blob: 9c6698520edc2071d802095916b2ee330730bbaa [file] [log] [blame]
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03001/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23/*********************************\
24* Protocol Control Unit Functions *
25\*********************************/
26
27#include "ath5k.h"
28#include "reg.h"
29#include "debug.h"
30#include "base.h"
31
32/*******************\
33* Generic functions *
34\*******************/
35
36/**
37 * ath5k_hw_set_opmode - Set PCU operating mode
38 *
39 * @ah: The &struct ath5k_hw
40 *
41 * Initialize PCU for the various operating modes (AP/STA etc)
42 *
43 * NOTE: ah->ah_op_mode must be set before calling this.
44 */
45int ath5k_hw_set_opmode(struct ath5k_hw *ah)
46{
47 u32 pcu_reg, beacon_reg, low_id, high_id;
48
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020049
50 /* Preserve rest settings */
51 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
52 pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
53 | AR5K_STA_ID1_KEYSRCH_MODE
54 | (ah->ah_version == AR5K_AR5210 ?
55 (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
56
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030057 beacon_reg = 0;
58
59 ATH5K_TRACE(ah->ah_sc);
60
61 switch (ah->ah_op_mode) {
Johannes Berg05c914f2008-09-11 00:01:58 +020062 case NL80211_IFTYPE_ADHOC:
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020063 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030064 beacon_reg |= AR5K_BCR_ADHOC;
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020065 if (ah->ah_version == AR5K_AR5210)
66 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
67 else
68 AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_ADHOC);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030069 break;
70
Johannes Berg05c914f2008-09-11 00:01:58 +020071 case NL80211_IFTYPE_AP:
72 case NL80211_IFTYPE_MESH_POINT:
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020073 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030074 beacon_reg |= AR5K_BCR_AP;
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020075 if (ah->ah_version == AR5K_AR5210)
76 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
77 else
78 AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_ADHOC);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030079 break;
80
Johannes Berg05c914f2008-09-11 00:01:58 +020081 case NL80211_IFTYPE_STATION:
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020082 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
83 | (ah->ah_version == AR5K_AR5210 ?
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030084 AR5K_STA_ID1_PWR_SV : 0);
Johannes Berg05c914f2008-09-11 00:01:58 +020085 case NL80211_IFTYPE_MONITOR:
Nick Kossifidisf07a6c42008-10-29 04:28:28 +020086 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
87 | (ah->ah_version == AR5K_AR5210 ?
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030088 AR5K_STA_ID1_NO_PSPOLL : 0);
89 break;
90
91 default:
92 return -EINVAL;
93 }
94
95 /*
96 * Set PCU registers
97 */
98 low_id = AR5K_LOW_ID(ah->ah_sta_id);
99 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
100 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
101 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
102
103 /*
104 * Set Beacon Control Register on 5210
105 */
106 if (ah->ah_version == AR5K_AR5210)
107 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
108
109 return 0;
110}
111
112/**
113 * ath5k_hw_update - Update mib counters (mac layer statistics)
114 *
115 * @ah: The &struct ath5k_hw
116 * @stats: The &struct ieee80211_low_level_stats we use to track
117 * statistics on the driver
118 *
119 * Reads MIB counters from PCU and updates sw statistics. Must be
120 * called after a MIB interrupt.
121 */
122void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
123 struct ieee80211_low_level_stats *stats)
124{
125 ATH5K_TRACE(ah->ah_sc);
126
127 /* Read-And-Clear */
128 stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
129 stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
130 stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
131 stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
132
133 /* XXX: Should we use this to track beacon count ?
134 * -we read it anyway to clear the register */
135 ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
136
137 /* Reset profile count registers on 5212*/
138 if (ah->ah_version == AR5K_AR5212) {
139 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
140 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
141 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
142 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
143 }
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200144
145 /* TODO: Handle ANI stats */
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300146}
147
148/**
149 * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
150 *
151 * @ah: The &struct ath5k_hw
152 * @high: Flag to determine if we want to use high transmition rate
153 * for ACKs or not
154 *
155 * If high flag is set, we tell hw to use a set of control rates based on
156 * the current transmition rate (check out control_rates array inside reset.c).
