Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | Madge Ambassador ATM Adapter driver. |
| 3 | Copyright (C) 1995-1999 Madge Networks Ltd. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, write to the Free Software |
| 17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | |
| 19 | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian |
| 20 | system and in the file COPYING in the Linux kernel source. |
| 21 | */ |
| 22 | |
| 23 | /* * dedicated to the memory of Graham Gordon 1971-1998 * */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/types.h> |
| 27 | #include <linux/pci.h> |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/ioport.h> |
| 31 | #include <linux/atmdev.h> |
| 32 | #include <linux/delay.h> |
| 33 | #include <linux/interrupt.h> |
Randy Dunlap | 3c6b377 | 2006-07-03 19:48:25 -0700 | [diff] [blame] | 34 | #include <linux/poison.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 35 | |
| 36 | #include <asm/atomic.h> |
| 37 | #include <asm/io.h> |
| 38 | #include <asm/byteorder.h> |
| 39 | |
| 40 | #include "ambassador.h" |
| 41 | |
| 42 | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" |
| 43 | #define description_string "Madge ATM Ambassador driver" |
| 44 | #define version_string "1.2.4" |
| 45 | |
| 46 | static inline void __init show_version (void) { |
| 47 | printk ("%s version %s\n", description_string, version_string); |
| 48 | } |
| 49 | |
| 50 | /* |
| 51 | |
| 52 | Theory of Operation |
| 53 | |
| 54 | I Hardware, detection, initialisation and shutdown. |
| 55 | |
| 56 | 1. Supported Hardware |
| 57 | |
| 58 | This driver is for the PCI ATMizer-based Ambassador card (except |
| 59 | very early versions). It is not suitable for the similar EISA "TR7" |
| 60 | card. Commercially, both cards are known as Collage Server ATM |
| 61 | adapters. |
| 62 | |
| 63 | The loader supports image transfer to the card, image start and few |
| 64 | other miscellaneous commands. |
| 65 | |
| 66 | Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023. |
| 67 | |
| 68 | The cards are big-endian. |
| 69 | |
| 70 | 2. Detection |
| 71 | |
| 72 | Standard PCI stuff, the early cards are detected and rejected. |
| 73 | |
| 74 | 3. Initialisation |
| 75 | |
| 76 | The cards are reset and the self-test results are checked. The |
| 77 | microcode image is then transferred and started. This waits for a |
| 78 | pointer to a descriptor containing details of the host-based queues |
| 79 | and buffers and various parameters etc. Once they are processed |
| 80 | normal operations may begin. The BIA is read using a microcode |
| 81 | command. |
| 82 | |
| 83 | 4. Shutdown |
| 84 | |
| 85 | This may be accomplished either by a card reset or via the microcode |
| 86 | shutdown command. Further investigation required. |
| 87 | |
| 88 | 5. Persistent state |
| 89 | |
| 90 | The card reset does not affect PCI configuration (good) or the |
| 91 | contents of several other "shared run-time registers" (bad) which |
| 92 | include doorbell and interrupt control as well as EEPROM and PCI |
| 93 | control. The driver must be careful when modifying these registers |
| 94 | not to touch bits it does not use and to undo any changes at exit. |
| 95 | |
| 96 | II Driver software |
| 97 | |
| 98 | 0. Generalities |
| 99 | |
| 100 | The adapter is quite intelligent (fast) and has a simple interface |
| 101 | (few features). VPI is always zero, 1024 VCIs are supported. There |
| 102 | is limited cell rate support. UBR channels can be capped and ABR |
| 103 | (explicit rate, but not EFCI) is supported. There is no CBR or VBR |
| 104 | support. |
| 105 | |
| 106 | 1. Driver <-> Adapter Communication |
| 107 | |
| 108 | Apart from the basic loader commands, the driver communicates |
| 109 | through three entities: the command queue (CQ), the transmit queue |
| 110 | pair (TXQ) and the receive queue pairs (RXQ). These three entities |
| 111 | are set up by the host and passed to the microcode just after it has |
| 112 | been started. |
| 113 | |
| 114 | All queues are host-based circular queues. They are contiguous and |
| 115 | (due to hardware limitations) have some restrictions as to their |
| 116 | locations in (bus) memory. They are of the "full means the same as |
| 117 | empty so don't do that" variety since the adapter uses pointers |
| 118 | internally. |
| 119 | |
| 120 | The queue pairs work as follows: one queue is for supply to the |
| 121 | adapter, items in it are pending and are owned by the adapter; the |
| 122 | other is the queue for return from the adapter, items in it have |
| 123 | been dealt with by the adapter. The host adds items to the supply |
| 124 | (TX descriptors and free RX buffer descriptors) and removes items |
| 125 | from the return (TX and RX completions). The adapter deals with out |
| 126 | of order completions. |
| 127 | |
| 128 | Interrupts (card to host) and the doorbell (host to card) are used |
| 129 | for signalling. |
| 130 | |
| 131 | 1. CQ |
| 132 | |
| 133 | This is to communicate "open VC", "close VC", "get stats" etc. to |
| 134 | the adapter. At most one command is retired every millisecond by the |
| 135 | card. There is no out of order completion or notification. The |
| 136 | driver needs to check the return code of the command, waiting as |
| 137 | appropriate. |
| 138 | |
| 139 | 2. TXQ |
| 140 | |
| 141 | TX supply items are of variable length (scatter gather support) and |
| 142 | so the queue items are (more or less) pointers to the real thing. |
| 143 | Each TX supply item contains a unique, host-supplied handle (the skb |
| 144 | bus address seems most sensible as this works for Alphas as well, |
| 145 | there is no need to do any endian conversions on the handles). |
| 146 | |
| 147 | TX return items consist of just the handles above. |
| 148 | |
| 149 | 3. RXQ (up to 4 of these with different lengths and buffer sizes) |
| 150 | |
| 151 | RX supply items consist of a unique, host-supplied handle (the skb |
| 152 | bus address again) and a pointer to the buffer data area. |
| 153 | |
| 154 | RX return items consist of the handle above, the VC, length and a |
| 155 | status word. This just screams "oh so easy" doesn't it? |
| 156 | |
| 157 | Note on RX pool sizes: |
| 158 | |
| 159 | Each pool should have enough buffers to handle a back-to-back stream |
| 160 | of minimum sized frames on a single VC. For example: |
| 161 | |
| 162 | frame spacing = 3us (about right) |
| 163 | |
| 164 | delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess) |
| 165 | |
| 166 | min number of buffers for one VC = 1 + delay/spacing (buffers) |
| 167 | |
| 168 | delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up) |
| 169 | |
| 170 | The 20us delay assumes that there is no need to sleep; if we need to |
| 171 | sleep to get buffers we are going to drop frames anyway. |
| 172 | |
| 173 | In fact, each pool should have enough buffers to support the |
| 174 | simultaneous reassembly of a separate frame on each VC and cope with |
| 175 | the case in which frames complete in round robin cell fashion on |
| 176 | each VC. |
| 177 | |
| 178 | Only one frame can complete at each cell arrival, so if "n" VCs are |
| 179 | open, the worst case is to have them all complete frames together |
| 180 | followed by all starting new frames together. |
| 181 | |
| 182 | desired number of buffers = n + delay/spacing |
| 183 | |
| 184 | These are the extreme requirements, however, they are "n+k" for some |
| 185 | "k" so we have only the constant to choose. This is the argument |
| 186 | rx_lats which current defaults to 7. |
| 187 | |
| 188 | Actually, "n ? n+k : 0" is better and this is what is implemented, |
| 189 | subject to the limit given by the pool size. |
| 190 | |
| 191 | 4. Driver locking |
| 192 | |
| 193 | Simple spinlocks are used around the TX and RX queue mechanisms. |
| 194 | Anyone with a faster, working method is welcome to implement it. |
| 195 | |
| 196 | The adapter command queue is protected with a spinlock. We always |
