blob: a610a239c042394b4dca33f906116b9f8dc429d9 [file] [log] [blame]
/*
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <mach/clock-generic.h>
#include "clock-local2.h"
#define UPDATE_CHECK_MAX_LOOPS 200
struct cortex_reg_data {
u32 cmd_offset;
u32 update_mask;
u32 poll_mask;
};
#define DIV_REG(x) ((x)->base + (x)->div_offset)
#define SRC_REG(x) ((x)->base + (x)->src_offset)
#define CMD_REG(x) ((x)->base + \
((struct cortex_reg_data *)(x)->priv)->cmd_offset)
static int update_config(struct mux_div_clk *md)
{
u32 regval, count;
struct cortex_reg_data *r = md->priv;
/* Update the configuration */
regval = readl_relaxed(CMD_REG(md));
regval |= r->update_mask;
writel_relaxed(regval, CMD_REG(md));
/* Wait for update to take effect */
for (count = UPDATE_CHECK_MAX_LOOPS; count > 0; count--) {
if (!(readl_relaxed(CMD_REG(md)) &
r->poll_mask))
return 0;
udelay(1);
}
CLK_WARN(&md->c, true, "didn't update its configuration.");
return -EINVAL;
}
static void cortex_get_config(struct mux_div_clk *md, u32 *src_sel, u32 *div)
{
u32 regval;
regval = readl_relaxed(DIV_REG(md));
regval &= (md->div_mask << md->div_shift);
*div = regval >> md->div_shift;
*div = max((u32)1, (*div + 1) / 2);
regval = readl_relaxed(SRC_REG(md));
regval &= (md->src_mask << md->src_shift);
*src_sel = regval >> md->src_shift;
}
static int cortex_set_config(struct mux_div_clk *md, u32 src_sel, u32 div)
{
u32 regval;
div = div ? ((2 * div) - 1) : 0;
regval = readl_relaxed(DIV_REG(md));
regval &= ~(md->div_mask << md->div_shift);
regval |= div << md->div_shift;
writel_relaxed(regval, DIV_REG(md));
regval = readl_relaxed(SRC_REG(md));
regval &= ~(md->src_mask << md->src_shift);
regval |= src_sel << md->src_shift;
writel_relaxed(regval, SRC_REG(md));
return update_config(md);
}
static int cortex_enable(struct mux_div_clk *md)
{
return cortex_set_config(md, md->src_sel, md->data.div);
}
static void cortex_disable(struct mux_div_clk *md)
{
u32 src_sel = parent_to_src_sel(md->parents, md->num_parents,
md->safe_parent);
cortex_set_config(md, src_sel, md->safe_div);
}
static bool cortex_is_enabled(struct mux_div_clk *md)
{
return true;
}
struct mux_div_ops cortex_mux_div_ops = {
.set_src_div = cortex_set_config,
.get_src_div = cortex_get_config,
.is_enabled = cortex_is_enabled,
.enable = cortex_enable,
.disable = cortex_disable,
};
static struct cortex_reg_data a7ssmux_priv = {
.cmd_offset = 0x0,
.update_mask = BIT(0),
.poll_mask = BIT(0),
};
DEFINE_VDD_REGS_INIT(vdd_cpu, 1);
static struct mux_div_clk a7ssmux = {
.ops = &cortex_mux_div_ops,
.safe_freq = 300000000,
.data = {
.max_div = 8,
.min_div = 1,
},
.c = {
.dbg_name = "a7ssmux",
.ops = &clk_ops_mux_div_clk,
.vdd_class = &vdd_cpu,
CLK_INIT(a7ssmux.c),
},
.parents = (struct clk_src[8]) {},
.priv = &a7ssmux_priv,
.div_offset = 0x4,
.div_mask = BM(4, 0),
.div_shift = 0,
.src_offset = 0x4,
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
};
static struct clk_lookup clock_tbl_a7[] = {
CLK_LOOKUP("cpu0_clk", a7ssmux.c, "0.qcom,msm-cpufreq"),
CLK_LOOKUP("cpu0_clk", a7ssmux.c, "fe805664.qcom,pm-8x60"),
};
static int of_get_fmax_vdd_class(struct platform_device *pdev, struct clk *c,
char *prop_name)
{
struct device_node *of = pdev->dev.of_node;
int prop_len, i;
struct clk_vdd_class *vdd = c->vdd_class;
u32 *array;
if (!of_find_property(of, prop_name, &prop_len)) {
dev_err(&pdev->dev, "missing %s\n", prop_name);
return -EINVAL;
}
prop_len /= sizeof(u32);
if (prop_len % 2) {
dev_err(&pdev->dev, "bad length %d\n", prop_len);
return -EINVAL;
}
prop_len /= 2;
vdd->level_votes = devm_kzalloc(&pdev->dev, prop_len * sizeof(int),
GFP_KERNEL);
if (!vdd->level_votes)
return -ENOMEM;
vdd->vdd_uv = devm_kzalloc(&pdev->dev, prop_len * sizeof(int),
GFP_KERNEL);
if (!vdd->vdd_uv)
return -ENOMEM;
c->fmax = devm_kzalloc(&pdev->dev, prop_len * sizeof(unsigned long),
GFP_KERNEL);
if (!c->fmax)
return -ENOMEM;
array = devm_kzalloc(&pdev->dev,
prop_len * sizeof(u32) * 2, GFP_KERNEL);
if (!array)
return -ENOMEM;
of_property_read_u32_array(of, prop_name, array, prop_len * 2);
for (i = 0; i < prop_len; i++) {
c->fmax[i] = array[2 * i];
vdd->vdd_uv[i] = array[2 * i + 1];
}
devm_kfree(&pdev->dev, array);
vdd->num_levels = prop_len;
vdd->cur_level = prop_len;
c->num_fmax = prop_len;
return 0;
}