157 * If not hw just uses the lowest rate available for the current modulation
158 * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
159 */
160void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
161{
162 if (ah->ah_version != AR5K_AR5212)
163 return;
164 else {
165 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
166 if (high)
167 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
168 else
169 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
170 }
171}
172
173
174/******************\
175* ACK/CTS Timeouts *
176\******************/
177
178/**
179 * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
180 *
181 * @ah: The &struct ath5k_hw
182 */
183unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
184{
185 ATH5K_TRACE(ah->ah_sc);
186
187 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
188 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
189}
190
191/**
192 * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
193 *
194 * @ah: The &struct ath5k_hw
195 * @timeout: Timeout in usec
196 */
197int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
198{
199 ATH5K_TRACE(ah->ah_sc);
200 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
201 ah->ah_turbo) <= timeout)
202 return -EINVAL;
203
204 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
205 ath5k_hw_htoclock(timeout, ah->ah_turbo));
206
207 return 0;
208}
209
210/**
211 * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
212 *
213 * @ah: The &struct ath5k_hw
214 */
215unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
216{
217 ATH5K_TRACE(ah->ah_sc);
218 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
219 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
220}
221
222/**
223 * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
224 *
225 * @ah: The &struct ath5k_hw
226 * @timeout: Timeout in usec
227 */
228int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
229{
230 ATH5K_TRACE(ah->ah_sc);
231 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
232 ah->ah_turbo) <= timeout)
233 return -EINVAL;
234
235 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
236 ath5k_hw_htoclock(timeout, ah->ah_turbo));
237
238 return 0;
239}
240
241
242/****************\
243* BSSID handling *
244\****************/
245
246/**
247 * ath5k_hw_get_lladdr - Get station id
248 *
249 * @ah: The &struct ath5k_hw
250 * @mac: The card's mac address
251 *
252 * Initialize ah->ah_sta_id using the mac address provided
253 * (just a memcpy).
254 *
255 * TODO: Remove it once we merge ath5k_softc and ath5k_hw
256 */
257void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
258{
259 ATH5K_TRACE(ah->ah_sc);
260 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
261}
262
263/**
264 * ath5k_hw_set_lladdr - Set station id
265 *
266 * @ah: The &struct ath5k_hw
267 * @mac: The card's mac address
268 *
269 * Set station id on hw using the provided mac address
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200270 *
271 * NOTE: This is only called during attach, don't call it
272 * on reset because it overwrites all AR5K_STA_ID1 settings.
273 * We have set_opmode (above) for reset.
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300274 */
275int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
276{
277 u32 low_id, high_id;
278
279 ATH5K_TRACE(ah->ah_sc);
280 /* Set new station ID */
281 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
282
283 low_id = AR5K_LOW_ID(mac);
284 high_id = AR5K_HIGH_ID(mac);
285
286 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
287 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
288
289 return 0;
290}
291
292/**
293 * ath5k_hw_set_associd - Set BSSID for association
294 *
295 * @ah: The &struct ath5k_hw
296 * @bssid: BSSID
297 * @assoc_id: Assoc id
298 *
299 * Sets the BSSID which trigers the "SME Join" operation
300 */
301void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
302{
303 u32 low_id, high_id;
304 u16 tim_offset = 0;
305
306 /*
307 * Set simple BSSID mask on 5212
308 */
309 if (ah->ah_version == AR5K_AR5212) {
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200310 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask),
311 AR5K_BSS_IDM0);
312 ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask),
313 AR5K_BSS_IDM1);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300314 }
315
316 /*
317 * Set BSSID which triggers the "SME Join" operation
318 */
319 low_id = AR5K_LOW_ID(bssid);
320 high_id = AR5K_HIGH_ID(bssid);
321 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
322 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
323 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
324
325 if (assoc_id == 0) {
326 ath5k_hw_disable_pspoll(ah);
327 return;
328 }
329
330 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
331 tim_offset ? tim_offset + 4 : 0);
332
333 ath5k_hw_enable_pspoll(ah, NULL, 0);
334}
335
336/**
337 * ath5k_hw_set_bssid_mask - filter out bssids we listen
338 *
339 * @ah: the &struct ath5k_hw
340 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
341 *
342 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
343 * which bits of the interface's MAC address should be looked at when trying
344 * to decide which packets to ACK. In station mode and AP mode with a single
345 * BSS every bit matters since we lock to only one BSS. In AP mode with
346 * multiple BSSes (virtual interfaces) not every bit matters because hw must
347 * accept frames for all BSSes and so we tweak some bits of our mac address
348 * in order to have multiple BSSes.