| 197 | wait for commands to complete. |
| 198 | |
| 199 | A more complex form of locking is used around parts of the VC open |
| 200 | and close functions. There are three reasons for a lock: 1. we need |
| 201 | to do atomic rate reservation and release (not used yet), 2. Opening |
| 202 | sometimes involves two adapter commands which must not be separated |
| 203 | by another command on the same VC, 3. the changes to RX pool size |
| 204 | must be atomic. The lock needs to work over context switches, so we |
| 205 | use a semaphore. |
| 206 | |
| 207 | III Hardware Features and Microcode Bugs |
| 208 | |
| 209 | 1. Byte Ordering |
| 210 | |
| 211 | *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*! |
| 212 | |
| 213 | 2. Memory access |
| 214 | |
| 215 | All structures that are not accessed using DMA must be 4-byte |
| 216 | aligned (not a problem) and must not cross 4MB boundaries. |
| 217 | |
| 218 | There is a DMA memory hole at E0000000-E00000FF (groan). |
| 219 | |
| 220 | TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB |
| 221 | but for a hardware bug). |
| 222 | |
| 223 | RX buffers (DMA write) must not cross 16MB boundaries and must |
| 224 | include spare trailing bytes up to the next 4-byte boundary; they |
| 225 | will be written with rubbish. |
| 226 | |
| 227 | The PLX likes to prefetch; if reading up to 4 u32 past the end of |
| 228 | each TX fragment is not a problem, then TX can be made to go a |
| 229 | little faster by passing a flag at init that disables a prefetch |
| 230 | workaround. We do not pass this flag. (new microcode only) |
| 231 | |
| 232 | Now we: |
| 233 | . Note that alloc_skb rounds up size to a 16byte boundary. |
| 234 | . Ensure all areas do not traverse 4MB boundaries. |
| 235 | . Ensure all areas do not start at a E00000xx bus address. |
| 236 | (I cannot be certain, but this may always hold with Linux) |
| 237 | . Make all failures cause a loud message. |
| 238 | . Discard non-conforming SKBs (causes TX failure or RX fill delay). |
| 239 | . Discard non-conforming TX fragment descriptors (the TX fails). |
| 240 | In the future we could: |
| 241 | . Allow RX areas that traverse 4MB (but not 16MB) boundaries. |
| 242 | . Segment TX areas into some/more fragments, when necessary. |
| 243 | . Relax checks for non-DMA items (ignore hole). |
| 244 | . Give scatter-gather (iovec) requirements using ???. (?) |
| 245 | |
| 246 | 3. VC close is broken (only for new microcode) |
| 247 | |
| 248 | The VC close adapter microcode command fails to do anything if any |
| 249 | frames have been received on the VC but none have been transmitted. |
| 250 | Frames continue to be reassembled and passed (with IRQ) to the |
| 251 | driver. |
| 252 | |
| 253 | IV To Do List |
| 254 | |
| 255 | . Fix bugs! |
| 256 | |
| 257 | . Timer code may be broken. |
| 258 | |
| 259 | . Deal with buggy VC close (somehow) in microcode 12. |
| 260 | |
| 261 | . Handle interrupted and/or non-blocking writes - is this a job for |
| 262 | the protocol layer? |
| 263 | |
| 264 | . Add code to break up TX fragments when they span 4MB boundaries. |
| 265 | |
| 266 | . Add SUNI phy layer (need to know where SUNI lives on card). |
| 267 | |
| 268 | . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b) |
| 269 | leave extra headroom space for Ambassador TX descriptors. |
| 270 | |
| 271 | . Understand these elements of struct atm_vcc: recvq (proto?), |
| 272 | sleep, callback, listenq, backlog_quota, reply and user_back. |
| 273 | |
| 274 | . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable). |
| 275 | |
| 276 | . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow. |
| 277 | |
| 278 | . Decide whether RX buffer recycling is or can be made completely safe; |
| 279 | turn it back on. It looks like Werner is going to axe this. |
| 280 | |
| 281 | . Implement QoS changes on open VCs (involves extracting parts of VC open |
| 282 | and close into separate functions and using them to make changes). |
| 283 | |
| 284 | . Hack on command queue so that someone can issue multiple commands and wait |
| 285 | on the last one (OR only "no-op" or "wait" commands are waited for). |
| 286 | |
| 287 | . Eliminate need for while-schedule around do_command. |
| 288 | |
| 289 | */ |
| 290 | |
| 291 | /********** microcode **********/ |
| 292 | |
| 293 | #ifdef AMB_NEW_MICROCODE |
| 294 | #define UCODE(x) UCODE2(atmsar12.x) |
| 295 | #else |
| 296 | #define UCODE(x) UCODE2(atmsar11.x) |
| 297 | #endif |
| 298 | #define UCODE2(x) #x |
| 299 | |
| 300 | static u32 __devinitdata ucode_start = |
| 301 | #include UCODE(start) |
| 302 | ; |
| 303 | |
| 304 | static region __devinitdata ucode_regions[] = { |
| 305 | #include UCODE(regions) |
| 306 | { 0, 0 } |
| 307 | }; |
| 308 | |
| 309 | static u32 __devinitdata ucode_data[] = { |
| 310 | #include UCODE(data) |
| 311 | 0xdeadbeef |
| 312 | }; |
| 313 | |
| 314 | static void do_housekeeping (unsigned long arg); |
| 315 | /********** globals **********/ |
| 316 | |
| 317 | static unsigned short debug = 0; |
| 318 | static unsigned int cmds = 8; |
| 319 | static unsigned int txs = 32; |
| 320 | static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 }; |
| 321 | static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 }; |
| 322 | static unsigned int rx_lats = 7; |
| 323 | static unsigned char pci_lat = 0; |
| 324 | |
| 325 | static const unsigned long onegigmask = -1 << 30; |
| 326 | |
| 327 | /********** access to adapter **********/ |
| 328 | |
| 329 | static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) { |
| 330 | PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data); |
| 331 | #ifdef AMB_MMIO |
| 332 | dev->membase[addr / sizeof(u32)] = data; |
| 333 | #else |
| 334 | outl (data, dev->iobase + addr); |
| 335 | #endif |
| 336 | } |
| 337 | |
| 338 | static inline u32 rd_plain (const amb_dev * dev, size_t addr) { |
| 339 | #ifdef AMB_MMIO |
| 340 | u32 data = dev->membase[addr / sizeof(u32)]; |
| 341 | #else |
| 342 | u32 data = inl (dev->iobase + addr); |
| 343 | #endif |
| 344 | PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data); |
| 345 | return data; |
| 346 | } |
| 347 | |
| 348 | static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) { |
| 349 | __be32 be = cpu_to_be32 (data); |
| 350 | PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be); |
| 351 | #ifdef AMB_MMIO |
| 352 | dev->membase[addr / sizeof(u32)] = be; |
| 353 | #else |
| 354 | outl (be, dev->iobase + addr); |
| 355 | #endif |
| 356 | } |
| 357 | |
| 358 | static inline u32 rd_mem (const amb_dev * dev, size_t addr) { |
| 359 | #ifdef AMB_MMIO |
| 360 | __be32 be = dev->membase[addr / sizeof(u32)]; |
| 361 | #else |
| 362 | __be32 be = inl (dev->iobase + addr); |
| 363 | #endif |
| 364 | u32 data = be32_to_cpu (be); |
| 365 | PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be); |
| 366 | return data; |
| 367 | } |
| 368 | |
| 369 | /********** dump routines **********/ |
| 370 | |
| 371 | static inline void dump_registers (const amb_dev * dev) { |
| 372 | #ifdef DEBUG_AMBASSADOR |
| 373 | if (debug & DBG_REGS) { |
| 374 | size_t i; |
| 375 | PRINTD (DBG_REGS, "reading PLX control: "); |
| 376 | for (i = 0x00; i < 0x30; i += sizeof(u32)) |
| 377 | rd_mem (dev, i); |
| 378 | PRINTD (DBG_REGS, "reading mailboxes: "); |
| 379 | for (i = 0x40; i < 0x60; i += sizeof(u32)) |
| 380 | rd_mem (dev, i); |
| 381 | PRINTD (DBG_REGS, "reading doorb irqev irqen reset:"); |
| 382 | for (i = 0x60; i < 0x70; i += sizeof(u32)) |
| 383 | rd_mem (dev, i); |
| 384 | } |
| 385 | #else |
| 386 | (void) dev; |
| 387 | #endif |
| 388 | return; |
| 389 | } |
| 390 | |
| 391 | static inline void dump_loader_block (volatile loader_block * lb) { |
| 392 | #ifdef DEBUG_AMBASSADOR |
| 393 | unsigned int i; |
| 394 | PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:", |
| 395 | lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command)); |
| 396 | for (i = 0; i < MAX_COMMAND_DATA; ++i) |