static void get_speed_bin(struct platform_device *pdev, int *bin, int *version)
{
struct resource *res;
void __iomem *base;
u32 pte_efuse, redundant_sel, valid;
*bin = 0;
*version = 0;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse");
if (!res) {
dev_info(&pdev->dev,
"No speed/PVS binning available. Defaulting to 0!\n");
return;
}
base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!base) {
dev_warn(&pdev->dev,
"Unable to read efuse data. Defaulting to 0!\n");
return;
}
pte_efuse = readl_relaxed(base);
devm_iounmap(&pdev->dev, base);
redundant_sel = (pte_efuse >> 24) & 0x7;
*bin = pte_efuse & 0x7;
valid = (pte_efuse >> 3) & 0x1;
*version = (pte_efuse >> 4) & 0x3;
if (redundant_sel == 1)
*bin = (pte_efuse >> 27) & 0x7;
if (!valid) {
dev_info(&pdev->dev, "Speed bin not set. Defaulting to 0!\n");
*bin = 0;
} else {
dev_info(&pdev->dev, "Speed bin: %d\n", *bin);
}
dev_info(&pdev->dev, "PVS version: %d\n", *version);
return;
}
static int of_get_clk_src(struct platform_device *pdev, struct clk_src *parents)
{
struct device_node *of = pdev->dev.of_node;
int num_parents, i, j, index;
struct clk *c;
char clk_name[] = "clk-x";
num_parents = of_property_count_strings(of, "clock-names");
if (num_parents <= 0 || num_parents > 8) {
dev_err(&pdev->dev, "missing clock-names\n");
return -EINVAL;
}
j = 0;
for (i = 0; i < 8; i++) {
snprintf(clk_name, ARRAY_SIZE(clk_name), "clk-%d", i);
index = of_property_match_string(of, "clock-names", clk_name);
if (IS_ERR_VALUE(index))
continue;
parents[j].sel = i;
parents[j].src = c = devm_clk_get(&pdev->dev, clk_name);
if (IS_ERR(c)) {
if (c != ERR_PTR(-EPROBE_DEFER))
dev_err(&pdev->dev, "clk_get: %s\n fail",
clk_name);
return PTR_ERR(c);
}
j++;
}
return num_parents;
}
static int clock_a7_probe(struct platform_device *pdev)
{
struct resource *res;
int speed_bin = 0, version = 0, rc;
unsigned long rate, aux_rate;
struct clk *aux_clk, *main_pll;
char prop_name[] = "qcom,speedX-bin-vX";
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rcg-base");
if (!res) {
dev_err(&pdev->dev, "missing rcg-base\n");
return -EINVAL;
}
a7ssmux.base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!a7ssmux.base) {
dev_err(&pdev->dev, "ioremap failed for rcg-base\n");
return -ENOMEM;
}
vdd_cpu.regulator[0] = devm_regulator_get(&pdev->dev, "cpu-vdd");
if (IS_ERR(vdd_cpu.regulator[0])) {
if (PTR_ERR(vdd_cpu.regulator[0]) != -EPROBE_DEFER)
dev_err(&pdev->dev, "unable to get regulator\n");
return PTR_ERR(vdd_cpu.regulator[0]);
}
a7ssmux.num_parents = of_get_clk_src(pdev, a7ssmux.parents);
if (IS_ERR_VALUE(a7ssmux.num_parents))
return a7ssmux.num_parents;
get_speed_bin(pdev, &speed_bin, &version);
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed%d-bin-v%d", speed_bin, version);
rc = of_get_fmax_vdd_class(pdev, &a7ssmux.c, prop_name);
if (rc) {
/* Fall back to most conservative PVS table */
dev_err(&pdev->dev, "Unable to load voltage plan %s!\n",
prop_name);
rc = of_get_fmax_vdd_class(pdev, &a7ssmux.c,
"qcom,speed0-bin-v0");
if (rc) {
dev_err(&pdev->dev,
"Unable to load safe voltage plan\n");
return rc;
}
dev_info(&pdev->dev, "Safe voltage plan loaded.\n");
}
rc = msm_clock_register(clock_tbl_a7, ARRAY_SIZE(clock_tbl_a7));
if (rc) {
dev_err(&pdev->dev, "msm_clock_register failed\n");
return rc;
}
/* Force a PLL reconfiguration */
aux_clk = a7ssmux.parents[0].src;
main_pll = a7ssmux.parents[1].src;
aux_rate = clk_get_rate(aux_clk);
rate = clk_get_rate(&a7ssmux.c);
clk_set_rate(&a7ssmux.c, aux_rate);
clk_set_rate(main_pll, clk_round_rate(main_pll, 1));
clk_set_rate(&a7ssmux.c, rate);
/*
* We don't want the CPU clocks to be turned off at late init
* if CPUFREQ or HOTPLUG configs are disabled. So, bump up the
* refcount of these clocks. Any cpufreq/hotplug manager can assume
* that the clocks have already been prepared and enabled by the time
* they take over.
*/
WARN(clk_prepare_enable(&a7ssmux.c),
"Unable to turn on CPU clock");
return 0;
}
static struct of_device_id clock_a7_match_table[] = {
{.compatible = "qcom,clock-a7-8226"},
{}
};
static struct platform_driver clock_a7_driver = {
.driver = {
.name = "clock-a7",
.of_match_table = clock_a7_match_table,
.owner = THIS_MODULE,
},
};
static int __init clock_a7_init(void)
{
return platform_driver_probe(&clock_a7_driver, clock_a7_probe);
}
device_initcall(clock_a7_init);