| /* |
| * linux/drivers/net/irda/sa1100_ir.c |
| * |
| * Copyright (C) 2000-2001 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Infra-red driver for the StrongARM SA1100 embedded microprocessor |
| * |
| * Note that we don't have to worry about the SA1111's DMA bugs in here, |
| * so we use the straight forward dma_map_* functions with a null pointer. |
| * |
| * This driver takes one kernel command line parameter, sa1100ir=, with |
| * the following options: |
| * max_rate:baudrate - set the maximum baud rate |
| * power_level:level - set the transmitter power level |
| * tx_lpm:0|1 - set transmit low power mode |
| */ |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/netdevice.h> |
| #include <linux/slab.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/sa11x0-dma.h> |
| |
| #include <net/irda/irda.h> |
| #include <net/irda/wrapper.h> |
| #include <net/irda/irda_device.h> |
| |
| #include <mach/hardware.h> |
| #include <asm/mach/irda.h> |
| |
| static int power_level = 3; |
| static int tx_lpm; |
| static int max_rate = 4000000; |
| |
| struct sa1100_buf { |
| struct device *dev; |
| struct sk_buff *skb; |
| struct scatterlist sg; |
| struct dma_chan *chan; |
| dma_cookie_t cookie; |
| }; |
| |
| struct sa1100_irda { |
| unsigned char utcr4; |
| unsigned char power; |
| unsigned char open; |
| |
| int speed; |
| int newspeed; |
| |
| struct sa1100_buf dma_rx; |
| struct sa1100_buf dma_tx; |
| |
| struct device *dev; |
| struct irda_platform_data *pdata; |
| struct irlap_cb *irlap; |
| struct qos_info qos; |
| |
| iobuff_t tx_buff; |
| iobuff_t rx_buff; |
| |
| int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *); |
| irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *); |
| }; |
| |
| static int sa1100_irda_set_speed(struct sa1100_irda *, int); |
| |
| #define IS_FIR(si) ((si)->speed >= 4000000) |
| |
| #define HPSIR_MAX_RXLEN 2047 |
| |
| static struct dma_slave_config sa1100_irda_sir_tx = { |
| .direction = DMA_TO_DEVICE, |
| .dst_addr = __PREG(Ser2UTDR), |
| .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .dst_maxburst = 4, |
| }; |
| |
| static struct dma_slave_config sa1100_irda_fir_rx = { |
| .direction = DMA_FROM_DEVICE, |
| .src_addr = __PREG(Ser2HSDR), |
| .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .src_maxburst = 8, |
| }; |
| |
| static struct dma_slave_config sa1100_irda_fir_tx = { |
| .direction = DMA_TO_DEVICE, |
| .dst_addr = __PREG(Ser2HSDR), |
| .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .dst_maxburst = 8, |
| }; |
| |
| static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf) |
| { |
| struct dma_chan *chan = buf->chan; |
| struct dma_tx_state state; |
| enum dma_status status; |
| |
| status = chan->device->device_tx_status(chan, buf->cookie, &state); |
| if (status != DMA_PAUSED) |
| return 0; |
| |
| return sg_dma_len(&buf->sg) - state.residue; |
| } |
| |
| static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf, |
| const char *name, struct dma_slave_config *cfg) |
| { |
| dma_cap_mask_t m; |
| int ret; |
| |
| dma_cap_zero(m); |
| dma_cap_set(DMA_SLAVE, m); |
| |
| buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name); |
| if (!buf->chan) { |
| dev_err(dev, "unable to request DMA channel for %s\n", |
| name); |
| return -ENOENT; |
| } |
| |
| ret = dmaengine_slave_config(buf->chan, cfg); |
| if (ret) |
| dev_warn(dev, "DMA slave_config for %s returned %d\n", |
| name, ret); |
| |
| buf->dev = buf->chan->device->dev; |
| |
| return 0; |
| } |
| |
| static void sa1100_irda_dma_start(struct sa1100_buf *buf, |
| enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p) |
| { |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *chan = buf->chan; |
| |
| desc = chan->device->device_prep_slave_sg(chan, &buf->sg, 1, dir, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (desc) { |
| desc->callback = cb; |
