blob: a660834416ac89b3f16279200d45f6d64ecdfe9e [file] [log] [blame]
Christoph Lameter81819f02007-05-06 14:49:36 -07001/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
Yasunori Gotob9049e22007-10-21 16:41:37 -070023#include <linux/memory.h>
Christoph Lameter81819f02007-05-06 14:49:36 -070024
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
Christoph Lameter672bba32007-05-09 02:32:39 -070070 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
Christoph Lameter81819f02007-05-06 14:49:36 -070072 * freed then the slab will show up again on the partial lists.
Christoph Lameter672bba32007-05-09 02:32:39 -070073 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
Christoph Lameter81819f02007-05-06 14:49:36 -070075 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
Christoph Lameter4b6f0752007-05-16 22:10:53 -070082 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
Christoph Lameterdfb4f092007-10-16 01:26:05 -070094 * freelist that allows lockless access to
Christoph Lameter894b8782007-05-10 03:15:16 -070095 * free objects in addition to the regular freelist
96 * that requires the slab lock.
Christoph Lameter81819f02007-05-06 14:49:36 -070097 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
Christoph Lameter894b8782007-05-10 03:15:16 -0700100 * the fast path and disables lockless freelists.
Christoph Lameter81819f02007-05-06 14:49:36 -0700101 */
102
Christoph Lameter5577bd82007-05-16 22:10:56 -0700103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700111static inline int SlabFrozen(struct page *page)
112{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700113 return page->flags & FROZEN;
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700118 page->flags |= FROZEN;
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700123 page->flags &= ~FROZEN;
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700124}
125
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700126static inline int SlabDebug(struct page *page)
127{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700128 return page->flags & SLABDEBUG;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700129}
130
131static inline void SetSlabDebug(struct page *page)
132{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700133 page->flags |= SLABDEBUG;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700138 page->flags &= ~SLABDEBUG;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700139}
140
Christoph Lameter81819f02007-05-06 14:49:36 -0700141/*
142 * Issues still to be resolved:
143 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
171/*
Christoph Lameter2086d262007-05-06 14:49:46 -0700172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
Christoph Lameter76be8952007-12-21 14:37:37 -0800175#define MIN_PARTIAL 5
Christoph Lametere95eed52007-05-06 14:49:44 -0700176
Christoph Lameter2086d262007-05-06 14:49:46 -0700177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
Christoph Lameter81819f02007-05-06 14:49:36 -0700184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
Christoph Lameter672bba32007-05-09 02:32:39 -0700186
Christoph Lameter81819f02007-05-06 14:49:36 -0700187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
Christoph Lameter47bfdc02007-05-06 14:49:37 -0700197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Christoph Lameter81819f02007-05-06 14:49:36 -0700198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
Christoph Lameter47bfdc02007-05-06 14:49:37 -0700201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
Christoph Lameter81819f02007-05-06 14:49:36 -0700202#endif
203
204/* Internal SLUB flags */
Christoph Lameter1ceef402007-08-07 15:11:48 -0700205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
Christoph Lameter81819f02007-05-06 14:49:36 -0700207
Christoph Lameter65c02d42007-05-09 02:32:35 -0700208/* Not all arches define cache_line_size */
209#ifndef cache_line_size
210#define cache_line_size() L1_CACHE_BYTES
211#endif
212
Christoph Lameter81819f02007-05-06 14:49:36 -0700213static int kmem_size = sizeof(struct kmem_cache);
214
215#ifdef CONFIG_SMP
216static struct notifier_block slab_notifier;
217#endif
218
219static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
Christoph Lameter672bba32007-05-09 02:32:39 -0700222 UP, /* Everything works but does not show up in sysfs */
Christoph Lameter81819f02007-05-06 14:49:36 -0700223 SYSFS /* Sysfs up */
224} slab_state = DOWN;
225
226/* A list of all slab caches on the system */
227static DECLARE_RWSEM(slub_lock);
Adrian Bunk5af328a2007-07-17 04:03:27 -0700228static LIST_HEAD(slab_caches);
Christoph Lameter81819f02007-05-06 14:49:36 -0700229
Christoph Lameter02cbc872007-05-09 02:32:43 -0700230/*
231 * Tracking user of a slab.
232 */
233struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
238};
239
240enum track_item { TRACK_ALLOC, TRACK_FREE };
241
Christoph Lameter41ecc552007-05-09 02:32:44 -0700242#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
Christoph Lameter81819f02007-05-06 14:49:36 -0700243static int sysfs_slab_add(struct kmem_cache *);
244static int sysfs_slab_alias(struct kmem_cache *, const char *);
245static void sysfs_slab_remove(struct kmem_cache *);
246#else
Christoph Lameter0c710012007-07-17 04:03:24 -0700247static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 { return 0; }
Christoph Lameter151c6022008-01-07 22:29:05 -0800250static inline void sysfs_slab_remove(struct kmem_cache *s)
251{
252 kfree(s);
253}
Christoph Lameter81819f02007-05-06 14:49:36 -0700254#endif
255
256/********************************************************************
257 * Core slab cache functions
258 *******************************************************************/
259
260int slab_is_available(void)
261{
262 return slab_state >= UP;
263}
264
265static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
266{
267#ifdef CONFIG_NUMA
268 return s->node[node];
269#else
270 return &s->local_node;
271#endif
272}
273
Christoph Lameterdfb4f092007-10-16 01:26:05 -0700274static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
275{
Christoph Lameter4c93c3552007-10-16 01:26:08 -0700276#ifdef CONFIG_SMP
277 return s->cpu_slab[cpu];
278#else
279 return &s->cpu_slab;
280#endif
Christoph Lameterdfb4f092007-10-16 01:26:05 -0700281}
282
Christoph Lameter02cbc872007-05-09 02:32:43 -0700283static inline int check_valid_pointer(struct kmem_cache *s,
284 struct page *page, const void *object)
285{
286 void *base;
287
288 if (!object)
289 return 1;
290
291 base = page_address(page);
292 if (object < base || object >= base + s->objects * s->size ||
293 (object - base) % s->size) {
294 return 0;
295 }
296
297 return 1;
298}
299
Christoph Lameter81819f02007-05-06 14:49:36 -0700300/*
Christoph Lameter7656c722007-05-09 02:32:40 -0700301 * Slow version of get and set free pointer.
302 *
303 * This version requires touching the cache lines of kmem_cache which
304 * we avoid to do in the fast alloc free paths. There we obtain the offset
305 * from the page struct.
306 */
307static inline void *get_freepointer(struct kmem_cache *s, void *object)
308{
309 return *(void **)(object + s->offset);
310}
311
312static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
313{
314 *(void **)(object + s->offset) = fp;
315}
316
317/* Loop over all objects in a slab */
318#define for_each_object(__p, __s, __addr) \
319 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
320 __p += (__s)->size)
321
322/* Scan freelist */
323#define for_each_free_object(__p, __s, __free) \
324 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
325
326/* Determine object index from a given position */
327static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
328{
329 return (p - addr) / s->size;
330}
331
Christoph Lameter41ecc552007-05-09 02:32:44 -0700332#ifdef CONFIG_SLUB_DEBUG
333/*
334 * Debug settings:
335 */
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700336#ifdef CONFIG_SLUB_DEBUG_ON
337static int slub_debug = DEBUG_DEFAULT_FLAGS;
338#else
Christoph Lameter41ecc552007-05-09 02:32:44 -0700339static int slub_debug;
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700340#endif
Christoph Lameter41ecc552007-05-09 02:32:44 -0700341
342static char *slub_debug_slabs;
343
Christoph Lameter7656c722007-05-09 02:32:40 -0700344/*
Christoph Lameter81819f02007-05-06 14:49:36 -0700345 * Object debugging
346 */
347static void print_section(char *text, u8 *addr, unsigned int length)
348{
349 int i, offset;
350 int newline = 1;
351 char ascii[17];
352
353 ascii[16] = 0;
354
355 for (i = 0; i < length; i++) {
356 if (newline) {
Christoph Lameter24922682007-07-17 04:03:18 -0700357 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
Christoph Lameter81819f02007-05-06 14:49:36 -0700358 newline = 0;
359 }
Pekka Enberg06428782008-01-07 23:20:27 -0800360 printk(KERN_CONT " %02x", addr[i]);
Christoph Lameter81819f02007-05-06 14:49:36 -0700361 offset = i % 16;
362 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
363 if (offset == 15) {
Pekka Enberg06428782008-01-07 23:20:27 -0800364 printk(KERN_CONT " %s\n", ascii);
Christoph Lameter81819f02007-05-06 14:49:36 -0700365 newline = 1;
366 }
367 }
368 if (!newline) {
369 i %= 16;
370 while (i < 16) {
Pekka Enberg06428782008-01-07 23:20:27 -0800371 printk(KERN_CONT " ");
Christoph Lameter81819f02007-05-06 14:49:36 -0700372 ascii[i] = ' ';
373 i++;
374 }
Pekka Enberg06428782008-01-07 23:20:27 -0800375 printk(KERN_CONT " %s\n", ascii);
Christoph Lameter81819f02007-05-06 14:49:36 -0700376 }
377}
378
Christoph Lameter81819f02007-05-06 14:49:36 -0700379static struct track *get_track(struct kmem_cache *s, void *object,
380 enum track_item alloc)
381{
382 struct track *p;
383
384 if (s->offset)
385 p = object + s->offset + sizeof(void *);
386 else
387 p = object + s->inuse;
388
389 return p + alloc;
390}
391
392static void set_track(struct kmem_cache *s, void *object,
393 enum track_item alloc, void *addr)
394{
395 struct track *p;
396
397 if (s->offset)
398 p = object + s->offset + sizeof(void *);
399 else
400 p = object + s->inuse;
401
402 p += alloc;
403 if (addr) {
404 p->addr = addr;
405 p->cpu = smp_processor_id();
406 p->pid = current ? current->pid : -1;
407 p->when = jiffies;
408 } else
409 memset(p, 0, sizeof(struct track));
410}
411
Christoph Lameter81819f02007-05-06 14:49:36 -0700412static void init_tracking(struct kmem_cache *s, void *object)
413{
Christoph Lameter24922682007-07-17 04:03:18 -0700414 if (!(s->flags & SLAB_STORE_USER))
415 return;
416
417 set_track(s, object, TRACK_FREE, NULL);
418 set_track(s, object, TRACK_ALLOC, NULL);
Christoph Lameter81819f02007-05-06 14:49:36 -0700419}
420
421static void print_track(const char *s, struct track *t)
422{
423 if (!t->addr)
424 return;
425
Christoph Lameter24922682007-07-17 04:03:18 -0700426 printk(KERN_ERR "INFO: %s in ", s);
Christoph Lameter81819f02007-05-06 14:49:36 -0700427 __print_symbol("%s", (unsigned long)t->addr);
Christoph Lameter24922682007-07-17 04:03:18 -0700428 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
Christoph Lameter81819f02007-05-06 14:49:36 -0700429}
430
Christoph Lameter24922682007-07-17 04:03:18 -0700431static void print_tracking(struct kmem_cache *s, void *object)
432{
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
435
436 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
437 print_track("Freed", get_track(s, object, TRACK_FREE));
438}
439
440static void print_page_info(struct page *page)
441{
442 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
443 page, page->inuse, page->freelist, page->flags);
444
445}
446
447static void slab_bug(struct kmem_cache *s, char *fmt, ...)
448{
449 va_list args;
450 char buf[100];
451
452 va_start(args, fmt);
453 vsnprintf(buf, sizeof(buf), fmt, args);
454 va_end(args);
455 printk(KERN_ERR "========================================"
456 "=====================================\n");
457 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
458 printk(KERN_ERR "----------------------------------------"
459 "-------------------------------------\n\n");
460}
461
462static void slab_fix(struct kmem_cache *s, char *fmt, ...)
463{
464 va_list args;
465 char buf[100];
466
467 va_start(args, fmt);
468 vsnprintf(buf, sizeof(buf), fmt, args);
469 va_end(args);
470 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
471}
472
473static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
Christoph Lameter81819f02007-05-06 14:49:36 -0700474{
475 unsigned int off; /* Offset of last byte */
Christoph Lameter24922682007-07-17 04:03:18 -0700476 u8 *addr = page_address(page);
477
478 print_tracking(s, p);
479
480 print_page_info(page);
481
482 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
483 p, p - addr, get_freepointer(s, p));
484
485 if (p > addr + 16)
486 print_section("Bytes b4", p - 16, 16);
487
488 print_section("Object", p, min(s->objsize, 128));
Christoph Lameter81819f02007-05-06 14:49:36 -0700489
490 if (s->flags & SLAB_RED_ZONE)
491 print_section("Redzone", p + s->objsize,
492 s->inuse - s->objsize);
493
Christoph Lameter81819f02007-05-06 14:49:36 -0700494 if (s->offset)
495 off = s->offset + sizeof(void *);
496 else
497 off = s->inuse;
498
Christoph Lameter24922682007-07-17 04:03:18 -0700499 if (s->flags & SLAB_STORE_USER)
Christoph Lameter81819f02007-05-06 14:49:36 -0700500 off += 2 * sizeof(struct track);
Christoph Lameter81819f02007-05-06 14:49:36 -0700501
502 if (off != s->size)
503 /* Beginning of the filler is the free pointer */
Christoph Lameter24922682007-07-17 04:03:18 -0700504 print_section("Padding", p + off, s->size - off);
505
506 dump_stack();
Christoph Lameter81819f02007-05-06 14:49:36 -0700507}
508
509static void object_err(struct kmem_cache *s, struct page *page,
510 u8 *object, char *reason)
511{
Christoph Lameter24922682007-07-17 04:03:18 -0700512 slab_bug(s, reason);
513 print_trailer(s, page, object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700514}
515
Christoph Lameter24922682007-07-17 04:03:18 -0700516static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
Christoph Lameter81819f02007-05-06 14:49:36 -0700517{
518 va_list args;
519 char buf[100];
520
Christoph Lameter24922682007-07-17 04:03:18 -0700521 va_start(args, fmt);
522 vsnprintf(buf, sizeof(buf), fmt, args);
Christoph Lameter81819f02007-05-06 14:49:36 -0700523 va_end(args);
Christoph Lameter24922682007-07-17 04:03:18 -0700524 slab_bug(s, fmt);
525 print_page_info(page);
Christoph Lameter81819f02007-05-06 14:49:36 -0700526 dump_stack();
527}
528
529static void init_object(struct kmem_cache *s, void *object, int active)
530{
531 u8 *p = object;
532
533 if (s->flags & __OBJECT_POISON) {
534 memset(p, POISON_FREE, s->objsize - 1);
Pekka Enberg06428782008-01-07 23:20:27 -0800535 p[s->objsize - 1] = POISON_END;
Christoph Lameter81819f02007-05-06 14:49:36 -0700536 }
537
538 if (s->flags & SLAB_RED_ZONE)
539 memset(p + s->objsize,
540 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
541 s->inuse - s->objsize);
542}
543
Christoph Lameter24922682007-07-17 04:03:18 -0700544static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
Christoph Lameter81819f02007-05-06 14:49:36 -0700545{
546 while (bytes) {
547 if (*start != (u8)value)
Christoph Lameter24922682007-07-17 04:03:18 -0700548 return start;
Christoph Lameter81819f02007-05-06 14:49:36 -0700549 start++;
550 bytes--;
551 }
Christoph Lameter24922682007-07-17 04:03:18 -0700552 return NULL;
553}
554
555static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
556 void *from, void *to)
557{
558 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
559 memset(from, data, to - from);
560}
561
562static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
563 u8 *object, char *what,
Pekka Enberg06428782008-01-07 23:20:27 -0800564 u8 *start, unsigned int value, unsigned int bytes)
Christoph Lameter24922682007-07-17 04:03:18 -0700565{
566 u8 *fault;
567 u8 *end;
568
569 fault = check_bytes(start, value, bytes);
570 if (!fault)
571 return 1;
572
573 end = start + bytes;
574 while (end > fault && end[-1] == value)
575 end--;
576
577 slab_bug(s, "%s overwritten", what);
578 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
579 fault, end - 1, fault[0], value);
580 print_trailer(s, page, object);
581
582 restore_bytes(s, what, value, fault, end);
583 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700584}
585
Christoph Lameter81819f02007-05-06 14:49:36 -0700586/*
587 * Object layout:
588 *
589 * object address
590 * Bytes of the object to be managed.
591 * If the freepointer may overlay the object then the free
592 * pointer is the first word of the object.
Christoph Lameter672bba32007-05-09 02:32:39 -0700593 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700594 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
595 * 0xa5 (POISON_END)
596 *
597 * object + s->objsize
598 * Padding to reach word boundary. This is also used for Redzoning.
Christoph Lameter672bba32007-05-09 02:32:39 -0700599 * Padding is extended by another word if Redzoning is enabled and
600 * objsize == inuse.
601 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700602 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
603 * 0xcc (RED_ACTIVE) for objects in use.
604 *
605 * object + s->inuse
Christoph Lameter672bba32007-05-09 02:32:39 -0700606 * Meta data starts here.
607 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700608 * A. Free pointer (if we cannot overwrite object on free)
609 * B. Tracking data for SLAB_STORE_USER
Christoph Lameter672bba32007-05-09 02:32:39 -0700610 * C. Padding to reach required alignment boundary or at mininum
611 * one word if debuggin is on to be able to detect writes
612 * before the word boundary.
613 *
614 * Padding is done using 0x5a (POISON_INUSE)
Christoph Lameter81819f02007-05-06 14:49:36 -0700615 *
616 * object + s->size
Christoph Lameter672bba32007-05-09 02:32:39 -0700617 * Nothing is used beyond s->size.
Christoph Lameter81819f02007-05-06 14:49:36 -0700618 *
Christoph Lameter672bba32007-05-09 02:32:39 -0700619 * If slabcaches are merged then the objsize and inuse boundaries are mostly
620 * ignored. And therefore no slab options that rely on these boundaries
Christoph Lameter81819f02007-05-06 14:49:36 -0700621 * may be used with merged slabcaches.
622 */
623
Christoph Lameter81819f02007-05-06 14:49:36 -0700624static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
625{
626 unsigned long off = s->inuse; /* The end of info */
627
628 if (s->offset)
629 /* Freepointer is placed after the object. */
630 off += sizeof(void *);
631
632 if (s->flags & SLAB_STORE_USER)
633 /* We also have user information there */
634 off += 2 * sizeof(struct track);
635
636 if (s->size == off)
637 return 1;
638
Christoph Lameter24922682007-07-17 04:03:18 -0700639 return check_bytes_and_report(s, page, p, "Object padding",
640 p + off, POISON_INUSE, s->size - off);
Christoph Lameter81819f02007-05-06 14:49:36 -0700641}
642
643static int slab_pad_check(struct kmem_cache *s, struct page *page)
644{
Christoph Lameter24922682007-07-17 04:03:18 -0700645 u8 *start;
646 u8 *fault;
647 u8 *end;
648 int length;
649 int remainder;
Christoph Lameter81819f02007-05-06 14:49:36 -0700650
651 if (!(s->flags & SLAB_POISON))
652 return 1;
653
Christoph Lameter24922682007-07-17 04:03:18 -0700654 start = page_address(page);
655 end = start + (PAGE_SIZE << s->order);
Christoph Lameter81819f02007-05-06 14:49:36 -0700656 length = s->objects * s->size;
Christoph Lameter24922682007-07-17 04:03:18 -0700657 remainder = end - (start + length);
Christoph Lameter81819f02007-05-06 14:49:36 -0700658 if (!remainder)
659 return 1;
660
Christoph Lameter24922682007-07-17 04:03:18 -0700661 fault = check_bytes(start + length, POISON_INUSE, remainder);
662 if (!fault)
663 return 1;
664 while (end > fault && end[-1] == POISON_INUSE)
665 end--;
666
667 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
668 print_section("Padding", start, length);
669
670 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
671 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700672}
673
674static int check_object(struct kmem_cache *s, struct page *page,
675 void *object, int active)
676{
677 u8 *p = object;
678 u8 *endobject = object + s->objsize;
679
680 if (s->flags & SLAB_RED_ZONE) {
681 unsigned int red =
682 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
683
Christoph Lameter24922682007-07-17 04:03:18 -0700684 if (!check_bytes_and_report(s, page, object, "Redzone",
685 endobject, red, s->inuse - s->objsize))
Christoph Lameter81819f02007-05-06 14:49:36 -0700686 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700687 } else {
Christoph Lameter24922682007-07-17 04:03:18 -0700688 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
689 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
690 POISON_INUSE, s->inuse - s->objsize);
Christoph Lameter81819f02007-05-06 14:49:36 -0700691 }
692
693 if (s->flags & SLAB_POISON) {
694 if (!active && (s->flags & __OBJECT_POISON) &&
Christoph Lameter24922682007-07-17 04:03:18 -0700695 (!check_bytes_and_report(s, page, p, "Poison", p,
696 POISON_FREE, s->objsize - 1) ||
697 !check_bytes_and_report(s, page, p, "Poison",
Pekka Enberg06428782008-01-07 23:20:27 -0800698 p + s->objsize - 1, POISON_END, 1)))
Christoph Lameter81819f02007-05-06 14:49:36 -0700699 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700700 /*
701 * check_pad_bytes cleans up on its own.