| 397 | PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i])); |
| 398 | PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid)); |
| 399 | #else |
| 400 | (void) lb; |
| 401 | #endif |
| 402 | return; |
| 403 | } |
| 404 | |
| 405 | static inline void dump_command (command * cmd) { |
| 406 | #ifdef DEBUG_AMBASSADOR |
| 407 | unsigned int i; |
| 408 | PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:", |
| 409 | cmd, /*be32_to_cpu*/ (cmd->request)); |
| 410 | for (i = 0; i < 3; ++i) |
| 411 | PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i])); |
| 412 | PRINTDE (DBG_CMD, ""); |
| 413 | #else |
| 414 | (void) cmd; |
| 415 | #endif |
| 416 | return; |
| 417 | } |
| 418 | |
| 419 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { |
| 420 | #ifdef DEBUG_AMBASSADOR |
| 421 | unsigned int i; |
| 422 | unsigned char * data = skb->data; |
| 423 | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); |
| 424 | for (i=0; i<skb->len && i < 256;i++) |
| 425 | PRINTDM (DBG_DATA, "%02x ", data[i]); |
| 426 | PRINTDE (DBG_DATA,""); |
| 427 | #else |
| 428 | (void) prefix; |
| 429 | (void) vc; |
| 430 | (void) skb; |
| 431 | #endif |
| 432 | return; |
| 433 | } |
| 434 | |
| 435 | /********** check memory areas for use by Ambassador **********/ |
| 436 | |
| 437 | /* see limitations under Hardware Features */ |
| 438 | |
| 439 | static inline int check_area (void * start, size_t length) { |
| 440 | // assumes length > 0 |
| 441 | const u32 fourmegmask = -1 << 22; |
| 442 | const u32 twofivesixmask = -1 << 8; |
| 443 | const u32 starthole = 0xE0000000; |
| 444 | u32 startaddress = virt_to_bus (start); |
| 445 | u32 lastaddress = startaddress+length-1; |
| 446 | if ((startaddress ^ lastaddress) & fourmegmask || |
| 447 | (startaddress & twofivesixmask) == starthole) { |
| 448 | PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!", |
| 449 | startaddress, lastaddress); |
| 450 | return -1; |
| 451 | } else { |
| 452 | return 0; |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /********** free an skb (as per ATM device driver documentation) **********/ |
| 457 | |
| 458 | static inline void amb_kfree_skb (struct sk_buff * skb) { |
| 459 | if (ATM_SKB(skb)->vcc->pop) { |
| 460 | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); |
| 461 | } else { |
| 462 | dev_kfree_skb_any (skb); |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | /********** TX completion **********/ |
| 467 | |
| 468 | static inline void tx_complete (amb_dev * dev, tx_out * tx) { |
| 469 | tx_simple * tx_descr = bus_to_virt (tx->handle); |
| 470 | struct sk_buff * skb = tx_descr->skb; |
| 471 | |
| 472 | PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx); |
| 473 | |
| 474 | // VC layer stats |
| 475 | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); |
| 476 | |
| 477 | // free the descriptor |
| 478 | kfree (tx_descr); |
| 479 | |
| 480 | // free the skb |
| 481 | amb_kfree_skb (skb); |
| 482 | |
| 483 | dev->stats.tx_ok++; |
| 484 | return; |
| 485 | } |
| 486 | |
| 487 | /********** RX completion **********/ |
| 488 | |
| 489 | static void rx_complete (amb_dev * dev, rx_out * rx) { |
| 490 | struct sk_buff * skb = bus_to_virt (rx->handle); |
| 491 | u16 vc = be16_to_cpu (rx->vc); |
| 492 | // unused: u16 lec_id = be16_to_cpu (rx->lec_id); |
| 493 | u16 status = be16_to_cpu (rx->status); |
| 494 | u16 rx_len = be16_to_cpu (rx->length); |
| 495 | |
| 496 | PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len); |
| 497 | |
| 498 | // XXX move this in and add to VC stats ??? |
| 499 | if (!status) { |
| 500 | struct atm_vcc * atm_vcc = dev->rxer[vc]; |
| 501 | dev->stats.rx.ok++; |
| 502 | |
| 503 | if (atm_vcc) { |
| 504 | |
| 505 | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { |
| 506 | |
| 507 | if (atm_charge (atm_vcc, skb->truesize)) { |
| 508 | |
| 509 | // prepare socket buffer |
| 510 | ATM_SKB(skb)->vcc = atm_vcc; |
| 511 | skb_put (skb, rx_len); |
| 512 | |
| 513 | dump_skb ("<<<", vc, skb); |
| 514 | |
| 515 | // VC layer stats |
| 516 | atomic_inc(&atm_vcc->stats->rx); |
Patrick McHardy | a61bbcf | 2005-08-14 17:24:31 -0700 | [diff] [blame] | 517 | __net_timestamp(skb); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 518 | // end of our responsability |
| 519 | atm_vcc->push (atm_vcc, skb); |
| 520 | return; |
| 521 | |
| 522 | } else { |
| 523 | // someone fix this (message), please! |
| 524 | PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize); |
| 525 | // drop stats incremented in atm_charge |
| 526 | } |
| 527 | |
| 528 | } else { |
| 529 | PRINTK (KERN_INFO, "dropped over-size frame"); |
| 530 | // should we count this? |
| 531 | atomic_inc(&atm_vcc->stats->rx_drop); |
| 532 | } |
| 533 | |
| 534 | } else { |
| 535 | PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc); |
| 536 | // this is an adapter bug, only in new version of microcode |
| 537 | } |
| 538 | |
| 539 | } else { |
| 540 | dev->stats.rx.error++; |
| 541 | if (status & CRC_ERR) |
| 542 | dev->stats.rx.badcrc++; |
| 543 | if (status & LEN_ERR) |
| 544 | dev->stats.rx.toolong++; |
| 545 | if (status & ABORT_ERR) |
| 546 | dev->stats.rx.aborted++; |
| 547 | if (status & UNUSED_ERR) |
| 548 | dev->stats.rx.unused++; |
| 549 | } |
| 550 | |
| 551 | dev_kfree_skb_any (skb); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | |
| 557 | Note on queue handling. |
| 558 | |
| 559 | Here "give" and "take" refer to queue entries and a queue (pair) |
| 560 | rather than frames to or from the host or adapter. Empty frame |
| 561 | buffers are given to the RX queue pair and returned unused or |
| 562 | containing RX frames. TX frames (well, pointers to TX fragment |
| 563 | lists) are given to the TX queue pair, completions are returned. |
| 564 | |
| 565 | */ |
| 566 | |
| 567 | /********** command queue **********/ |
| 568 | |
| 569 | // I really don't like this, but it's the best I can do at the moment |
| 570 | |
| 571 | // also, the callers are responsible for byte order as the microcode |
| 572 | // sometimes does 16-bit accesses (yuk yuk yuk) |
| 573 | |
| 574 | static int command_do (amb_dev * dev, command * cmd) { |
| 575 | amb_cq * cq = &dev->cq; |
| 576 | volatile amb_cq_ptrs * ptrs = &cq->ptrs; |
| 577 | command * my_slot; |
| 578 | |
| 579 | PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev); |
| 580 | |
| 581 | if (test_bit (dead, &dev->flags)) |
| 582 | return 0; |
| 583 | |
| 584 | spin_lock (&cq->lock); |
| 585 | |
| 586 | // if not full... |
| 587 | if (cq->pending < cq->maximum) { |
| 588 | // remember my slot for later |
| 589 | my_slot = ptrs->in; |
| 590 | PRINTD (DBG_CMD, "command in slot %p", my_slot); |
| 591 | |
| 592 | dump_command (cmd); |
| 593 | |
| 594 | // copy command in |
| 595 | *ptrs->in = *cmd; |
| 596 | cq->pending++; |
| 597 | ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit); |
| 598 | |
| 599 | // mail the command |
| 600 | wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in)); |
| 601 | |
| 602 | if (cq->pending > cq->high) |
| 603 | cq->high = cq->pending; |
| 604 | spin_unlock (&cq->lock); |
| 605 | |
| 606 | // these comments were in a while-loop before, msleep removes the loop |
| 607 | // go to sleep |
| 608 | // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout); |
| 609 | msleep(cq->pending); |
| 610 | |
| 611 | // wait for my slot to be reached (all waiters are here or above, until...) |
| 612 | while (ptrs->out != my_slot) { |
| 613 | PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out); |
| 614 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 615 | schedule(); |
| 616 | } |
| 617 | |
| 618 | // wait on my slot (... one gets to its slot, and... ) |
| 619 | while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) { |
| 620 | PRINTD (DBG_CMD, "wait: command slot completion"); |
| 621 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 622 | schedule(); |
| 623 | } |
| 624 | |
| 625 | PRINTD (DBG_CMD, "command complete"); |