| desc->callback_param = cb_p; |
| buf->cookie = dmaengine_submit(desc); |
| dma_async_issue_pending(chan); |
| } |
| } |
| |
| /* |
| * Allocate and map the receive buffer, unless it is already allocated. |
| */ |
| static int sa1100_irda_rx_alloc(struct sa1100_irda *si) |
| { |
| if (si->dma_rx.skb) |
| return 0; |
| |
| si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC); |
| if (!si->dma_rx.skb) { |
| printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Align any IP headers that may be contained |
| * within the frame. |
| */ |
| skb_reserve(si->dma_rx.skb, 1); |
| |
| sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN); |
| if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) { |
| dev_kfree_skb_any(si->dma_rx.skb); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We want to get here as soon as possible, and get the receiver setup. |
| * We use the existing buffer. |
| */ |
| static void sa1100_irda_rx_dma_start(struct sa1100_irda *si) |
| { |
| if (!si->dma_rx.skb) { |
| printk(KERN_ERR "sa1100_ir: rx buffer went missing\n"); |
| return; |
| } |
| |
| /* |
| * First empty receive FIFO |
| */ |
| Ser2HSCR0 = HSCR0_HSSP; |
| |
| /* |
| * Enable the DMA, receiver and receive interrupt. |
| */ |
| dmaengine_terminate_all(si->dma_rx.chan); |
| sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL); |
| |
| Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE; |
| } |
| |
| static void sa1100_irda_check_speed(struct sa1100_irda *si) |
| { |
| if (si->newspeed) { |
| sa1100_irda_set_speed(si, si->newspeed); |
| si->newspeed = 0; |
| } |
| } |
| |
| /* |
| * HP-SIR format support. |
| */ |
| static void sa1100_irda_sirtxdma_irq(void *id) |
| { |
| struct net_device *dev = id; |
| struct sa1100_irda *si = netdev_priv(dev); |
| |
| dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE); |
| dev_kfree_skb(si->dma_tx.skb); |
| si->dma_tx.skb = NULL; |
| |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg); |
| |
| /* We need to ensure that the transmitter has finished. */ |
| do |
| rmb(); |
| while (Ser2UTSR1 & UTSR1_TBY); |
| |
| /* |
| * Ok, we've finished transmitting. Now enable the receiver. |
| * Sometimes we get a receive IRQ immediately after a transmit... |
| */ |
| Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; |
| Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; |
| |
| sa1100_irda_check_speed(si); |
| |
| /* I'm hungry! */ |
| netif_wake_queue(dev); |
| } |
| |
| static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev, |
| struct sa1100_irda *si) |
| { |
| si->tx_buff.data = si->tx_buff.head; |
| si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, |
| si->tx_buff.truesize); |
| |
| si->dma_tx.skb = skb; |
| sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len); |
| if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) { |
| si->dma_tx.skb = NULL; |
| netif_wake_queue(dev); |
| dev->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |
| sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev); |
| |
| /* |
| * The mean turn-around time is enforced by XBOF padding, |
| * so we don't have to do anything special here. |
| */ |
| Ser2UTCR3 = UTCR3_TXE; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si) |
| { |
| int status; |
| |
| status = Ser2UTSR0; |
| |
| /* |
| * Deal with any receive errors first. The bytes in error may be |
| * the only bytes in the receive FIFO, so we do this first. |
| */ |
| while (status & UTSR0_EIF) { |
| int stat, data; |
| |
| stat = Ser2UTSR1; |
| data = Ser2UTDR; |
| |
| if (stat & (UTSR1_FRE | UTSR1_ROR)) { |
| dev->stats.rx_errors++; |
| if (stat & UTSR1_FRE) |
| dev->stats.rx_frame_errors++; |
| if (stat & UTSR1_ROR) |
| dev->stats.rx_fifo_errors++; |
| } else |
| async_unwrap_char(dev, &dev->stats, &si->rx_buff, data); |
| |
| status = Ser2UTSR0; |
| } |
| |
| /* |