702 */
703 check_pad_bytes(s, page, p);
704 }
705
706 if (!s->offset && active)
707 /*
708 * Object and freepointer overlap. Cannot check
709 * freepointer while object is allocated.
710 */
711 return 1;
712
713 /* Check free pointer validity */
714 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
715 object_err(s, page, p, "Freepointer corrupt");
716 /*
717 * No choice but to zap it and thus loose the remainder
718 * of the free objects in this slab. May cause
Christoph Lameter672bba32007-05-09 02:32:39 -0700719 * another error because the object count is now wrong.
Christoph Lameter81819f02007-05-06 14:49:36 -0700720 */
721 set_freepointer(s, p, NULL);
722 return 0;
723 }
724 return 1;
725}
726
727static int check_slab(struct kmem_cache *s, struct page *page)
728{
729 VM_BUG_ON(!irqs_disabled());
730
731 if (!PageSlab(page)) {
Christoph Lameter24922682007-07-17 04:03:18 -0700732 slab_err(s, page, "Not a valid slab page");
Christoph Lameter81819f02007-05-06 14:49:36 -0700733 return 0;
734 }
Christoph Lameter81819f02007-05-06 14:49:36 -0700735 if (page->inuse > s->objects) {
Christoph Lameter24922682007-07-17 04:03:18 -0700736 slab_err(s, page, "inuse %u > max %u",
737 s->name, page->inuse, s->objects);
Christoph Lameter81819f02007-05-06 14:49:36 -0700738 return 0;
739 }
740 /* Slab_pad_check fixes things up after itself */
741 slab_pad_check(s, page);
742 return 1;
743}
744
745/*
Christoph Lameter672bba32007-05-09 02:32:39 -0700746 * Determine if a certain object on a page is on the freelist. Must hold the
747 * slab lock to guarantee that the chains are in a consistent state.
Christoph Lameter81819f02007-05-06 14:49:36 -0700748 */
749static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
750{
751 int nr = 0;
752 void *fp = page->freelist;
753 void *object = NULL;
754
755 while (fp && nr <= s->objects) {
756 if (fp == search)
757 return 1;
758 if (!check_valid_pointer(s, page, fp)) {
759 if (object) {
760 object_err(s, page, object,
761 "Freechain corrupt");
762 set_freepointer(s, object, NULL);
763 break;
764 } else {
Christoph Lameter24922682007-07-17 04:03:18 -0700765 slab_err(s, page, "Freepointer corrupt");
Christoph Lameter81819f02007-05-06 14:49:36 -0700766 page->freelist = NULL;
767 page->inuse = s->objects;
Christoph Lameter24922682007-07-17 04:03:18 -0700768 slab_fix(s, "Freelist cleared");
Christoph Lameter81819f02007-05-06 14:49:36 -0700769 return 0;
770 }
771 break;
772 }
773 object = fp;
774 fp = get_freepointer(s, object);
775 nr++;
776 }
777
778 if (page->inuse != s->objects - nr) {
Christoph Lameter70d71222007-05-06 14:49:47 -0700779 slab_err(s, page, "Wrong object count. Counter is %d but "
Christoph Lameter24922682007-07-17 04:03:18 -0700780 "counted were %d", page->inuse, s->objects - nr);
Christoph Lameter81819f02007-05-06 14:49:36 -0700781 page->inuse = s->objects - nr;
Christoph Lameter24922682007-07-17 04:03:18 -0700782 slab_fix(s, "Object count adjusted.");
Christoph Lameter81819f02007-05-06 14:49:36 -0700783 }
784 return search == NULL;
785}
786
Christoph Lameter3ec09742007-05-16 22:11:00 -0700787static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
788{
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801}
802
Christoph Lameter643b1132007-05-06 14:49:42 -0700803/*
Christoph Lameter672bba32007-05-09 02:32:39 -0700804 * Tracking of fully allocated slabs for debugging purposes.
Christoph Lameter643b1132007-05-06 14:49:42 -0700805 */
Christoph Lametere95eed52007-05-06 14:49:44 -0700806static void add_full(struct kmem_cache_node *n, struct page *page)
Christoph Lameter643b1132007-05-06 14:49:42 -0700807{
Christoph Lameter643b1132007-05-06 14:49:42 -0700808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811}
812
813static void remove_full(struct kmem_cache *s, struct page *page)
814{
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825}
826
Christoph Lameter3ec09742007-05-16 22:11:00 -0700827static void setup_object_debug(struct kmem_cache *s, struct page *page,
828 void *object)
829{
830 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
831 return;
832
833 init_object(s, object, 0);
834 init_tracking(s, object);
835}
836
837static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
838 void *object, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -0700839{
840 if (!check_slab(s, page))
841 goto bad;
842
843 if (object && !on_freelist(s, page, object)) {
Christoph Lameter24922682007-07-17 04:03:18 -0700844 object_err(s, page, object, "Object already allocated");
Christoph Lameter70d71222007-05-06 14:49:47 -0700845 goto bad;
Christoph Lameter81819f02007-05-06 14:49:36 -0700846 }
847
848 if (!check_valid_pointer(s, page, object)) {
849 object_err(s, page, object, "Freelist Pointer check fails");
Christoph Lameter70d71222007-05-06 14:49:47 -0700850 goto bad;
Christoph Lameter81819f02007-05-06 14:49:36 -0700851 }
852
Christoph Lameter3ec09742007-05-16 22:11:00 -0700853 if (object && !check_object(s, page, object, 0))
Christoph Lameter81819f02007-05-06 14:49:36 -0700854 goto bad;
Christoph Lameter81819f02007-05-06 14:49:36 -0700855
Christoph Lameter3ec09742007-05-16 22:11:00 -0700856 /* Success perform special debug activities for allocs */
857 if (s->flags & SLAB_STORE_USER)
858 set_track(s, object, TRACK_ALLOC, addr);
859 trace(s, page, object, 1);
860 init_object(s, object, 1);
Christoph Lameter81819f02007-05-06 14:49:36 -0700861 return 1;
Christoph Lameter3ec09742007-05-16 22:11:00 -0700862
Christoph Lameter81819f02007-05-06 14:49:36 -0700863bad:
864 if (PageSlab(page)) {
865 /*
866 * If this is a slab page then lets do the best we can
867 * to avoid issues in the future. Marking all objects
Christoph Lameter672bba32007-05-09 02:32:39 -0700868 * as used avoids touching the remaining objects.
Christoph Lameter81819f02007-05-06 14:49:36 -0700869 */
Christoph Lameter24922682007-07-17 04:03:18 -0700870 slab_fix(s, "Marking all objects used");
Christoph Lameter81819f02007-05-06 14:49:36 -0700871 page->inuse = s->objects;
872 page->freelist = NULL;
Christoph Lameter81819f02007-05-06 14:49:36 -0700873 }
874 return 0;
875}
876
Christoph Lameter3ec09742007-05-16 22:11:00 -0700877static int free_debug_processing(struct kmem_cache *s, struct page *page,
878 void *object, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -0700879{
880 if (!check_slab(s, page))
881 goto fail;
882
883 if (!check_valid_pointer(s, page, object)) {
Christoph Lameter70d71222007-05-06 14:49:47 -0700884 slab_err(s, page, "Invalid object pointer 0x%p", object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700885 goto fail;
886 }
887
888 if (on_freelist(s, page, object)) {
Christoph Lameter24922682007-07-17 04:03:18 -0700889 object_err(s, page, object, "Object already free");
Christoph Lameter81819f02007-05-06 14:49:36 -0700890 goto fail;
891 }
892
893 if (!check_object(s, page, object, 1))
894 return 0;
895
896 if (unlikely(s != page->slab)) {
897 if (!PageSlab(page))
Christoph Lameter70d71222007-05-06 14:49:47 -0700898 slab_err(s, page, "Attempt to free object(0x%p) "
899 "outside of slab", object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700900 else
Christoph Lameter70d71222007-05-06 14:49:47 -0700901 if (!page->slab) {
Christoph Lameter81819f02007-05-06 14:49:36 -0700902 printk(KERN_ERR
Christoph Lameter70d71222007-05-06 14:49:47 -0700903 "SLUB <none>: no slab for object 0x%p.\n",
Christoph Lameter81819f02007-05-06 14:49:36 -0700904 object);
Christoph Lameter70d71222007-05-06 14:49:47 -0700905 dump_stack();
Pekka Enberg06428782008-01-07 23:20:27 -0800906 } else
Christoph Lameter24922682007-07-17 04:03:18 -0700907 object_err(s, page, object,
908 "page slab pointer corrupt.");
Christoph Lameter81819f02007-05-06 14:49:36 -0700909 goto fail;
910 }
Christoph Lameter3ec09742007-05-16 22:11:00 -0700911
912 /* Special debug activities for freeing objects */
913 if (!SlabFrozen(page) && !page->freelist)
914 remove_full(s, page);
915 if (s->flags & SLAB_STORE_USER)
916 set_track(s, object, TRACK_FREE, addr);
917 trace(s, page, object, 0);
918 init_object(s, object, 0);
Christoph Lameter81819f02007-05-06 14:49:36 -0700919 return 1;
Christoph Lameter3ec09742007-05-16 22:11:00 -0700920
Christoph Lameter81819f02007-05-06 14:49:36 -0700921fail:
Christoph Lameter24922682007-07-17 04:03:18 -0700922 slab_fix(s, "Object at 0x%p not freed", object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700923 return 0;
924}
925
Christoph Lameter41ecc552007-05-09 02:32:44 -0700926static int __init setup_slub_debug(char *str)
927{
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700928 slub_debug = DEBUG_DEFAULT_FLAGS;
929 if (*str++ != '=' || !*str)
930 /*
931 * No options specified. Switch on full debugging.
932 */
933 goto out;
Christoph Lameter41ecc552007-05-09 02:32:44 -0700934
935 if (*str == ',')
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700936 /*
937 * No options but restriction on slabs. This means full
938 * debugging for slabs matching a pattern.
939 */
940 goto check_slabs;
941
942 slub_debug = 0;
943 if (*str == '-')
944 /*
945 * Switch off all debugging measures.
946 */
947 goto out;
948
949 /*
950 * Determine which debug features should be switched on
951 */
Pekka Enberg06428782008-01-07 23:20:27 -0800952 for (; *str && *str != ','; str++) {
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700953 switch (tolower(*str)) {
954 case 'f':
955 slub_debug |= SLAB_DEBUG_FREE;
956 break;
957 case 'z':
958 slub_debug |= SLAB_RED_ZONE;
959 break;
960 case 'p':
961 slub_debug |= SLAB_POISON;
962 break;
963 case 'u':
964 slub_debug |= SLAB_STORE_USER;
965 break;
966 case 't':
967 slub_debug |= SLAB_TRACE;
968 break;
969 default:
970 printk(KERN_ERR "slub_debug option '%c' "
Pekka Enberg06428782008-01-07 23:20:27 -0800971 "unknown. skipped\n", *str);
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700972 }
973 }
974
975check_slabs:
976 if (*str == ',')
Christoph Lameter41ecc552007-05-09 02:32:44 -0700977 slub_debug_slabs = str + 1;
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700978out:
Christoph Lameter41ecc552007-05-09 02:32:44 -0700979 return 1;
980}
981
982__setup("slub_debug", setup_slub_debug);
983
Christoph Lameterba0268a2007-09-11 15:24:11 -0700984static unsigned long kmem_cache_flags(unsigned long objsize,
985 unsigned long flags, const char *name,
Christoph Lameter4ba9b9d2007-10-16 23:25:51 -0700986 void (*ctor)(struct kmem_cache *, void *))
Christoph Lameter41ecc552007-05-09 02:32:44 -0700987{
988 /*
989 * The page->offset field is only 16 bit wide. This is an offset
990 * in units of words from the beginning of an object. If the slab
991 * size is bigger then we cannot move the free pointer behind the
992 * object anymore.
993 *
994 * On 32 bit platforms the limit is 256k. On 64bit platforms
995 * the limit is 512k.
996 *
Christoph Lameterc59def9f2007-05-16 22:10:50 -0700997 * Debugging or ctor may create a need to move the free
Christoph Lameter41ecc552007-05-09 02:32:44 -0700998 * pointer. Fail if this happens.
999 */
Christoph Lameterba0268a2007-09-11 15:24:11 -07001000 if (objsize >= 65535 * sizeof(void *)) {
1001 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
Christoph Lameter41ecc552007-05-09 02:32:44 -07001002 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
Christoph Lameterba0268a2007-09-11 15:24:11 -07001003 BUG_ON(ctor);
1004 } else {
Christoph Lameter41ecc552007-05-09 02:32:44 -07001005 /*
1006 * Enable debugging if selected on the kernel commandline.
1007 */
1008 if (slub_debug && (!slub_debug_slabs ||
Christoph Lameterba0268a2007-09-11 15:24:11 -07001009 strncmp(slub_debug_slabs, name,
Christoph Lameter41ecc552007-05-09 02:32:44 -07001010 strlen(slub_debug_slabs)) == 0))
Christoph Lameterba0268a2007-09-11 15:24:11 -07001011 flags |= slub_debug;
1012 }
1013
1014 return flags;
Christoph Lameter41ecc552007-05-09 02:32:44 -07001015}
1016#else
Christoph Lameter3ec09742007-05-16 22:11:00 -07001017static inline void setup_object_debug(struct kmem_cache *s,
1018 struct page *page, void *object) {}
Christoph Lameter41ecc552007-05-09 02:32:44 -07001019
Christoph Lameter3ec09742007-05-16 22:11:00 -07001020static inline int alloc_debug_processing(struct kmem_cache *s,
1021 struct page *page, void *object, void *addr) { return 0; }
Christoph Lameter41ecc552007-05-09 02:32:44 -07001022
Christoph Lameter3ec09742007-05-16 22:11:00 -07001023static inline int free_debug_processing(struct kmem_cache *s,
1024 struct page *page, void *object, void *addr) { return 0; }
Christoph Lameter41ecc552007-05-09 02:32:44 -07001025
Christoph Lameter41ecc552007-05-09 02:32:44 -07001026static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1027 { return 1; }
1028static inline int check_object(struct kmem_cache *s, struct page *page,
1029 void *object, int active) { return 1; }
Christoph Lameter3ec09742007-05-16 22:11:00 -07001030static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
Christoph Lameterba0268a2007-09-11 15:24:11 -07001031static inline unsigned long kmem_cache_flags(unsigned long objsize,
1032 unsigned long flags, const char *name,
Christoph Lameter4ba9b9d2007-10-16 23:25:51 -07001033 void (*ctor)(struct kmem_cache *, void *))
Christoph Lameterba0268a2007-09-11 15:24:11 -07001034{
1035 return flags;
1036}
Christoph Lameter41ecc552007-05-09 02:32:44 -07001037#define slub_debug 0
1038#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07001039/*
1040 * Slab allocation and freeing
1041 */
1042static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1043{
Pekka Enberg06428782008-01-07 23:20:27 -08001044 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07001045 int pages = 1 << s->order;
1046
1047 if (s->order)
1048 flags |= __GFP_COMP;
1049
1050 if (s->flags & SLAB_CACHE_DMA)
1051 flags |= SLUB_DMA;
1052
Mel Gormane12ba742007-10-16 01:25:52 -07001053 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1054 flags |= __GFP_RECLAIMABLE;
1055
Christoph Lameter81819f02007-05-06 14:49:36 -07001056 if (node == -1)
1057 page = alloc_pages(flags, s->order);
1058 else
1059 page = alloc_pages_node(node, flags, s->order);
1060
1061 if (!page)
1062 return NULL;
1063
1064 mod_zone_page_state(page_zone(page),
1065 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1066 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1067 pages);
1068
1069 return page;
1070}
1071
1072static void setup_object(struct kmem_cache *s, struct page *page,
1073 void *object)
1074{
Christoph Lameter3ec09742007-05-16 22:11:00 -07001075 setup_object_debug(s, page, object);
Christoph Lameter4f104932007-05-06 14:50:17 -07001076 if (unlikely(s->ctor))
Christoph Lameter4ba9b9d2007-10-16 23:25:51 -07001077 s->ctor(s, object);
Christoph Lameter81819f02007-05-06 14:49:36 -07001078}
1079
1080static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1081{
1082 struct page *page;
1083 struct kmem_cache_node *n;
1084 void *start;
Christoph Lameter81819f02007-05-06 14:49:36 -07001085 void *last;
1086 void *p;
1087
Christoph Lameter6cb06222007-10-16 01:25:41 -07001088 BUG_ON(flags & GFP_SLAB_BUG_MASK);
Christoph Lameter81819f02007-05-06 14:49:36 -07001089
Christoph Lameter6cb06222007-10-16 01:25:41 -07001090 page = allocate_slab(s,
1091 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
Christoph Lameter81819f02007-05-06 14:49:36 -07001092 if (!page)
1093 goto out;
1094
1095 n = get_node(s, page_to_nid(page));
1096 if (n)
1097 atomic_long_inc(&n->nr_slabs);
Christoph Lameter81819f02007-05-06 14:49:36 -07001098 page->slab = s;
1099 page->flags |= 1 << PG_slab;
1100 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1101 SLAB_STORE_USER | SLAB_TRACE))
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001102 SetSlabDebug(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001103
1104 start = page_address(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001105
1106 if (unlikely(s->flags & SLAB_POISON))
1107 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1108
1109 last = start;
Christoph Lameter7656c722007-05-09 02:32:40 -07001110 for_each_object(p, s, start) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001111 setup_object(s, page, last);
1112 set_freepointer(s, last, p);
1113 last = p;
1114 }
1115 setup_object(s, page, last);
1116 set_freepointer(s, last, NULL);
1117
1118 page->freelist = start;
1119 page->inuse = 0;
1120out:
Christoph Lameter81819f02007-05-06 14:49:36 -07001121 return page;
1122}
1123
1124static void __free_slab(struct kmem_cache *s, struct page *page)
1125{
1126 int pages = 1 << s->order;
1127
Christoph Lameterc59def9f2007-05-16 22:10:50 -07001128 if (unlikely(SlabDebug(page))) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001129 void *p;
1130
1131 slab_pad_check(s, page);
Christoph Lameterc59def9f2007-05-16 22:10:50 -07001132 for_each_object(p, s, page_address(page))
Christoph Lameter81819f02007-05-06 14:49:36 -07001133 check_object(s, page, p, 0);
Peter Zijlstra2208b762007-07-26 20:54:34 +02001134 ClearSlabDebug(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001135 }
1136
1137 mod_zone_page_state(page_zone(page),
1138 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1139 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
Pekka Enberg06428782008-01-07 23:20:27 -08001140 -pages);
Christoph Lameter81819f02007-05-06 14:49:36 -07001141
Christoph Lameter81819f02007-05-06 14:49:36 -07001142 __free_pages(page, s->order);
1143}
1144
1145static void rcu_free_slab(struct rcu_head *h)
1146{
1147 struct page *page;
1148
1149 page = container_of((struct list_head *)h, struct page, lru);
1150 __free_slab(page->slab, page);
1151}
1152
1153static void free_slab(struct kmem_cache *s, struct page *page)
1154{
1155 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1156 /*
1157 * RCU free overloads the RCU head over the LRU
1158 */
1159 struct rcu_head *head = (void *)&page->lru;
1160
1161 call_rcu(head, rcu_free_slab);
1162 } else
1163 __free_slab(s, page);
1164}
1165
1166static void discard_slab(struct kmem_cache *s, struct page *page)
1167{
1168 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1169
1170 atomic_long_dec(&n->nr_slabs);
1171 reset_page_mapcount(page);
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001172 __ClearPageSlab(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001173 free_slab(s, page);
1174}
1175
1176/*
1177 * Per slab locking using the pagelock
1178 */
1179static __always_inline void slab_lock(struct page *page)
1180{
1181 bit_spin_lock(PG_locked, &page->flags);
1182}
1183
1184static __always_inline void slab_unlock(struct page *page)
1185{
1186 bit_spin_unlock(PG_locked, &page->flags);
1187}
1188
1189static __always_inline int slab_trylock(struct page *page)
1190{
1191 int rc = 1;
1192
1193 rc = bit_spin_trylock(PG_locked, &page->flags);
1194 return rc;
1195}
1196
1197/*
1198 * Management of partially allocated slabs
1199 */
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001200static void add_partial(struct kmem_cache_node *n,
1201 struct page *page, int tail)
Christoph Lameter81819f02007-05-06 14:49:36 -07001202{
Christoph Lametere95eed52007-05-06 14:49:44 -07001203 spin_lock(&n->list_lock);
1204 n->nr_partial++;
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001205 if (tail)
1206 list_add_tail(&page->lru, &n->partial);
1207 else
1208 list_add(&page->lru, &n->partial);
Christoph Lameter81819f02007-05-06 14:49:36 -07001209 spin_unlock(&n->list_lock);
1210}
1211
1212static void remove_partial(struct kmem_cache *s,
1213 struct page *page)
1214{
1215 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1216
1217 spin_lock(&n->list_lock);
1218 list_del(&page->lru);
1219 n->nr_partial--;
1220 spin_unlock(&n->list_lock);
1221}
1222
1223/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001224 * Lock slab and remove from the partial list.