| 626 | // update queue (... moves the queue along to the next slot) |
| 627 | spin_lock (&cq->lock); |
| 628 | cq->pending--; |
| 629 | // copy command out |
| 630 | *cmd = *ptrs->out; |
| 631 | ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit); |
| 632 | spin_unlock (&cq->lock); |
| 633 | |
| 634 | return 0; |
| 635 | } else { |
| 636 | cq->filled++; |
| 637 | spin_unlock (&cq->lock); |
| 638 | return -EAGAIN; |
| 639 | } |
| 640 | |
| 641 | } |
| 642 | |
| 643 | /********** TX queue pair **********/ |
| 644 | |
| 645 | static inline int tx_give (amb_dev * dev, tx_in * tx) { |
| 646 | amb_txq * txq = &dev->txq; |
| 647 | unsigned long flags; |
| 648 | |
| 649 | PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev); |
| 650 | |
| 651 | if (test_bit (dead, &dev->flags)) |
| 652 | return 0; |
| 653 | |
| 654 | spin_lock_irqsave (&txq->lock, flags); |
| 655 | |
| 656 | if (txq->pending < txq->maximum) { |
| 657 | PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr); |
| 658 | |
| 659 | *txq->in.ptr = *tx; |
| 660 | txq->pending++; |
| 661 | txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit); |
| 662 | // hand over the TX and ring the bell |
| 663 | wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr)); |
| 664 | wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME); |
| 665 | |
| 666 | if (txq->pending > txq->high) |
| 667 | txq->high = txq->pending; |
| 668 | spin_unlock_irqrestore (&txq->lock, flags); |
| 669 | return 0; |
| 670 | } else { |
| 671 | txq->filled++; |
| 672 | spin_unlock_irqrestore (&txq->lock, flags); |
| 673 | return -EAGAIN; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | static inline int tx_take (amb_dev * dev) { |
| 678 | amb_txq * txq = &dev->txq; |
| 679 | unsigned long flags; |
| 680 | |
| 681 | PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev); |
| 682 | |
| 683 | spin_lock_irqsave (&txq->lock, flags); |
| 684 | |
| 685 | if (txq->pending && txq->out.ptr->handle) { |
| 686 | // deal with TX completion |
| 687 | tx_complete (dev, txq->out.ptr); |
| 688 | // mark unused again |
| 689 | txq->out.ptr->handle = 0; |
| 690 | // remove item |
| 691 | txq->pending--; |
| 692 | txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit); |
| 693 | |
| 694 | spin_unlock_irqrestore (&txq->lock, flags); |
| 695 | return 0; |
| 696 | } else { |
| 697 | |
| 698 | spin_unlock_irqrestore (&txq->lock, flags); |
| 699 | return -1; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /********** RX queue pairs **********/ |
| 704 | |
| 705 | static inline int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) { |
| 706 | amb_rxq * rxq = &dev->rxq[pool]; |
| 707 | unsigned long flags; |
| 708 | |
| 709 | PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool); |
| 710 | |
| 711 | spin_lock_irqsave (&rxq->lock, flags); |
| 712 | |
| 713 | if (rxq->pending < rxq->maximum) { |
| 714 | PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr); |
| 715 | |
| 716 | *rxq->in.ptr = *rx; |
| 717 | rxq->pending++; |
| 718 | rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit); |
| 719 | // hand over the RX buffer |
| 720 | wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr)); |
| 721 | |
| 722 | spin_unlock_irqrestore (&rxq->lock, flags); |
| 723 | return 0; |
| 724 | } else { |
| 725 | spin_unlock_irqrestore (&rxq->lock, flags); |
| 726 | return -1; |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | static inline int rx_take (amb_dev * dev, unsigned char pool) { |
| 731 | amb_rxq * rxq = &dev->rxq[pool]; |
| 732 | unsigned long flags; |
| 733 | |
| 734 | PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool); |
| 735 | |
| 736 | spin_lock_irqsave (&rxq->lock, flags); |
| 737 | |
| 738 | if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) { |
| 739 | // deal with RX completion |
| 740 | rx_complete (dev, rxq->out.ptr); |
| 741 | // mark unused again |
| 742 | rxq->out.ptr->status = 0; |
| 743 | rxq->out.ptr->length = 0; |
| 744 | // remove item |
| 745 | rxq->pending--; |
| 746 | rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit); |
| 747 | |
| 748 | if (rxq->pending < rxq->low) |
| 749 | rxq->low = rxq->pending; |
| 750 | spin_unlock_irqrestore (&rxq->lock, flags); |
| 751 | return 0; |
| 752 | } else { |
| 753 | if (!rxq->pending && rxq->buffers_wanted) |
| 754 | rxq->emptied++; |
| 755 | spin_unlock_irqrestore (&rxq->lock, flags); |
| 756 | return -1; |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | /********** RX Pool handling **********/ |
| 761 | |
| 762 | /* pre: buffers_wanted = 0, post: pending = 0 */ |
| 763 | static inline void drain_rx_pool (amb_dev * dev, unsigned char pool) { |
| 764 | amb_rxq * rxq = &dev->rxq[pool]; |
| 765 | |
| 766 | PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool); |
| 767 | |
| 768 | if (test_bit (dead, &dev->flags)) |
| 769 | return; |
| 770 | |
| 771 | /* we are not quite like the fill pool routines as we cannot just |
| 772 | remove one buffer, we have to remove all of them, but we might as |
| 773 | well pretend... */ |
| 774 | if (rxq->pending > rxq->buffers_wanted) { |
| 775 | command cmd; |
| 776 | cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q); |
| 777 | cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT); |
| 778 | while (command_do (dev, &cmd)) |
| 779 | schedule(); |
| 780 | /* the pool may also be emptied via the interrupt handler */ |
| 781 | while (rxq->pending > rxq->buffers_wanted) |
| 782 | if (rx_take (dev, pool)) |
| 783 | schedule(); |
| 784 | } |
| 785 | |
| 786 | return; |
| 787 | } |
| 788 | |
| 789 | static void drain_rx_pools (amb_dev * dev) { |
| 790 | unsigned char pool; |
| 791 | |
| 792 | PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev); |
| 793 | |
| 794 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 795 | drain_rx_pool (dev, pool); |
| 796 | } |
| 797 | |
Victor Fusco | 5938a7b | 2005-07-19 13:56:29 -0700 | [diff] [blame] | 798 | static inline void fill_rx_pool (amb_dev * dev, unsigned char pool, |
Al Viro | dd0fc66 | 2005-10-07 07:46:04 +0100 | [diff] [blame] | 799 | gfp_t priority) |
Victor Fusco | 5938a7b | 2005-07-19 13:56:29 -0700 | [diff] [blame] | 800 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 801 | rx_in rx; |
| 802 | amb_rxq * rxq; |
| 803 | |
| 804 | PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority); |
| 805 | |
| 806 | if (test_bit (dead, &dev->flags)) |
| 807 | return; |
| 808 | |
| 809 | rxq = &dev->rxq[pool]; |
| 810 | while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) { |
| 811 | |
| 812 | struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority); |
| 813 | if (!skb) { |
| 814 | PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool); |
| 815 | return; |
| 816 | } |
| 817 | if (check_area (skb->data, skb->truesize)) { |
| 818 | dev_kfree_skb_any (skb); |
| 819 | return; |
| 820 | } |
| 821 | // cast needed as there is no %? for pointer differences |
| 822 | PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li", |
| 823 | skb, skb->head, (long) (skb->end - skb->head)); |
| 824 | rx.handle = virt_to_bus (skb); |
| 825 | rx.host_address = cpu_to_be32 (virt_to_bus (skb->data)); |
| 826 | if (rx_give (dev, &rx, pool)) |
| 827 | dev_kfree_skb_any (skb); |
| 828 | |
| 829 | } |
| 830 | |
| 831 | return; |
| 832 | } |
| 833 | |
| 834 | // top up all RX pools (can also be called as a bottom half) |
| 835 | static void fill_rx_pools (amb_dev * dev) { |
| 836 | unsigned char pool; |
| 837 | |
| 838 | PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev); |
| 839 | |
| 840 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 841 | fill_rx_pool (dev, pool, GFP_ATOMIC); |
| 842 | |
| 843 | return; |
| 844 | } |
| 845 | |
| 846 | /********** enable host interrupts **********/ |
| 847 | |
| 848 | static inline void interrupts_on (amb_dev * dev) { |
| 849 | wr_plain (dev, offsetof(amb_mem, interrupt_control), |
| 850 | rd_plain (dev, offsetof(amb_mem, interrupt_control)) |
| 851 | | AMB_INTERRUPT_BITS); |