349 *
350 * NOTE: This is a simple filter and does *not* filter out all
351 * relevant frames. Some frames that are not for us might get ACKed from us
352 * by PCU because they just match the mask.
353 *
354 * When handling multiple BSSes you can get the BSSID mask by computing the
355 * set of ~ ( MAC XOR BSSID ) for all bssids we handle.
356 *
357 * When you do this you are essentially computing the common bits of all your
358 * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
359 * the MAC address to obtain the relevant bits and compare the result with
360 * (frame's BSSID & mask) to see if they match.
361 */
362/*
363 * Simple example: on your card you have have two BSSes you have created with
364 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
365 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
366 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
367 *
368 * \
369 * MAC: 0001 |
370 * BSSID-01: 0100 | --> Belongs to us
371 * BSSID-02: 1001 |
372 * /
373 * -------------------
374 * BSSID-03: 0110 | --> External
375 * -------------------
376 *
377 * Our bssid_mask would then be:
378 *
379 * On loop iteration for BSSID-01:
380 * ~(0001 ^ 0100) -> ~(0101)
381 * -> 1010
382 * bssid_mask = 1010
383 *
384 * On loop iteration for BSSID-02:
385 * bssid_mask &= ~(0001 ^ 1001)
386 * bssid_mask = (1010) & ~(0001 ^ 1001)
387 * bssid_mask = (1010) & ~(1001)
388 * bssid_mask = (1010) & (0110)
389 * bssid_mask = 0010
390 *
391 * A bssid_mask of 0010 means "only pay attention to the second least
392 * significant bit". This is because its the only bit common
393 * amongst the MAC and all BSSIDs we support. To findout what the real
394 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
395 * or our MAC address (we assume the hardware uses the MAC address).
396 *
397 * Now, suppose there's an incoming frame for BSSID-03:
398 *
399 * IFRAME-01: 0110
400 *
401 * An easy eye-inspeciton of this already should tell you that this frame
402 * will not pass our check. This is beacuse the bssid_mask tells the
403 * hardware to only look at the second least significant bit and the
404 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
405 * as 1, which does not match 0.
406 *
407 * So with IFRAME-01 we *assume* the hardware will do:
408 *
409 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
410 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
411 * --> allow = (0010) == 0000 ? 1 : 0;
412 * --> allow = 0
413 *
414 * Lets now test a frame that should work:
415 *
416 * IFRAME-02: 0001 (we should allow)
417 *
418 * allow = (0001 & 1010) == 1010
419 *
420 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
421 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
422 * --> allow = (0010) == (0010)
423 * --> allow = 1
424 *
425 * Other examples:
426 *
427 * IFRAME-03: 0100 --> allowed
428 * IFRAME-04: 1001 --> allowed
429 * IFRAME-05: 1101 --> allowed but its not for us!!!
430 *
431 */
432int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
433{
434 u32 low_id, high_id;
435 ATH5K_TRACE(ah->ah_sc);
436
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200437 /* Cache bssid mask so that we can restore it
438 * on reset */
439 memcpy(ah->ah_bssid_mask, mask, ETH_ALEN);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300440 if (ah->ah_version == AR5K_AR5212) {
441 low_id = AR5K_LOW_ID(mask);
442 high_id = AR5K_HIGH_ID(mask);
443
444 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
445 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
446
447 return 0;
448 }
449
450 return -EIO;
451}
452
453
454/************\
455* RX Control *
456\************/
457
458/**
459 * ath5k_hw_start_rx_pcu - Start RX engine
460 *
461 * @ah: The &struct ath5k_hw
462 *
463 * Starts RX engine on PCU so that hw can process RXed frames
464 * (ACK etc).
