start_nfcal(ah, true);
if (AR_SREV_9271(ah))
ar9002_hw_load_ani_reg(ah, chan);
return 0;
}
}
saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0)
saveDefAntenna = 1;
macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
/* For chips on which RTC reset is done, save TSF before it gets cleared */
if (AR_SREV_9100(ah) ||
(AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
tsf = ath9k_hw_gettsf64(ah);
saveLedState = REG_READ(ah, AR_CFG_LED) &
(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
ath9k_hw_mark_phy_inactive(ah);
/* Only required on the first reset */
if (AR_SREV_9271(ah) && ah->htc_reset_init) {
REG_WRITE(ah,
AR9271_RESET_POWER_DOWN_CONTROL,
AR9271_RADIO_RF_RST);
udelay(50);
}
if (!ath9k_hw_chip_reset(ah, chan)) {
ath_err(common, "Chip reset failed\n");
return -EINVAL;
}
/* Only required on the first reset */
if (AR_SREV_9271(ah) && ah->htc_reset_init) {
ah->htc_reset_init = false;
REG_WRITE(ah,
AR9271_RESET_POWER_DOWN_CONTROL,
AR9271_GATE_MAC_CTL);
udelay(50);
}
/* Restore TSF */
if (tsf)
ath9k_hw_settsf64(ah, tsf);
if (AR_SREV_9280_20_OR_LATER(ah))
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
if (!AR_SREV_9300_20_OR_LATER(ah))
ar9002_hw_enable_async_fifo(ah);
r = ath9k_hw_process_ini(ah, chan);
if (r)
return r;
/*
* Some AR91xx SoC devices frequently fail to accept TSF writes
* right after the chip reset. When that happens, write a new
* value after the initvals have been applied, with an offset
* based on measured time difference
*/
if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
tsf += 1500;
ath9k_hw_settsf64(ah, tsf);
}
/* Setup MFP options for CCMP */
if (AR_SREV_9280_20_OR_LATER(ah)) {
/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
* frames when constructing CCMP AAD. */
REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
0xc7ff);
ah->sw_mgmt_crypto = false;
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
/* Disable hardware crypto for management frames */
REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
ah->sw_mgmt_crypto = true;
} else
ah->sw_mgmt_crypto = true;
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
ath9k_hw_spur_mitigate_freq(ah, chan);
ah->eep_ops->set_board_values(ah, chan);
ath9k_hw_set_operating_mode(ah, ah->opmode);
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| (ah->config.
ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
| ah->sta_id1_defaults);
ath_hw_setbssidmask(common);
REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
ath9k_hw_write_associd(ah);
REG_WRITE(ah, AR_ISR, ~0);
REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
REGWRITE_BUFFER_FLUSH(ah);
r = ath9k_hw_rf_set_freq(ah, chan);
if (r)
return r;
ath9k_hw_set_clockrate(ah);
ENABLE_REGWRITE_BUFFER(ah);
for (i = 0; i < AR_NUM_DCU; i++)
REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
REGWRITE_BUFFER_FLUSH(ah);
ah->intr_txqs = 0;
for (i = 0; i < ah->caps.total_queues; i++)
ath9k_hw_resettxqueue(ah, i);
ath9k_hw_init_interrupt_masks(ah, ah->opmode);
ath9k_hw_ani_cache_ini_regs(ah);
ath9k_hw_init_qos(ah);
if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
ath9k_enable_rfkill(ah);
ath9k_hw_init_global_settings(ah);
if (!AR_SREV_9300_20_OR_LATER(ah)) {
ar9002_hw_update_async_fifo(ah);
ar9002_hw_enable_wep_aggregation(ah);
}
REG_WRITE(ah, AR_STA_ID1,
REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ath9k_hw_set_dma(ah);
REG_WRITE(ah, AR_OBS, 8);
if (ah->config.rx_intr_mitigation) {
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
}
if (ah->config.tx_intr_mitigation) {
REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
}
ath9k_hw_init_bb(ah, chan);
if (!ath9k_hw_init_cal(ah, chan))
return -EIO;
ENABLE_REGWRITE_BUFFER(ah);
ath9k_hw_restore_chainmask(ah);
REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
REGWRITE_BUFFER_FLUSH(ah);
/*
* For big endian systems turn on swapping for descriptors
*/
if (AR_SREV_9100(ah)) {
u32 mask;
mask = REG_READ(ah, AR_CFG);
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
ath_dbg(common, ATH_DBG_RESET,
"CFG Byte Swap Set 0x%x\n", mask);
} else {
mask =
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
REG_WRITE(ah, AR_CFG, mask);
ath_dbg(common, ATH_DBG_RESET,
"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
}
} else {
if (common->bus_ops->ath_bus_type == ATH_USB) {
/* Configure AR9271 target WLAN */
if (AR_SREV_9271(ah))
REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
else
REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
}
#ifdef __BIG_ENDIAN
else
REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
#endif
}
if (ah->btcoex_hw.enabled)
ath9k_hw_btcoex_enable(ah);
if (AR_SREV_9300_20_OR_LATER(ah))
ar9003_hw_bb_watchdog_config(ah);
return 0;
}
EXPORT_SYMBOL(ath9k_hw_reset);
/******************************/
/* Power Management (Chipset) */
/******************************/
/*
* Notify Power Mgt is disabled in self-generated frames.