| 852 | } |
| 853 | |
| 854 | /********** disable host interrupts **********/ |
| 855 | |
| 856 | static inline void interrupts_off (amb_dev * dev) { |
| 857 | wr_plain (dev, offsetof(amb_mem, interrupt_control), |
| 858 | rd_plain (dev, offsetof(amb_mem, interrupt_control)) |
| 859 | &~ AMB_INTERRUPT_BITS); |
| 860 | } |
| 861 | |
| 862 | /********** interrupt handling **********/ |
| 863 | |
| 864 | static irqreturn_t interrupt_handler(int irq, void *dev_id, |
| 865 | struct pt_regs *pt_regs) { |
| 866 | amb_dev * dev = (amb_dev *) dev_id; |
| 867 | (void) pt_regs; |
| 868 | |
| 869 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id); |
| 870 | |
| 871 | if (!dev_id) { |
| 872 | PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq); |
| 873 | return IRQ_NONE; |
| 874 | } |
| 875 | |
| 876 | { |
| 877 | u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt)); |
| 878 | |
| 879 | // for us or someone else sharing the same interrupt |
| 880 | if (!interrupt) { |
| 881 | PRINTD (DBG_IRQ, "irq not for me: %d", irq); |
| 882 | return IRQ_NONE; |
| 883 | } |
| 884 | |
| 885 | // definitely for us |
| 886 | PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt); |
| 887 | wr_plain (dev, offsetof(amb_mem, interrupt), -1); |
| 888 | } |
| 889 | |
| 890 | { |
| 891 | unsigned int irq_work = 0; |
| 892 | unsigned char pool; |
| 893 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 894 | while (!rx_take (dev, pool)) |
| 895 | ++irq_work; |
| 896 | while (!tx_take (dev)) |
| 897 | ++irq_work; |
| 898 | |
| 899 | if (irq_work) { |
| 900 | #ifdef FILL_RX_POOLS_IN_BH |
| 901 | schedule_work (&dev->bh); |
| 902 | #else |
| 903 | fill_rx_pools (dev); |
| 904 | #endif |
| 905 | |
| 906 | PRINTD (DBG_IRQ, "work done: %u", irq_work); |
| 907 | } else { |
| 908 | PRINTD (DBG_IRQ|DBG_WARN, "no work done"); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); |
| 913 | return IRQ_HANDLED; |
| 914 | } |
| 915 | |
| 916 | /********** make rate (not quite as much fun as Horizon) **********/ |
| 917 | |
| 918 | static unsigned int make_rate (unsigned int rate, rounding r, |
| 919 | u16 * bits, unsigned int * actual) { |
| 920 | unsigned char exp = -1; // hush gcc |
| 921 | unsigned int man = -1; // hush gcc |
| 922 | |
| 923 | PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate); |
| 924 | |
| 925 | // rates in cells per second, ITU format (nasty 16-bit floating-point) |
| 926 | // given 5-bit e and 9-bit m: |
| 927 | // rate = EITHER (1+m/2^9)*2^e OR 0 |
| 928 | // bits = EITHER 1<<14 | e<<9 | m OR 0 |
| 929 | // (bit 15 is "reserved", bit 14 "non-zero") |
| 930 | // smallest rate is 0 (special representation) |
| 931 | // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1) |
| 932 | // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0) |
| 933 | // simple algorithm: |
| 934 | // find position of top bit, this gives e |
| 935 | // remove top bit and shift (rounding if feeling clever) by 9-e |
| 936 | |
| 937 | // ucode bug: please don't set bit 14! so 0 rate not representable |
| 938 | |
| 939 | if (rate > 0xffc00000U) { |
| 940 | // larger than largest representable rate |
| 941 | |
| 942 | if (r == round_up) { |
| 943 | return -EINVAL; |
| 944 | } else { |
| 945 | exp = 31; |
| 946 | man = 511; |
| 947 | } |
| 948 | |
| 949 | } else if (rate) { |
| 950 | // representable rate |
| 951 | |
| 952 | exp = 31; |
| 953 | man = rate; |
| 954 | |
| 955 | // invariant: rate = man*2^(exp-31) |
| 956 | while (!(man & (1<<31))) { |
| 957 | exp = exp - 1; |
| 958 | man = man<<1; |
| 959 | } |
| 960 | |
| 961 | // man has top bit set |
| 962 | // rate = (2^31+(man-2^31))*2^(exp-31) |
| 963 | // rate = (1+(man-2^31)/2^31)*2^exp |
| 964 | man = man<<1; |
| 965 | man &= 0xffffffffU; // a nop on 32-bit systems |
| 966 | // rate = (1+man/2^32)*2^exp |
| 967 | |
| 968 | // exp is in the range 0 to 31, man is in the range 0 to 2^32-1 |
| 969 | // time to lose significance... we want m in the range 0 to 2^9-1 |
| 970 | // rounding presents a minor problem... we first decide which way |
| 971 | // we are rounding (based on given rounding direction and possibly |
| 972 | // the bits of the mantissa that are to be discarded). |
| 973 | |
| 974 | switch (r) { |
| 975 | case round_down: { |
| 976 | // just truncate |
| 977 | man = man>>(32-9); |
| 978 | break; |
| 979 | } |
| 980 | case round_up: { |
| 981 | // check all bits that we are discarding |
| 982 | if (man & (-1>>9)) { |
| 983 | man = (man>>(32-9)) + 1; |
| 984 | if (man == (1<<9)) { |
| 985 | // no need to check for round up outside of range |
| 986 | man = 0; |
| 987 | exp += 1; |
| 988 | } |
| 989 | } else { |
| 990 | man = (man>>(32-9)); |
| 991 | } |
| 992 | break; |
| 993 | } |
| 994 | case round_nearest: { |
| 995 | // check msb that we are discarding |
| 996 | if (man & (1<<(32-9-1))) { |
| 997 | man = (man>>(32-9)) + 1; |
| 998 | if (man == (1<<9)) { |
| 999 | // no need to check for round up outside of range |
| 1000 | man = 0; |
| 1001 | exp += 1; |
| 1002 | } |
| 1003 | } else { |
| 1004 | man = (man>>(32-9)); |
| 1005 | } |
| 1006 | break; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | } else { |
| 1011 | // zero rate - not representable |
| 1012 | |
| 1013 | if (r == round_down) { |
| 1014 | return -EINVAL; |
| 1015 | } else { |
| 1016 | exp = 0; |
| 1017 | man = 0; |
| 1018 | } |
| 1019 | |
| 1020 | } |
| 1021 | |
| 1022 | PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp); |
| 1023 | |
| 1024 | if (bits) |
| 1025 | *bits = /* (1<<14) | */ (exp<<9) | man; |
| 1026 | |
| 1027 | if (actual) |
| 1028 | *actual = (exp >= 9) |
| 1029 | ? (1 << exp) + (man << (exp-9)) |
| 1030 | : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp)); |
| 1031 | |
| 1032 | return 0; |
| 1033 | } |
| 1034 | |
| 1035 | /********** Linux ATM Operations **********/ |
| 1036 | |
| 1037 | // some are not yet implemented while others do not make sense for |
| 1038 | // this device |
| 1039 | |
| 1040 | /********** Open a VC **********/ |
| 1041 | |
| 1042 | static int amb_open (struct atm_vcc * atm_vcc) |
| 1043 | { |
| 1044 | int error; |
| 1045 | |
| 1046 | struct atm_qos * qos; |
| 1047 | struct atm_trafprm * txtp; |
| 1048 | struct atm_trafprm * rxtp; |
| 1049 | u16 tx_rate_bits; |
| 1050 | u16 tx_vc_bits = -1; // hush gcc |
| 1051 | u16 tx_frame_bits = -1; // hush gcc |
| 1052 | |
| 1053 | amb_dev * dev = AMB_DEV(atm_vcc->dev); |
| 1054 | amb_vcc * vcc; |
| 1055 | unsigned char pool = -1; // hush gcc |
| 1056 | short vpi = atm_vcc->vpi; |
| 1057 | int vci = atm_vcc->vci; |
| 1058 | |
| 1059 | PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci); |
| 1060 | |
| 1061 | #ifdef ATM_VPI_UNSPEC |
| 1062 | // UNSPEC is deprecated, remove this code eventually |
| 1063 | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { |
| 1064 | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); |
| 1065 | return -EINVAL; |
| 1066 | } |
| 1067 | #endif |
| 1068 | |
| 1069 | if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) && |
| 1070 | 0 <= vci && vci < (1<<NUM_VCI_BITS))) { |
| 1071 | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); |
| 1072 | return -EINVAL; |
| 1073 | } |
| 1074 | |
| 1075 | qos = &atm_vcc->qos; |
| 1076 | |
| 1077 | if (qos->aal != ATM_AAL5) { |
| 1078 | PRINTD (DBG_QOS, "AAL not supported"); |
| 1079 | return -EINVAL; |
| 1080 | } |
| 1081 | |
| 1082 | // traffic parameters |
| 1083 | |
| 1084 | PRINTD (DBG_QOS, "TX:"); |
| 1085 | txtp = &qos->txtp; |
| 1086 | if (txtp->traffic_class != ATM_NONE) { |
| 1087 | switch (txtp->traffic_class) { |
| 1088 | case ATM_UBR: { |
| 1089 | // we take "the PCR" as a rate-cap |
| 1090 | int pcr = atm_pcr_goal (txtp); |
| 1091 | if (!pcr) { |
| 1092 | // no rate cap |
| 1093 | tx_rate_bits = 0; |
| 1094 | tx_vc_bits = TX_UBR; |
| 1095 | tx_frame_bits = TX_FRAME_NOTCAP; |
| 1096 | } else { |
| 1097 | rounding r; |
| 1098 | if (pcr < 0) { |
| 1099 | r = round_down; |
| 1100 | pcr = -pcr; |
| 1101 | } else { |
| 1102 | r = round_up; |
| 1103 | } |