| * We must clear certain bits. |
| */ |
| Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB); |
| |
| if (status & UTSR0_RFS) { |
| /* |
| * There are at least 4 bytes in the FIFO. Read 3 bytes |
| * and leave the rest to the block below. |
| */ |
| async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); |
| async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); |
| async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); |
| } |
| |
| if (status & (UTSR0_RFS | UTSR0_RID)) { |
| /* |
| * Fifo contains more than 1 character. |
| */ |
| do { |
| async_unwrap_char(dev, &dev->stats, &si->rx_buff, |
| Ser2UTDR); |
| } while (Ser2UTSR1 & UTSR1_RNE); |
| |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * FIR format support. |
| */ |
| static void sa1100_irda_firtxdma_irq(void *id) |
| { |
| struct net_device *dev = id; |
| struct sa1100_irda *si = netdev_priv(dev); |
| struct sk_buff *skb; |
| |
| /* |
| * Wait for the transmission to complete. Unfortunately, |
| * the hardware doesn't give us an interrupt to indicate |
| * "end of frame". |
| */ |
| do |
| rmb(); |
| while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY); |
| |
| /* |
| * Clear the transmit underrun bit. |
| */ |
| Ser2HSSR0 = HSSR0_TUR; |
| |
| /* |
| * Do we need to change speed? Note that we're lazy |
| * here - we don't free the old dma_rx.skb. We don't need |
| * to allocate a buffer either. |
| */ |
| sa1100_irda_check_speed(si); |
| |
| /* |
| * Start reception. This disables the transmitter for |
| * us. This will be using the existing RX buffer. |
| */ |
| sa1100_irda_rx_dma_start(si); |
| |
| /* Account and free the packet. */ |
| skb = si->dma_tx.skb; |
| if (skb) { |
| dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, |
| DMA_TO_DEVICE); |
| dev->stats.tx_packets ++; |
| dev->stats.tx_bytes += skb->len; |
| dev_kfree_skb_irq(skb); |
| si->dma_tx.skb = NULL; |
| } |
| |
| /* |
| * Make sure that the TX queue is available for sending |
| * (for retries). TX has priority over RX at all times. |
| */ |
| netif_wake_queue(dev); |
| } |
| |
| static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev, |
| struct sa1100_irda *si) |
| { |
| int mtt = irda_get_mtt(skb); |
| |
| si->dma_tx.skb = skb; |
| sg_set_buf(&si->dma_tx.sg, skb->data, skb->len); |
| if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) { |
| si->dma_tx.skb = NULL; |
| netif_wake_queue(dev); |
| dev->stats.tx_dropped++; |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev); |
| |
| /* |
| * If we have a mean turn-around time, impose the specified |
| * specified delay. We could shorten this by timing from |
| * the point we received the packet. |
| */ |
| if (mtt) |
| udelay(mtt); |
| |
| Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev) |
| { |
| struct sk_buff *skb = si->dma_rx.skb; |
| unsigned int len, stat, data; |
| |
| if (!skb) { |
| printk(KERN_ERR "sa1100_ir: SKB is NULL!\n"); |
| return; |
| } |
| |
| /* |
| * Get the current data position. |
| */ |
| len = sa1100_irda_dma_xferred(&si->dma_rx); |
| if (len > HPSIR_MAX_RXLEN) |
| len = HPSIR_MAX_RXLEN; |
| dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE); |
| |
| do { |
| /* |
| * Read Status, and then Data. |
| */ |
| stat = Ser2HSSR1; |
| rmb(); |
| data = Ser2HSDR; |
| |
| if (stat & (HSSR1_CRE | HSSR1_ROR)) { |
| dev->stats.rx_errors++; |
| if (stat & HSSR1_CRE) |
| dev->stats.rx_crc_errors++; |
| if (stat & HSSR1_ROR) |
| dev->stats.rx_frame_errors++; |
| } else |
| skb->data[len++] = data; |
| |
| /* |
| * If we hit the end of frame, there's |
| * no point in continuing. |
| */ |
| if (stat & HSSR1_EOF) |
| break; |
| } while (Ser2HSSR0 & HSSR0_EIF); |
| |
| if (stat & HSSR1_EOF) { |
| si->dma_rx.skb = NULL; |
| |
| skb_put(skb, len); |
| skb->dev = dev; |
| skb_reset_mac_header(skb); |
| skb->protocol = htons(ETH_P_IRDA); |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += len; |