Christoph Lameter81819f02007-05-06 14:49:36 -07001225 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001226 * Must hold list_lock.
Christoph Lameter81819f02007-05-06 14:49:36 -07001227 */
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001228static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
Christoph Lameter81819f02007-05-06 14:49:36 -07001229{
1230 if (slab_trylock(page)) {
1231 list_del(&page->lru);
1232 n->nr_partial--;
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001233 SetSlabFrozen(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001234 return 1;
1235 }
1236 return 0;
1237}
1238
1239/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001240 * Try to allocate a partial slab from a specific node.
Christoph Lameter81819f02007-05-06 14:49:36 -07001241 */
1242static struct page *get_partial_node(struct kmem_cache_node *n)
1243{
1244 struct page *page;
1245
1246 /*
1247 * Racy check. If we mistakenly see no partial slabs then we
1248 * just allocate an empty slab. If we mistakenly try to get a
Christoph Lameter672bba32007-05-09 02:32:39 -07001249 * partial slab and there is none available then get_partials()
1250 * will return NULL.
Christoph Lameter81819f02007-05-06 14:49:36 -07001251 */
1252 if (!n || !n->nr_partial)
1253 return NULL;
1254
1255 spin_lock(&n->list_lock);
1256 list_for_each_entry(page, &n->partial, lru)
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001257 if (lock_and_freeze_slab(n, page))
Christoph Lameter81819f02007-05-06 14:49:36 -07001258 goto out;
1259 page = NULL;
1260out:
1261 spin_unlock(&n->list_lock);
1262 return page;
1263}
1264
1265/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001266 * Get a page from somewhere. Search in increasing NUMA distances.
Christoph Lameter81819f02007-05-06 14:49:36 -07001267 */
1268static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1269{
1270#ifdef CONFIG_NUMA
1271 struct zonelist *zonelist;
1272 struct zone **z;
1273 struct page *page;
1274
1275 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001276 * The defrag ratio allows a configuration of the tradeoffs between
1277 * inter node defragmentation and node local allocations. A lower
1278 * defrag_ratio increases the tendency to do local allocations
1279 * instead of attempting to obtain partial slabs from other nodes.
Christoph Lameter81819f02007-05-06 14:49:36 -07001280 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001281 * If the defrag_ratio is set to 0 then kmalloc() always
1282 * returns node local objects. If the ratio is higher then kmalloc()
1283 * may return off node objects because partial slabs are obtained
1284 * from other nodes and filled up.
Christoph Lameter81819f02007-05-06 14:49:36 -07001285 *
1286 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
Christoph Lameter672bba32007-05-09 02:32:39 -07001287 * defrag_ratio = 1000) then every (well almost) allocation will
1288 * first attempt to defrag slab caches on other nodes. This means
1289 * scanning over all nodes to look for partial slabs which may be
1290 * expensive if we do it every time we are trying to find a slab
1291 * with available objects.
Christoph Lameter81819f02007-05-06 14:49:36 -07001292 */
Christoph Lameter98246012008-01-07 23:20:26 -08001293 if (!s->remote_node_defrag_ratio ||
1294 get_cycles() % 1024 > s->remote_node_defrag_ratio)
Christoph Lameter81819f02007-05-06 14:49:36 -07001295 return NULL;
1296
1297 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1298 ->node_zonelists[gfp_zone(flags)];
1299 for (z = zonelist->zones; *z; z++) {
1300 struct kmem_cache_node *n;
1301
1302 n = get_node(s, zone_to_nid(*z));
1303
1304 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lametere95eed52007-05-06 14:49:44 -07001305 n->nr_partial > MIN_PARTIAL) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001306 page = get_partial_node(n);
1307 if (page)
1308 return page;
1309 }
1310 }
1311#endif
1312 return NULL;
1313}
1314
1315/*
1316 * Get a partial page, lock it and return it.
1317 */
1318static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1319{
1320 struct page *page;
1321 int searchnode = (node == -1) ? numa_node_id() : node;
1322
1323 page = get_partial_node(get_node(s, searchnode));
1324 if (page || (flags & __GFP_THISNODE))
1325 return page;
1326
1327 return get_any_partial(s, flags);
1328}
1329
1330/*
1331 * Move a page back to the lists.
1332 *
1333 * Must be called with the slab lock held.
1334 *
1335 * On exit the slab lock will have been dropped.
1336 */
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001337static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
Christoph Lameter81819f02007-05-06 14:49:36 -07001338{
Christoph Lametere95eed52007-05-06 14:49:44 -07001339 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1340
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001341 ClearSlabFrozen(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001342 if (page->inuse) {
Christoph Lametere95eed52007-05-06 14:49:44 -07001343
Christoph Lameter81819f02007-05-06 14:49:36 -07001344 if (page->freelist)
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001345 add_partial(n, page, tail);
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001346 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
Christoph Lametere95eed52007-05-06 14:49:44 -07001347 add_full(n, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001348 slab_unlock(page);
Christoph Lametere95eed52007-05-06 14:49:44 -07001349
Christoph Lameter81819f02007-05-06 14:49:36 -07001350 } else {
Christoph Lametere95eed52007-05-06 14:49:44 -07001351 if (n->nr_partial < MIN_PARTIAL) {
1352 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001353 * Adding an empty slab to the partial slabs in order
1354 * to avoid page allocator overhead. This slab needs
1355 * to come after the other slabs with objects in
1356 * order to fill them up. That way the size of the
1357 * partial list stays small. kmem_cache_shrink can
1358 * reclaim empty slabs from the partial list.
Christoph Lametere95eed52007-05-06 14:49:44 -07001359 */
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001360 add_partial(n, page, 1);
Christoph Lametere95eed52007-05-06 14:49:44 -07001361 slab_unlock(page);
1362 } else {
1363 slab_unlock(page);
1364 discard_slab(s, page);
1365 }
Christoph Lameter81819f02007-05-06 14:49:36 -07001366 }
1367}
1368
1369/*
1370 * Remove the cpu slab
1371 */
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001372static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
Christoph Lameter81819f02007-05-06 14:49:36 -07001373{
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001374 struct page *page = c->page;
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001375 int tail = 1;
Christoph Lameter894b8782007-05-10 03:15:16 -07001376 /*
1377 * Merge cpu freelist into freelist. Typically we get here
1378 * because both freelists are empty. So this is unlikely
1379 * to occur.
1380 */
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001381 while (unlikely(c->freelist)) {
Christoph Lameter894b8782007-05-10 03:15:16 -07001382 void **object;
1383
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001384 tail = 0; /* Hot objects. Put the slab first */
1385
Christoph Lameter894b8782007-05-10 03:15:16 -07001386 /* Retrieve object from cpu_freelist */
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001387 object = c->freelist;
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001388 c->freelist = c->freelist[c->offset];
Christoph Lameter894b8782007-05-10 03:15:16 -07001389
1390 /* And put onto the regular freelist */
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001391 object[c->offset] = page->freelist;
Christoph Lameter894b8782007-05-10 03:15:16 -07001392 page->freelist = object;
1393 page->inuse--;
1394 }
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001395 c->page = NULL;
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001396 unfreeze_slab(s, page, tail);
Christoph Lameter81819f02007-05-06 14:49:36 -07001397}
1398
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001399static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
Christoph Lameter81819f02007-05-06 14:49:36 -07001400{
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001401 slab_lock(c->page);
1402 deactivate_slab(s, c);
Christoph Lameter81819f02007-05-06 14:49:36 -07001403}
1404
1405/*
1406 * Flush cpu slab.
1407 * Called from IPI handler with interrupts disabled.
1408 */
Christoph Lameter0c710012007-07-17 04:03:24 -07001409static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
Christoph Lameter81819f02007-05-06 14:49:36 -07001410{
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001411 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
Christoph Lameter81819f02007-05-06 14:49:36 -07001412
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001413 if (likely(c && c->page))
1414 flush_slab(s, c);
Christoph Lameter81819f02007-05-06 14:49:36 -07001415}
1416
1417static void flush_cpu_slab(void *d)
1418{
1419 struct kmem_cache *s = d;
Christoph Lameter81819f02007-05-06 14:49:36 -07001420
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001421 __flush_cpu_slab(s, smp_processor_id());
Christoph Lameter81819f02007-05-06 14:49:36 -07001422}
1423
1424static void flush_all(struct kmem_cache *s)
1425{
1426#ifdef CONFIG_SMP
1427 on_each_cpu(flush_cpu_slab, s, 1, 1);
1428#else
1429 unsigned long flags;
1430
1431 local_irq_save(flags);
1432 flush_cpu_slab(s);
1433 local_irq_restore(flags);
1434#endif
1435}
1436
1437/*
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001438 * Check if the objects in a per cpu structure fit numa
1439 * locality expectations.
1440 */
1441static inline int node_match(struct kmem_cache_cpu *c, int node)
1442{
1443#ifdef CONFIG_NUMA
1444 if (node != -1 && c->node != node)
1445 return 0;
1446#endif
1447 return 1;
1448}
1449
1450/*
Christoph Lameter894b8782007-05-10 03:15:16 -07001451 * Slow path. The lockless freelist is empty or we need to perform
1452 * debugging duties.
Christoph Lameter81819f02007-05-06 14:49:36 -07001453 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001454 * Interrupts are disabled.
Christoph Lameter81819f02007-05-06 14:49:36 -07001455 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001456 * Processing is still very fast if new objects have been freed to the
1457 * regular freelist. In that case we simply take over the regular freelist
1458 * as the lockless freelist and zap the regular freelist.
Christoph Lameter81819f02007-05-06 14:49:36 -07001459 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001460 * If that is not working then we fall back to the partial lists. We take the
1461 * first element of the freelist as the object to allocate now and move the
1462 * rest of the freelist to the lockless freelist.
1463 *
1464 * And if we were unable to get a new slab from the partial slab lists then
1465 * we need to allocate a new slab. This is slowest path since we may sleep.
Christoph Lameter81819f02007-05-06 14:49:36 -07001466 */
Christoph Lameter894b8782007-05-10 03:15:16 -07001467static void *__slab_alloc(struct kmem_cache *s,
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
Christoph Lameter81819f02007-05-06 14:49:36 -07001469{
Christoph Lameter81819f02007-05-06 14:49:36 -07001470 void **object;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001471 struct page *new;
Christoph Lameter81819f02007-05-06 14:49:36 -07001472
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001473 if (!c->page)
Christoph Lameter81819f02007-05-06 14:49:36 -07001474 goto new_slab;
1475
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001476 slab_lock(c->page);
1477 if (unlikely(!node_match(c, node)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001478 goto another_slab;
Christoph Lameter894b8782007-05-10 03:15:16 -07001479load_freelist:
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001480 object = c->page->freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001481 if (unlikely(!object))
1482 goto another_slab;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001483 if (unlikely(SlabDebug(c->page)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001484 goto debug;
1485
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001486 object = c->page->freelist;
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001487 c->freelist = object[c->offset];
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001488 c->page->inuse = s->objects;
1489 c->page->freelist = NULL;
1490 c->node = page_to_nid(c->page);
1491 slab_unlock(c->page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001492 return object;
1493
1494another_slab:
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001495 deactivate_slab(s, c);
Christoph Lameter81819f02007-05-06 14:49:36 -07001496
1497new_slab:
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001498 new = get_partial(s, gfpflags, node);
1499 if (new) {
1500 c->page = new;
Christoph Lameter894b8782007-05-10 03:15:16 -07001501 goto load_freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001502 }
1503
Christoph Lameterb811c202007-10-16 23:25:51 -07001504 if (gfpflags & __GFP_WAIT)
1505 local_irq_enable();
1506
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001507 new = new_slab(s, gfpflags, node);
Christoph Lameterb811c202007-10-16 23:25:51 -07001508
1509 if (gfpflags & __GFP_WAIT)
1510 local_irq_disable();
1511
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001512 if (new) {
1513 c = get_cpu_slab(s, smp_processor_id());
Christoph Lameter05aa3452007-11-05 11:31:58 -08001514 if (c->page)
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001515 flush_slab(s, c);
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001516 slab_lock(new);
1517 SetSlabFrozen(new);
1518 c->page = new;
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001519 goto load_freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001520 }
Christoph Lameter81819f02007-05-06 14:49:36 -07001521 return NULL;
1522debug:
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001523 object = c->page->freelist;
1524 if (!alloc_debug_processing(s, c->page, object, addr))
Christoph Lameter81819f02007-05-06 14:49:36 -07001525 goto another_slab;
Christoph Lameter894b8782007-05-10 03:15:16 -07001526
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001527 c->page->inuse++;
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001528 c->page->freelist = object[c->offset];
Christoph Lameteree3c72a2007-10-16 01:26:07 -07001529 c->node = -1;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001530 slab_unlock(c->page);
Christoph Lameter894b8782007-05-10 03:15:16 -07001531 return object;
1532}
1533
1534/*
1535 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1536 * have the fastpath folded into their functions. So no function call
1537 * overhead for requests that can be satisfied on the fastpath.
1538 *
1539 * The fastpath works by first checking if the lockless freelist can be used.
1540 * If not then __slab_alloc is called for slow processing.
1541 *
1542 * Otherwise we can simply pick the next object from the lockless free list.
1543 */
Pekka Enberg06428782008-01-07 23:20:27 -08001544static __always_inline void *slab_alloc(struct kmem_cache *s,
Christoph Lameterce15fea2007-07-17 04:03:28 -07001545 gfp_t gfpflags, int node, void *addr)
Christoph Lameter894b8782007-05-10 03:15:16 -07001546{
Christoph Lameter894b8782007-05-10 03:15:16 -07001547 void **object;
1548 unsigned long flags;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001549 struct kmem_cache_cpu *c;
Christoph Lameter894b8782007-05-10 03:15:16 -07001550
1551 local_irq_save(flags);
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001552 c = get_cpu_slab(s, smp_processor_id());
Christoph Lameteree3c72a2007-10-16 01:26:07 -07001553 if (unlikely(!c->freelist || !node_match(c, node)))
Christoph Lameter894b8782007-05-10 03:15:16 -07001554
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001555 object = __slab_alloc(s, gfpflags, node, addr, c);
Christoph Lameter894b8782007-05-10 03:15:16 -07001556
1557 else {
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001558 object = c->freelist;
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001559 c->freelist = object[c->offset];
Christoph Lameter894b8782007-05-10 03:15:16 -07001560 }
1561 local_irq_restore(flags);
Christoph Lameterd07dbea2007-07-17 04:03:23 -07001562
1563 if (unlikely((gfpflags & __GFP_ZERO) && object))
Christoph Lameter42a9fdb2007-10-16 01:26:09 -07001564 memset(object, 0, c->objsize);
Christoph Lameterd07dbea2007-07-17 04:03:23 -07001565
Christoph Lameter894b8782007-05-10 03:15:16 -07001566 return object;
Christoph Lameter81819f02007-05-06 14:49:36 -07001567}
1568
1569void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1570{
Christoph Lameterce15fea2007-07-17 04:03:28 -07001571 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001572}
1573EXPORT_SYMBOL(kmem_cache_alloc);
1574
1575#ifdef CONFIG_NUMA
1576void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1577{
Christoph Lameterce15fea2007-07-17 04:03:28 -07001578 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001579}
1580EXPORT_SYMBOL(kmem_cache_alloc_node);
1581#endif
1582
1583/*
Christoph Lameter894b8782007-05-10 03:15:16 -07001584 * Slow patch handling. This may still be called frequently since objects
1585 * have a longer lifetime than the cpu slabs in most processing loads.
Christoph Lameter81819f02007-05-06 14:49:36 -07001586 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001587 * So we still attempt to reduce cache line usage. Just take the slab
1588 * lock and free the item. If there is no additional partial page
1589 * handling required then we can return immediately.
Christoph Lameter81819f02007-05-06 14:49:36 -07001590 */
Christoph Lameter894b8782007-05-10 03:15:16 -07001591static void __slab_free(struct kmem_cache *s, struct page *page,
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001592 void *x, void *addr, unsigned int offset)
Christoph Lameter81819f02007-05-06 14:49:36 -07001593{
1594 void *prior;
1595 void **object = (void *)x;
Christoph Lameter81819f02007-05-06 14:49:36 -07001596
Christoph Lameter81819f02007-05-06 14:49:36 -07001597 slab_lock(page);
1598
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001599 if (unlikely(SlabDebug(page)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001600 goto debug;
1601checks_ok:
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001602 prior = object[offset] = page->freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001603 page->freelist = object;
1604 page->inuse--;
1605
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001606 if (unlikely(SlabFrozen(page)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001607 goto out_unlock;
1608
1609 if (unlikely(!page->inuse))
1610 goto slab_empty;
1611
1612 /*
1613 * Objects left in the slab. If it
1614 * was not on the partial list before
1615 * then add it.
1616 */
1617 if (unlikely(!prior))
Christoph Lameter7c2e1322008-01-07 23:20:27 -08001618 add_partial(get_node(s, page_to_nid(page)), page, 1);
Christoph Lameter81819f02007-05-06 14:49:36 -07001619
1620out_unlock:
1621 slab_unlock(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001622 return;
1623
1624slab_empty:
1625 if (prior)
1626 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001627 * Slab still on the partial list.
Christoph Lameter81819f02007-05-06 14:49:36 -07001628 */
1629 remove_partial(s, page);
1630
1631 slab_unlock(page);
1632 discard_slab(s, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001633 return;
1634
1635debug:
Christoph Lameter3ec09742007-05-16 22:11:00 -07001636 if (!free_debug_processing(s, page, x, addr))
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001637 goto out_unlock;
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001638 goto checks_ok;
Christoph Lameter81819f02007-05-06 14:49:36 -07001639}
1640
Christoph Lameter894b8782007-05-10 03:15:16 -07001641/*
1642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643 * can perform fastpath freeing without additional function calls.
