blob: 96a727a60119500722324e131df06e7815faf262 [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/wakelock.h>
#include <linux/pm_qos_params.h>
#include <asm/atomic.h>
#include "qdss.h"
#define ptm_writel(ptm, cpu, val, off) \
__raw_writel((val), ptm.base + (SZ_4K * cpu) + off)
#define ptm_readl(ptm, cpu, off) \
__raw_readl(ptm.base + (SZ_4K * cpu) + off)
/*
* Device registers:
* 0x000 - 0x2FC: Trace registers
* 0x300 - 0x314: Management registers
* 0x318 - 0xEFC: Trace registers
*
* Coresight registers
* 0xF00 - 0xF9C: Management registers
* 0xFA0 - 0xFA4: Management registers in PFTv1.0
* Trace registers in PFTv1.1
* 0xFA8 - 0xFFC: Management registers
*/
/* Trace registers (0x000-0x2FC) */
#define ETMCR (0x000)
#define ETMCCR (0x004)
#define ETMTRIGGER (0x008)
#define ETMSR (0x010)
#define ETMSCR (0x014)
#define ETMTSSCR (0x018)
#define ETMTEEVR (0x020)
#define ETMTECR1 (0x024)
#define ETMFFLR (0x02C)
#define ETMACVRn(n) (0x040 + (n * 4))
#define ETMACTRn(n) (0x080 + (n * 4))
#define ETMCNTRLDVRn(n) (0x140 + (n * 4))
#define ETMCNTENRn(n) (0x150 + (n * 4))
#define ETMCNTRLDEVRn(n) (0x160 + (n * 4))
#define ETMCNTVRn(n) (0x170 + (n * 4))
#define ETMSQ12EVR (0x180)
#define ETMSQ21EVR (0x184)
#define ETMSQ23EVR (0x188)
#define ETMSQ32EVR (0x18C)
#define ETMSQ13EVR (0x190)
#define ETMSQ31EVR (0x194)
#define ETMSQR (0x19C)
#define ETMEXTOUTEVRn(n) (0x1A0 + (n * 4))
#define ETMCIDCVRn(n) (0x1B0 + (n * 4))
#define ETMCIDCMR (0x1BC)
#define ETMIMPSPEC0 (0x1C0)
#define ETMIMPSPEC1 (0x1C4)
#define ETMIMPSPEC2 (0x1C8)
#define ETMIMPSPEC3 (0x1CC)
#define ETMIMPSPEC4 (0x1D0)
#define ETMIMPSPEC5 (0x1D4)
#define ETMIMPSPEC6 (0x1D8)
#define ETMIMPSPEC7 (0x1DC)
#define ETMSYNCFR (0x1E0)
#define ETMIDR (0x1E4)
#define ETMCCER (0x1E8)
#define ETMEXTINSELR (0x1EC)
#define ETMTESSEICR (0x1F0)
#define ETMEIBCR (0x1F4)
#define ETMTSEVR (0x1F8)
#define ETMAUXCR (0x1FC)
#define ETMTRACEIDR (0x200)
#define ETMVMIDCVR (0x204)
/* Management registers (0x300-0x314) */
#define ETMOSLAR (0x300)
#define ETMOSLSR (0x304)
#define ETMOSSRR (0x308)
#define ETMPDCR (0x310)
#define ETMPDSR (0x314)
#define PTM_LOCK(cpu) \
do { \
mb(); \
ptm_writel(ptm, cpu, 0x0, CS_LAR); \
} while (0)
#define PTM_UNLOCK(cpu) \
do { \
ptm_writel(ptm, cpu, CS_UNLOCK_MAGIC, CS_LAR); \
mb(); \
} while (0)
/* Forward declarations */
static void ptm_cfg_rw_init(void);
#ifdef CONFIG_MSM_QDSS_ETM_DEFAULT_ENABLE
static int trace_on_boot = 1;
#else
static int trace_on_boot;
#endif
module_param_named(
trace_on_boot, trace_on_boot, int, S_IRUGO
);
struct ptm_config {
/* read only config registers */
uint32_t config_code;
/* derived values */
uint8_t nr_addr_comp;
uint8_t nr_cntr;
uint8_t nr_ext_input;
uint8_t nr_ext_output;
uint8_t nr_context_id_comp;