| |
| /* |
| * Before we pass the buffer up, allocate a new one. |
| */ |
| sa1100_irda_rx_alloc(si); |
| |
| netif_rx(skb); |
| } else { |
| /* |
| * Remap the buffer - it was previously mapped, and we |
| * hope that this succeeds. |
| */ |
| dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE); |
| } |
| } |
| |
| /* |
| * We only have to handle RX events here; transmit events go via the TX |
| * DMA handler. We disable RX, process, and the restart RX. |
| */ |
| static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si) |
| { |
| /* |
| * Stop RX DMA |
| */ |
| dmaengine_pause(si->dma_rx.chan); |
| |
| /* |
| * Framing error - we throw away the packet completely. |
| * Clearing RXE flushes the error conditions and data |
| * from the fifo. |
| */ |
| if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) { |
| dev->stats.rx_errors++; |
| |
| if (Ser2HSSR0 & HSSR0_FRE) |
| dev->stats.rx_frame_errors++; |
| |
| /* |
| * Clear out the DMA... |
| */ |
| Ser2HSCR0 = HSCR0_HSSP; |
| |
| /* |
| * Clear selected status bits now, so we |
| * don't miss them next time around. |
| */ |
| Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB; |
| } |
| |
| /* |
| * Deal with any receive errors. The any of the lowest |
| * 8 bytes in the FIFO may contain an error. We must read |
| * them one by one. The "error" could even be the end of |
| * packet! |
| */ |
| if (Ser2HSSR0 & HSSR0_EIF) |
| sa1100_irda_fir_error(si, dev); |
| |
| /* |
| * No matter what happens, we must restart reception. |
| */ |
| sa1100_irda_rx_dma_start(si); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Set the IrDA communications speed. |
| */ |
| static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed) |
| { |
| unsigned long flags; |
| int brd, ret = -EINVAL; |
| |
| switch (speed) { |
| case 9600: case 19200: case 38400: |
| case 57600: case 115200: |
| brd = 3686400 / (16 * speed) - 1; |
| |
| /* Stop the receive DMA, and configure transmit. */ |
| if (IS_FIR(si)) { |
| dmaengine_terminate_all(si->dma_rx.chan); |
| dmaengine_slave_config(si->dma_tx.chan, |
| &sa1100_irda_sir_tx); |
| } |
| |
| local_irq_save(flags); |
| |
| Ser2UTCR3 = 0; |
| Ser2HSCR0 = HSCR0_UART; |
| |
| Ser2UTCR1 = brd >> 8; |
| Ser2UTCR2 = brd; |
| |
| /* |
| * Clear status register |
| */ |
| Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; |
| Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; |
| |
| if (si->pdata->set_speed) |
| si->pdata->set_speed(si->dev, speed); |
| |
| si->speed = speed; |
| si->tx_start = sa1100_irda_sir_tx_start; |
| si->irq = sa1100_irda_sir_irq; |
| |
| local_irq_restore(flags); |
| ret = 0; |
| break; |
| |
| case 4000000: |
| if (!IS_FIR(si)) |
| dmaengine_slave_config(si->dma_tx.chan, |
| &sa1100_irda_fir_tx); |
| |
| local_irq_save(flags); |
| |
| Ser2HSSR0 = 0xff; |
| Ser2HSCR0 = HSCR0_HSSP; |
| Ser2UTCR3 = 0; |
| |
| si->speed = speed; |
| si->tx_start = sa1100_irda_fir_tx_start; |
| si->irq = sa1100_irda_fir_irq; |
| |
| if (si->pdata->set_speed) |
| si->pdata->set_speed(si->dev, speed); |
| |
| sa1100_irda_rx_alloc(si); |
| sa1100_irda_rx_dma_start(si); |
| |
| local_irq_restore(flags); |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Control the power state of the IrDA transmitter. |
| * State: |
| * 0 - off |
| * 1 - short range, lowest power |
| * 2 - medium range, medium power |
| * 3 - maximum range, high power |
| * |
| * Currently, only assabet is known to support this. |
| */ |
| static int |
| __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state) |
| { |
| int ret = 0; |
| if (si->pdata->set_power) |
| ret = si->pdata->set_power(si->dev, state); |
| return ret; |
| } |
| |
| static inline int |
| sa1100_set_power(struct sa1100_irda *si, unsigned int state) |
| { |
| int ret; |
| |
| ret = __sa1100_irda_set_power(si, state); |