1644 *
1645 * The fastpath is only possible if we are freeing to the current cpu slab
1646 * of this processor. This typically the case if we have just allocated
1647 * the item before.
1648 *
1649 * If fastpath is not possible then fall back to __slab_free where we deal
1650 * with all sorts of special processing.
1651 */
Pekka Enberg06428782008-01-07 23:20:27 -08001652static __always_inline void slab_free(struct kmem_cache *s,
Christoph Lameter894b8782007-05-10 03:15:16 -07001653 struct page *page, void *x, void *addr)
1654{
1655 void **object = (void *)x;
1656 unsigned long flags;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001657 struct kmem_cache_cpu *c;
Christoph Lameter894b8782007-05-10 03:15:16 -07001658
1659 local_irq_save(flags);
Peter Zijlstra02febdf2007-07-26 20:01:38 +02001660 debug_check_no_locks_freed(object, s->objsize);
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001661 c = get_cpu_slab(s, smp_processor_id());
Christoph Lameteree3c72a2007-10-16 01:26:07 -07001662 if (likely(page == c->page && c->node >= 0)) {
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001663 object[c->offset] = c->freelist;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001664 c->freelist = object;
Christoph Lameter894b8782007-05-10 03:15:16 -07001665 } else
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07001666 __slab_free(s, page, x, addr, c->offset);
Christoph Lameter894b8782007-05-10 03:15:16 -07001667
1668 local_irq_restore(flags);
1669}
1670
Christoph Lameter81819f02007-05-06 14:49:36 -07001671void kmem_cache_free(struct kmem_cache *s, void *x)
1672{
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001673 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07001674
Christoph Lameterb49af682007-05-06 14:49:41 -07001675 page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07001676
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001677 slab_free(s, page, x, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001678}
1679EXPORT_SYMBOL(kmem_cache_free);
1680
1681/* Figure out on which slab object the object resides */
1682static struct page *get_object_page(const void *x)
1683{
Christoph Lameterb49af682007-05-06 14:49:41 -07001684 struct page *page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07001685
1686 if (!PageSlab(page))
1687 return NULL;
1688
1689 return page;
1690}
1691
1692/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001693 * Object placement in a slab is made very easy because we always start at
1694 * offset 0. If we tune the size of the object to the alignment then we can
1695 * get the required alignment by putting one properly sized object after
1696 * another.
Christoph Lameter81819f02007-05-06 14:49:36 -07001697 *
1698 * Notice that the allocation order determines the sizes of the per cpu
1699 * caches. Each processor has always one slab available for allocations.
1700 * Increasing the allocation order reduces the number of times that slabs
Christoph Lameter672bba32007-05-09 02:32:39 -07001701 * must be moved on and off the partial lists and is therefore a factor in
Christoph Lameter81819f02007-05-06 14:49:36 -07001702 * locking overhead.
Christoph Lameter81819f02007-05-06 14:49:36 -07001703 */
1704
1705/*
1706 * Mininum / Maximum order of slab pages. This influences locking overhead
1707 * and slab fragmentation. A higher order reduces the number of partial slabs
1708 * and increases the number of allocations possible without having to
1709 * take the list_lock.
1710 */
1711static int slub_min_order;
1712static int slub_max_order = DEFAULT_MAX_ORDER;
Christoph Lameter81819f02007-05-06 14:49:36 -07001713static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1714
1715/*
1716 * Merge control. If this is set then no merging of slab caches will occur.
Christoph Lameter672bba32007-05-09 02:32:39 -07001717 * (Could be removed. This was introduced to pacify the merge skeptics.)
Christoph Lameter81819f02007-05-06 14:49:36 -07001718 */
1719static int slub_nomerge;
1720
1721/*
Christoph Lameter81819f02007-05-06 14:49:36 -07001722 * Calculate the order of allocation given an slab object size.
1723 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001724 * The order of allocation has significant impact on performance and other
1725 * system components. Generally order 0 allocations should be preferred since
1726 * order 0 does not cause fragmentation in the page allocator. Larger objects
1727 * be problematic to put into order 0 slabs because there may be too much
1728 * unused space left. We go to a higher order if more than 1/8th of the slab
1729 * would be wasted.
Christoph Lameter81819f02007-05-06 14:49:36 -07001730 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001731 * In order to reach satisfactory performance we must ensure that a minimum
1732 * number of objects is in one slab. Otherwise we may generate too much
1733 * activity on the partial lists which requires taking the list_lock. This is
1734 * less a concern for large slabs though which are rarely used.
Christoph Lameter81819f02007-05-06 14:49:36 -07001735 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001736 * slub_max_order specifies the order where we begin to stop considering the
1737 * number of objects in a slab as critical. If we reach slub_max_order then
1738 * we try to keep the page order as low as possible. So we accept more waste
1739 * of space in favor of a small page order.
1740 *
1741 * Higher order allocations also allow the placement of more objects in a
1742 * slab and thereby reduce object handling overhead. If the user has
1743 * requested a higher mininum order then we start with that one instead of
1744 * the smallest order which will fit the object.
Christoph Lameter81819f02007-05-06 14:49:36 -07001745 */
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001746static inline int slab_order(int size, int min_objects,
1747 int max_order, int fract_leftover)
Christoph Lameter81819f02007-05-06 14:49:36 -07001748{
1749 int order;
1750 int rem;
Christoph Lameter6300ea72007-07-17 04:03:20 -07001751 int min_order = slub_min_order;
Christoph Lameter81819f02007-05-06 14:49:36 -07001752
Christoph Lameter6300ea72007-07-17 04:03:20 -07001753 for (order = max(min_order,
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001754 fls(min_objects * size - 1) - PAGE_SHIFT);
1755 order <= max_order; order++) {
1756
Christoph Lameter81819f02007-05-06 14:49:36 -07001757 unsigned long slab_size = PAGE_SIZE << order;
1758
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001759 if (slab_size < min_objects * size)
Christoph Lameter81819f02007-05-06 14:49:36 -07001760 continue;
1761
Christoph Lameter81819f02007-05-06 14:49:36 -07001762 rem = slab_size % size;
1763
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001764 if (rem <= slab_size / fract_leftover)
Christoph Lameter81819f02007-05-06 14:49:36 -07001765 break;
1766
1767 }
Christoph Lameter672bba32007-05-09 02:32:39 -07001768
Christoph Lameter81819f02007-05-06 14:49:36 -07001769 return order;
1770}
1771
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001772static inline int calculate_order(int size)
1773{
1774 int order;
1775 int min_objects;
1776 int fraction;
1777
1778 /*
1779 * Attempt to find best configuration for a slab. This
1780 * works by first attempting to generate a layout with
1781 * the best configuration and backing off gradually.
1782 *
1783 * First we reduce the acceptable waste in a slab. Then
1784 * we reduce the minimum objects required in a slab.
1785 */
1786 min_objects = slub_min_objects;
1787 while (min_objects > 1) {
1788 fraction = 8;
1789 while (fraction >= 4) {
1790 order = slab_order(size, min_objects,
1791 slub_max_order, fraction);
1792 if (order <= slub_max_order)
1793 return order;
1794 fraction /= 2;
1795 }
1796 min_objects /= 2;
1797 }
1798
1799 /*
1800 * We were unable to place multiple objects in a slab. Now
1801 * lets see if we can place a single object there.
1802 */
1803 order = slab_order(size, 1, slub_max_order, 1);
1804 if (order <= slub_max_order)
1805 return order;
1806
1807 /*
1808 * Doh this slab cannot be placed using slub_max_order.
1809 */
1810 order = slab_order(size, 1, MAX_ORDER, 1);
1811 if (order <= MAX_ORDER)
1812 return order;
1813 return -ENOSYS;
1814}
1815
Christoph Lameter81819f02007-05-06 14:49:36 -07001816/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001817 * Figure out what the alignment of the objects will be.
Christoph Lameter81819f02007-05-06 14:49:36 -07001818 */
1819static unsigned long calculate_alignment(unsigned long flags,
1820 unsigned long align, unsigned long size)
1821{
1822 /*
1823 * If the user wants hardware cache aligned objects then
1824 * follow that suggestion if the object is sufficiently
1825 * large.
1826 *
1827 * The hardware cache alignment cannot override the
1828 * specified alignment though. If that is greater
1829 * then use it.
1830 */
Christoph Lameter5af60832007-05-06 14:49:56 -07001831 if ((flags & SLAB_HWCACHE_ALIGN) &&
Christoph Lameter65c02d42007-05-09 02:32:35 -07001832 size > cache_line_size() / 2)
1833 return max_t(unsigned long, align, cache_line_size());
Christoph Lameter81819f02007-05-06 14:49:36 -07001834
1835 if (align < ARCH_SLAB_MINALIGN)
1836 return ARCH_SLAB_MINALIGN;
1837
1838 return ALIGN(align, sizeof(void *));
1839}
1840
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001841static void init_kmem_cache_cpu(struct kmem_cache *s,
1842 struct kmem_cache_cpu *c)
1843{
1844 c->page = NULL;
1845 c->freelist = NULL;
1846 c->node = 0;
Christoph Lameter42a9fdb2007-10-16 01:26:09 -07001847 c->offset = s->offset / sizeof(void *);
1848 c->objsize = s->objsize;
Christoph Lameterdfb4f092007-10-16 01:26:05 -07001849}
1850
Christoph Lameter81819f02007-05-06 14:49:36 -07001851static void init_kmem_cache_node(struct kmem_cache_node *n)
1852{
1853 n->nr_partial = 0;
1854 atomic_long_set(&n->nr_slabs, 0);
1855 spin_lock_init(&n->list_lock);
1856 INIT_LIST_HEAD(&n->partial);
Christoph Lameter8ab13722007-07-17 04:03:32 -07001857#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter643b1132007-05-06 14:49:42 -07001858 INIT_LIST_HEAD(&n->full);
Christoph Lameter8ab13722007-07-17 04:03:32 -07001859#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07001860}
1861
Christoph Lameter4c93c3552007-10-16 01:26:08 -07001862#ifdef CONFIG_SMP
1863/*
1864 * Per cpu array for per cpu structures.
1865 *
1866 * The per cpu array places all kmem_cache_cpu structures from one processor
1867 * close together meaning that it becomes possible that multiple per cpu
1868 * structures are contained in one cacheline. This may be particularly
1869 * beneficial for the kmalloc caches.
1870 *
1871 * A desktop system typically has around 60-80 slabs. With 100 here we are
1872 * likely able to get per cpu structures for all caches from the array defined
1873 * here. We must be able to cover all kmalloc caches during bootstrap.
1874 *
1875 * If the per cpu array is exhausted then fall back to kmalloc
1876 * of individual cachelines. No sharing is possible then.
1877 */
1878#define NR_KMEM_CACHE_CPU 100
1879
1880static DEFINE_PER_CPU(struct kmem_cache_cpu,
1881 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1882
1883static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1884static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1885
1886static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1887 int cpu, gfp_t flags)
1888{
1889 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1890
1891 if (c)
1892 per_cpu(kmem_cache_cpu_free, cpu) =
1893 (void *)c->freelist;
1894 else {
1895 /* Table overflow: So allocate ourselves */
1896 c = kmalloc_node(
1897 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1898 flags, cpu_to_node(cpu));
1899 if (!c)
1900 return NULL;
1901 }
1902
1903 init_kmem_cache_cpu(s, c);
1904 return c;
1905}
1906
1907static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1908{
1909 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1910 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1911 kfree(c);
1912 return;
1913 }
1914 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1915 per_cpu(kmem_cache_cpu_free, cpu) = c;
1916}
1917
1918static void free_kmem_cache_cpus(struct kmem_cache *s)
1919{
1920 int cpu;
1921
1922 for_each_online_cpu(cpu) {
1923 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1924
1925 if (c) {
1926 s->cpu_slab[cpu] = NULL;
1927 free_kmem_cache_cpu(c, cpu);
1928 }
1929 }
1930}
1931
1932static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1933{
1934 int cpu;
1935
1936 for_each_online_cpu(cpu) {
1937 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1938
1939 if (c)
1940 continue;
1941
1942 c = alloc_kmem_cache_cpu(s, cpu, flags);
1943 if (!c) {
1944 free_kmem_cache_cpus(s);
1945 return 0;
1946 }
1947 s->cpu_slab[cpu] = c;
1948 }
1949 return 1;
1950}
1951
1952/*
1953 * Initialize the per cpu array.
1954 */
1955static void init_alloc_cpu_cpu(int cpu)
1956{
1957 int i;
1958
1959 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1960 return;
1961
1962 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1963 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1964
1965 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1966}
1967
1968static void __init init_alloc_cpu(void)
1969{
1970 int cpu;
1971
1972 for_each_online_cpu(cpu)
1973 init_alloc_cpu_cpu(cpu);
1974 }
1975
1976#else
1977static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1978static inline void init_alloc_cpu(void) {}
1979
1980static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1981{
1982 init_kmem_cache_cpu(s, &s->cpu_slab);
1983 return 1;
1984}
1985#endif
1986
Christoph Lameter81819f02007-05-06 14:49:36 -07001987#ifdef CONFIG_NUMA
1988/*
1989 * No kmalloc_node yet so do it by hand. We know that this is the first
1990 * slab on the node for this slabcache. There are no concurrent accesses
1991 * possible.
1992 *
1993 * Note that this function only works on the kmalloc_node_cache
Christoph Lameter4c93c3552007-10-16 01:26:08 -07001994 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1995 * memory on a fresh node that has no slab structures yet.
Christoph Lameter81819f02007-05-06 14:49:36 -07001996 */
Adrian Bunk1cd7daa2007-10-16 01:24:18 -07001997static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1998 int node)
Christoph Lameter81819f02007-05-06 14:49:36 -07001999{
2000 struct page *page;
2001 struct kmem_cache_node *n;
2002
2003 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2004
Christoph Lametera2f92ee2007-08-22 14:01:57 -07002005 page = new_slab(kmalloc_caches, gfpflags, node);
Christoph Lameter81819f02007-05-06 14:49:36 -07002006
2007 BUG_ON(!page);
Christoph Lametera2f92ee2007-08-22 14:01:57 -07002008 if (page_to_nid(page) != node) {
2009 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2010 "node %d\n", node);
2011 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2012 "in order to be able to continue\n");
2013 }
2014
Christoph Lameter81819f02007-05-06 14:49:36 -07002015 n = page->freelist;
2016 BUG_ON(!n);
2017 page->freelist = get_freepointer(kmalloc_caches, n);
2018 page->inuse++;
2019 kmalloc_caches->node[node] = n;
Christoph Lameter8ab13722007-07-17 04:03:32 -07002020#ifdef CONFIG_SLUB_DEBUG
Christoph Lameterd45f39c2007-07-17 04:03:21 -07002021 init_object(kmalloc_caches, n, 1);
2022 init_tracking(kmalloc_caches, n);
Christoph Lameter8ab13722007-07-17 04:03:32 -07002023#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07002024 init_kmem_cache_node(n);
2025 atomic_long_inc(&n->nr_slabs);
Christoph Lameter7c2e1322008-01-07 23:20:27 -08002026 add_partial(n, page, 0);
Christoph Lameter81819f02007-05-06 14:49:36 -07002027 return n;
2028}
2029
2030static void free_kmem_cache_nodes(struct kmem_cache *s)
2031{
2032 int node;
2033
Christoph Lameterf64dc582007-10-16 01:25:33 -07002034 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002035 struct kmem_cache_node *n = s->node[node];
2036 if (n && n != &s->local_node)
2037 kmem_cache_free(kmalloc_caches, n);
2038 s->node[node] = NULL;
2039 }
2040}
2041
2042static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2043{
2044 int node;
2045 int local_node;
2046
2047 if (slab_state >= UP)
2048 local_node = page_to_nid(virt_to_page(s));
2049 else
2050 local_node = 0;
2051
Christoph Lameterf64dc582007-10-16 01:25:33 -07002052 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002053 struct kmem_cache_node *n;
2054
2055 if (local_node == node)
2056 n = &s->local_node;
2057 else {
2058 if (slab_state == DOWN) {
2059 n = early_kmem_cache_node_alloc(gfpflags,
2060 node);
2061 continue;
2062 }
2063 n = kmem_cache_alloc_node(kmalloc_caches,
2064 gfpflags, node);
2065
2066 if (!n) {
2067 free_kmem_cache_nodes(s);
2068 return 0;
2069 }
2070
2071 }
2072 s->node[node] = n;
2073 init_kmem_cache_node(n);
2074 }
2075 return 1;
2076}
2077#else
2078static void free_kmem_cache_nodes(struct kmem_cache *s)
2079{
2080}
2081
2082static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2083{
2084 init_kmem_cache_node(&s->local_node);
2085 return 1;
2086}
2087#endif
2088
2089/*
2090 * calculate_sizes() determines the order and the distribution of data within
2091 * a slab object.
2092 */
2093static int calculate_sizes(struct kmem_cache *s)
2094{
2095 unsigned long flags = s->flags;
2096 unsigned long size = s->objsize;
2097 unsigned long align = s->align;
2098
2099 /*
2100 * Determine if we can poison the object itself. If the user of
2101 * the slab may touch the object after free or before allocation
2102 * then we should never poison the object itself.
2103 */
2104 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
Christoph Lameterc59def9f2007-05-16 22:10:50 -07002105 !s->ctor)
Christoph Lameter81819f02007-05-06 14:49:36 -07002106 s->flags |= __OBJECT_POISON;
2107 else
2108 s->flags &= ~__OBJECT_POISON;
2109
2110 /*
2111 * Round up object size to the next word boundary. We can only
2112 * place the free pointer at word boundaries and this determines
2113 * the possible location of the free pointer.
2114 */
2115 size = ALIGN(size, sizeof(void *));
2116
Christoph Lameter41ecc552007-05-09 02:32:44 -07002117#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter81819f02007-05-06 14:49:36 -07002118 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002119 * If we are Redzoning then check if there is some space between the
Christoph Lameter81819f02007-05-06 14:49:36 -07002120 * end of the object and the free pointer. If not then add an
Christoph Lameter672bba32007-05-09 02:32:39 -07002121 * additional word to have some bytes to store Redzone information.
Christoph Lameter81819f02007-05-06 14:49:36 -07002122 */
2123 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2124 size += sizeof(void *);
Christoph Lameter41ecc552007-05-09 02:32:44 -07002125#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07002126
2127 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002128 * With that we have determined the number of bytes in actual use
2129 * by the object. This is the potential offset to the free pointer.
Christoph Lameter81819f02007-05-06 14:49:36 -07002130 */
2131 s->inuse = size;
2132
2133 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
Christoph Lameterc59def9f2007-05-16 22:10:50 -07002134 s->ctor)) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002135 /*
2136 * Relocate free pointer after the object if it is not
2137 * permitted to overwrite the first word of the object on
2138 * kmem_cache_free.
2139 *
2140 * This is the case if we do RCU, have a constructor or
2141 * destructor or are poisoning the objects.
2142 */
2143 s->offset = size;
2144 size += sizeof(void *);
2145 }
2146
Christoph Lameterc12b3c62007-05-23 13:57:31 -07002147#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter81819f02007-05-06 14:49:36 -07002148 if (flags & SLAB_STORE_USER)
2149 /*
2150 * Need to store information about allocs and frees after
2151 * the object.
2152 */
2153 size += 2 * sizeof(struct track);
2154
Christoph Lameterbe7b3fb2007-05-09 02:32:36 -07002155 if (flags & SLAB_RED_ZONE)
Christoph Lameter81819f02007-05-06 14:49:36 -07002156 /*
2157 * Add some empty padding so that we can catch
2158 * overwrites from earlier objects rather than let
2159 * tracking information or the free pointer be
2160 * corrupted if an user writes before the start
2161 * of the object.