465 *
466 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
467 * TODO: Init ANI here
468 */
469void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
470{
471 ATH5K_TRACE(ah->ah_sc);
472 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
473}
474
475/**
476 * at5k_hw_stop_rx_pcu - Stop RX engine
477 *
478 * @ah: The &struct ath5k_hw
479 *
480 * Stops RX engine on PCU
481 *
482 * TODO: Detach ANI here
483 */
484void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
485{
486 ATH5K_TRACE(ah->ah_sc);
487 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
488}
489
490/*
491 * Set multicast filter
492 */
493void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
494{
495 ATH5K_TRACE(ah->ah_sc);
496 /* Set the multicat filter */
497 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
498 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
499}
500
501/*
502 * Set multicast filter by index
503 */
504int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
505{
506
507 ATH5K_TRACE(ah->ah_sc);
508 if (index >= 64)
509 return -EINVAL;
510 else if (index >= 32)
511 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
512 (1 << (index - 32)));
513 else
514 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
515
516 return 0;
517}
518
519/*
520 * Clear Multicast filter by index
521 */
522int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
523{
524
525 ATH5K_TRACE(ah->ah_sc);
526 if (index >= 64)
527 return -EINVAL;
528 else if (index >= 32)
529 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
530 (1 << (index - 32)));
531 else
532 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
533
534 return 0;
535}
536
537/**
538 * ath5k_hw_get_rx_filter - Get current rx filter
539 *
540 * @ah: The &struct ath5k_hw
541 *
542 * Returns the RX filter by reading rx filter and
543 * phy error filter registers. RX filter is used
544 * to set the allowed frame types that PCU will accept
545 * and pass to the driver. For a list of frame types
546 * check out reg.h.
547 */
548u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
549{
550 u32 data, filter = 0;
551
552 ATH5K_TRACE(ah->ah_sc);
553 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
554
555 /*Radar detection for 5212*/
556 if (ah->ah_version == AR5K_AR5212) {
557 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
558
559 if (data & AR5K_PHY_ERR_FIL_RADAR)
560 filter |= AR5K_RX_FILTER_RADARERR;
561 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
562 filter |= AR5K_RX_FILTER_PHYERR;
563 }
564
565 return filter;
566}
567
568/**
569 * ath5k_hw_set_rx_filter - Set rx filter
570 *
571 * @ah: The &struct ath5k_hw
572 * @filter: RX filter mask (see reg.h)
573 *
574 * Sets RX filter register and also handles PHY error filter
575 * register on 5212 and newer chips so that we have proper PHY
576 * error reporting.
577 */
578void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
579{
580 u32 data = 0;
581
582 ATH5K_TRACE(ah->ah_sc);
583
584 /* Set PHY error filter register on 5212*/
585 if (ah->ah_version == AR5K_AR5212) {
586 if (filter & AR5K_RX_FILTER_RADARERR)
587 data |= AR5K_PHY_ERR_FIL_RADAR;
588 if (filter & AR5K_RX_FILTER_PHYERR)
589 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
590 }
591
592 /*
593 * The AR5210 uses promiscous mode to detect radar activity
594 */
595 if (ah->ah_version == AR5K_AR5210 &&
596 (filter & AR5K_RX_FILTER_RADARERR)) {
597 filter &= ~AR5K_RX_FILTER_RADARERR;
598 filter |= AR5K_RX_FILTER_PROM;
599 }
600
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200601 /*Zero length DMA (phy error reporting) */
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300602 if (data)
603 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
604 else
605 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
606
607 /*Write RX Filter register*/
608 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
609
610 /*Write PHY error filter register on 5212*/
611 if (ah->ah_version == AR5K_AR5212)
612 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
613
614}
615
616
617/****************\
618* Beacon control *
619\****************/
620
621/**
622 * ath5k_hw_get_tsf32 - Get a 32bit TSF
623 *
624 * @ah: The &struct ath5k_hw
625 *
626 * Returns lower 32 bits of current TSF
627 */
628u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
629{
630 ATH5K_TRACE(ah->ah_sc);
631 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
632}
633
634/**
635 * ath5k_hw_get_tsf64 - Get the full 64bit TSF
636 *
637 * @ah: The &struct ath5k_hw
638 *
639 * Returns the current TSF
640 */
641u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
642{
643 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
644 ATH5K_TRACE(ah->ah_sc);
645
646 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
647}
648
649/**
650 * ath5k_hw_reset_tsf - Force a TSF reset
651 *
652 * @ah: The &struct ath5k_hw
653 *
654 * Forces a TSF reset on PCU
655 */
656void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
657{
Bob Copeland14be9942008-09-28 12:09:43 -0400658 u32 val;
659
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300660 ATH5K_TRACE(ah->ah_sc);
Bob Copeland14be9942008-09-28 12:09:43 -0400661
662 val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
663
664 /*
665 * Each write to the RESET_TSF bit toggles a hardware internal
666 * signal to reset TSF, but if left high it will cause a TSF reset
667 * on the next chip reset as well. Thus we always write the value
668 * twice to clear the signal.