| if (ret == 0) |
| si->power = state; |
| |
| return ret; |
| } |
| |
| static irqreturn_t sa1100_irda_irq(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct sa1100_irda *si = netdev_priv(dev); |
| |
| return si->irq(dev, si); |
| } |
| |
| static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct sa1100_irda *si = netdev_priv(dev); |
| int speed = irda_get_next_speed(skb); |
| |
| /* |
| * Does this packet contain a request to change the interface |
| * speed? If so, remember it until we complete the transmission |
| * of this frame. |
| */ |
| if (speed != si->speed && speed != -1) |
| si->newspeed = speed; |
| |
| /* If this is an empty frame, we can bypass a lot. */ |
| if (skb->len == 0) { |
| sa1100_irda_check_speed(si); |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| netif_stop_queue(dev); |
| |
| /* We must not already have a skb to transmit... */ |
| BUG_ON(si->dma_tx.skb); |
| |
| return si->tx_start(skb, dev, si); |
| } |
| |
| static int |
| sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) |
| { |
| struct if_irda_req *rq = (struct if_irda_req *)ifreq; |
| struct sa1100_irda *si = netdev_priv(dev); |
| int ret = -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCSBANDWIDTH: |
| if (capable(CAP_NET_ADMIN)) { |
| /* |
| * We are unable to set the speed if the |
| * device is not running. |
| */ |
| if (si->open) { |
| ret = sa1100_irda_set_speed(si, |
| rq->ifr_baudrate); |
| } else { |
| printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n"); |
| ret = 0; |
| } |
| } |
| break; |
| |
| case SIOCSMEDIABUSY: |
| ret = -EPERM; |
| if (capable(CAP_NET_ADMIN)) { |
| irda_device_set_media_busy(dev, TRUE); |
| ret = 0; |
| } |
| break; |
| |
| case SIOCGRECEIVING: |
| rq->ifr_receiving = IS_FIR(si) ? 0 |
| : si->rx_buff.state != OUTSIDE_FRAME; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int sa1100_irda_startup(struct sa1100_irda *si) |
| { |
| int ret; |
| |
| /* |
| * Ensure that the ports for this device are setup correctly. |
| */ |
| if (si->pdata->startup) { |
| ret = si->pdata->startup(si->dev); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Configure PPC for IRDA - we want to drive TXD2 low. |
| * We also want to drive this pin low during sleep. |
| */ |
| PPSR &= ~PPC_TXD2; |
| PSDR &= ~PPC_TXD2; |
| PPDR |= PPC_TXD2; |
| |
| /* |
| * Enable HP-SIR modulation, and ensure that the port is disabled. |
| */ |
| Ser2UTCR3 = 0; |
| Ser2HSCR0 = HSCR0_UART; |
| Ser2UTCR4 = si->utcr4; |
| Ser2UTCR0 = UTCR0_8BitData; |
| Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL; |
| |
| /* |
| * Clear status register |
| */ |
| Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; |
| |
| ret = sa1100_irda_set_speed(si, si->speed = 9600); |
| if (ret) { |
| Ser2UTCR3 = 0; |
| Ser2HSCR0 = 0; |
| |
| if (si->pdata->shutdown) |
| si->pdata->shutdown(si->dev); |
| } |
| |
| return ret; |
| } |
| |
| static void sa1100_irda_shutdown(struct sa1100_irda *si) |
| { |
| /* |
| * Stop all DMA activity. |
| */ |
| dmaengine_terminate_all(si->dma_rx.chan); |
| dmaengine_terminate_all(si->dma_tx.chan); |
| |
| /* Disable the port. */ |
| Ser2UTCR3 = 0; |
| Ser2HSCR0 = 0; |
| |
| if (si->pdata->shutdown) |
| si->pdata->shutdown(si->dev); |
| } |
| |
| static int sa1100_irda_start(struct net_device *dev) |
| { |
| struct sa1100_irda *si = netdev_priv(dev); |
| int err; |
| |
| si->speed = 9600; |
| |
| err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc", |
| &sa1100_irda_fir_rx); |
| if (err) |
| goto err_rx_dma; |
| |
| err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr", |
| &sa1100_irda_sir_tx); |
| if (err) |
| goto err_tx_dma; |
| |
| /* |
| * Setup the serial port for the specified speed. |
| */ |
| err = sa1100_irda_startup(si); |
| if (err) |
| goto err_startup; |
| |
| /* |
| * Open a new IrLAP layer instance. |
| */ |