2162 */
2163 size += sizeof(void *);
Christoph Lameter41ecc552007-05-09 02:32:44 -07002164#endif
Christoph Lameter672bba32007-05-09 02:32:39 -07002165
Christoph Lameter81819f02007-05-06 14:49:36 -07002166 /*
2167 * Determine the alignment based on various parameters that the
Christoph Lameter65c02d42007-05-09 02:32:35 -07002168 * user specified and the dynamic determination of cache line size
2169 * on bootup.
Christoph Lameter81819f02007-05-06 14:49:36 -07002170 */
2171 align = calculate_alignment(flags, align, s->objsize);
2172
2173 /*
2174 * SLUB stores one object immediately after another beginning from
2175 * offset 0. In order to align the objects we have to simply size
2176 * each object to conform to the alignment.
2177 */
2178 size = ALIGN(size, align);
2179 s->size = size;
2180
2181 s->order = calculate_order(size);
2182 if (s->order < 0)
2183 return 0;
2184
2185 /*
2186 * Determine the number of objects per slab
2187 */
2188 s->objects = (PAGE_SIZE << s->order) / size;
2189
Christoph Lameterb3fba8d2007-10-16 01:26:06 -07002190 return !!s->objects;
Christoph Lameter81819f02007-05-06 14:49:36 -07002191
2192}
2193
Christoph Lameter81819f02007-05-06 14:49:36 -07002194static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2195 const char *name, size_t size,
2196 size_t align, unsigned long flags,
Christoph Lameter4ba9b9d2007-10-16 23:25:51 -07002197 void (*ctor)(struct kmem_cache *, void *))
Christoph Lameter81819f02007-05-06 14:49:36 -07002198{
2199 memset(s, 0, kmem_size);
2200 s->name = name;
2201 s->ctor = ctor;
Christoph Lameter81819f02007-05-06 14:49:36 -07002202 s->objsize = size;
Christoph Lameter81819f02007-05-06 14:49:36 -07002203 s->align = align;
Christoph Lameterba0268a2007-09-11 15:24:11 -07002204 s->flags = kmem_cache_flags(size, flags, name, ctor);
Christoph Lameter81819f02007-05-06 14:49:36 -07002205
2206 if (!calculate_sizes(s))
2207 goto error;
2208
2209 s->refcount = 1;
2210#ifdef CONFIG_NUMA
Christoph Lameter98246012008-01-07 23:20:26 -08002211 s->remote_node_defrag_ratio = 100;
Christoph Lameter81819f02007-05-06 14:49:36 -07002212#endif
Christoph Lameterdfb4f092007-10-16 01:26:05 -07002213 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2214 goto error;
Christoph Lameter81819f02007-05-06 14:49:36 -07002215
Christoph Lameterdfb4f092007-10-16 01:26:05 -07002216 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
Christoph Lameter81819f02007-05-06 14:49:36 -07002217 return 1;
Christoph Lameter4c93c3552007-10-16 01:26:08 -07002218 free_kmem_cache_nodes(s);
Christoph Lameter81819f02007-05-06 14:49:36 -07002219error:
2220 if (flags & SLAB_PANIC)
2221 panic("Cannot create slab %s size=%lu realsize=%u "
2222 "order=%u offset=%u flags=%lx\n",
2223 s->name, (unsigned long)size, s->size, s->order,
2224 s->offset, flags);
2225 return 0;
2226}
Christoph Lameter81819f02007-05-06 14:49:36 -07002227
2228/*
2229 * Check if a given pointer is valid
2230 */
2231int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2232{
Pekka Enberg06428782008-01-07 23:20:27 -08002233 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07002234
2235 page = get_object_page(object);
2236
2237 if (!page || s != page->slab)
2238 /* No slab or wrong slab */
2239 return 0;
2240
Christoph Lameterabcd08a2007-05-09 02:32:37 -07002241 if (!check_valid_pointer(s, page, object))
Christoph Lameter81819f02007-05-06 14:49:36 -07002242 return 0;
2243
2244 /*
2245 * We could also check if the object is on the slabs freelist.
2246 * But this would be too expensive and it seems that the main
2247 * purpose of kmem_ptr_valid is to check if the object belongs
2248 * to a certain slab.
2249 */
2250 return 1;
2251}
2252EXPORT_SYMBOL(kmem_ptr_validate);
2253
2254/*
2255 * Determine the size of a slab object
2256 */
2257unsigned int kmem_cache_size(struct kmem_cache *s)
2258{
2259 return s->objsize;
2260}
2261EXPORT_SYMBOL(kmem_cache_size);
2262
2263const char *kmem_cache_name(struct kmem_cache *s)
2264{
2265 return s->name;
2266}
2267EXPORT_SYMBOL(kmem_cache_name);
2268
2269/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002270 * Attempt to free all slabs on a node. Return the number of slabs we
2271 * were unable to free.
Christoph Lameter81819f02007-05-06 14:49:36 -07002272 */
2273static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2274 struct list_head *list)
2275{
2276 int slabs_inuse = 0;
2277 unsigned long flags;
2278 struct page *page, *h;
2279
2280 spin_lock_irqsave(&n->list_lock, flags);
2281 list_for_each_entry_safe(page, h, list, lru)
2282 if (!page->inuse) {
2283 list_del(&page->lru);
2284 discard_slab(s, page);
2285 } else
2286 slabs_inuse++;
2287 spin_unlock_irqrestore(&n->list_lock, flags);
2288 return slabs_inuse;
2289}
2290
2291/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002292 * Release all resources used by a slab cache.
Christoph Lameter81819f02007-05-06 14:49:36 -07002293 */
Christoph Lameter0c710012007-07-17 04:03:24 -07002294static inline int kmem_cache_close(struct kmem_cache *s)
Christoph Lameter81819f02007-05-06 14:49:36 -07002295{
2296 int node;
2297
2298 flush_all(s);
2299
2300 /* Attempt to free all objects */
Christoph Lameter4c93c3552007-10-16 01:26:08 -07002301 free_kmem_cache_cpus(s);
Christoph Lameterf64dc582007-10-16 01:25:33 -07002302 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002303 struct kmem_cache_node *n = get_node(s, node);
2304
Christoph Lameter2086d262007-05-06 14:49:46 -07002305 n->nr_partial -= free_list(s, n, &n->partial);
Christoph Lameter81819f02007-05-06 14:49:36 -07002306 if (atomic_long_read(&n->nr_slabs))
2307 return 1;
2308 }
2309 free_kmem_cache_nodes(s);
2310 return 0;
2311}
2312
2313/*
2314 * Close a cache and release the kmem_cache structure
2315 * (must be used for caches created using kmem_cache_create)
2316 */
2317void kmem_cache_destroy(struct kmem_cache *s)
2318{
2319 down_write(&slub_lock);
2320 s->refcount--;
2321 if (!s->refcount) {
2322 list_del(&s->list);
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002323 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002324 if (kmem_cache_close(s))
2325 WARN_ON(1);
2326 sysfs_slab_remove(s);
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002327 } else
2328 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002329}
2330EXPORT_SYMBOL(kmem_cache_destroy);
2331
2332/********************************************************************
2333 * Kmalloc subsystem
2334 *******************************************************************/
2335
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002336struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
Christoph Lameter81819f02007-05-06 14:49:36 -07002337EXPORT_SYMBOL(kmalloc_caches);
2338
2339#ifdef CONFIG_ZONE_DMA
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002340static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
Christoph Lameter81819f02007-05-06 14:49:36 -07002341#endif
2342
2343static int __init setup_slub_min_order(char *str)
2344{
Pekka Enberg06428782008-01-07 23:20:27 -08002345 get_option(&str, &slub_min_order);
Christoph Lameter81819f02007-05-06 14:49:36 -07002346
2347 return 1;
2348}
2349
2350__setup("slub_min_order=", setup_slub_min_order);
2351
2352static int __init setup_slub_max_order(char *str)
2353{
Pekka Enberg06428782008-01-07 23:20:27 -08002354 get_option(&str, &slub_max_order);
Christoph Lameter81819f02007-05-06 14:49:36 -07002355
2356 return 1;
2357}
2358
2359__setup("slub_max_order=", setup_slub_max_order);
2360
2361static int __init setup_slub_min_objects(char *str)
2362{
Pekka Enberg06428782008-01-07 23:20:27 -08002363 get_option(&str, &slub_min_objects);
Christoph Lameter81819f02007-05-06 14:49:36 -07002364
2365 return 1;
2366}
2367
2368__setup("slub_min_objects=", setup_slub_min_objects);
2369
2370static int __init setup_slub_nomerge(char *str)
2371{
2372 slub_nomerge = 1;
2373 return 1;
2374}
2375
2376__setup("slub_nomerge", setup_slub_nomerge);
2377
Christoph Lameter81819f02007-05-06 14:49:36 -07002378static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2379 const char *name, int size, gfp_t gfp_flags)
2380{
2381 unsigned int flags = 0;
2382
2383 if (gfp_flags & SLUB_DMA)
2384 flags = SLAB_CACHE_DMA;
2385
2386 down_write(&slub_lock);
2387 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
Christoph Lameterc59def9f2007-05-16 22:10:50 -07002388 flags, NULL))
Christoph Lameter81819f02007-05-06 14:49:36 -07002389 goto panic;
2390
2391 list_add(&s->list, &slab_caches);
2392 up_write(&slub_lock);
2393 if (sysfs_slab_add(s))
2394 goto panic;
2395 return s;
2396
2397panic:
2398 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2399}
2400
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002401#ifdef CONFIG_ZONE_DMA
Christoph Lameter1ceef402007-08-07 15:11:48 -07002402
2403static void sysfs_add_func(struct work_struct *w)
2404{
2405 struct kmem_cache *s;
2406
2407 down_write(&slub_lock);
2408 list_for_each_entry(s, &slab_caches, list) {
2409 if (s->flags & __SYSFS_ADD_DEFERRED) {
2410 s->flags &= ~__SYSFS_ADD_DEFERRED;
2411 sysfs_slab_add(s);
2412 }
2413 }
2414 up_write(&slub_lock);
2415}
2416
2417static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2418
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002419static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2420{
2421 struct kmem_cache *s;
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002422 char *text;
2423 size_t realsize;
2424
2425 s = kmalloc_caches_dma[index];
2426 if (s)
2427 return s;
2428
2429 /* Dynamically create dma cache */
Christoph Lameter1ceef402007-08-07 15:11:48 -07002430 if (flags & __GFP_WAIT)
2431 down_write(&slub_lock);
2432 else {
2433 if (!down_write_trylock(&slub_lock))
2434 goto out;
2435 }
2436
2437 if (kmalloc_caches_dma[index])
2438 goto unlock_out;
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002439
Christoph Lameter7b55f622007-07-17 04:03:27 -07002440 realsize = kmalloc_caches[index].objsize;
Christoph Lameter1ceef402007-08-07 15:11:48 -07002441 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2442 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2443
2444 if (!s || !text || !kmem_cache_open(s, flags, text,
2445 realsize, ARCH_KMALLOC_MINALIGN,
2446 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2447 kfree(s);
2448 kfree(text);
2449 goto unlock_out;
Christoph Lameterdfce8642007-07-17 04:03:25 -07002450 }
Christoph Lameter1ceef402007-08-07 15:11:48 -07002451
2452 list_add(&s->list, &slab_caches);
2453 kmalloc_caches_dma[index] = s;
2454
2455 schedule_work(&sysfs_add_work);
2456
2457unlock_out:
Christoph Lameterdfce8642007-07-17 04:03:25 -07002458 up_write(&slub_lock);
Christoph Lameter1ceef402007-08-07 15:11:48 -07002459out:
Christoph Lameterdfce8642007-07-17 04:03:25 -07002460 return kmalloc_caches_dma[index];
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002461}
2462#endif
2463
Christoph Lameterf1b26332007-07-17 04:03:26 -07002464/*
2465 * Conversion table for small slabs sizes / 8 to the index in the
2466 * kmalloc array. This is necessary for slabs < 192 since we have non power
2467 * of two cache sizes there. The size of larger slabs can be determined using
2468 * fls.
2469 */
2470static s8 size_index[24] = {
2471 3, /* 8 */
2472 4, /* 16 */
2473 5, /* 24 */
2474 5, /* 32 */
2475 6, /* 40 */
2476 6, /* 48 */
2477 6, /* 56 */
2478 6, /* 64 */
2479 1, /* 72 */
2480 1, /* 80 */
2481 1, /* 88 */
2482 1, /* 96 */
2483 7, /* 104 */
2484 7, /* 112 */
2485 7, /* 120 */
2486 7, /* 128 */
2487 2, /* 136 */
2488 2, /* 144 */
2489 2, /* 152 */
2490 2, /* 160 */
2491 2, /* 168 */
2492 2, /* 176 */
2493 2, /* 184 */
2494 2 /* 192 */
2495};
2496
Christoph Lameter81819f02007-05-06 14:49:36 -07002497static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2498{
Christoph Lameterf1b26332007-07-17 04:03:26 -07002499 int index;
Christoph Lameter81819f02007-05-06 14:49:36 -07002500
Christoph Lameterf1b26332007-07-17 04:03:26 -07002501 if (size <= 192) {
2502 if (!size)
2503 return ZERO_SIZE_PTR;
Christoph Lameter81819f02007-05-06 14:49:36 -07002504
Christoph Lameterf1b26332007-07-17 04:03:26 -07002505 index = size_index[(size - 1) / 8];
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002506 } else
Christoph Lameterf1b26332007-07-17 04:03:26 -07002507 index = fls(size - 1);
Christoph Lameter81819f02007-05-06 14:49:36 -07002508
2509#ifdef CONFIG_ZONE_DMA
Christoph Lameterf1b26332007-07-17 04:03:26 -07002510 if (unlikely((flags & SLUB_DMA)))
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002511 return dma_kmalloc_cache(index, flags);
Christoph Lameterf1b26332007-07-17 04:03:26 -07002512
Christoph Lameter81819f02007-05-06 14:49:36 -07002513#endif
2514 return &kmalloc_caches[index];
2515}
2516
2517void *__kmalloc(size_t size, gfp_t flags)
2518{
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002519 struct kmem_cache *s;
Christoph Lameter81819f02007-05-06 14:49:36 -07002520
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002521 if (unlikely(size > PAGE_SIZE / 2))
2522 return (void *)__get_free_pages(flags | __GFP_COMP,
2523 get_order(size));
2524
2525 s = get_slab(size, flags);
2526
2527 if (unlikely(ZERO_OR_NULL_PTR(s)))
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002528 return s;
2529
Christoph Lameterce15fea2007-07-17 04:03:28 -07002530 return slab_alloc(s, flags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002531}
2532EXPORT_SYMBOL(__kmalloc);
2533
2534#ifdef CONFIG_NUMA
2535void *__kmalloc_node(size_t size, gfp_t flags, int node)
2536{
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002537 struct kmem_cache *s;
Christoph Lameter81819f02007-05-06 14:49:36 -07002538
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002539 if (unlikely(size > PAGE_SIZE / 2))
2540 return (void *)__get_free_pages(flags | __GFP_COMP,
2541 get_order(size));
2542
2543 s = get_slab(size, flags);
2544
2545 if (unlikely(ZERO_OR_NULL_PTR(s)))
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002546 return s;
2547
Christoph Lameterce15fea2007-07-17 04:03:28 -07002548 return slab_alloc(s, flags, node, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002549}
2550EXPORT_SYMBOL(__kmalloc_node);
2551#endif
2552
2553size_t ksize(const void *object)
2554{
Christoph Lameter272c1d22007-06-08 13:46:49 -07002555 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07002556 struct kmem_cache *s;
2557
Christoph Lameteref8b4522007-10-16 01:24:46 -07002558 BUG_ON(!object);
2559 if (unlikely(object == ZERO_SIZE_PTR))
Christoph Lameter272c1d22007-06-08 13:46:49 -07002560 return 0;
2561
Vegard Nossum294a80a2007-12-04 23:45:30 -08002562 page = virt_to_head_page(object);
Christoph Lameter81819f02007-05-06 14:49:36 -07002563 BUG_ON(!page);
Vegard Nossum294a80a2007-12-04 23:45:30 -08002564
2565 if (unlikely(!PageSlab(page)))
2566 return PAGE_SIZE << compound_order(page);
2567
Christoph Lameter81819f02007-05-06 14:49:36 -07002568 s = page->slab;
2569 BUG_ON(!s);
2570
2571 /*
2572 * Debugging requires use of the padding between object
2573 * and whatever may come after it.
2574 */
2575 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2576 return s->objsize;
2577
2578 /*
2579 * If we have the need to store the freelist pointer
2580 * back there or track user information then we can
2581 * only use the space before that information.
2582 */
2583 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2584 return s->inuse;
2585
2586 /*
2587 * Else we can use all the padding etc for the allocation
2588 */
2589 return s->size;
2590}
2591EXPORT_SYMBOL(ksize);
2592
2593void kfree(const void *x)
2594{
Christoph Lameter81819f02007-05-06 14:49:36 -07002595 struct page *page;
2596
Satyam Sharma2408c552007-10-16 01:24:44 -07002597 if (unlikely(ZERO_OR_NULL_PTR(x)))
Christoph Lameter81819f02007-05-06 14:49:36 -07002598 return;
2599
Christoph Lameterb49af682007-05-06 14:49:41 -07002600 page = virt_to_head_page(x);
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002601 if (unlikely(!PageSlab(page))) {
2602 put_page(page);
2603 return;
2604 }
2605 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002606}
2607EXPORT_SYMBOL(kfree);
2608
Christoph Lameterf61396a2008-01-07 23:20:26 -08002609static unsigned long count_partial(struct kmem_cache_node *n)
2610{
2611 unsigned long flags;
2612 unsigned long x = 0;
2613 struct page *page;
2614
2615 spin_lock_irqsave(&n->list_lock, flags);
2616 list_for_each_entry(page, &n->partial, lru)
2617 x += page->inuse;
2618 spin_unlock_irqrestore(&n->list_lock, flags);
2619 return x;
2620}
2621
Christoph Lameter2086d262007-05-06 14:49:46 -07002622/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002623 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2624 * the remaining slabs by the number of items in use. The slabs with the
2625 * most items in use come first. New allocations will then fill those up
2626 * and thus they can be removed from the partial lists.
2627 *
2628 * The slabs with the least items are placed last. This results in them
2629 * being allocated from last increasing the chance that the last objects
2630 * are freed in them.
Christoph Lameter2086d262007-05-06 14:49:46 -07002631 */
2632int kmem_cache_shrink(struct kmem_cache *s)
2633{
2634 int node;
2635 int i;
2636 struct kmem_cache_node *n;
2637 struct page *page;
2638 struct page *t;
2639 struct list_head *slabs_by_inuse =
2640 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2641 unsigned long flags;
2642
2643 if (!slabs_by_inuse)
2644 return -ENOMEM;
2645
2646 flush_all(s);
Christoph Lameterf64dc582007-10-16 01:25:33 -07002647 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter2086d262007-05-06 14:49:46 -07002648 n = get_node(s, node);
2649
2650 if (!n->nr_partial)
2651 continue;
2652
2653 for (i = 0; i < s->objects; i++)
2654 INIT_LIST_HEAD(slabs_by_inuse + i);
2655
2656 spin_lock_irqsave(&n->list_lock, flags);
2657
2658 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002659 * Build lists indexed by the items in use in each slab.
Christoph Lameter2086d262007-05-06 14:49:46 -07002660 *
Christoph Lameter672bba32007-05-09 02:32:39 -07002661 * Note that concurrent frees may occur while we hold the
2662 * list_lock. page->inuse here is the upper limit.
Christoph Lameter2086d262007-05-06 14:49:46 -07002663 */
2664 list_for_each_entry_safe(page, t, &n->partial, lru) {
2665 if (!page->inuse && slab_trylock(page)) {
2666 /*
2667 * Must hold slab lock here because slab_free
2668 * may have freed the last object and be
2669 * waiting to release the slab.