| 1104 | error = make_rate (pcr, r, &tx_rate_bits, NULL); |
| 1105 | tx_vc_bits = TX_UBR_CAPPED; |
| 1106 | tx_frame_bits = TX_FRAME_CAPPED; |
| 1107 | } |
| 1108 | break; |
| 1109 | } |
| 1110 | #if 0 |
| 1111 | case ATM_ABR: { |
| 1112 | pcr = atm_pcr_goal (txtp); |
| 1113 | PRINTD (DBG_QOS, "pcr goal = %d", pcr); |
| 1114 | break; |
| 1115 | } |
| 1116 | #endif |
| 1117 | default: { |
| 1118 | // PRINTD (DBG_QOS, "request for non-UBR/ABR denied"); |
| 1119 | PRINTD (DBG_QOS, "request for non-UBR denied"); |
| 1120 | return -EINVAL; |
| 1121 | } |
| 1122 | } |
| 1123 | PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx", |
| 1124 | tx_rate_bits, tx_vc_bits); |
| 1125 | } |
| 1126 | |
| 1127 | PRINTD (DBG_QOS, "RX:"); |
| 1128 | rxtp = &qos->rxtp; |
| 1129 | if (rxtp->traffic_class == ATM_NONE) { |
| 1130 | // do nothing |
| 1131 | } else { |
| 1132 | // choose an RX pool (arranged in increasing size) |
| 1133 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 1134 | if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) { |
| 1135 | PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)", |
| 1136 | pool, rxtp->max_sdu, dev->rxq[pool].buffer_size); |
| 1137 | break; |
| 1138 | } |
| 1139 | if (pool == NUM_RX_POOLS) { |
| 1140 | PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL, |
| 1141 | "no pool suitable for VC (RX max_sdu %d is too large)", |
| 1142 | rxtp->max_sdu); |
| 1143 | return -EINVAL; |
| 1144 | } |
| 1145 | |
| 1146 | switch (rxtp->traffic_class) { |
| 1147 | case ATM_UBR: { |
| 1148 | break; |
| 1149 | } |
| 1150 | #if 0 |
| 1151 | case ATM_ABR: { |
| 1152 | pcr = atm_pcr_goal (rxtp); |
| 1153 | PRINTD (DBG_QOS, "pcr goal = %d", pcr); |
| 1154 | break; |
| 1155 | } |
| 1156 | #endif |
| 1157 | default: { |
| 1158 | // PRINTD (DBG_QOS, "request for non-UBR/ABR denied"); |
| 1159 | PRINTD (DBG_QOS, "request for non-UBR denied"); |
| 1160 | return -EINVAL; |
| 1161 | } |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | // get space for our vcc stuff |
| 1166 | vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL); |
| 1167 | if (!vcc) { |
| 1168 | PRINTK (KERN_ERR, "out of memory!"); |
| 1169 | return -ENOMEM; |
| 1170 | } |
| 1171 | atm_vcc->dev_data = (void *) vcc; |
| 1172 | |
| 1173 | // no failures beyond this point |
| 1174 | |
| 1175 | // we are not really "immediately before allocating the connection |
| 1176 | // identifier in hardware", but it will just have to do! |
| 1177 | set_bit(ATM_VF_ADDR,&atm_vcc->flags); |
| 1178 | |
| 1179 | if (txtp->traffic_class != ATM_NONE) { |
| 1180 | command cmd; |
| 1181 | |
| 1182 | vcc->tx_frame_bits = tx_frame_bits; |
| 1183 | |
| 1184 | down (&dev->vcc_sf); |
| 1185 | if (dev->rxer[vci]) { |
| 1186 | // RXer on the channel already, just modify rate... |
| 1187 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE); |
| 1188 | cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0 |
| 1189 | cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT); |
| 1190 | while (command_do (dev, &cmd)) |
| 1191 | schedule(); |
| 1192 | // ... and TX flags, preserving the RX pool |
| 1193 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); |
| 1194 | cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 |
| 1195 | cmd.args.modify_flags.flags = cpu_to_be32 |
| 1196 | ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT) |
| 1197 | | (tx_vc_bits << SRB_FLAGS_SHIFT) ); |
| 1198 | while (command_do (dev, &cmd)) |
| 1199 | schedule(); |
| 1200 | } else { |
| 1201 | // no RXer on the channel, just open (with pool zero) |
| 1202 | cmd.request = cpu_to_be32 (SRB_OPEN_VC); |
| 1203 | cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0 |
| 1204 | cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT); |
| 1205 | cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT); |
| 1206 | while (command_do (dev, &cmd)) |
| 1207 | schedule(); |
| 1208 | } |
| 1209 | dev->txer[vci].tx_present = 1; |
| 1210 | up (&dev->vcc_sf); |
| 1211 | } |
| 1212 | |
| 1213 | if (rxtp->traffic_class != ATM_NONE) { |
| 1214 | command cmd; |
| 1215 | |
| 1216 | vcc->rx_info.pool = pool; |
| 1217 | |
| 1218 | down (&dev->vcc_sf); |
| 1219 | /* grow RX buffer pool */ |
| 1220 | if (!dev->rxq[pool].buffers_wanted) |
| 1221 | dev->rxq[pool].buffers_wanted = rx_lats; |
| 1222 | dev->rxq[pool].buffers_wanted += 1; |
| 1223 | fill_rx_pool (dev, pool, GFP_KERNEL); |
| 1224 | |
| 1225 | if (dev->txer[vci].tx_present) { |
| 1226 | // TXer on the channel already |
| 1227 | // switch (from pool zero) to this pool, preserving the TX bits |
| 1228 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); |
| 1229 | cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 |
| 1230 | cmd.args.modify_flags.flags = cpu_to_be32 |
| 1231 | ( (pool << SRB_POOL_SHIFT) |
| 1232 | | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) ); |
| 1233 | } else { |
| 1234 | // no TXer on the channel, open the VC (with no rate info) |
| 1235 | cmd.request = cpu_to_be32 (SRB_OPEN_VC); |
| 1236 | cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0 |
| 1237 | cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT); |
| 1238 | cmd.args.open.rate = cpu_to_be32 (0); |
| 1239 | } |
| 1240 | while (command_do (dev, &cmd)) |
| 1241 | schedule(); |
| 1242 | // this link allows RX frames through |
| 1243 | dev->rxer[vci] = atm_vcc; |
| 1244 | up (&dev->vcc_sf); |
| 1245 | } |
| 1246 | |
| 1247 | // indicate readiness |
| 1248 | set_bit(ATM_VF_READY,&atm_vcc->flags); |
| 1249 | |
| 1250 | return 0; |
| 1251 | } |
| 1252 | |
| 1253 | /********** Close a VC **********/ |
| 1254 | |
| 1255 | static void amb_close (struct atm_vcc * atm_vcc) { |
| 1256 | amb_dev * dev = AMB_DEV (atm_vcc->dev); |
| 1257 | amb_vcc * vcc = AMB_VCC (atm_vcc); |
| 1258 | u16 vci = atm_vcc->vci; |
| 1259 | |
| 1260 | PRINTD (DBG_VCC|DBG_FLOW, "amb_close"); |
| 1261 | |
| 1262 | // indicate unreadiness |
| 1263 | clear_bit(ATM_VF_READY,&atm_vcc->flags); |
| 1264 | |
| 1265 | // disable TXing |
| 1266 | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { |
| 1267 | command cmd; |
| 1268 | |
| 1269 | down (&dev->vcc_sf); |
| 1270 | if (dev->rxer[vci]) { |
| 1271 | // RXer still on the channel, just modify rate... XXX not really needed |
| 1272 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE); |
| 1273 | cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0 |
| 1274 | cmd.args.modify_rate.rate = cpu_to_be32 (0); |
| 1275 | // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool |
| 1276 | } else { |
| 1277 | // no RXer on the channel, close channel |
| 1278 | cmd.request = cpu_to_be32 (SRB_CLOSE_VC); |
| 1279 | cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0 |
| 1280 | } |
| 1281 | dev->txer[vci].tx_present = 0; |
| 1282 | while (command_do (dev, &cmd)) |
| 1283 | schedule(); |
| 1284 | up (&dev->vcc_sf); |
| 1285 | } |
| 1286 | |
| 1287 | // disable RXing |
| 1288 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| 1289 | command cmd; |
| 1290 | |
| 1291 | // this is (the?) one reason why we need the amb_vcc struct |
| 1292 | unsigned char pool = vcc->rx_info.pool; |
| 1293 | |
| 1294 | down (&dev->vcc_sf); |
| 1295 | if (dev->txer[vci].tx_present) { |
| 1296 | // TXer still on the channel, just go to pool zero XXX not really needed |
| 1297 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); |
| 1298 | cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 |
| 1299 | cmd.args.modify_flags.flags = cpu_to_be32 |
| 1300 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT); |
| 1301 | } else { |
| 1302 | // no TXer on the channel, close the VC |
| 1303 | cmd.request = cpu_to_be32 (SRB_CLOSE_VC); |
| 1304 | cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0 |
| 1305 | } |
| 1306 | // forget the rxer - no more skbs will be pushed |
| 1307 | if (atm_vcc != dev->rxer[vci]) |
| 1308 | PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p", |
| 1309 | "arghhh! we're going to die!", |
| 1310 | vcc, dev->rxer[vci]); |