uint32_t config_code_extn;
/* derived values */
uint8_t nr_extnd_ext_input_sel;
uint8_t nr_instr_resources;
uint32_t system_config;
/* derived values */
uint8_t fifofull_supported;
uint8_t nr_procs_supported;
/* read-write registers */
uint32_t main_control;
uint32_t trigger_event;
uint32_t te_start_stop_control;
uint32_t te_event;
uint32_t te_control;
uint32_t fifofull_level;
uint32_t addr_comp_value[16];
uint32_t addr_comp_access_type[16];
uint32_t cntr_reload_value[4];
uint32_t cntr_enable_event[4];
uint32_t cntr_reload_event[4];
uint32_t cntr_value[4];
uint32_t seq_state_12_event;
uint32_t seq_state_21_event;
uint32_t seq_state_23_event;
uint32_t seq_state_32_event;
uint32_t seq_state_13_event;
uint32_t seq_state_31_event;
uint32_t current_seq_state;
uint32_t ext_output_event[4];
uint32_t context_id_comp_value[3];
uint32_t context_id_comp_mask;
uint32_t sync_freq;
uint32_t extnd_ext_input_sel;
uint32_t ts_event;
uint32_t aux_control;
uint32_t coresight_trace_id;
uint32_t vmid_comp_value;
};
struct ptm_ctx {
struct ptm_config cfg;
void __iomem *base;
bool trace_enabled;
struct wake_lock wake_lock;
struct pm_qos_request_list qos_req;
atomic_t in_use;
struct device *dev;
};
static struct ptm_ctx ptm;
/* ETM clock is derived from the processor clock and gets enabled on a
* logical OR of below items on Krait (pass2 onwards):
* 1.CPMR[ETMCLKEN] is 1
* 2.ETMCR[PD] is 0
* 3.ETMPDCR[PU] is 1
* 4.Reset is asserted (core or debug)
* 5.APB memory mapped requests (eg. EDAP access)
*
* 1., 2. and 3. above are permanent enables whereas 4. and 5. are temporary
* enables
*
* We rely on 5. to be able to access ETMCR and then use 2. above for ETM
* clock vote in the driver and the save-restore code uses 1. above
* for its vote
*/
static void ptm_set_powerdown(int cpu)
{
uint32_t etmcr;
etmcr = ptm_readl(ptm, cpu, ETMCR);
etmcr |= BIT(0);
ptm_writel(ptm, cpu, etmcr, ETMCR);
}
static void ptm_clear_powerdown(int cpu)
{
uint32_t etmcr;
etmcr = ptm_readl(ptm, cpu, ETMCR);
etmcr &= ~BIT(0);
ptm_writel(ptm, cpu, etmcr, ETMCR);
}
static void ptm_set_prog(int cpu)
{
uint32_t etmcr;
int count;
etmcr = ptm_readl(ptm, cpu, ETMCR);
etmcr |= BIT(10);
ptm_writel(ptm, cpu, etmcr, ETMCR);
for (count = TIMEOUT_US; BVAL(ptm_readl(ptm, cpu, ETMSR), 1) != 1
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while setting prog bit\n");
}
static void ptm_clear_prog(int cpu)
{
uint32_t etmcr;
int count;
etmcr = ptm_readl(ptm, cpu, ETMCR);
etmcr &= ~BIT(10);
ptm_writel(ptm, cpu, etmcr, ETMCR);
for (count = TIMEOUT_US; BVAL(ptm_readl(ptm, cpu, ETMSR), 1) != 0
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while clearing prog bit\n");
}
static void __ptm_trace_enable(int cpu)
{
int i;
PTM_UNLOCK(cpu);
/* Vote for ETM power/clock enable */