* If requested, force chip to sleep.
*/
static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
/*
* Clear the RTC force wake bit to allow the
* mac to go to sleep.
*/
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
/* Shutdown chip. Active low */
if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
REG_CLR_BIT(ah, (AR_RTC_RESET),
AR_RTC_RESET_EN);
}
/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
if (AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_WA,
ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
}
/*
* Notify Power Management is enabled in self-generating
* frames. If request, set power mode of chip to
* auto/normal. Duration in units of 128us (1/8 TU).
*/
static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
struct ath9k_hw_capabilities *pCap = &ah->caps;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
/* Set WakeOnInterrupt bit; clear ForceWake bit */
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_ON_INT);
} else {
/*
* Clear the RTC force wake bit to allow the
* mac to go to sleep.
*/
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
}
/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
if (AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
}
static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
{
u32 val;
int i;
/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
if (AR_SREV_9300_20_OR_LATER(ah)) {
REG_WRITE(ah, AR_WA, ah->WARegVal);
udelay(10);
}
if (setChip) {
if ((REG_READ(ah, AR_RTC_STATUS) &
AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
if (ath9k_hw_set_reset_reg(ah,
ATH9K_RESET_POWER_ON) != true) {
return false;
}
if (!AR_SREV_9300_20_OR_LATER(ah))
ath9k_hw_init_pll(ah, NULL);
}
if (AR_SREV_9100(ah))
REG_SET_BIT(ah, AR_RTC_RESET,
AR_RTC_RESET_EN);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
udelay(50);
for (i = POWER_UP_TIME / 50; i > 0; i--) {
val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
if (val == AR_RTC_STATUS_ON)
break;
udelay(50);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
if (i == 0) {
ath_err(ath9k_hw_common(ah),
"Failed to wakeup in %uus\n",
POWER_UP_TIME / 20);
return false;
}
}
REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
return true;
}
bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
{
struct ath_common *common = ath9k_hw_common(ah);
int status = true, setChip = true;
static const char *modes[] = {
"AWAKE",
"FULL-SLEEP",
"NETWORK SLEEP",
"UNDEFINED"
};
if (ah->power_mode == mode)
return status;
ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
modes[ah->power_mode], modes[mode]);
switch (mode) {
case ATH9K_PM_AWAKE:
status = ath9k_hw_set_power_awake(ah, setChip);
break;
case ATH9K_PM_FULL_SLEEP:
ath9k_set_power_sleep(ah, setChip);
ah->chip_fullsleep = true;
break;
case ATH9K_PM_NETWORK_SLEEP:
ath9k_set_power_network_sleep(ah, setChip);
break;
default:
ath_err(common, "Unknown power mode %u\n", mode);
return false;
}
ah->power_mode = mode;
/*
* XXX: If this warning never comes up after a while then
* simply keep the ATH_DBG_WARN_ON_ONCE() but make
* ath9k_hw_setpower() return type void.