| 1311 | dev->rxer[vci] = NULL; |
| 1312 | while (command_do (dev, &cmd)) |
| 1313 | schedule(); |
| 1314 | |
| 1315 | /* shrink RX buffer pool */ |
| 1316 | dev->rxq[pool].buffers_wanted -= 1; |
| 1317 | if (dev->rxq[pool].buffers_wanted == rx_lats) { |
| 1318 | dev->rxq[pool].buffers_wanted = 0; |
| 1319 | drain_rx_pool (dev, pool); |
| 1320 | } |
| 1321 | up (&dev->vcc_sf); |
| 1322 | } |
| 1323 | |
| 1324 | // free our structure |
| 1325 | kfree (vcc); |
| 1326 | |
| 1327 | // say the VPI/VCI is free again |
| 1328 | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); |
| 1329 | |
| 1330 | return; |
| 1331 | } |
| 1332 | |
| 1333 | /********** Set socket options for a VC **********/ |
| 1334 | |
| 1335 | // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen); |
| 1336 | |
| 1337 | /********** Set socket options for a VC **********/ |
| 1338 | |
| 1339 | // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen); |
| 1340 | |
| 1341 | /********** Send **********/ |
| 1342 | |
| 1343 | static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { |
| 1344 | amb_dev * dev = AMB_DEV(atm_vcc->dev); |
| 1345 | amb_vcc * vcc = AMB_VCC(atm_vcc); |
| 1346 | u16 vc = atm_vcc->vci; |
| 1347 | unsigned int tx_len = skb->len; |
| 1348 | unsigned char * tx_data = skb->data; |
| 1349 | tx_simple * tx_descr; |
| 1350 | tx_in tx; |
| 1351 | |
| 1352 | if (test_bit (dead, &dev->flags)) |
| 1353 | return -EIO; |
| 1354 | |
| 1355 | PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u", |
| 1356 | vc, tx_data, tx_len); |
| 1357 | |
| 1358 | dump_skb (">>>", vc, skb); |
| 1359 | |
| 1360 | if (!dev->txer[vc].tx_present) { |
| 1361 | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc); |
| 1362 | return -EBADFD; |
| 1363 | } |
| 1364 | |
| 1365 | // this is a driver private field so we have to set it ourselves, |
| 1366 | // despite the fact that we are _required_ to use it to check for a |
| 1367 | // pop function |
| 1368 | ATM_SKB(skb)->vcc = atm_vcc; |
| 1369 | |
| 1370 | if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) { |
| 1371 | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); |
| 1372 | return -EIO; |
| 1373 | } |
| 1374 | |
| 1375 | if (check_area (skb->data, skb->len)) { |
| 1376 | atomic_inc(&atm_vcc->stats->tx_err); |
| 1377 | return -ENOMEM; // ? |
| 1378 | } |
| 1379 | |
| 1380 | // allocate memory for fragments |
| 1381 | tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL); |
| 1382 | if (!tx_descr) { |
| 1383 | PRINTK (KERN_ERR, "could not allocate TX descriptor"); |
| 1384 | return -ENOMEM; |
| 1385 | } |
| 1386 | if (check_area (tx_descr, sizeof(tx_simple))) { |
| 1387 | kfree (tx_descr); |
| 1388 | return -ENOMEM; |
| 1389 | } |
| 1390 | PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr); |
| 1391 | |
| 1392 | tx_descr->skb = skb; |
| 1393 | |
| 1394 | tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len); |
| 1395 | tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data)); |
| 1396 | |
| 1397 | tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr); |
| 1398 | tx_descr->tx_frag_end.vc = 0; |
| 1399 | tx_descr->tx_frag_end.next_descriptor_length = 0; |
| 1400 | tx_descr->tx_frag_end.next_descriptor = 0; |
| 1401 | #ifdef AMB_NEW_MICROCODE |
| 1402 | tx_descr->tx_frag_end.cpcs_uu = 0; |
| 1403 | tx_descr->tx_frag_end.cpi = 0; |
| 1404 | tx_descr->tx_frag_end.pad = 0; |
| 1405 | #endif |
| 1406 | |
| 1407 | tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc); |
| 1408 | tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end)); |
| 1409 | tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag)); |
| 1410 | |
| 1411 | while (tx_give (dev, &tx)) |
| 1412 | schedule(); |
| 1413 | return 0; |
| 1414 | } |
| 1415 | |
| 1416 | /********** Change QoS on a VC **********/ |
| 1417 | |
| 1418 | // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags); |
| 1419 | |
| 1420 | /********** Free RX Socket Buffer **********/ |
| 1421 | |
| 1422 | #if 0 |
| 1423 | static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) { |
| 1424 | amb_dev * dev = AMB_DEV (atm_vcc->dev); |
| 1425 | amb_vcc * vcc = AMB_VCC (atm_vcc); |
| 1426 | unsigned char pool = vcc->rx_info.pool; |
| 1427 | rx_in rx; |
| 1428 | |
| 1429 | // This may be unsafe for various reasons that I cannot really guess |
| 1430 | // at. However, I note that the ATM layer calls kfree_skb rather |
| 1431 | // than dev_kfree_skb at this point so we are least covered as far |
| 1432 | // as buffer locking goes. There may be bugs if pcap clones RX skbs. |
| 1433 | |
| 1434 | PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)", |
| 1435 | skb, atm_vcc, vcc); |
| 1436 | |
| 1437 | rx.handle = virt_to_bus (skb); |
| 1438 | rx.host_address = cpu_to_be32 (virt_to_bus (skb->data)); |
| 1439 | |
| 1440 | skb->data = skb->head; |
| 1441 | skb->tail = skb->head; |
| 1442 | skb->len = 0; |
| 1443 | |
| 1444 | if (!rx_give (dev, &rx, pool)) { |
| 1445 | // success |
| 1446 | PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool); |
| 1447 | return; |
| 1448 | } |
| 1449 | |
| 1450 | // just do what the ATM layer would have done |
| 1451 | dev_kfree_skb_any (skb); |
| 1452 | |
| 1453 | return; |
| 1454 | } |
| 1455 | #endif |
| 1456 | |
| 1457 | /********** Proc File Output **********/ |
| 1458 | |
| 1459 | static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { |
| 1460 | amb_dev * dev = AMB_DEV (atm_dev); |
| 1461 | int left = *pos; |
| 1462 | unsigned char pool; |
| 1463 | |
| 1464 | PRINTD (DBG_FLOW, "amb_proc_read"); |
| 1465 | |
| 1466 | /* more diagnostics here? */ |
| 1467 | |
| 1468 | if (!left--) { |
| 1469 | amb_stats * s = &dev->stats; |
| 1470 | return sprintf (page, |
| 1471 | "frames: TX OK %lu, RX OK %lu, RX bad %lu " |
| 1472 | "(CRC %lu, long %lu, aborted %lu, unused %lu).\n", |
| 1473 | s->tx_ok, s->rx.ok, s->rx.error, |
| 1474 | s->rx.badcrc, s->rx.toolong, |
| 1475 | s->rx.aborted, s->rx.unused); |
| 1476 | } |
| 1477 | |
| 1478 | if (!left--) { |
| 1479 | amb_cq * c = &dev->cq; |
| 1480 | return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ", |
| 1481 | c->pending, c->high, c->maximum); |
| 1482 | } |
| 1483 | |
| 1484 | if (!left--) { |
| 1485 | amb_txq * t = &dev->txq; |
| 1486 | return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n", |
| 1487 | t->pending, t->maximum, t->high, t->filled); |
| 1488 | } |
| 1489 | |
| 1490 | if (!left--) { |
| 1491 | unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:"); |
| 1492 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
| 1493 | amb_rxq * r = &dev->rxq[pool]; |
| 1494 | count += sprintf (page+count, " %u/%u/%u %u %u", |
| 1495 | r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied); |
| 1496 | } |
| 1497 | count += sprintf (page+count, ".\n"); |
| 1498 | return count; |
| 1499 | } |
| 1500 | |
| 1501 | if (!left--) { |
| 1502 | unsigned int count = sprintf (page, "RX buffer sizes:"); |
| 1503 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
| 1504 | amb_rxq * r = &dev->rxq[pool]; |
| 1505 | count += sprintf (page+count, " %u", r->buffer_size); |
| 1506 | } |
| 1507 | count += sprintf (page+count, ".\n"); |
| 1508 | return count; |
| 1509 | } |
| 1510 | |
| 1511 | #if 0 |
| 1512 | if (!left--) { |
| 1513 | // suni block etc? |
| 1514 | } |
| 1515 | #endif |
| 1516 | |
| 1517 | return 0; |
| 1518 | } |
| 1519 | |
| 1520 | /********** Operation Structure **********/ |
| 1521 | |
| 1522 | static const struct atmdev_ops amb_ops = { |
| 1523 | .open = amb_open, |
| 1524 | .close = amb_close, |
| 1525 | .send = amb_send, |
| 1526 | .proc_read = amb_proc_read, |
| 1527 | .owner = THIS_MODULE, |
| 1528 | }; |
| 1529 | |
| 1530 | /********** housekeeping **********/ |
| 1531 | static void do_housekeeping (unsigned long arg) { |
| 1532 | amb_dev * dev = (amb_dev *) arg; |
| 1533 | |
| 1534 | // could collect device-specific (not driver/atm-linux) stats here |
| 1535 | |
| 1536 | // last resort refill once every ten seconds |
| 1537 | fill_rx_pools (dev); |