ptm_clear_powerdown(cpu);
ptm_set_prog(cpu);
ptm_writel(ptm, cpu, ptm.cfg.main_control | BIT(10), ETMCR);
ptm_writel(ptm, cpu, ptm.cfg.trigger_event, ETMTRIGGER);
ptm_writel(ptm, cpu, ptm.cfg.te_start_stop_control, ETMTSSCR);
ptm_writel(ptm, cpu, ptm.cfg.te_event, ETMTEEVR);
ptm_writel(ptm, cpu, ptm.cfg.te_control, ETMTECR1);
ptm_writel(ptm, cpu, ptm.cfg.fifofull_level, ETMFFLR);
for (i = 0; i < ptm.cfg.nr_addr_comp; i++) {
ptm_writel(ptm, cpu, ptm.cfg.addr_comp_value[i], ETMACVRn(i));
ptm_writel(ptm, cpu, ptm.cfg.addr_comp_access_type[i],
ETMACTRn(i));
}
for (i = 0; i < ptm.cfg.nr_cntr; i++) {
ptm_writel(ptm, cpu, ptm.cfg.cntr_reload_value[i],
ETMCNTRLDVRn(i));
ptm_writel(ptm, cpu, ptm.cfg.cntr_enable_event[i],
ETMCNTENRn(i));
ptm_writel(ptm, cpu, ptm.cfg.cntr_reload_event[i],
ETMCNTRLDEVRn(i));
ptm_writel(ptm, cpu, ptm.cfg.cntr_value[i], ETMCNTVRn(i));
}
ptm_writel(ptm, cpu, ptm.cfg.seq_state_12_event, ETMSQ12EVR);
ptm_writel(ptm, cpu, ptm.cfg.seq_state_21_event, ETMSQ21EVR);
ptm_writel(ptm, cpu, ptm.cfg.seq_state_23_event, ETMSQ23EVR);
ptm_writel(ptm, cpu, ptm.cfg.seq_state_32_event, ETMSQ32EVR);
ptm_writel(ptm, cpu, ptm.cfg.seq_state_13_event, ETMSQ13EVR);
ptm_writel(ptm, cpu, ptm.cfg.seq_state_31_event, ETMSQ31EVR);
ptm_writel(ptm, cpu, ptm.cfg.current_seq_state, ETMSQR);
for (i = 0; i < ptm.cfg.nr_ext_output; i++)
ptm_writel(ptm, cpu, ptm.cfg.ext_output_event[i],
ETMEXTOUTEVRn(i));
for (i = 0; i < ptm.cfg.nr_context_id_comp; i++)
ptm_writel(ptm, cpu, ptm.cfg.context_id_comp_value[i],
ETMCIDCVRn(i));
ptm_writel(ptm, cpu, ptm.cfg.context_id_comp_mask, ETMCIDCMR);
ptm_writel(ptm, cpu, ptm.cfg.sync_freq, ETMSYNCFR);
ptm_writel(ptm, cpu, ptm.cfg.extnd_ext_input_sel, ETMEXTINSELR);
ptm_writel(ptm, cpu, ptm.cfg.ts_event, ETMTSEVR);
ptm_writel(ptm, cpu, ptm.cfg.aux_control, ETMAUXCR);
ptm_writel(ptm, cpu, cpu+1, ETMTRACEIDR);
ptm_writel(ptm, cpu, ptm.cfg.vmid_comp_value, ETMVMIDCVR);
ptm_clear_prog(cpu);
PTM_LOCK(cpu);
}
static int ptm_trace_enable(void)
{
int ret, cpu;
ret = qdss_clk_enable();
if (ret)
return ret;
wake_lock(&ptm.wake_lock);
/* 1. causes all online cpus to come out of idle PC
* 2. prevents idle PC until save restore flag is enabled atomically
*
* we rely on the user to prevent hotplug on/off racing with this
* operation and to ensure cores where trace is expected to be turned
* on are already hotplugged on
*/
pm_qos_update_request(&ptm.qos_req, 0);
etb_disable();
tpiu_disable();
/* enable ETB first to avoid loosing any trace data */
etb_enable();
funnel_enable(0x0, 0x3);
for_each_online_cpu(cpu)
__ptm_trace_enable(cpu);
ptm.trace_enabled = true;
pm_qos_update_request(&ptm.qos_req, PM_QOS_DEFAULT_VALUE);
wake_unlock(&ptm.wake_lock);
return 0;
}
static void __ptm_trace_disable(int cpu)