669 */
670 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
671 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300672}
673
674/*
675 * Initialize beacon timers
676 */
677void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
678{
679 u32 timer1, timer2, timer3;
680
681 ATH5K_TRACE(ah->ah_sc);
682 /*
683 * Set the additional timers by mode
684 */
685 switch (ah->ah_op_mode) {
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200686 case NL80211_IFTYPE_MONITOR:
Johannes Berg05c914f2008-09-11 00:01:58 +0200687 case NL80211_IFTYPE_STATION:
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200688 /* In STA mode timer1 is used as next wakeup
689 * timer and timer2 as next CFP duration start
690 * timer. Both in 1/8TUs. */
691 /* TODO: PCF handling */
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300692 if (ah->ah_version == AR5K_AR5210) {
693 timer1 = 0xffffffff;
694 timer2 = 0xffffffff;
695 } else {
696 timer1 = 0x0000ffff;
697 timer2 = 0x0007ffff;
698 }
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200699 /* Mark associated AP as PCF incapable for now */
700 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300701 break;
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200702 case NL80211_IFTYPE_ADHOC:
703 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300704 default:
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200705 /* On non-STA modes timer1 is used as next DMA
706 * beacon alert (DBA) timer and timer2 as next
707 * software beacon alert. Both in 1/8TUs. */
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300708 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
709 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200710 break;
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300711 }
712
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200713 /* Timer3 marks the end of our ATIM window
714 * a zero length window is not allowed because
715 * we 'll get no beacons */
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300716 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
717
718 /*
719 * Set the beacon register and enable all timers.
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300720 */
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200721 /* When in AP mode zero timer0 to start TSF */
722 if (ah->ah_op_mode == NL80211_IFTYPE_AP)
723 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
724 else
725 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300726 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
727 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
728 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
729
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200730 /* Force a TSF reset if requested and enable beacons */
731 if (interval & AR5K_BEACON_RESET_TSF)
732 ath5k_hw_reset_tsf(ah);
733
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300734 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200735 AR5K_BEACON_ENABLE),
736 AR5K_BEACON);
737
738 /* Flush any pending BMISS interrupts on ISR by
739 * performing a clear-on-write operation on PISR
740 * register for the BMISS bit (writing a bit on
741 * ISR togles a reset for that bit and leaves
742 * the rest bits intact) */
743 if (ah->ah_version == AR5K_AR5210)
744 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
745 else
746 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
747
748 /* TODO: Set enchanced sleep registers on AR5212
749 * based on vif->bss_conf params, until then
750 * disable power save reporting.*/
751 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
752
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300753}
754
755#if 0
756/*
757 * Set beacon timers
758 */
759int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
760 const struct ath5k_beacon_state *state)
761{
762 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
763
764 /*
765 * TODO: should be changed through *state
766 * review struct ath5k_beacon_state struct
767 *
768 * XXX: These are used for cfp period bellow, are they
769 * ok ? Is it O.K. for tsf here to be 0 or should we use
770 * get_tsf ?
771 */
772 u32 dtim_count = 0; /* XXX */
773 u32 cfp_count = 0; /* XXX */
774 u32 tsf = 0; /* XXX */
775
776 ATH5K_TRACE(ah->ah_sc);
777 /* Return on an invalid beacon state */
778 if (state->bs_interval < 1)
779 return -EINVAL;
780
781 interval = state->bs_interval;
782 dtim = state->bs_dtim_period;
783
784 /*
785 * PCF support?