*/
ATH_DBG_WARN_ON_ONCE(!status);
return status;
}
EXPORT_SYMBOL(ath9k_hw_setpower);
/*******************/
/* Beacon Handling */
/*******************/
void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
{
int flags = 0;
ah->beacon_interval = beacon_period;
ENABLE_REGWRITE_BUFFER(ah);
switch (ah->opmode) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
REG_SET_BIT(ah, AR_TXCFG,
AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
REG_WRITE(ah, AR_NEXT_NDP_TIMER,
TU_TO_USEC(next_beacon +
(ah->atim_window ? ah->
atim_window : 1)));
flags |= AR_NDP_TIMER_EN;
case NL80211_IFTYPE_AP:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
TU_TO_USEC(next_beacon -
ah->config.
dma_beacon_response_time));
REG_WRITE(ah, AR_NEXT_SWBA,
TU_TO_USEC(next_beacon -
ah->config.
sw_beacon_response_time));
flags |=
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
break;
default:
ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
"%s: unsupported opmode: %d\n",
__func__, ah->opmode);
return;
break;
}
REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
REGWRITE_BUFFER_FLUSH(ah);
beacon_period &= ~ATH9K_BEACON_ENA;
if (beacon_period & ATH9K_BEACON_RESET_TSF) {
ath9k_hw_reset_tsf(ah);
}
REG_SET_BIT(ah, AR_TIMER_MODE, flags);
}
EXPORT_SYMBOL(ath9k_hw_beaconinit);
void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
const struct ath9k_beacon_state *bs)
{
u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
struct ath9k_hw_capabilities *pCap = &ah->caps;
struct ath_common *common = ath9k_hw_common(ah);
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
REG_WRITE(ah, AR_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REGWRITE_BUFFER_FLUSH(ah);
REG_RMW_FIELD(ah, AR_RSSI_THR,
AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
if (bs->bs_sleepduration > beaconintval)
beaconintval = bs->bs_sleepduration;
dtimperiod = bs->bs_dtimperiod;
if (bs->bs_sleepduration > dtimperiod)
dtimperiod = bs->bs_sleepduration;
if (beaconintval == dtimperiod)
nextTbtt = bs->bs_nextdtim;
else
nextTbtt = bs->bs_nexttbtt;
ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_NEXT_DTIM,
TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
REG_WRITE(ah, AR_SLEEP1,
SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
| AR_SLEEP1_ASSUME_DTIM);
if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
beacontimeout = (BEACON_TIMEOUT_VAL << 3);
else
beacontimeout = MIN_BEACON_TIMEOUT_VAL;
REG_WRITE(ah, AR_SLEEP2,
SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
REGWRITE_BUFFER_FLUSH(ah);
REG_SET_BIT(ah, AR_TIMER_MODE,
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
AR_DTIM_TIMER_EN);
/* TSF Out of Range Threshold */
REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
}
EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
/*******************/
/* HW Capabilities */
/*******************/
int ath9k_hw_fill_cap_info(struct ath_hw *ah)
{
struct ath9k_hw_capabilities *pCap = &ah->caps;
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath_common *common = ath9k_hw_common(ah);
struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
u16 capField = 0, eeval;
u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
regulatory->current_rd = eeval;
eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
if (AR_SREV_9285_12_OR_LATER(ah))
eeval |= AR9285_RDEXT_DEFAULT;
regulatory->current_rd_ext = eeval;
capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
if (ah->opmode != NL80211_IFTYPE_AP &&
ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
if (regulatory->current_rd == 0x64 ||
regulatory->current_rd == 0x65)
regulatory->current_rd += 5;
else if (regulatory->current_rd == 0x41)
regulatory->current_rd = 0x43;
ath_dbg(common, ATH_DBG_REGULATORY,
"regdomain mapped to 0x%x\n", regulatory->current_rd);
}
eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
ath_err(common,
"no band has been marked as supported in EEPROM\n");
return -EINVAL;
}
if (eeval & AR5416_OPFLAGS_11A)
pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
if (eeval & AR5416_OPFLAGS_11G)
pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
/*
* For AR9271 we will temporarilly uses the rx chainmax as read from
* the EEPROM.