| si->irlap = irlap_open(dev, &si->qos, "sa1100"); |
| err = -ENOMEM; |
| if (!si->irlap) |
| goto err_irlap; |
| |
| err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev); |
| if (err) |
| goto err_irq; |
| |
| /* |
| * Now enable the interrupt and start the queue |
| */ |
| si->open = 1; |
| sa1100_set_power(si, power_level); /* low power mode */ |
| |
| netif_start_queue(dev); |
| return 0; |
| |
| err_irq: |
| irlap_close(si->irlap); |
| err_irlap: |
| si->open = 0; |
| sa1100_irda_shutdown(si); |
| err_startup: |
| dma_release_channel(si->dma_tx.chan); |
| err_tx_dma: |
| dma_release_channel(si->dma_rx.chan); |
| err_rx_dma: |
| return err; |
| } |
| |
| static int sa1100_irda_stop(struct net_device *dev) |
| { |
| struct sa1100_irda *si = netdev_priv(dev); |
| struct sk_buff *skb; |
| |
| netif_stop_queue(dev); |
| |
| si->open = 0; |
| sa1100_irda_shutdown(si); |
| |
| /* |
| * If we have been doing any DMA activity, make sure we |
| * tidy that up cleanly. |
| */ |
| skb = si->dma_rx.skb; |
| if (skb) { |
| dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, |
| DMA_FROM_DEVICE); |
| dev_kfree_skb(skb); |
| si->dma_rx.skb = NULL; |
| } |
| |
| skb = si->dma_tx.skb; |
| if (skb) { |
| dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, |
| DMA_TO_DEVICE); |
| dev_kfree_skb(skb); |
| si->dma_tx.skb = NULL; |
| } |
| |
| /* Stop IrLAP */ |
| if (si->irlap) { |
| irlap_close(si->irlap); |
| si->irlap = NULL; |
| } |
| |
| /* |
| * Free resources |
| */ |
| dma_release_channel(si->dma_tx.chan); |
| dma_release_channel(si->dma_rx.chan); |
| free_irq(dev->irq, dev); |
| |
| sa1100_set_power(si, 0); |
| |
| return 0; |
| } |
| |
| static int sa1100_irda_init_iobuf(iobuff_t *io, int size) |
| { |
| io->head = kmalloc(size, GFP_KERNEL | GFP_DMA); |
| if (io->head != NULL) { |
| io->truesize = size; |
| io->in_frame = FALSE; |
| io->state = OUTSIDE_FRAME; |
| io->data = io->head; |
| } |
| return io->head ? 0 : -ENOMEM; |
| } |
| |
| static const struct net_device_ops sa1100_irda_netdev_ops = { |
| .ndo_open = sa1100_irda_start, |
| .ndo_stop = sa1100_irda_stop, |
| .ndo_start_xmit = sa1100_irda_hard_xmit, |
| .ndo_do_ioctl = sa1100_irda_ioctl, |
| }; |
| |
| static int sa1100_irda_probe(struct platform_device *pdev) |
| { |
| struct net_device *dev; |
| struct sa1100_irda *si; |
| unsigned int baudrate_mask; |
| int err, irq; |
| |
| if (!pdev->dev.platform_data) |
| return -EINVAL; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq <= 0) |
| return irq < 0 ? irq : -ENXIO; |
| |
| err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY; |
| if (err) |
| goto err_mem_1; |
| err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY; |
| if (err) |
| goto err_mem_2; |
| err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY; |
| if (err) |
| goto err_mem_3; |
| |
| dev = alloc_irdadev(sizeof(struct sa1100_irda)); |
| if (!dev) |
| goto err_mem_4; |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| si = netdev_priv(dev); |
| si->dev = &pdev->dev; |
| si->pdata = pdev->dev.platform_data; |
| |
| sg_init_table(&si->dma_rx.sg, 1); |
| sg_init_table(&si->dma_tx.sg, 1); |
| |
| /* |
| * Initialise the HP-SIR buffers |
| */ |
| err = sa1100_irda_init_iobuf(&si->rx_buff, 14384); |
| if (err) |
| goto err_mem_5; |
| err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME); |
| if (err) |
| goto err_mem_5; |
| |
| dev->netdev_ops = &sa1100_irda_netdev_ops; |
| dev->irq = irq; |
| |
| irda_init_max_qos_capabilies(&si->qos); |
| |
| /* |
| * We support original IRDA up to 115k2. (we don't currently |
| * support 4Mbps). Min Turn Time set to 1ms or greater. |
| */ |
| baudrate_mask = IR_9600; |
| |
| switch (max_rate) { |
| case 4000000: baudrate_mask |= IR_4000000 << 8; |
| case 115200: baudrate_mask |= IR_115200; |
| case 57600: baudrate_mask |= IR_57600; |
| case 38400: baudrate_mask |= IR_38400; |