786 */
787 if (state->bs_cfp_period > 0) {
788 /*
789 * Enable PCF mode and set the CFP
790 * (Contention Free Period) and timer registers
791 */
792 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
793 state->bs_interval;
794 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
795 state->bs_interval;
796
797 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
798 AR5K_STA_ID1_DEFAULT_ANTENNA |
799 AR5K_STA_ID1_PCF);
800 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
801 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
802 AR5K_CFP_DUR);
803 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
804 next_cfp)) << 3, AR5K_TIMER2);
805 } else {
806 /* Disable PCF mode */
807 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
808 AR5K_STA_ID1_DEFAULT_ANTENNA |
809 AR5K_STA_ID1_PCF);
810 }
811
812 /*
813 * Enable the beacon timer register
814 */
815 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
816
817 /*
818 * Start the beacon timers
819 */
820 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
821 ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
822 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
823 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
824 AR5K_BEACON_PERIOD), AR5K_BEACON);
825
826 /*
827 * Write new beacon miss threshold, if it appears to be valid
828 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
829 * and return if its not in range. We can test this by reading value and
830 * setting value to a largest value and seeing which values register.
831 */
832
833 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
834 state->bs_bmiss_threshold);
835
836 /*
837 * Set sleep control register
838 * XXX: Didn't find this in 5210 code but since this register
839 * exists also in ar5k's 5210 headers i leave it as common code.
840 */
841 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
842 (state->bs_sleep_duration - 3) << 3);
843
844 /*
845 * Set enhanced sleep registers on 5212
846 */
847 if (ah->ah_version == AR5K_AR5212) {
848 if (state->bs_sleep_duration > state->bs_interval &&
849 roundup(state->bs_sleep_duration, interval) ==
850 state->bs_sleep_duration)
851 interval = state->bs_sleep_duration;
852
853 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
854 roundup(state->bs_sleep_duration, dtim) ==
855 state->bs_sleep_duration))
856 dtim = state->bs_sleep_duration;
857
858 if (interval > dtim)
859 return -EINVAL;
860
861 next_beacon = interval == dtim ? state->bs_next_dtim :
862 state->bs_next_beacon;
863
864 ath5k_hw_reg_write(ah,
865 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
866 AR5K_SLEEP0_NEXT_DTIM) |
867 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
868 AR5K_SLEEP0_ENH_SLEEP_EN |
869 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
870
871 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
872 AR5K_SLEEP1_NEXT_TIM) |
873 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
874
875 ath5k_hw_reg_write(ah,
876 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
877 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
878 }
879
880 return 0;
881}
882
883/*
884 * Reset beacon timers
885 */
886void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
887{
888 ATH5K_TRACE(ah->ah_sc);
889 /*
890 * Disable beacon timer
891 */
892 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
893
894 /*
895 * Disable some beacon register values
896 */
897 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
898 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
899 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
900}
901
902/*
903 * Wait for beacon queue to finish
904 */
905int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
906{
907 unsigned int i;
908 int ret;
909
910 ATH5K_TRACE(ah->ah_sc);
911
912 /* 5210 doesn't have QCU*/
913 if (ah->ah_version == AR5K_AR5210) {
914 /*
915 * Wait for beaconn queue to finish by checking
916 * Control Register and Beacon Status Register.