*/
if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
!(eeval & AR5416_OPFLAGS_11A) &&
!(AR_SREV_9271(ah)))
/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
else
/* Use rx_chainmask from EEPROM. */
pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
/* enable key search for every frame in an aggregate */
if (AR_SREV_9300_20_OR_LATER(ah))
ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
pCap->low_2ghz_chan = 2312;
pCap->high_2ghz_chan = 2732;
pCap->low_5ghz_chan = 4920;
pCap->high_5ghz_chan = 6100;
common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
if (ah->config.ht_enable)
pCap->hw_caps |= ATH9K_HW_CAP_HT;
else
pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
if (capField & AR_EEPROM_EEPCAP_MAXQCU)
pCap->total_queues =
MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
else
pCap->total_queues = ATH9K_NUM_TX_QUEUES;
if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
pCap->keycache_size =
1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
else
pCap->keycache_size = AR_KEYTABLE_SIZE;
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
else
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
if (AR_SREV_9271(ah))
pCap->num_gpio_pins = AR9271_NUM_GPIO;
else if (AR_DEVID_7010(ah))
pCap->num_gpio_pins = AR7010_NUM_GPIO;
else if (AR_SREV_9285_12_OR_LATER(ah))
pCap->num_gpio_pins = AR9285_NUM_GPIO;
else if (AR_SREV_9280_20_OR_LATER(ah))
pCap->num_gpio_pins = AR928X_NUM_GPIO;
else
pCap->num_gpio_pins = AR_NUM_GPIO;
if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_CST;
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
} else {
pCap->rts_aggr_limit = (8 * 1024);
}
pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
ah->rfkill_gpio =
MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
ah->rfkill_polarity =
MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
}
#endif
if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
else
pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
else
pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
AR_EEPROM_EEREGCAP_EN_KK_U2 |
AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
} else {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
}
/* Advertise midband for AR5416 with FCC midband set in eeprom */
if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
AR_SREV_5416(ah))
pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
pCap->num_antcfg_5ghz =
ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
pCap->num_antcfg_2ghz =
ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
if (AR_SREV_9285(ah)) {
btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
} else {
btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
}
} else {
btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
}
if (AR_SREV_9300_20_OR_LATER(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
if (!AR_SREV_9485(ah))
pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
pCap->rx_status_len = sizeof(struct ar9003_rxs);
pCap->tx_desc_len = sizeof(struct ar9003_txc);
pCap->txs_len = sizeof(struct ar9003_txs);
if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
} else {
pCap->tx_desc_len = sizeof(struct ath_desc);
if (AR_SREV_9280_20(ah) &&
((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
AR5416_EEP_MINOR_VER_16) ||
ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
}
if (AR_SREV_9300_20_OR_LATER(ah))
pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
if (AR_SREV_9300_20_OR_LATER(ah))
ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
if (AR_SREV_9285(ah))
if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
ant_div_ctl1 =
ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
}
if (AR_SREV_9300_20_OR_LATER(ah)) {
if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
pCap->hw_caps |= ATH9K_HW_CAP_APM;
}
if (AR_SREV_9485_10(ah)) {
pCap->pcie_lcr_extsync_en = true;
pCap->pcie_lcr_offset = 0x80;
}
tx_chainmask = pCap->tx_chainmask;
rx_chainmask = pCap->rx_chainmask;
while (tx_chainmask || rx_chainmask) {
if (tx_chainmask & BIT(0))
pCap->max_txchains++;
if (rx_chainmask & BIT(0))
pCap->max_rxchains++;
tx_chainmask >>= 1;
rx_chainmask >>= 1;
}
return 0;
}
/****************************/
/* GPIO / RFKILL / Antennae */
/****************************/