2670 */
2671 list_del(&page->lru);
2672 n->nr_partial--;
2673 slab_unlock(page);
2674 discard_slab(s, page);
2675 } else {
Christoph Lameterfcda3d82007-07-30 13:06:46 -07002676 list_move(&page->lru,
2677 slabs_by_inuse + page->inuse);
Christoph Lameter2086d262007-05-06 14:49:46 -07002678 }
2679 }
2680
Christoph Lameter2086d262007-05-06 14:49:46 -07002681 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002682 * Rebuild the partial list with the slabs filled up most
2683 * first and the least used slabs at the end.
Christoph Lameter2086d262007-05-06 14:49:46 -07002684 */
2685 for (i = s->objects - 1; i >= 0; i--)
2686 list_splice(slabs_by_inuse + i, n->partial.prev);
2687
Christoph Lameter2086d262007-05-06 14:49:46 -07002688 spin_unlock_irqrestore(&n->list_lock, flags);
2689 }
2690
2691 kfree(slabs_by_inuse);
2692 return 0;
2693}
2694EXPORT_SYMBOL(kmem_cache_shrink);
2695
Yasunori Gotob9049e22007-10-21 16:41:37 -07002696#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2697static int slab_mem_going_offline_callback(void *arg)
2698{
2699 struct kmem_cache *s;
2700
2701 down_read(&slub_lock);
2702 list_for_each_entry(s, &slab_caches, list)
2703 kmem_cache_shrink(s);
2704 up_read(&slub_lock);
2705
2706 return 0;
2707}
2708
2709static void slab_mem_offline_callback(void *arg)
2710{
2711 struct kmem_cache_node *n;
2712 struct kmem_cache *s;
2713 struct memory_notify *marg = arg;
2714 int offline_node;
2715
2716 offline_node = marg->status_change_nid;
2717
2718 /*
2719 * If the node still has available memory. we need kmem_cache_node
2720 * for it yet.
2721 */
2722 if (offline_node < 0)
2723 return;
2724
2725 down_read(&slub_lock);
2726 list_for_each_entry(s, &slab_caches, list) {
2727 n = get_node(s, offline_node);
2728 if (n) {
2729 /*
2730 * if n->nr_slabs > 0, slabs still exist on the node
2731 * that is going down. We were unable to free them,
2732 * and offline_pages() function shoudn't call this
2733 * callback. So, we must fail.
2734 */
Al Viro27bb6282007-10-29 04:42:55 +00002735 BUG_ON(atomic_long_read(&n->nr_slabs));
Yasunori Gotob9049e22007-10-21 16:41:37 -07002736
2737 s->node[offline_node] = NULL;
2738 kmem_cache_free(kmalloc_caches, n);
2739 }
2740 }
2741 up_read(&slub_lock);
2742}
2743
2744static int slab_mem_going_online_callback(void *arg)
2745{
2746 struct kmem_cache_node *n;
2747 struct kmem_cache *s;
2748 struct memory_notify *marg = arg;
2749 int nid = marg->status_change_nid;
2750 int ret = 0;
2751
2752 /*
2753 * If the node's memory is already available, then kmem_cache_node is
2754 * already created. Nothing to do.
2755 */
2756 if (nid < 0)
2757 return 0;
2758
2759 /*
2760 * We are bringing a node online. No memory is availabe yet. We must
2761 * allocate a kmem_cache_node structure in order to bring the node
2762 * online.
2763 */
2764 down_read(&slub_lock);
2765 list_for_each_entry(s, &slab_caches, list) {
2766 /*
2767 * XXX: kmem_cache_alloc_node will fallback to other nodes
2768 * since memory is not yet available from the node that
2769 * is brought up.
2770 */
2771 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2772 if (!n) {
2773 ret = -ENOMEM;
2774 goto out;
2775 }
2776 init_kmem_cache_node(n);
2777 s->node[nid] = n;
2778 }
2779out:
2780 up_read(&slub_lock);
2781 return ret;
2782}
2783
2784static int slab_memory_callback(struct notifier_block *self,
2785 unsigned long action, void *arg)
2786{
2787 int ret = 0;
2788
2789 switch (action) {
2790 case MEM_GOING_ONLINE:
2791 ret = slab_mem_going_online_callback(arg);
2792 break;
2793 case MEM_GOING_OFFLINE:
2794 ret = slab_mem_going_offline_callback(arg);
2795 break;
2796 case MEM_OFFLINE:
2797 case MEM_CANCEL_ONLINE:
2798 slab_mem_offline_callback(arg);
2799 break;
2800 case MEM_ONLINE:
2801 case MEM_CANCEL_OFFLINE:
2802 break;
2803 }
2804
2805 ret = notifier_from_errno(ret);
2806 return ret;
2807}
2808
2809#endif /* CONFIG_MEMORY_HOTPLUG */
2810
Christoph Lameter81819f02007-05-06 14:49:36 -07002811/********************************************************************
2812 * Basic setup of slabs
2813 *******************************************************************/
2814
2815void __init kmem_cache_init(void)
2816{
2817 int i;
Christoph Lameter4b356be2007-06-16 10:16:13 -07002818 int caches = 0;
Christoph Lameter81819f02007-05-06 14:49:36 -07002819
Christoph Lameter4c93c3552007-10-16 01:26:08 -07002820 init_alloc_cpu();
2821
Christoph Lameter81819f02007-05-06 14:49:36 -07002822#ifdef CONFIG_NUMA
2823 /*
2824 * Must first have the slab cache available for the allocations of the
Christoph Lameter672bba32007-05-09 02:32:39 -07002825 * struct kmem_cache_node's. There is special bootstrap code in
Christoph Lameter81819f02007-05-06 14:49:36 -07002826 * kmem_cache_open for slab_state == DOWN.
2827 */
2828 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2829 sizeof(struct kmem_cache_node), GFP_KERNEL);
Christoph Lameter8ffa6872007-05-31 00:40:51 -07002830 kmalloc_caches[0].refcount = -1;
Christoph Lameter4b356be2007-06-16 10:16:13 -07002831 caches++;
Yasunori Gotob9049e22007-10-21 16:41:37 -07002832
2833 hotplug_memory_notifier(slab_memory_callback, 1);
Christoph Lameter81819f02007-05-06 14:49:36 -07002834#endif
2835
2836 /* Able to allocate the per node structures */
2837 slab_state = PARTIAL;
2838
2839 /* Caches that are not of the two-to-the-power-of size */
Christoph Lameter4b356be2007-06-16 10:16:13 -07002840 if (KMALLOC_MIN_SIZE <= 64) {
2841 create_kmalloc_cache(&kmalloc_caches[1],
Christoph Lameter81819f02007-05-06 14:49:36 -07002842 "kmalloc-96", 96, GFP_KERNEL);
Christoph Lameter4b356be2007-06-16 10:16:13 -07002843 caches++;
2844 }
2845 if (KMALLOC_MIN_SIZE <= 128) {
2846 create_kmalloc_cache(&kmalloc_caches[2],
Christoph Lameter81819f02007-05-06 14:49:36 -07002847 "kmalloc-192", 192, GFP_KERNEL);
Christoph Lameter4b356be2007-06-16 10:16:13 -07002848 caches++;
2849 }
Christoph Lameter81819f02007-05-06 14:49:36 -07002850
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002851 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002852 create_kmalloc_cache(&kmalloc_caches[i],
2853 "kmalloc", 1 << i, GFP_KERNEL);
Christoph Lameter4b356be2007-06-16 10:16:13 -07002854 caches++;
2855 }
Christoph Lameter81819f02007-05-06 14:49:36 -07002856
Christoph Lameterf1b26332007-07-17 04:03:26 -07002857
2858 /*
2859 * Patch up the size_index table if we have strange large alignment
2860 * requirements for the kmalloc array. This is only the case for
2861 * mips it seems. The standard arches will not generate any code here.
2862 *
2863 * Largest permitted alignment is 256 bytes due to the way we
2864 * handle the index determination for the smaller caches.
2865 *
2866 * Make sure that nothing crazy happens if someone starts tinkering
2867 * around with ARCH_KMALLOC_MINALIGN
2868 */
2869 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2870 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2871
Christoph Lameter12ad6842007-07-17 04:03:28 -07002872 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
Christoph Lameterf1b26332007-07-17 04:03:26 -07002873 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2874
Christoph Lameter81819f02007-05-06 14:49:36 -07002875 slab_state = UP;
2876
2877 /* Provide the correct kmalloc names now that the caches are up */
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07002878 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
Christoph Lameter81819f02007-05-06 14:49:36 -07002879 kmalloc_caches[i]. name =
2880 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2881
2882#ifdef CONFIG_SMP
2883 register_cpu_notifier(&slab_notifier);
Christoph Lameter4c93c3552007-10-16 01:26:08 -07002884 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2885 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2886#else
2887 kmem_size = sizeof(struct kmem_cache);
Christoph Lameter81819f02007-05-06 14:49:36 -07002888#endif
2889
Christoph Lameter81819f02007-05-06 14:49:36 -07002890
2891 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
Christoph Lameter4b356be2007-06-16 10:16:13 -07002892 " CPUs=%d, Nodes=%d\n",
2893 caches, cache_line_size(),
Christoph Lameter81819f02007-05-06 14:49:36 -07002894 slub_min_order, slub_max_order, slub_min_objects,
2895 nr_cpu_ids, nr_node_ids);
2896}
2897
2898/*
2899 * Find a mergeable slab cache
2900 */
2901static int slab_unmergeable(struct kmem_cache *s)
2902{
2903 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2904 return 1;
2905
Christoph Lameterc59def9f2007-05-16 22:10:50 -07002906 if (s->ctor)
Christoph Lameter81819f02007-05-06 14:49:36 -07002907 return 1;
2908
Christoph Lameter8ffa6872007-05-31 00:40:51 -07002909 /*
2910 * We may have set a slab to be unmergeable during bootstrap.
2911 */
2912 if (s->refcount < 0)
2913 return 1;
2914
Christoph Lameter81819f02007-05-06 14:49:36 -07002915 return 0;
2916}
2917
2918static struct kmem_cache *find_mergeable(size_t size,
Christoph Lameterba0268a2007-09-11 15:24:11 -07002919 size_t align, unsigned long flags, const char *name,
Christoph Lameter4ba9b9d2007-10-16 23:25:51 -07002920 void (*ctor)(struct kmem_cache *, void *))
Christoph Lameter81819f02007-05-06 14:49:36 -07002921{
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07002922 struct kmem_cache *s;
Christoph Lameter81819f02007-05-06 14:49:36 -07002923
2924 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2925 return NULL;
2926
Christoph Lameterc59def9f2007-05-16 22:10:50 -07002927 if (ctor)
Christoph Lameter81819f02007-05-06 14:49:36 -07002928 return NULL;
2929
2930 size = ALIGN(size, sizeof(void *));
2931 align = calculate_alignment(flags, align, size);
2932 size = ALIGN(size, align);
Christoph Lameterba0268a2007-09-11 15:24:11 -07002933 flags = kmem_cache_flags(size, flags, name, NULL);
Christoph Lameter81819f02007-05-06 14:49:36 -07002934
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07002935 list_for_each_entry(s, &slab_caches, list) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002936 if (slab_unmergeable(s))
2937 continue;
2938
2939 if (size > s->size)
2940 continue;
2941
Christoph Lameterba0268a2007-09-11 15:24:11 -07002942 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
Christoph Lameter81819f02007-05-06 14:49:36 -07002943 continue;
2944 /*
2945 * Check if alignment is compatible.
2946 * Courtesy of Adrian Drzewiecki
2947 */
Pekka Enberg06428782008-01-07 23:20:27 -08002948 if ((s->size & ~(align - 1)) != s->size)
Christoph Lameter81819f02007-05-06 14:49:36 -07002949 continue;
2950
2951 if (s->size - size >= sizeof(void *))
2952 continue;
2953
2954 return s;
2955 }
2956 return NULL;
2957}
2958
2959struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2960 size_t align, unsigned long flags,
Christoph Lameter4ba9b9d2007-10-16 23:25:51 -07002961 void (*ctor)(struct kmem_cache *, void *))
Christoph Lameter81819f02007-05-06 14:49:36 -07002962{
2963 struct kmem_cache *s;
2964
2965 down_write(&slub_lock);
Christoph Lameterba0268a2007-09-11 15:24:11 -07002966 s = find_mergeable(size, align, flags, name, ctor);
Christoph Lameter81819f02007-05-06 14:49:36 -07002967 if (s) {
Christoph Lameter42a9fdb2007-10-16 01:26:09 -07002968 int cpu;
2969
Christoph Lameter81819f02007-05-06 14:49:36 -07002970 s->refcount++;
2971 /*
2972 * Adjust the object sizes so that we clear
2973 * the complete object on kzalloc.
2974 */
2975 s->objsize = max(s->objsize, (int)size);
Christoph Lameter42a9fdb2007-10-16 01:26:09 -07002976
2977 /*
2978 * And then we need to update the object size in the
2979 * per cpu structures
2980 */
2981 for_each_online_cpu(cpu)
2982 get_cpu_slab(s, cpu)->objsize = s->objsize;
Christoph Lameter81819f02007-05-06 14:49:36 -07002983 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002984 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002985 if (sysfs_slab_alias(s, name))
2986 goto err;
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002987 return s;
2988 }
2989 s = kmalloc(kmem_size, GFP_KERNEL);
2990 if (s) {
2991 if (kmem_cache_open(s, GFP_KERNEL, name,
Christoph Lameterc59def9f2007-05-16 22:10:50 -07002992 size, align, flags, ctor)) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002993 list_add(&s->list, &slab_caches);
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002994 up_write(&slub_lock);
2995 if (sysfs_slab_add(s))
2996 goto err;
2997 return s;
2998 }
2999 kfree(s);
Christoph Lameter81819f02007-05-06 14:49:36 -07003000 }
3001 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07003002
3003err:
Christoph Lameter81819f02007-05-06 14:49:36 -07003004 if (flags & SLAB_PANIC)
3005 panic("Cannot create slabcache %s\n", name);
3006 else
3007 s = NULL;
3008 return s;
3009}
3010EXPORT_SYMBOL(kmem_cache_create);
3011
Christoph Lameter81819f02007-05-06 14:49:36 -07003012#ifdef CONFIG_SMP
Christoph Lameter27390bc2007-06-01 00:47:09 -07003013/*
Christoph Lameter672bba32007-05-09 02:32:39 -07003014 * Use the cpu notifier to insure that the cpu slabs are flushed when
3015 * necessary.
Christoph Lameter81819f02007-05-06 14:49:36 -07003016 */
3017static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3018 unsigned long action, void *hcpu)
3019{
3020 long cpu = (long)hcpu;
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07003021 struct kmem_cache *s;
3022 unsigned long flags;
Christoph Lameter81819f02007-05-06 14:49:36 -07003023
3024 switch (action) {
Christoph Lameter4c93c3552007-10-16 01:26:08 -07003025 case CPU_UP_PREPARE:
3026 case CPU_UP_PREPARE_FROZEN:
3027 init_alloc_cpu_cpu(cpu);
3028 down_read(&slub_lock);
3029 list_for_each_entry(s, &slab_caches, list)
3030 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3031 GFP_KERNEL);
3032 up_read(&slub_lock);
3033 break;
3034
Christoph Lameter81819f02007-05-06 14:49:36 -07003035 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07003036 case CPU_UP_CANCELED_FROZEN:
Christoph Lameter81819f02007-05-06 14:49:36 -07003037 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07003038 case CPU_DEAD_FROZEN:
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07003039 down_read(&slub_lock);
3040 list_for_each_entry(s, &slab_caches, list) {
Christoph Lameter4c93c3552007-10-16 01:26:08 -07003041 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3042
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07003043 local_irq_save(flags);
3044 __flush_cpu_slab(s, cpu);
3045 local_irq_restore(flags);
Christoph Lameter4c93c3552007-10-16 01:26:08 -07003046 free_kmem_cache_cpu(c, cpu);
3047 s->cpu_slab[cpu] = NULL;
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07003048 }
3049 up_read(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07003050 break;
3051 default:
3052 break;
3053 }
3054 return NOTIFY_OK;
3055}
3056
Pekka Enberg06428782008-01-07 23:20:27 -08003057static struct notifier_block __cpuinitdata slab_notifier = {
3058 &slab_cpuup_callback, NULL, 0
3059};
Christoph Lameter81819f02007-05-06 14:49:36 -07003060
3061#endif
3062
Christoph Lameter81819f02007-05-06 14:49:36 -07003063void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3064{
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07003065 struct kmem_cache *s;
3066
3067 if (unlikely(size > PAGE_SIZE / 2))
3068 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3069 get_order(size));
3070 s = get_slab(size, gfpflags);
Christoph Lameter81819f02007-05-06 14:49:36 -07003071
Satyam Sharma2408c552007-10-16 01:24:44 -07003072 if (unlikely(ZERO_OR_NULL_PTR(s)))
Christoph Lameter6cb8f912007-07-17 04:03:22 -07003073 return s;
Christoph Lameter81819f02007-05-06 14:49:36 -07003074
Christoph Lameterce15fea2007-07-17 04:03:28 -07003075 return slab_alloc(s, gfpflags, -1, caller);
Christoph Lameter81819f02007-05-06 14:49:36 -07003076}
3077
3078void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3079 int node, void *caller)
3080{
Christoph Lameteraadb4bc2007-10-16 01:24:38 -07003081 struct kmem_cache *s;
3082
3083 if (unlikely(size > PAGE_SIZE / 2))
3084 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3085 get_order(size));
3086 s = get_slab(size, gfpflags);
Christoph Lameter81819f02007-05-06 14:49:36 -07003087
Satyam Sharma2408c552007-10-16 01:24:44 -07003088 if (unlikely(ZERO_OR_NULL_PTR(s)))
Christoph Lameter6cb8f912007-07-17 04:03:22 -07003089 return s;
Christoph Lameter81819f02007-05-06 14:49:36 -07003090
Christoph Lameterce15fea2007-07-17 04:03:28 -07003091 return slab_alloc(s, gfpflags, node, caller);
Christoph Lameter81819f02007-05-06 14:49:36 -07003092}
3093
Christoph Lameter41ecc552007-05-09 02:32:44 -07003094#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
Christoph Lameter434e2452007-07-17 04:03:30 -07003095static int validate_slab(struct kmem_cache *s, struct page *page,
3096 unsigned long *map)
Christoph Lameter53e15af2007-05-06 14:49:43 -07003097{
3098 void *p;
3099 void *addr = page_address(page);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003100
3101 if (!check_slab(s, page) ||
3102 !on_freelist(s, page, NULL))
3103 return 0;
3104
3105 /* Now we know that a valid freelist exists */
3106 bitmap_zero(map, s->objects);
3107
Christoph Lameter7656c722007-05-09 02:32:40 -07003108 for_each_free_object(p, s, page->freelist) {
3109 set_bit(slab_index(p, s, addr), map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003110 if (!check_object(s, page, p, 0))
3111 return 0;
3112 }
3113
Christoph Lameter7656c722007-05-09 02:32:40 -07003114 for_each_object(p, s, addr)
3115 if (!test_bit(slab_index(p, s, addr), map))
Christoph Lameter53e15af2007-05-06 14:49:43 -07003116 if (!check_object(s, page, p, 1))
3117 return 0;
3118 return 1;
3119}
3120
Christoph Lameter434e2452007-07-17 04:03:30 -07003121static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3122 unsigned long *map)
Christoph Lameter53e15af2007-05-06 14:49:43 -07003123{
3124 if (slab_trylock(page)) {
Christoph Lameter434e2452007-07-17 04:03:30 -07003125 validate_slab(s, page, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003126 slab_unlock(page);
3127 } else
3128 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3129 s->name, page);
3130
3131 if (s->flags & DEBUG_DEFAULT_FLAGS) {
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07003132 if (!SlabDebug(page))
3133 printk(KERN_ERR "SLUB %s: SlabDebug not set "
Christoph Lameter53e15af2007-05-06 14:49:43 -07003134 "on slab 0x%p\n", s->name, page);
3135 } else {
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07003136 if (SlabDebug(page))
3137 printk(KERN_ERR "SLUB %s: SlabDebug set on "
Christoph Lameter53e15af2007-05-06 14:49:43 -07003138 "slab 0x%p\n", s->name, page);
3139 }
3140}
3141
Christoph Lameter434e2452007-07-17 04:03:30 -07003142static int validate_slab_node(struct kmem_cache *s,
3143 struct kmem_cache_node *n, unsigned long *map)
Christoph Lameter53e15af2007-05-06 14:49:43 -07003144{
3145 unsigned long count = 0;
3146 struct page *page;
3147 unsigned long flags;
3148
3149 spin_lock_irqsave(&n->list_lock, flags);
3150
3151 list_for_each_entry(page, &n->partial, lru) {
Christoph Lameter434e2452007-07-17 04:03:30 -07003152 validate_slab_slab(s, page, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003153 count++;
3154 }
3155 if (count != n->nr_partial)
3156 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3157 "counter=%ld\n", s->name, count, n->nr_partial);
3158
3159 if (!(s->flags & SLAB_STORE_USER))
3160 goto out;
3161
3162 list_for_each_entry(page, &n->full, lru) {
Christoph Lameter434e2452007-07-17 04:03:30 -07003163 validate_slab_slab(s, page, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003164 count++;
3165 }
3166 if (count != atomic_long_read(&n->nr_slabs))
3167 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3168 "counter=%ld\n", s->name, count,
3169 atomic_long_read(&n->nr_slabs));
3170
3171out:
3172 spin_unlock_irqrestore(&n->list_lock, flags);
3173 return count;
3174}
3175
Christoph Lameter434e2452007-07-17 04:03:30 -07003176static long validate_slab_cache(struct kmem_cache *s)
Christoph Lameter53e15af2007-05-06 14:49:43 -07003177{
3178 int node;
3179 unsigned long count = 0;
Christoph Lameter434e2452007-07-17 04:03:30 -07003180 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3181 sizeof(unsigned long), GFP_KERNEL);
3182
3183 if (!map)
3184 return -ENOMEM;
Christoph Lameter53e15af2007-05-06 14:49:43 -07003185
3186 flush_all(s);
Christoph Lameterf64dc582007-10-16 01:25:33 -07003187 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter53e15af2007-05-06 14:49:43 -07003188 struct kmem_cache_node *n = get_node(s, node);
3189
Christoph Lameter434e2452007-07-17 04:03:30 -07003190 count += validate_slab_node(s, n, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003191 }
Christoph Lameter434e2452007-07-17 04:03:30 -07003192 kfree(map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07003193 return count;
3194}
3195
Christoph Lameterb3459702007-05-09 02:32:41 -07003196#ifdef SLUB_RESILIENCY_TEST
3197static void resiliency_test(void)
3198{
3199 u8 *p;
3200
3201 printk(KERN_ERR "SLUB resiliency testing\n");
3202 printk(KERN_ERR "-----------------------\n");
3203 printk(KERN_ERR "A. Corruption after allocation\n");
3204
3205 p = kzalloc(16, GFP_KERNEL);
3206 p[16] = 0x12;
3207 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3208 " 0x12->0x%p\n\n", p + 16);
3209
3210 validate_slab_cache(kmalloc_caches + 4);
3211
3212 /* Hmmm... The next two are dangerous */
3213 p = kzalloc(32, GFP_KERNEL);
3214 p[32 + sizeof(void *)] = 0x34;
3215 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3216 " 0x34 -> -0x%p\n", p);
3217 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3218
3219 validate_slab_cache(kmalloc_caches + 5);
3220 p = kzalloc(64, GFP_KERNEL);
3221 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3222 *p = 0x56;
3223 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3224 p);
3225 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3226 validate_slab_cache(kmalloc_caches + 6);
3227
3228 printk(KERN_ERR "\nB. Corruption after free\n");
3229 p = kzalloc(128, GFP_KERNEL);
3230 kfree(p);
3231 *p = 0x78;
3232 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3233 validate_slab_cache(kmalloc_caches + 7);
3234
3235 p = kzalloc(256, GFP_KERNEL);
3236 kfree(p);
3237 p[50] = 0x9a;
3238 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3239 validate_slab_cache(kmalloc_caches + 8);
3240
3241 p = kzalloc(512, GFP_KERNEL);
3242 kfree(p);
3243 p[512] = 0xab;
3244 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3245 validate_slab_cache(kmalloc_caches + 9);
3246}
3247#else
3248static void resiliency_test(void) {};
3249#endif
3250
Christoph Lameter88a420e2007-05-06 14:49:45 -07003251/*
Christoph Lameter672bba32007-05-09 02:32:39 -07003252 * Generate lists of code addresses where slabcache objects are allocated
Christoph Lameter88a420e2007-05-06 14:49:45 -07003253 * and freed.