917 */
918 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
919 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
920 ||
921 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
922 break;
923 udelay(10);
924 }
925
926 /* Timeout... */
927 if (i <= 0) {
928 /*
929 * Re-schedule the beacon queue
930 */
931 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
932 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
933 AR5K_BCR);
934
935 return -EIO;
936 }
937 ret = 0;
938 } else {
939 /*5211/5212*/
940 ret = ath5k_hw_register_timeout(ah,
941 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
942 AR5K_QCU_STS_FRMPENDCNT, 0, false);
943
944 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
945 return -EIO;
946 }
947
948 return ret;
949}
950#endif
951
952
953/*********************\
954* Key table functions *
955\*********************/
956
957/*
958 * Reset a key entry on the table
959 */
960int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
961{
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200962 unsigned int i, type;
Bob Copeland17683c62008-10-29 23:24:26 -0400963 u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300964
965 ATH5K_TRACE(ah->ah_sc);
966 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
967
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200968 type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
969
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300970 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
971 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
972
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200973 /* Reset associated MIC entry if TKIP
974 * is enabled located at offset (entry + 64) */
975 if (type == AR5K_KEYTABLE_TYPE_TKIP) {
Bob Copeland17683c62008-10-29 23:24:26 -0400976 AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200977 for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
Bob Copeland17683c62008-10-29 23:24:26 -0400978 ath5k_hw_reg_write(ah, 0,
979 AR5K_KEYTABLE_OFF(micentry, i));
Nick Kossifidisf07a6c42008-10-29 04:28:28 +0200980 }
981
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300982 /*
983 * Set NULL encryption on AR5212+
984 *
985 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
986 * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
987 *
988 * Note2: Windows driver (ndiswrapper) sets this to
989 * 0x00000714 instead of 0x00000007
990 */
Bob Copeland17683c62008-10-29 23:24:26 -0400991 if (ah->ah_version > AR5K_AR5211) {
Nick Kossifidisc6e387a2008-08-29 22:45:39 +0300992 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
993 AR5K_KEYTABLE_TYPE(entry));
994
Bob Copeland17683c62008-10-29 23:24:26 -0400995 if (type == AR5K_KEYTABLE_TYPE_TKIP) {
996 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
997 AR5K_KEYTABLE_TYPE(micentry));
998 }
999 }
1000
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03001001 return 0;
1002}
1003
1004/*
1005 * Check if a table entry is valid
1006 */
1007int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
1008{
1009 ATH5K_TRACE(ah->ah_sc);
1010 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1011
1012 /* Check the validation flag at the end of the entry */
1013 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
1014 AR5K_KEYTABLE_VALID;
1015}
1016
1017/*
1018 * Set a key entry on the table
1019 */
1020int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
1021 const struct ieee80211_key_conf *key, const u8 *mac)
1022{
1023 unsigned int i;
1024 __le32 key_v[5] = {};
1025 u32 keytype;
1026
1027 ATH5K_TRACE(ah->ah_sc);
1028
1029 /* key->keylen comes in from mac80211 in bytes */
1030
1031 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
1032 return -EOPNOTSUPP;
1033
1034 switch (key->keylen) {
1035 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
1036 case 40 / 8:
1037 memcpy(&key_v[0], key->key, 5);
1038 keytype = AR5K_KEYTABLE_TYPE_40;
1039 break;
1040
1041 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
1042 case 104 / 8:
1043 memcpy(&key_v[0], &key->key[0], 6);
1044 memcpy(&key_v[2], &key->key[6], 6);
1045 memcpy(&key_v[4], &key->key[12], 1);
1046 keytype = AR5K_KEYTABLE_TYPE_104;
1047 break;
1048 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
1049 case 128 / 8:
1050 memcpy(&key_v[0], &key->key[0], 6);
1051 memcpy(&key_v[2], &key->key[6], 6);
1052 memcpy(&key_v[4], &key->key[12], 4);
1053 keytype = AR5K_KEYTABLE_TYPE_128;
1054 break;
1055
1056 default:
1057 return -EINVAL; /* shouldn't happen */
1058 }
1059
1060 for (i = 0; i < ARRAY_SIZE(key_v); i++)
1061 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1062 AR5K_KEYTABLE_OFF(entry, i));
1063
1064 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
1065
1066 return ath5k_hw_set_key_lladdr(ah, entry, mac);
1067}
1068
1069int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1070{
1071 u32 low_id, high_id;
1072
1073 ATH5K_TRACE(ah->ah_sc);
1074 /* Invalid entry (key table overflow) */
1075 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1076
1077 /* MAC may be NULL if it's a broadcast key. In this case no need to
1078 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
1079 if (unlikely(mac == NULL)) {
1080 low_id = 0xffffffff;
1081 high_id = 0xffff | AR5K_KEYTABLE_VALID;
1082 } else {
1083 low_id = AR5K_LOW_ID(mac);
1084 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
1085 }
1086
1087 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1088 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1089
1090 return 0;
1091}
1092