static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
u32 gpio, u32 type)
{
int addr;
u32 gpio_shift, tmp;
if (gpio > 11)
addr = AR_GPIO_OUTPUT_MUX3;
else if (gpio > 5)
addr = AR_GPIO_OUTPUT_MUX2;
else
addr = AR_GPIO_OUTPUT_MUX1;
gpio_shift = (gpio % 6) * 5;
if (AR_SREV_9280_20_OR_LATER(ah)
|| (addr != AR_GPIO_OUTPUT_MUX1)) {
REG_RMW(ah, addr, (type << gpio_shift),
(0x1f << gpio_shift));
} else {
tmp = REG_READ(ah, addr);
tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
tmp &= ~(0x1f << gpio_shift);
tmp |= (type << gpio_shift);
REG_WRITE(ah, addr, tmp);
}
}
void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
{
u32 gpio_shift;
BUG_ON(gpio >= ah->caps.num_gpio_pins);
if (AR_DEVID_7010(ah)) {
gpio_shift = gpio;
REG_RMW(ah, AR7010_GPIO_OE,
(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
(AR7010_GPIO_OE_MASK << gpio_shift));
return;
}
gpio_shift = gpio << 1;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
{
#define MS_REG_READ(x, y) \
(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
if (gpio >= ah->caps.num_gpio_pins)
return 0xffffffff;
if (AR_DEVID_7010(ah)) {
u32 val;
val = REG_READ(ah, AR7010_GPIO_IN);
return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
} else if (AR_SREV_9300_20_OR_LATER(ah))
return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
AR_GPIO_BIT(gpio)) != 0;
else if (AR_SREV_9271(ah))
return MS_REG_READ(AR9271, gpio) != 0;
else if (AR_SREV_9287_11_OR_LATER(ah))
return MS_REG_READ(AR9287, gpio) != 0;
else if (AR_SREV_9285_12_OR_LATER(ah))
return MS_REG_READ(AR9285, gpio) != 0;
else if (AR_SREV_9280_20_OR_LATER(ah))
return MS_REG_READ(AR928X, gpio) != 0;
else
return MS_REG_READ(AR, gpio) != 0;
}
EXPORT_SYMBOL(ath9k_hw_gpio_get);
void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
u32 ah_signal_type)
{
u32 gpio_shift;
if (AR_DEVID_7010(ah)) {
gpio_shift = gpio;
REG_RMW(ah, AR7010_GPIO_OE,
(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
(AR7010_GPIO_OE_MASK << gpio_shift));
return;
}
ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
gpio_shift = 2 * gpio;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
EXPORT_SYMBOL(ath9k_hw_cfg_output);
void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
{
if (AR_DEVID_7010(ah)) {
val = val ? 0 : 1;
REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
AR_GPIO_BIT(gpio));
return;
}
if (AR_SREV_9271(ah))
val = ~val;
REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
AR_GPIO_BIT(gpio));
}
EXPORT_SYMBOL(ath9k_hw_set_gpio);
u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
{
return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
}
EXPORT_SYMBOL(ath9k_hw_getdefantenna);
void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
{
REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
EXPORT_SYMBOL(ath9k_hw_setantenna);
/*********************/
/* General Operation */
/*********************/
u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
{
u32 bits = REG_READ(ah, AR_RX_FILTER);
u32 phybits = REG_READ(ah, AR_PHY_ERR);
if (phybits & AR_PHY_ERR_RADAR)
bits |= ATH9K_RX_FILTER_PHYRADAR;
if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
bits |= ATH9K_RX_FILTER_PHYERR;
return bits;
}
EXPORT_SYMBOL(ath9k_hw_getrxfilter);
void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
{
u32 phybits;
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_RX_FILTER, bits);
phybits = 0;
if (bits & ATH9K_RX_FILTER_PHYRADAR)
phybits |= AR_PHY_ERR_RADAR;
if (bits & ATH9K_RX_FILTER_PHYERR)
phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
REG_WRITE(ah, AR_PHY_ERR, phybits);
if (phybits)
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
else
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
REGWRITE_BUFFER_FLUSH(ah);
}
EXPORT_SYMBOL(ath9k_hw_setrxfilter);
bool ath9k_hw_phy_disable(struct ath_hw *ah)
{
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
return false;
ath9k_hw_init_pll(ah, NULL);
return true;
}
EXPORT_SYMBOL(ath9k_hw_phy_disable);
bool ath9k_hw_disable(struct ath_hw *ah)
{
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
return false;
ath9k_hw_init_pll(ah, NULL);
return true;
}
EXPORT_SYMBOL(ath9k_hw_disable);
void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath9k_channel *chan = ah->curchan;