3254 */
3255
3256struct location {
3257 unsigned long count;
3258 void *addr;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003259 long long sum_time;
3260 long min_time;
3261 long max_time;
3262 long min_pid;
3263 long max_pid;
3264 cpumask_t cpus;
3265 nodemask_t nodes;
Christoph Lameter88a420e2007-05-06 14:49:45 -07003266};
3267
3268struct loc_track {
3269 unsigned long max;
3270 unsigned long count;
3271 struct location *loc;
3272};
3273
3274static void free_loc_track(struct loc_track *t)
3275{
3276 if (t->max)
3277 free_pages((unsigned long)t->loc,
3278 get_order(sizeof(struct location) * t->max));
3279}
3280
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003281static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
Christoph Lameter88a420e2007-05-06 14:49:45 -07003282{
3283 struct location *l;
3284 int order;
3285
Christoph Lameter88a420e2007-05-06 14:49:45 -07003286 order = get_order(sizeof(struct location) * max);
3287
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003288 l = (void *)__get_free_pages(flags, order);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003289 if (!l)
3290 return 0;
3291
3292 if (t->count) {
3293 memcpy(l, t->loc, sizeof(struct location) * t->count);
3294 free_loc_track(t);
3295 }
3296 t->max = max;
3297 t->loc = l;
3298 return 1;
3299}
3300
3301static int add_location(struct loc_track *t, struct kmem_cache *s,
Christoph Lameter45edfa52007-05-09 02:32:45 -07003302 const struct track *track)
Christoph Lameter88a420e2007-05-06 14:49:45 -07003303{
3304 long start, end, pos;
3305 struct location *l;
3306 void *caddr;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003307 unsigned long age = jiffies - track->when;
Christoph Lameter88a420e2007-05-06 14:49:45 -07003308
3309 start = -1;
3310 end = t->count;
3311
3312 for ( ; ; ) {
3313 pos = start + (end - start + 1) / 2;
3314
3315 /*
3316 * There is nothing at "end". If we end up there
3317 * we need to add something to before end.
3318 */
3319 if (pos == end)
3320 break;
3321
3322 caddr = t->loc[pos].addr;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003323 if (track->addr == caddr) {
3324
3325 l = &t->loc[pos];
3326 l->count++;
3327 if (track->when) {
3328 l->sum_time += age;
3329 if (age < l->min_time)
3330 l->min_time = age;
3331 if (age > l->max_time)
3332 l->max_time = age;
3333
3334 if (track->pid < l->min_pid)
3335 l->min_pid = track->pid;
3336 if (track->pid > l->max_pid)
3337 l->max_pid = track->pid;
3338
3339 cpu_set(track->cpu, l->cpus);
3340 }
3341 node_set(page_to_nid(virt_to_page(track)), l->nodes);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003342 return 1;
3343 }
3344
Christoph Lameter45edfa52007-05-09 02:32:45 -07003345 if (track->addr < caddr)
Christoph Lameter88a420e2007-05-06 14:49:45 -07003346 end = pos;
3347 else
3348 start = pos;
3349 }
3350
3351 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07003352 * Not found. Insert new tracking element.
Christoph Lameter88a420e2007-05-06 14:49:45 -07003353 */
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003354 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
Christoph Lameter88a420e2007-05-06 14:49:45 -07003355 return 0;
3356
3357 l = t->loc + pos;
3358 if (pos < t->count)
3359 memmove(l + 1, l,
3360 (t->count - pos) * sizeof(struct location));
3361 t->count++;
3362 l->count = 1;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003363 l->addr = track->addr;
3364 l->sum_time = age;
3365 l->min_time = age;
3366 l->max_time = age;
3367 l->min_pid = track->pid;
3368 l->max_pid = track->pid;
3369 cpus_clear(l->cpus);
3370 cpu_set(track->cpu, l->cpus);
3371 nodes_clear(l->nodes);
3372 node_set(page_to_nid(virt_to_page(track)), l->nodes);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003373 return 1;
3374}
3375
3376static void process_slab(struct loc_track *t, struct kmem_cache *s,
3377 struct page *page, enum track_item alloc)
3378{
3379 void *addr = page_address(page);
Christoph Lameter7656c722007-05-09 02:32:40 -07003380 DECLARE_BITMAP(map, s->objects);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003381 void *p;
3382
3383 bitmap_zero(map, s->objects);
Christoph Lameter7656c722007-05-09 02:32:40 -07003384 for_each_free_object(p, s, page->freelist)
3385 set_bit(slab_index(p, s, addr), map);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003386
Christoph Lameter7656c722007-05-09 02:32:40 -07003387 for_each_object(p, s, addr)
Christoph Lameter45edfa52007-05-09 02:32:45 -07003388 if (!test_bit(slab_index(p, s, addr), map))
3389 add_location(t, s, get_track(s, p, alloc));
Christoph Lameter88a420e2007-05-06 14:49:45 -07003390}
3391
3392static int list_locations(struct kmem_cache *s, char *buf,
3393 enum track_item alloc)
3394{
Harvey Harrisone374d482008-01-31 15:20:50 -08003395 int len = 0;
Christoph Lameter88a420e2007-05-06 14:49:45 -07003396 unsigned long i;
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003397 struct loc_track t = { 0, 0, NULL };
Christoph Lameter88a420e2007-05-06 14:49:45 -07003398 int node;
3399
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003400 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
Andrew Mortonea3061d2007-10-16 01:26:09 -07003401 GFP_TEMPORARY))
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003402 return sprintf(buf, "Out of memory\n");
Christoph Lameter88a420e2007-05-06 14:49:45 -07003403
3404 /* Push back cpu slabs */
3405 flush_all(s);
3406
Christoph Lameterf64dc582007-10-16 01:25:33 -07003407 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter88a420e2007-05-06 14:49:45 -07003408 struct kmem_cache_node *n = get_node(s, node);
3409 unsigned long flags;
3410 struct page *page;
3411
Christoph Lameter9e869432007-08-22 14:01:56 -07003412 if (!atomic_long_read(&n->nr_slabs))
Christoph Lameter88a420e2007-05-06 14:49:45 -07003413 continue;
3414
3415 spin_lock_irqsave(&n->list_lock, flags);
3416 list_for_each_entry(page, &n->partial, lru)
3417 process_slab(&t, s, page, alloc);
3418 list_for_each_entry(page, &n->full, lru)
3419 process_slab(&t, s, page, alloc);
3420 spin_unlock_irqrestore(&n->list_lock, flags);
3421 }
3422
3423 for (i = 0; i < t.count; i++) {
Christoph Lameter45edfa52007-05-09 02:32:45 -07003424 struct location *l = &t.loc[i];
Christoph Lameter88a420e2007-05-06 14:49:45 -07003425
Harvey Harrisone374d482008-01-31 15:20:50 -08003426 if (len > PAGE_SIZE - 100)
Christoph Lameter88a420e2007-05-06 14:49:45 -07003427 break;
Harvey Harrisone374d482008-01-31 15:20:50 -08003428 len += sprintf(buf + len, "%7ld ", l->count);
Christoph Lameter45edfa52007-05-09 02:32:45 -07003429
3430 if (l->addr)
Harvey Harrisone374d482008-01-31 15:20:50 -08003431 len += sprint_symbol(buf + len, (unsigned long)l->addr);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003432 else
Harvey Harrisone374d482008-01-31 15:20:50 -08003433 len += sprintf(buf + len, "<not-available>");
Christoph Lameter45edfa52007-05-09 02:32:45 -07003434
3435 if (l->sum_time != l->min_time) {
3436 unsigned long remainder;
3437
Harvey Harrisone374d482008-01-31 15:20:50 -08003438 len += sprintf(buf + len, " age=%ld/%ld/%ld",
Christoph Lameter45edfa52007-05-09 02:32:45 -07003439 l->min_time,
3440 div_long_long_rem(l->sum_time, l->count, &remainder),
3441 l->max_time);
3442 } else
Harvey Harrisone374d482008-01-31 15:20:50 -08003443 len += sprintf(buf + len, " age=%ld",
Christoph Lameter45edfa52007-05-09 02:32:45 -07003444 l->min_time);
3445
3446 if (l->min_pid != l->max_pid)
Harvey Harrisone374d482008-01-31 15:20:50 -08003447 len += sprintf(buf + len, " pid=%ld-%ld",
Christoph Lameter45edfa52007-05-09 02:32:45 -07003448 l->min_pid, l->max_pid);
3449 else
Harvey Harrisone374d482008-01-31 15:20:50 -08003450 len += sprintf(buf + len, " pid=%ld",
Christoph Lameter45edfa52007-05-09 02:32:45 -07003451 l->min_pid);
3452
Christoph Lameter84966342007-06-23 17:16:32 -07003453 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
Harvey Harrisone374d482008-01-31 15:20:50 -08003454 len < PAGE_SIZE - 60) {
3455 len += sprintf(buf + len, " cpus=");
3456 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
Christoph Lameter45edfa52007-05-09 02:32:45 -07003457 l->cpus);
3458 }
3459
Christoph Lameter84966342007-06-23 17:16:32 -07003460 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
Harvey Harrisone374d482008-01-31 15:20:50 -08003461 len < PAGE_SIZE - 60) {
3462 len += sprintf(buf + len, " nodes=");
3463 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
Christoph Lameter45edfa52007-05-09 02:32:45 -07003464 l->nodes);
3465 }
3466
Harvey Harrisone374d482008-01-31 15:20:50 -08003467 len += sprintf(buf + len, "\n");
Christoph Lameter88a420e2007-05-06 14:49:45 -07003468 }
3469
3470 free_loc_track(&t);
3471 if (!t.count)
Harvey Harrisone374d482008-01-31 15:20:50 -08003472 len += sprintf(buf, "No data\n");
3473 return len;
Christoph Lameter88a420e2007-05-06 14:49:45 -07003474}
3475
Christoph Lameter81819f02007-05-06 14:49:36 -07003476enum slab_stat_type {
3477 SL_FULL,
3478 SL_PARTIAL,
3479 SL_CPU,
3480 SL_OBJECTS
3481};
3482
3483#define SO_FULL (1 << SL_FULL)
3484#define SO_PARTIAL (1 << SL_PARTIAL)
3485#define SO_CPU (1 << SL_CPU)
3486#define SO_OBJECTS (1 << SL_OBJECTS)
3487
3488static unsigned long slab_objects(struct kmem_cache *s,
3489 char *buf, unsigned long flags)
3490{
3491 unsigned long total = 0;
3492 int cpu;
3493 int node;
3494 int x;
3495 unsigned long *nodes;
3496 unsigned long *per_cpu;
3497
3498 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3499 per_cpu = nodes + nr_node_ids;
3500
3501 for_each_possible_cpu(cpu) {
Christoph Lameterdfb4f092007-10-16 01:26:05 -07003502 struct page *page;
3503 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
Christoph Lameter81819f02007-05-06 14:49:36 -07003504
Christoph Lameterdfb4f092007-10-16 01:26:05 -07003505 if (!c)
3506 continue;
3507
3508 page = c->page;
Christoph Lameteree3c72a2007-10-16 01:26:07 -07003509 node = c->node;
3510 if (node < 0)
3511 continue;
Christoph Lameter81819f02007-05-06 14:49:36 -07003512 if (page) {
Christoph Lameter81819f02007-05-06 14:49:36 -07003513 if (flags & SO_CPU) {
Christoph Lameter81819f02007-05-06 14:49:36 -07003514 if (flags & SO_OBJECTS)
3515 x = page->inuse;
3516 else
3517 x = 1;
3518 total += x;
Christoph Lameteree3c72a2007-10-16 01:26:07 -07003519 nodes[node] += x;
Christoph Lameter81819f02007-05-06 14:49:36 -07003520 }
Christoph Lameteree3c72a2007-10-16 01:26:07 -07003521 per_cpu[node]++;
Christoph Lameter81819f02007-05-06 14:49:36 -07003522 }
3523 }
3524
Christoph Lameterf64dc582007-10-16 01:25:33 -07003525 for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter81819f02007-05-06 14:49:36 -07003526 struct kmem_cache_node *n = get_node(s, node);
3527
3528 if (flags & SO_PARTIAL) {
3529 if (flags & SO_OBJECTS)
3530 x = count_partial(n);
3531 else
3532 x = n->nr_partial;
3533 total += x;
3534 nodes[node] += x;
3535 }
3536
3537 if (flags & SO_FULL) {
Christoph Lameter9e869432007-08-22 14:01:56 -07003538 int full_slabs = atomic_long_read(&n->nr_slabs)
Christoph Lameter81819f02007-05-06 14:49:36 -07003539 - per_cpu[node]
3540 - n->nr_partial;
3541
3542 if (flags & SO_OBJECTS)
3543 x = full_slabs * s->objects;
3544 else
3545 x = full_slabs;
3546 total += x;
3547 nodes[node] += x;
3548 }
3549 }
3550
3551 x = sprintf(buf, "%lu", total);
3552#ifdef CONFIG_NUMA
Christoph Lameterf64dc582007-10-16 01:25:33 -07003553 for_each_node_state(node, N_NORMAL_MEMORY)
Christoph Lameter81819f02007-05-06 14:49:36 -07003554 if (nodes[node])
3555 x += sprintf(buf + x, " N%d=%lu",
3556 node, nodes[node]);
3557#endif
3558 kfree(nodes);
3559 return x + sprintf(buf + x, "\n");
3560}
3561
3562static int any_slab_objects(struct kmem_cache *s)
3563{
3564 int node;
3565 int cpu;
3566
Christoph Lameterdfb4f092007-10-16 01:26:05 -07003567 for_each_possible_cpu(cpu) {
3568 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
Christoph Lameter81819f02007-05-06 14:49:36 -07003569
Christoph Lameterdfb4f092007-10-16 01:26:05 -07003570 if (c && c->page)
3571 return 1;
3572 }
3573
3574 for_each_online_node(node) {
Christoph Lameter81819f02007-05-06 14:49:36 -07003575 struct kmem_cache_node *n = get_node(s, node);
3576
Christoph Lameterdfb4f092007-10-16 01:26:05 -07003577 if (!n)
3578 continue;
3579
Christoph Lameter9e869432007-08-22 14:01:56 -07003580 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
Christoph Lameter81819f02007-05-06 14:49:36 -07003581 return 1;
3582 }
3583 return 0;
3584}
3585
3586#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3587#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3588
3589struct slab_attribute {
3590 struct attribute attr;
3591 ssize_t (*show)(struct kmem_cache *s, char *buf);
3592 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3593};
3594
3595#define SLAB_ATTR_RO(_name) \
3596 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3597
3598#define SLAB_ATTR(_name) \
3599 static struct slab_attribute _name##_attr = \
3600 __ATTR(_name, 0644, _name##_show, _name##_store)
3601
Christoph Lameter81819f02007-05-06 14:49:36 -07003602static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3603{
3604 return sprintf(buf, "%d\n", s->size);
3605}
3606SLAB_ATTR_RO(slab_size);
3607
3608static ssize_t align_show(struct kmem_cache *s, char *buf)
3609{
3610 return sprintf(buf, "%d\n", s->align);
3611}
3612SLAB_ATTR_RO(align);
3613
3614static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3615{
3616 return sprintf(buf, "%d\n", s->objsize);
3617}
3618SLAB_ATTR_RO(object_size);
3619
3620static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3621{
3622 return sprintf(buf, "%d\n", s->objects);
3623}
3624SLAB_ATTR_RO(objs_per_slab);
3625
3626static ssize_t order_show(struct kmem_cache *s, char *buf)
3627{
3628 return sprintf(buf, "%d\n", s->order);
3629}
3630SLAB_ATTR_RO(order);
3631
3632static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3633{
3634 if (s->ctor) {
3635 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3636
3637 return n + sprintf(buf + n, "\n");
3638 }
3639 return 0;
3640}
3641SLAB_ATTR_RO(ctor);
3642
Christoph Lameter81819f02007-05-06 14:49:36 -07003643static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3644{
3645 return sprintf(buf, "%d\n", s->refcount - 1);
3646}
3647SLAB_ATTR_RO(aliases);
3648
3649static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3650{
3651 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3652}
3653SLAB_ATTR_RO(slabs);
3654
3655static ssize_t partial_show(struct kmem_cache *s, char *buf)
3656{
3657 return slab_objects(s, buf, SO_PARTIAL);
3658}
3659SLAB_ATTR_RO(partial);
3660
3661static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3662{
3663 return slab_objects(s, buf, SO_CPU);
3664}
3665SLAB_ATTR_RO(cpu_slabs);
3666
3667static ssize_t objects_show(struct kmem_cache *s, char *buf)
3668{
3669 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3670}
3671SLAB_ATTR_RO(objects);
3672
3673static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3674{
3675 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3676}
3677
3678static ssize_t sanity_checks_store(struct kmem_cache *s,
3679 const char *buf, size_t length)
3680{
3681 s->flags &= ~SLAB_DEBUG_FREE;
3682 if (buf[0] == '1')
3683 s->flags |= SLAB_DEBUG_FREE;
3684 return length;
3685}
3686SLAB_ATTR(sanity_checks);
3687
3688static ssize_t trace_show(struct kmem_cache *s, char *buf)
3689{
3690 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3691}
3692
3693static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3694 size_t length)
3695{
3696 s->flags &= ~SLAB_TRACE;
3697 if (buf[0] == '1')
3698 s->flags |= SLAB_TRACE;
3699 return length;
3700}
3701SLAB_ATTR(trace);
3702