{
PTM_UNLOCK(cpu);
ptm_set_prog(cpu);
/* program trace enable to low by using always false event */
ptm_writel(ptm, cpu, 0x6F | BIT(14), ETMTEEVR);
/* Vote for ETM power/clock disable */
ptm_set_powerdown(cpu);
PTM_LOCK(cpu);
}
static void ptm_trace_disable(void)
{
int cpu;
wake_lock(&ptm.wake_lock);
/* 1. causes all online cpus to come out of idle PC
* 2. prevents idle PC until save restore flag is disabled atomically
*
* we rely on the user to prevent hotplug on/off racing with this
* operation and to ensure cores where trace is expected to be turned
* off are already hotplugged on
*/
pm_qos_update_request(&ptm.qos_req, 0);
for_each_online_cpu(cpu)
__ptm_trace_disable(cpu);
etb_dump();
etb_disable();
funnel_disable(0x0, 0x3);
ptm.trace_enabled = false;
pm_qos_update_request(&ptm.qos_req, PM_QOS_DEFAULT_VALUE);
wake_unlock(&ptm.wake_lock);
qdss_clk_disable();
}
static int ptm_open(struct inode *inode, struct file *file)
{
if (atomic_cmpxchg(&ptm.in_use, 0, 1))
return -EBUSY;
dev_dbg(ptm.dev, "%s: successfully opened\n", __func__);
return 0;
}
static void ptm_range_filter(char range, uint32_t reg1,
uint32_t addr1, uint32_t reg2, uint32_t addr2)
{
ptm.cfg.addr_comp_value[reg1] = addr1;
ptm.cfg.addr_comp_value[reg2] = addr2;
ptm.cfg.te_control |= (1 << (reg1/2));
if (range == 'i')
ptm.cfg.te_control &= ~BIT(24);
else if (range == 'e')
ptm.cfg.te_control |= BIT(24);
}
static void ptm_start_stop_filter(char start_stop,
uint32_t reg, uint32_t addr)
{
ptm.cfg.addr_comp_value[reg] = addr;
if (start_stop == 's')
ptm.cfg.te_start_stop_control |= (1 << reg);
else if (start_stop == 't')
ptm.cfg.te_start_stop_control |= (1 << (reg + 16));
ptm.cfg.te_control |= BIT(25);
}
#define MAX_COMMAND_STRLEN 40
static ssize_t ptm_write(struct file *file, const char __user *data,
size_t len, loff_t *ppos)
{
char command[MAX_COMMAND_STRLEN];
int str_len;
unsigned long reg1, reg2;
unsigned long addr1, addr2;
str_len = strnlen_user(data, MAX_COMMAND_STRLEN);
dev_dbg(ptm.dev, "string length: %d", str_len);
if (str_len == 0 || str_len == (MAX_COMMAND_STRLEN+1)) {
dev_err(ptm.dev, "error in str_len: %d", str_len);
return -EFAULT;
}
/* includes the null character */
if (copy_from_user(command, data, str_len)) {
dev_err(ptm.dev, "error in copy_from_user: %d", str_len);
return -EFAULT;
}
dev_dbg(ptm.dev, "input = %s", command);
switch (command[0]) {
case '0':
if (ptm.trace_enabled) {
ptm_trace_disable();
dev_info(ptm.dev, "tracing disabled\n");
} else
dev_err(ptm.dev, "trace already disabled\n");
break;
case '1':
if (!ptm.trace_enabled) {
if (!ptm_trace_enable())
dev_info(ptm.dev, "tracing enabled\n");
else
dev_err(ptm.dev, "error enabling trace\n");
} else
dev_err(ptm.dev, "trace already enabled\n");
break;