| case 19200: baudrate_mask |= IR_19200; |
| } |
| |
| si->qos.baud_rate.bits &= baudrate_mask; |
| si->qos.min_turn_time.bits = 7; |
| |
| irda_qos_bits_to_value(&si->qos); |
| |
| si->utcr4 = UTCR4_HPSIR; |
| if (tx_lpm) |
| si->utcr4 |= UTCR4_Z1_6us; |
| |
| /* |
| * Initially enable HP-SIR modulation, and ensure that the port |
| * is disabled. |
| */ |
| Ser2UTCR3 = 0; |
| Ser2UTCR4 = si->utcr4; |
| Ser2HSCR0 = HSCR0_UART; |
| |
| err = register_netdev(dev); |
| if (err == 0) |
| platform_set_drvdata(pdev, dev); |
| |
| if (err) { |
| err_mem_5: |
| kfree(si->tx_buff.head); |
| kfree(si->rx_buff.head); |
| free_netdev(dev); |
| err_mem_4: |
| release_mem_region(__PREG(Ser2HSCR2), 0x04); |
| err_mem_3: |
| release_mem_region(__PREG(Ser2HSCR0), 0x1c); |
| err_mem_2: |
| release_mem_region(__PREG(Ser2UTCR0), 0x24); |
| } |
| err_mem_1: |
| return err; |
| } |
| |
| static int sa1100_irda_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| |
| if (dev) { |
| struct sa1100_irda *si = netdev_priv(dev); |
| unregister_netdev(dev); |
| kfree(si->tx_buff.head); |
| kfree(si->rx_buff.head); |
| free_netdev(dev); |
| } |
| |
| release_mem_region(__PREG(Ser2HSCR2), 0x04); |
| release_mem_region(__PREG(Ser2HSCR0), 0x1c); |
| release_mem_region(__PREG(Ser2UTCR0), 0x24); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| /* |
| * Suspend the IrDA interface. |
| */ |
| static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct sa1100_irda *si; |
| |
| if (!dev) |
| return 0; |
| |
| si = netdev_priv(dev); |
| if (si->open) { |
| /* |
| * Stop the transmit queue |
| */ |
| netif_device_detach(dev); |
| disable_irq(dev->irq); |
| sa1100_irda_shutdown(si); |
| __sa1100_irda_set_power(si, 0); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Resume the IrDA interface. |
| */ |
| static int sa1100_irda_resume(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct sa1100_irda *si; |
| |
| if (!dev) |
| return 0; |
| |
| si = netdev_priv(dev); |
| if (si->open) { |
| /* |
| * If we missed a speed change, initialise at the new speed |
| * directly. It is debatable whether this is actually |
| * required, but in the interests of continuing from where |
| * we left off it is desirable. The converse argument is |
| * that we should re-negotiate at 9600 baud again. |
| */ |
| if (si->newspeed) { |
| si->speed = si->newspeed; |
| si->newspeed = 0; |
| } |
| |
| sa1100_irda_startup(si); |
| __sa1100_irda_set_power(si, si->power); |
| enable_irq(dev->irq); |
| |
| /* |
| * This automatically wakes up the queue |
| */ |
| netif_device_attach(dev); |
| } |
| |
| return 0; |
| } |
| #else |
| #define sa1100_irda_suspend NULL |
| #define sa1100_irda_resume NULL |
| #endif |
| |
| static struct platform_driver sa1100ir_driver = { |
| .probe = sa1100_irda_probe, |
| .remove = sa1100_irda_remove, |
| .suspend = sa1100_irda_suspend, |
| .resume = sa1100_irda_resume, |
| .driver = { |
| .name = "sa11x0-ir", |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static int __init sa1100_irda_init(void) |
| { |
| /* |
| * Limit power level a sensible range. |
| */ |
| if (power_level < 1) |
| power_level = 1; |
| if (power_level > 3) |
| power_level = 3; |
| |
| return platform_driver_register(&sa1100ir_driver); |
| } |
| |
| static void __exit sa1100_irda_exit(void) |
| { |
| platform_driver_unregister(&sa1100ir_driver); |
| } |
| |
| module_init(sa1100_irda_init); |
| module_exit(sa1100_irda_exit); |
| module_param(power_level, int, 0); |
| module_param(tx_lpm, int, 0); |
| module_param(max_rate, int, 0); |
| |
| MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); |
| MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)"); |
| MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode"); |
| MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)"); |
| MODULE_ALIAS("platform:sa11x0-ir"); |