3703static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3704{
3705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3706}
3707
3708static ssize_t reclaim_account_store(struct kmem_cache *s,
3709 const char *buf, size_t length)
3710{
3711 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3712 if (buf[0] == '1')
3713 s->flags |= SLAB_RECLAIM_ACCOUNT;
3714 return length;
3715}
3716SLAB_ATTR(reclaim_account);
3717
3718static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3719{
Christoph Lameter5af60832007-05-06 14:49:56 -07003720 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
Christoph Lameter81819f02007-05-06 14:49:36 -07003721}
3722SLAB_ATTR_RO(hwcache_align);
3723
3724#ifdef CONFIG_ZONE_DMA
3725static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3726{
3727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3728}
3729SLAB_ATTR_RO(cache_dma);
3730#endif
3731
3732static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3733{
3734 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3735}
3736SLAB_ATTR_RO(destroy_by_rcu);
3737
3738static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3739{
3740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3741}
3742
3743static ssize_t red_zone_store(struct kmem_cache *s,
3744 const char *buf, size_t length)
3745{
3746 if (any_slab_objects(s))
3747 return -EBUSY;
3748
3749 s->flags &= ~SLAB_RED_ZONE;
3750 if (buf[0] == '1')
3751 s->flags |= SLAB_RED_ZONE;
3752 calculate_sizes(s);
3753 return length;
3754}
3755SLAB_ATTR(red_zone);
3756
3757static ssize_t poison_show(struct kmem_cache *s, char *buf)
3758{
3759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3760}
3761
3762static ssize_t poison_store(struct kmem_cache *s,
3763 const char *buf, size_t length)
3764{
3765 if (any_slab_objects(s))
3766 return -EBUSY;
3767
3768 s->flags &= ~SLAB_POISON;
3769 if (buf[0] == '1')
3770 s->flags |= SLAB_POISON;
3771 calculate_sizes(s);
3772 return length;
3773}
3774SLAB_ATTR(poison);
3775
3776static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3777{
3778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3779}
3780
3781static ssize_t store_user_store(struct kmem_cache *s,
3782 const char *buf, size_t length)
3783{
3784 if (any_slab_objects(s))
3785 return -EBUSY;
3786
3787 s->flags &= ~SLAB_STORE_USER;
3788 if (buf[0] == '1')
3789 s->flags |= SLAB_STORE_USER;
3790 calculate_sizes(s);
3791 return length;
3792}
3793SLAB_ATTR(store_user);
3794
Christoph Lameter53e15af2007-05-06 14:49:43 -07003795static ssize_t validate_show(struct kmem_cache *s, char *buf)
3796{
3797 return 0;
3798}
3799
3800static ssize_t validate_store(struct kmem_cache *s,
3801 const char *buf, size_t length)
3802{
Christoph Lameter434e2452007-07-17 04:03:30 -07003803 int ret = -EINVAL;
3804
3805 if (buf[0] == '1') {
3806 ret = validate_slab_cache(s);
3807 if (ret >= 0)
3808 ret = length;
3809 }
3810 return ret;
Christoph Lameter53e15af2007-05-06 14:49:43 -07003811}
3812SLAB_ATTR(validate);
3813
Christoph Lameter2086d262007-05-06 14:49:46 -07003814static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3815{
3816 return 0;
3817}
3818
3819static ssize_t shrink_store(struct kmem_cache *s,
3820 const char *buf, size_t length)
3821{
3822 if (buf[0] == '1') {
3823 int rc = kmem_cache_shrink(s);
3824
3825 if (rc)
3826 return rc;
3827 } else
3828 return -EINVAL;
3829 return length;
3830}
3831SLAB_ATTR(shrink);
3832
Christoph Lameter88a420e2007-05-06 14:49:45 -07003833static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3834{
3835 if (!(s->flags & SLAB_STORE_USER))
3836 return -ENOSYS;
3837 return list_locations(s, buf, TRACK_ALLOC);
3838}
3839SLAB_ATTR_RO(alloc_calls);
3840
3841static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3842{
3843 if (!(s->flags & SLAB_STORE_USER))
3844 return -ENOSYS;
3845 return list_locations(s, buf, TRACK_FREE);
3846}
3847SLAB_ATTR_RO(free_calls);
3848
Christoph Lameter81819f02007-05-06 14:49:36 -07003849#ifdef CONFIG_NUMA
Christoph Lameter98246012008-01-07 23:20:26 -08003850static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
Christoph Lameter81819f02007-05-06 14:49:36 -07003851{
Christoph Lameter98246012008-01-07 23:20:26 -08003852 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
Christoph Lameter81819f02007-05-06 14:49:36 -07003853}
3854
Christoph Lameter98246012008-01-07 23:20:26 -08003855static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
Christoph Lameter81819f02007-05-06 14:49:36 -07003856 const char *buf, size_t length)
3857{
3858 int n = simple_strtoul(buf, NULL, 10);
3859
3860 if (n < 100)
Christoph Lameter98246012008-01-07 23:20:26 -08003861 s->remote_node_defrag_ratio = n * 10;
Christoph Lameter81819f02007-05-06 14:49:36 -07003862 return length;
3863}
Christoph Lameter98246012008-01-07 23:20:26 -08003864SLAB_ATTR(remote_node_defrag_ratio);
Christoph Lameter81819f02007-05-06 14:49:36 -07003865#endif
3866
Pekka Enberg06428782008-01-07 23:20:27 -08003867static struct attribute *slab_attrs[] = {
Christoph Lameter81819f02007-05-06 14:49:36 -07003868 &slab_size_attr.attr,
3869 &object_size_attr.attr,
3870 &objs_per_slab_attr.attr,
3871 &order_attr.attr,
3872 &objects_attr.attr,
3873 &slabs_attr.attr,
3874 &partial_attr.attr,
3875 &cpu_slabs_attr.attr,
3876 &ctor_attr.attr,
Christoph Lameter81819f02007-05-06 14:49:36 -07003877 &aliases_attr.attr,
3878 &align_attr.attr,
3879 &sanity_checks_attr.attr,
3880 &trace_attr.attr,
3881 &hwcache_align_attr.attr,
3882 &reclaim_account_attr.attr,
3883 &destroy_by_rcu_attr.attr,
3884 &red_zone_attr.attr,
3885 &poison_attr.attr,
3886 &store_user_attr.attr,
Christoph Lameter53e15af2007-05-06 14:49:43 -07003887 &validate_attr.attr,
Christoph Lameter2086d262007-05-06 14:49:46 -07003888 &shrink_attr.attr,
Christoph Lameter88a420e2007-05-06 14:49:45 -07003889 &alloc_calls_attr.attr,
3890 &free_calls_attr.attr,
Christoph Lameter81819f02007-05-06 14:49:36 -07003891#ifdef CONFIG_ZONE_DMA
3892 &cache_dma_attr.attr,
3893#endif
3894#ifdef CONFIG_NUMA
Christoph Lameter98246012008-01-07 23:20:26 -08003895 &remote_node_defrag_ratio_attr.attr,
Christoph Lameter81819f02007-05-06 14:49:36 -07003896#endif
3897 NULL
3898};
3899
3900static struct attribute_group slab_attr_group = {
3901 .attrs = slab_attrs,
3902};
3903
3904static ssize_t slab_attr_show(struct kobject *kobj,
3905 struct attribute *attr,
3906 char *buf)
3907{
3908 struct slab_attribute *attribute;
3909 struct kmem_cache *s;
3910 int err;
3911
3912 attribute = to_slab_attr(attr);
3913 s = to_slab(kobj);
3914
3915 if (!attribute->show)
3916 return -EIO;
3917
3918 err = attribute->show(s, buf);
3919
3920 return err;
3921}
3922
3923static ssize_t slab_attr_store(struct kobject *kobj,
3924 struct attribute *attr,
3925 const char *buf, size_t len)
3926{
3927 struct slab_attribute *attribute;
3928 struct kmem_cache *s;
3929 int err;
3930
3931 attribute = to_slab_attr(attr);
3932 s = to_slab(kobj);
3933
3934 if (!attribute->store)
3935 return -EIO;
3936
3937 err = attribute->store(s, buf, len);
3938
3939 return err;
3940}
3941
Christoph Lameter151c6022008-01-07 22:29:05 -08003942static void kmem_cache_release(struct kobject *kobj)
3943{
3944 struct kmem_cache *s = to_slab(kobj);
3945
3946 kfree(s);
3947}
3948
Christoph Lameter81819f02007-05-06 14:49:36 -07003949static struct sysfs_ops slab_sysfs_ops = {
3950 .show = slab_attr_show,
3951 .store = slab_attr_store,
3952};
3953
3954static struct kobj_type slab_ktype = {
3955 .sysfs_ops = &slab_sysfs_ops,
Christoph Lameter151c6022008-01-07 22:29:05 -08003956 .release = kmem_cache_release
Christoph Lameter81819f02007-05-06 14:49:36 -07003957};
3958
3959static int uevent_filter(struct kset *kset, struct kobject *kobj)
3960{
3961 struct kobj_type *ktype = get_ktype(kobj);
3962
3963 if (ktype == &slab_ktype)
3964 return 1;
3965 return 0;
3966}
3967
3968static struct kset_uevent_ops slab_uevent_ops = {
3969 .filter = uevent_filter,
3970};
3971
Greg Kroah-Hartman27c3a312007-11-01 09:29:06 -06003972static struct kset *slab_kset;
Christoph Lameter81819f02007-05-06 14:49:36 -07003973
3974#define ID_STR_LENGTH 64
3975
3976/* Create a unique string id for a slab cache:
3977 * format
3978 * :[flags-]size:[memory address of kmemcache]
3979 */
3980static char *create_unique_id(struct kmem_cache *s)
3981{
3982 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3983 char *p = name;
3984
3985 BUG_ON(!name);
3986
3987 *p++ = ':';
3988 /*
3989 * First flags affecting slabcache operations. We will only
3990 * get here for aliasable slabs so we do not need to support
3991 * too many flags. The flags here must cover all flags that
3992 * are matched during merging to guarantee that the id is
3993 * unique.
3994 */
3995 if (s->flags & SLAB_CACHE_DMA)
3996 *p++ = 'd';
3997 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3998 *p++ = 'a';
3999 if (s->flags & SLAB_DEBUG_FREE)
4000 *p++ = 'F';
4001 if (p != name + 1)
4002 *p++ = '-';
4003 p += sprintf(p, "%07d", s->size);
4004 BUG_ON(p > name + ID_STR_LENGTH - 1);
4005 return name;
4006}
4007
4008static int sysfs_slab_add(struct kmem_cache *s)
4009{
4010 int err;
4011 const char *name;
4012 int unmergeable;
4013
4014 if (slab_state < SYSFS)
4015 /* Defer until later */
4016 return 0;
4017
4018 unmergeable = slab_unmergeable(s);
4019 if (unmergeable) {
4020 /*
4021 * Slabcache can never be merged so we can use the name proper.
4022 * This is typically the case for debug situations. In that
4023 * case we can catch duplicate names easily.
4024 */
Greg Kroah-Hartman27c3a312007-11-01 09:29:06 -06004025 sysfs_remove_link(&slab_kset->kobj, s->name);
Christoph Lameter81819f02007-05-06 14:49:36 -07004026 name = s->name;
4027 } else {
4028 /*
4029 * Create a unique name for the slab as a target
4030 * for the symlinks.
4031 */
4032 name = create_unique_id(s);
4033 }
4034
Greg Kroah-Hartman27c3a312007-11-01 09:29:06 -06004035 s->kobj.kset = slab_kset;
Greg Kroah-Hartman1eada112007-12-17 23:05:35 -07004036 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4037 if (err) {
4038 kobject_put(&s->kobj);
Christoph Lameter81819f02007-05-06 14:49:36 -07004039 return err;
Greg Kroah-Hartman1eada112007-12-17 23:05:35 -07004040 }
Christoph Lameter81819f02007-05-06 14:49:36 -07004041
4042 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4043 if (err)
4044 return err;
4045 kobject_uevent(&s->kobj, KOBJ_ADD);
4046 if (!unmergeable) {
4047 /* Setup first alias */
4048 sysfs_slab_alias(s, s->name);
4049 kfree(name);
4050 }
4051 return 0;
4052}
4053
4054static void sysfs_slab_remove(struct kmem_cache *s)
4055{
4056 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4057 kobject_del(&s->kobj);
Christoph Lameter151c6022008-01-07 22:29:05 -08004058 kobject_put(&s->kobj);
Christoph Lameter81819f02007-05-06 14:49:36 -07004059}
4060
4061/*
4062 * Need to buffer aliases during bootup until sysfs becomes
4063 * available lest we loose that information.
4064 */
4065struct saved_alias {
4066 struct kmem_cache *s;
4067 const char *name;
4068 struct saved_alias *next;
4069};
4070
Adrian Bunk5af328a2007-07-17 04:03:27 -07004071static struct saved_alias *alias_list;
Christoph Lameter81819f02007-05-06 14:49:36 -07004072
4073static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4074{
4075 struct saved_alias *al;
4076
4077 if (slab_state == SYSFS) {
4078 /*
4079 * If we have a leftover link then remove it.
4080 */
Greg Kroah-Hartman27c3a312007-11-01 09:29:06 -06004081 sysfs_remove_link(&slab_kset->kobj, name);
4082 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
Christoph Lameter81819f02007-05-06 14:49:36 -07004083 }
4084
4085 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4086 if (!al)
4087 return -ENOMEM;
4088
4089 al->s = s;
4090 al->name = name;
4091 al->next = alias_list;
4092 alias_list = al;
4093 return 0;
4094}
4095
4096static int __init slab_sysfs_init(void)
4097{
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07004098 struct kmem_cache *s;
Christoph Lameter81819f02007-05-06 14:49:36 -07004099 int err;
4100
Greg Kroah-Hartman0ff21e42007-11-06 10:36:58 -08004101 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
Greg Kroah-Hartman27c3a312007-11-01 09:29:06 -06004102 if (!slab_kset) {
Christoph Lameter81819f02007-05-06 14:49:36 -07004103 printk(KERN_ERR "Cannot register slab subsystem.\n");
4104 return -ENOSYS;
4105 }
4106
Christoph Lameter26a7bd02007-05-09 02:32:39 -07004107 slab_state = SYSFS;
4108
Christoph Lameter5b95a4a2007-07-17 04:03:19 -07004109 list_for_each_entry(s, &slab_caches, list) {
Christoph Lameter26a7bd02007-05-09 02:32:39 -07004110 err = sysfs_slab_add(s);
Christoph Lameter5d540fb2007-08-30 23:56:26 -07004111 if (err)
4112 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4113 " to sysfs\n", s->name);
Christoph Lameter26a7bd02007-05-09 02:32:39 -07004114 }
Christoph Lameter81819f02007-05-06 14:49:36 -07004115
4116 while (alias_list) {
4117 struct saved_alias *al = alias_list;
4118
4119 alias_list = alias_list->next;
4120 err = sysfs_slab_alias(al->s, al->name);
Christoph Lameter5d540fb2007-08-30 23:56:26 -07004121 if (err)
4122 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4123 " %s to sysfs\n", s->name);
Christoph Lameter81819f02007-05-06 14:49:36 -07004124 kfree(al);
4125 }
4126
4127 resiliency_test();
4128 return 0;
4129}
4130
4131__initcall(slab_sysfs_init);
Christoph Lameter81819f02007-05-06 14:49:36 -07004132#endif
Pekka J Enberg57ed3ed2008-01-01 17:23:28 +01004133
4134/*
4135 * The /proc/slabinfo ABI
4136 */
Linus Torvalds158a9622008-01-02 13:04:48 -08004137#ifdef CONFIG_SLABINFO
4138
4139ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4140 size_t count, loff_t *ppos)
4141{
4142 return -EINVAL;
4143}
4144
Pekka J Enberg57ed3ed2008-01-01 17:23:28 +01004145
4146static void print_slabinfo_header(struct seq_file *m)
4147{
4148 seq_puts(m, "slabinfo - version: 2.1\n");
4149 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4150 "<objperslab> <pagesperslab>");
4151 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4152 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4153 seq_putc(m, '\n');
4154}
4155
4156static void *s_start(struct seq_file *m, loff_t *pos)
4157{
4158 loff_t n = *pos;
4159
4160 down_read(&slub_lock);
4161 if (!n)
4162 print_slabinfo_header(m);
4163
4164 return seq_list_start(&slab_caches, *pos);
4165}
4166
4167static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4168{
4169 return seq_list_next(p, &slab_caches, pos);
4170}
4171
4172static void s_stop(struct seq_file *m, void *p)
4173{
4174 up_read(&slub_lock);
4175}
4176
4177static int s_show(struct seq_file *m, void *p)
4178{
4179 unsigned long nr_partials = 0;
4180 unsigned long nr_slabs = 0;
4181 unsigned long nr_inuse = 0;
4182 unsigned long nr_objs;
4183 struct kmem_cache *s;
4184 int node;
4185
4186 s = list_entry(p, struct kmem_cache, list);
4187
4188 for_each_online_node(node) {
4189 struct kmem_cache_node *n = get_node(s, node);
4190
4191 if (!n)
4192 continue;
4193
4194 nr_partials += n->nr_partial;
4195 nr_slabs += atomic_long_read(&n->nr_slabs);
4196 nr_inuse += count_partial(n);
4197 }
4198
4199 nr_objs = nr_slabs * s->objects;
4200 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4201
4202 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4203 nr_objs, s->size, s->objects, (1 << s->order));
4204 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4205 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4206 0UL);
4207 seq_putc(m, '\n');
4208 return 0;
4209}
4210
4211const struct seq_operations slabinfo_op = {
4212 .start = s_start,
4213 .next = s_next,
4214 .stop = s_stop,
4215 .show = s_show,
4216};
4217
Linus Torvalds158a9622008-01-02 13:04:48 -08004218#endif /* CONFIG_SLABINFO */