case 'f':
switch (command[2]) {
case 'i':
switch (command[4]) {
case 'i':
if (sscanf(&command[6], "%lx:%lx:%lx:%lx\\0",
&reg1, &addr1, &reg2, &addr2) != 4)
goto err_out;
if (reg1 > 7 || reg2 > 7 || (reg1 % 2))
goto err_out;
ptm_range_filter('i',
reg1, addr1, reg2, addr2);
break;
case 'e':
if (sscanf(&command[6], "%lx:%lx:%lx:%lx\\0",
&reg1, &addr1, &reg2, &addr2) != 4)
goto err_out;
if (reg1 > 7 || reg2 > 7 || (reg1 % 2)
|| command[2] == 'd')
goto err_out;
ptm_range_filter('e',
reg1, addr1, reg2, addr2);
break;
case 's':
if (sscanf(&command[6], "%lx:%lx\\0",
&reg1, &addr1) != 2)
goto err_out;
if (reg1 > 7)
goto err_out;
ptm_start_stop_filter('s', reg1, addr1);
break;
case 't':
if (sscanf(&command[6], "%lx:%lx\\0",
&reg1, &addr1) != 2)
goto err_out;
if (reg1 > 7)
goto err_out;
ptm_start_stop_filter('t', reg1, addr1);
break;
default:
goto err_out;
}
break;
case 'r':
ptm_cfg_rw_init();
break;
default:
goto err_out;
}
break;
default:
goto err_out;
}
return len;
err_out:
return -EFAULT;
}
static int ptm_release(struct inode *inode, struct file *file)
{
atomic_set(&ptm.in_use, 0);
dev_dbg(ptm.dev, "%s: released\n", __func__);
return 0;
}
static const struct file_operations ptm_fops = {
.owner = THIS_MODULE,
.open = ptm_open,
.write = ptm_write,
.release = ptm_release,
};
static struct miscdevice ptm_misc = {
.name = "msm_ptm",
.minor = MISC_DYNAMIC_MINOR,
.fops = &ptm_fops,
};
static void ptm_cfg_rw_init(void)
{
int i;
ptm.cfg.main_control = 0x00001000;
ptm.cfg.trigger_event = 0x0000406F;
ptm.cfg.te_start_stop_control = 0x00000000;
ptm.cfg.te_event = 0x0000006F;
ptm.cfg.te_control = 0x01000000;
ptm.cfg.fifofull_level = 0x00000028;
for (i = 0; i < ptm.cfg.nr_addr_comp; i++) {
ptm.cfg.addr_comp_value[i] = 0x00000000;
ptm.cfg.addr_comp_access_type[i] = 0x00000000;
}
for (i = 0; i < ptm.cfg.nr_cntr; i++) {
ptm.cfg.cntr_reload_value[i] = 0x00000000;
ptm.cfg.cntr_enable_event[i] = 0x0000406F;
ptm.cfg.cntr_reload_event[i] = 0x0000406F;
ptm.cfg.cntr_value[i] = 0x00000000;
}
ptm.cfg.seq_state_12_event = 0x0000406F;
ptm.cfg.seq_state_21_event = 0x0000406F;
ptm.cfg.seq_state_23_event = 0x0000406F;
ptm.cfg.seq_state_32_event = 0x0000406F;
ptm.cfg.seq_state_13_event = 0x0000406F;
ptm.cfg.seq_state_31_event = 0x0000406F;
ptm.cfg.current_seq_state = 0x00000000;
for (i = 0; i < ptm.cfg.nr_ext_output; i++)
ptm.cfg.ext_output_event[i] = 0x0000406F;
for (i = 0; i < ptm.cfg.nr_context_id_comp; i++)
ptm.cfg.context_id_comp_value[i] = 0x00000000;
ptm.cfg.context_id_comp_mask = 0x00000000;
ptm.cfg.sync_freq = 0x00000080;
ptm.cfg.extnd_ext_input_sel = 0x00000000;
ptm.cfg.ts_event = 0x0000406F;
ptm.cfg.aux_control = 0x00000000;
ptm.cfg.vmid_comp_value = 0x00000000;
}
/* Memory mapped writes to clear os lock not supported */