struct ieee80211_channel *channel = chan->chan;
regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) regulatory->power_limit), test);
}
EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
void ath9k_hw_setopmode(struct ath_hw *ah)
{
ath9k_hw_set_operating_mode(ah, ah->opmode);
}
EXPORT_SYMBOL(ath9k_hw_setopmode);
void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
{
REG_WRITE(ah, AR_MCAST_FIL0, filter0);
REG_WRITE(ah, AR_MCAST_FIL1, filter1);
}
EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
void ath9k_hw_write_associd(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
}
EXPORT_SYMBOL(ath9k_hw_write_associd);
#define ATH9K_MAX_TSF_READ 10
u64 ath9k_hw_gettsf64(struct ath_hw *ah)
{
u32 tsf_lower, tsf_upper1, tsf_upper2;
int i;
tsf_upper1 = REG_READ(ah, AR_TSF_U32);
for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
tsf_lower = REG_READ(ah, AR_TSF_L32);
tsf_upper2 = REG_READ(ah, AR_TSF_U32);
if (tsf_upper2 == tsf_upper1)
break;
tsf_upper1 = tsf_upper2;
}
WARN_ON( i == ATH9K_MAX_TSF_READ );
return (((u64)tsf_upper1 << 32) | tsf_lower);
}
EXPORT_SYMBOL(ath9k_hw_gettsf64);
void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
{
REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
}
EXPORT_SYMBOL(ath9k_hw_settsf64);
void ath9k_hw_reset_tsf(struct ath_hw *ah)
{
if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
AH_TSF_WRITE_TIMEOUT))
ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
}
EXPORT_SYMBOL(ath9k_hw_reset_tsf);
void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
{
if (setting)
ah->misc_mode |= AR_PCU_TX_ADD_TSF;
else
ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
}
EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
void ath9k_hw_set11nmac2040(struct ath_hw *ah)
{
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
u32 macmode;
if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
macmode = AR_2040_JOINED_RX_CLEAR;
else
macmode = 0;
REG_WRITE(ah, AR_2040_MODE, macmode);
}
/* HW Generic timers configuration */
static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
{
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
AR_NDP2_TIMER_MODE, 0x0002},
{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
AR_NDP2_TIMER_MODE, 0x0004},
{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
AR_NDP2_TIMER_MODE, 0x0008},
{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
AR_NDP2_TIMER_MODE, 0x0010},
{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
AR_NDP2_TIMER_MODE, 0x0020},
{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
AR_NDP2_TIMER_MODE, 0x0040},
{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
AR_NDP2_TIMER_MODE, 0x0080}
};
/* HW generic timer primitives */
/* compute and clear index of rightmost 1 */
static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
{
u32 b;
b = *mask;
b &= (0-b);
*mask &= ~b;
b *= debruijn32;
b >>= 27;
return timer_table->gen_timer_index[b];
}
static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
{
return REG_READ(ah, AR_TSF_L32);
}
struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
void (*trigger)(void *),
void (*overflow)(void *),
void *arg,
u8 timer_index)
{
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
struct ath_gen_timer *timer;
timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
if (timer == NULL) {
ath_err(ath9k_hw_common(ah),
"Failed to allocate memory for hw timer[%d]\n",
timer_index);
return NULL;
}
/* allocate a hardware generic timer slot */
timer_table->timers[timer_index] = timer;
timer->index = timer_index;
timer->trigger = trigger;
timer->overflow = overflow;
timer->arg = arg;
return timer;
}
EXPORT_SYMBOL(ath_gen_timer_alloc);
void ath9k_hw_gen_timer_start(struct ath_hw *ah,
struct ath_gen_timer *timer,
u32 timer_next,
u32 timer_period)
{
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
u32 tsf;
BUG_ON(!timer_period);
set_bit(timer->index, &timer_table->timer_mask.timer_bits);
tsf = ath9k_hw_gettsf32(ah);
ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
"current tsf %x period %x timer_next %x\n",
tsf, timer_period, timer_next);
/*
* Pull timer_next forward if the current TSF already passed it
* because of software latency
*/
if (timer_next < tsf)
timer_next = tsf + timer_period;