static void ptm_os_unlock(void *unused)
{
unsigned long value = 0x0;
asm("mcr p14, 1, %0, c1, c0, 4\n\t" : : "r" (value));
asm("isb\n\t");
}
static void ptm_cfg_ro_init(void)
{
/* use cpu 0 for setup */
int cpu = 0;
/* Unlock OS lock first to allow memory mapped reads and writes */
ptm_os_unlock(NULL);
smp_call_function(ptm_os_unlock, NULL, 1);
PTM_UNLOCK(cpu);
/* Vote for ETM power/clock enable */
ptm_clear_powerdown(cpu);
ptm_set_prog(cpu);
/* find all capabilities */
ptm.cfg.config_code = ptm_readl(ptm, cpu, ETMCCR);
ptm.cfg.nr_addr_comp = BMVAL(ptm.cfg.config_code, 0, 3) * 2;
ptm.cfg.nr_cntr = BMVAL(ptm.cfg.config_code, 13, 15);
ptm.cfg.nr_ext_input = BMVAL(ptm.cfg.config_code, 17, 19);
ptm.cfg.nr_ext_output = BMVAL(ptm.cfg.config_code, 20, 22);
ptm.cfg.nr_context_id_comp = BMVAL(ptm.cfg.config_code, 24, 25);
ptm.cfg.config_code_extn = ptm_readl(ptm, cpu, ETMCCER);
ptm.cfg.nr_extnd_ext_input_sel =
BMVAL(ptm.cfg.config_code_extn, 0, 2);
ptm.cfg.nr_instr_resources = BMVAL(ptm.cfg.config_code_extn, 13, 15);
ptm.cfg.system_config = ptm_readl(ptm, cpu, ETMSCR);
ptm.cfg.fifofull_supported = BVAL(ptm.cfg.system_config, 8);
ptm.cfg.nr_procs_supported = BMVAL(ptm.cfg.system_config, 12, 14);
/* Vote for ETM power/clock disable */
ptm_set_powerdown(cpu);
PTM_LOCK(cpu);
}
static int __devinit ptm_probe(struct platform_device *pdev)
{
int ret;
struct resource *res;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -EINVAL;
goto err_res;
}
ptm.base = ioremap_nocache(res->start, resource_size(res));
if (!ptm.base) {
ret = -EINVAL;
goto err_ioremap;
}
ptm.dev = &pdev->dev;
ret = misc_register(&ptm_misc);
if (ret)
goto err_misc;
ret = qdss_clk_enable();
if (ret)
goto err_clk;
ptm_cfg_ro_init();
ptm_cfg_rw_init();
ptm.trace_enabled = false;
wake_lock_init(&ptm.wake_lock, WAKE_LOCK_SUSPEND, "msm_ptm");
pm_qos_add_request(&ptm.qos_req, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
atomic_set(&ptm.in_use, 0);
qdss_clk_disable();
dev_info(ptm.dev, "PTM intialized.\n");
if (trace_on_boot) {
if (!ptm_trace_enable())
dev_info(ptm.dev, "tracing enabled\n");
else
dev_err(ptm.dev, "error enabling trace\n");
}
return 0;
err_clk:
misc_deregister(&ptm_misc);
err_misc:
iounmap(ptm.base);
err_ioremap:
err_res:
return ret;
}
static int ptm_remove(struct platform_device *pdev)
{
if (ptm.trace_enabled)
ptm_trace_disable();
pm_qos_remove_request(&ptm.qos_req);
wake_lock_destroy(&ptm.wake_lock);
misc_deregister(&ptm_misc);
iounmap(ptm.base);
return 0;
}
static struct platform_driver ptm_driver = {
.probe = ptm_probe,
.remove = ptm_remove,
.driver = {
.name = "msm_ptm",
},
};
int __init ptm_init(void)
{
return platform_driver_register(&ptm_driver);
}
void ptm_exit(void)
{
platform_driver_unregister(&ptm_driver);
}