/*
* Program generic timer registers
*/
REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
timer_next);
REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
timer_period);
REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
gen_tmr_configuration[timer->index].mode_mask);
/* Enable both trigger and thresh interrupt masks */
REG_SET_BIT(ah, AR_IMR_S5,
(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
}
EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
{
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
if ((timer->index < AR_FIRST_NDP_TIMER) ||
(timer->index >= ATH_MAX_GEN_TIMER)) {
return;
}
/* Clear generic timer enable bits. */
REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
gen_tmr_configuration[timer->index].mode_mask);
/* Disable both trigger and thresh interrupt masks */
REG_CLR_BIT(ah, AR_IMR_S5,
(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
}
EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
{
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
/* free the hardware generic timer slot */
timer_table->timers[timer->index] = NULL;
kfree(timer);
}
EXPORT_SYMBOL(ath_gen_timer_free);
/*
* Generic Timer Interrupts handling
*/
void ath_gen_timer_isr(struct ath_hw *ah)
{
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
struct ath_gen_timer *timer;
struct ath_common *common = ath9k_hw_common(ah);
u32 trigger_mask, thresh_mask, index;
/* get hardware generic timer interrupt status */
trigger_mask = ah->intr_gen_timer_trigger;
thresh_mask = ah->intr_gen_timer_thresh;
trigger_mask &= timer_table->timer_mask.val;
thresh_mask &= timer_table->timer_mask.val;
trigger_mask &= ~thresh_mask;
while (thresh_mask) {
index = rightmost_index(timer_table, &thresh_mask);
timer = timer_table->timers[index];
BUG_ON(!timer);
ath_dbg(common, ATH_DBG_HWTIMER,
"TSF overflow for Gen timer %d\n", index);
timer->overflow(timer->arg);
}
while (trigger_mask) {
index = rightmost_index(timer_table, &trigger_mask);
timer = timer_table->timers[index];
BUG_ON(!timer);
ath_dbg(common, ATH_DBG_HWTIMER,
"Gen timer[%d] trigger\n", index);
timer->trigger(timer->arg);
}
}
EXPORT_SYMBOL(ath_gen_timer_isr);
/********/
/* HTC */
/********/
void ath9k_hw_htc_resetinit(struct ath_hw *ah)
{
ah->htc_reset_init = true;
}
EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
static struct {
u32 version;
const char * name;
} ath_mac_bb_names[] = {
/* Devices with external radios */
{ AR_SREV_VERSION_5416_PCI, "5416" },
{ AR_SREV_VERSION_5416_PCIE, "5418" },
{ AR_SREV_VERSION_9100, "9100" },
{ AR_SREV_VERSION_9160, "9160" },
/* Single-chip solutions */
{ AR_SREV_VERSION_9280, "9280" },
{ AR_SREV_VERSION_9285, "9285" },
{ AR_SREV_VERSION_9287, "9287" },
{ AR_SREV_VERSION_9271, "9271" },
{ AR_SREV_VERSION_9300, "9300" },
};
/* For devices with external radios */
static struct {
u16 version;
const char * name;
} ath_rf_names[] = {
{ 0, "5133" },
{ AR_RAD5133_SREV_MAJOR, "5133" },
{ AR_RAD5122_SREV_MAJOR, "5122" },
{ AR_RAD2133_SREV_MAJOR, "2133" },
{ AR_RAD2122_SREV_MAJOR, "2122" }
};
/*
* Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
*/
static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
{
int i;
for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
if (ath_mac_bb_names[i].version == mac_bb_version) {
return ath_mac_bb_names[i].name;
}
}
return "????";
}
/*
* Return the RF name. "????" is returned if the RF is unknown.
* Used for devices with external radios.
*/
static const char *ath9k_hw_rf_name(u16 rf_version)
{
int i;
for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
if (ath_rf_names[i].version == rf_version) {
return ath_rf_names[i].name;
}
}
return "????";
}
void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
{
int used;
/* chipsets >= AR9280 are single-chip */
if (AR_SREV_9280_20_OR_LATER(ah)) {
used = snprintf(hw_name, len,
"Atheros AR%s Rev:%x",
ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
ah->hw_version.macRev);
}
else {
used = snprintf(hw_name, len,
"Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
ah->hw_version.macRev,
ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
AR_RADIO_SREV_MAJOR)),
ah->hw_version.phyRev);
}
hw_name[used] = '\0';
}
EXPORT_SYMBOL(ath9k_hw_name);