| 1538 | mod_timer(&dev->housekeeping, jiffies + 10*HZ); |
| 1539 | |
| 1540 | return; |
| 1541 | } |
| 1542 | |
| 1543 | /********** creation of communication queues **********/ |
| 1544 | |
| 1545 | static int __devinit create_queues (amb_dev * dev, unsigned int cmds, |
| 1546 | unsigned int txs, unsigned int * rxs, |
| 1547 | unsigned int * rx_buffer_sizes) { |
| 1548 | unsigned char pool; |
| 1549 | size_t total = 0; |
| 1550 | void * memory; |
| 1551 | void * limit; |
| 1552 | |
| 1553 | PRINTD (DBG_FLOW, "create_queues %p", dev); |
| 1554 | |
| 1555 | total += cmds * sizeof(command); |
| 1556 | |
| 1557 | total += txs * (sizeof(tx_in) + sizeof(tx_out)); |
| 1558 | |
| 1559 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 1560 | total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out)); |
| 1561 | |
| 1562 | memory = kmalloc (total, GFP_KERNEL); |
| 1563 | if (!memory) { |
| 1564 | PRINTK (KERN_ERR, "could not allocate queues"); |
| 1565 | return -ENOMEM; |
| 1566 | } |
| 1567 | if (check_area (memory, total)) { |
| 1568 | PRINTK (KERN_ERR, "queues allocated in nasty area"); |
| 1569 | kfree (memory); |
| 1570 | return -ENOMEM; |
| 1571 | } |
| 1572 | |
| 1573 | limit = memory + total; |
| 1574 | PRINTD (DBG_INIT, "queues from %p to %p", memory, limit); |
| 1575 | |
| 1576 | PRINTD (DBG_CMD, "command queue at %p", memory); |
| 1577 | |
| 1578 | { |
| 1579 | command * cmd = memory; |
| 1580 | amb_cq * cq = &dev->cq; |
| 1581 | |
| 1582 | cq->pending = 0; |
| 1583 | cq->high = 0; |
| 1584 | cq->maximum = cmds - 1; |
| 1585 | |
| 1586 | cq->ptrs.start = cmd; |
| 1587 | cq->ptrs.in = cmd; |
| 1588 | cq->ptrs.out = cmd; |
| 1589 | cq->ptrs.limit = cmd + cmds; |
| 1590 | |
| 1591 | memory = cq->ptrs.limit; |
| 1592 | } |
| 1593 | |
| 1594 | PRINTD (DBG_TX, "TX queue pair at %p", memory); |
| 1595 | |
| 1596 | { |
| 1597 | tx_in * in = memory; |
| 1598 | tx_out * out; |
| 1599 | amb_txq * txq = &dev->txq; |
| 1600 | |
| 1601 | txq->pending = 0; |
| 1602 | txq->high = 0; |
| 1603 | txq->filled = 0; |
| 1604 | txq->maximum = txs - 1; |
| 1605 | |
| 1606 | txq->in.start = in; |
| 1607 | txq->in.ptr = in; |
| 1608 | txq->in.limit = in + txs; |
| 1609 | |
| 1610 | memory = txq->in.limit; |
| 1611 | out = memory; |
| 1612 | |
| 1613 | txq->out.start = out; |
| 1614 | txq->out.ptr = out; |
| 1615 | txq->out.limit = out + txs; |
| 1616 | |
| 1617 | memory = txq->out.limit; |
| 1618 | } |
| 1619 | |
| 1620 | PRINTD (DBG_RX, "RX queue pairs at %p", memory); |
| 1621 | |
| 1622 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
| 1623 | rx_in * in = memory; |
| 1624 | rx_out * out; |
| 1625 | amb_rxq * rxq = &dev->rxq[pool]; |
| 1626 | |
| 1627 | rxq->buffer_size = rx_buffer_sizes[pool]; |
| 1628 | rxq->buffers_wanted = 0; |
| 1629 | |
| 1630 | rxq->pending = 0; |
| 1631 | rxq->low = rxs[pool] - 1; |
| 1632 | rxq->emptied = 0; |
| 1633 | rxq->maximum = rxs[pool] - 1; |
| 1634 | |
| 1635 | rxq->in.start = in; |
| 1636 | rxq->in.ptr = in; |
| 1637 | rxq->in.limit = in + rxs[pool]; |
| 1638 | |
| 1639 | memory = rxq->in.limit; |
| 1640 | out = memory; |
| 1641 | |
| 1642 | rxq->out.start = out; |
| 1643 | rxq->out.ptr = out; |
| 1644 | rxq->out.limit = out + rxs[pool]; |
| 1645 | |
| 1646 | memory = rxq->out.limit; |
| 1647 | } |
| 1648 | |
| 1649 | if (memory == limit) { |
| 1650 | return 0; |
| 1651 | } else { |
| 1652 | PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit); |
| 1653 | kfree (limit - total); |
| 1654 | return -ENOMEM; |
| 1655 | } |
| 1656 | |
| 1657 | } |
| 1658 | |
| 1659 | /********** destruction of communication queues **********/ |
| 1660 | |
| 1661 | static void destroy_queues (amb_dev * dev) { |
| 1662 | // all queues assumed empty |
| 1663 | void * memory = dev->cq.ptrs.start; |
| 1664 | // includes txq.in, txq.out, rxq[].in and rxq[].out |
| 1665 | |
| 1666 | PRINTD (DBG_FLOW, "destroy_queues %p", dev); |
| 1667 | |
| 1668 | PRINTD (DBG_INIT, "freeing queues at %p", memory); |
| 1669 | kfree (memory); |
| 1670 | |
| 1671 | return; |
| 1672 | } |
| 1673 | |
| 1674 | /********** basic loader commands and error handling **********/ |
| 1675 | // centisecond timeouts - guessing away here |
| 1676 | static unsigned int command_timeouts [] = { |
| 1677 | [host_memory_test] = 15, |
| 1678 | [read_adapter_memory] = 2, |
| 1679 | [write_adapter_memory] = 2, |
| 1680 | [adapter_start] = 50, |
| 1681 | [get_version_number] = 10, |
| 1682 | [interrupt_host] = 1, |
| 1683 | [flash_erase_sector] = 1, |
| 1684 | [adap_download_block] = 1, |
| 1685 | [adap_erase_flash] = 1, |
| 1686 | [adap_run_in_iram] = 1, |
| 1687 | [adap_end_download] = 1 |
| 1688 | }; |
| 1689 | |
| 1690 | |
| 1691 | static unsigned int command_successes [] = { |
| 1692 | [host_memory_test] = COMMAND_PASSED_TEST, |
| 1693 | [read_adapter_memory] = COMMAND_READ_DATA_OK, |
| 1694 | [write_adapter_memory] = COMMAND_WRITE_DATA_OK, |
| 1695 | [adapter_start] = COMMAND_COMPLETE, |
| 1696 | [get_version_number] = COMMAND_COMPLETE, |
| 1697 | [interrupt_host] = COMMAND_COMPLETE, |
| 1698 | [flash_erase_sector] = COMMAND_COMPLETE, |
| 1699 | [adap_download_block] = COMMAND_COMPLETE, |
| 1700 | [adap_erase_flash] = COMMAND_COMPLETE, |
| 1701 | [adap_run_in_iram] = COMMAND_COMPLETE, |
| 1702 | [adap_end_download] = COMMAND_COMPLETE |
| 1703 | }; |
| 1704 | |
| 1705 | static int decode_loader_result (loader_command cmd, u32 result) |
| 1706 | { |
| 1707 | int res; |
| 1708 | const char *msg; |
| 1709 | |
| 1710 | if (result == command_successes[cmd]) |
| 1711 | return 0; |
| 1712 | |
| 1713 | switch (result) { |
| 1714 | case BAD_COMMAND: |
| 1715 | res = -EINVAL; |
| 1716 | msg = "bad command"; |
| 1717 | break; |
| 1718 | case COMMAND_IN_PROGRESS: |
| 1719 | res = -ETIMEDOUT; |
| 1720 | msg = "command in progress"; |
| 1721 | break; |
| 1722 | case COMMAND_PASSED_TEST: |
| 1723 | res = 0; |
| 1724 | msg = "command passed test"; |
| 1725 | break; |
| 1726 | case COMMAND_FAILED_TEST: |
| 1727 | res = -EIO; |
| 1728 | msg = "command failed test"; |
| 1729 | break; |
| 1730 | case COMMAND_READ_DATA_OK: |
| 1731 | res = 0; |
| 1732 | msg = "command read data ok"; |
| 1733 | break; |
| 1734 | case COMMAND_READ_BAD_ADDRESS: |
| 1735 | res = -EINVAL; |
| 1736 | msg = "command read bad address"; |
| 1737 | break; |
| 1738 | case COMMAND_WRITE_DATA_OK: |
| 1739 | res = 0; |
| 1740 | msg = "command write data ok"; |
| 1741 | break; |
| 1742 | case COMMAND_WRITE_BAD_ADDRESS: |
| 1743 | res = -EINVAL; |
| 1744 | msg = "command write bad address"; |
| 1745 | break; |
| 1746 | case COMMAND_WRITE_FLASH_FAILURE: |
| 1747 | res = -EIO; |
| 1748 | msg = "command write flash failure"; |
| 1749 | break; |
| 1750 | case COMMAND_COMPLETE: |
| 1751 | res = 0; |
| 1752 | msg = "command complete"; |
| 1753 | break; |
| 1754 | case COMMAND_FLASH_ERASE_FAILURE: |
| 1755 | res = -EIO; |
| 1756 | msg = "command flash erase failure"; |
| 1757 | break; |
| 1758 | case COMMAND_WRITE_BAD_DATA: |
| 1759 | res = -EINVAL; |
| 1760 | msg = "command write bad data"; |
| 1761 | break; |
| 1762 | default: |
| 1763 | res = -EINVAL; |
| 1764 | msg = "unknown error"; |
| 1765 | PRINTD (DBG_LOAD|DBG_ERR, |
| 1766 | "decode_loader_result got %d=%x !", |
| 1767 | result, result); |
| 1768 | break; |
| 1769 | } |
| 1770 | |
| 1771 | PRINTK (KERN_ERR, "%s", msg); |
| 1772 | return res; |
| 1773 | } |
| 1774 | |
| 1775 | static int __devinit do_loader_command (volatile loader_block * lb, |
| 1776 | const amb_dev * dev, loader_command cmd) { |
| 1777 | |
| 1778 | unsigned long timeout; |
| 1779 | |
| 1780 | PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command"); |
| 1781 | |
| 1782 | /* do a command |
| 1783 | |
| 1784 | Set the return value to zero, set the command type and set the |
| 1785 | valid entry to the right magic value. The payload is already |
| 1786 | correctly byte-ordered so we leave it alone. Hit the doorbell |
| 1787 | with the bus address of this structure. |
| 1788 | |
| 1789 | */ |
| 1790 | |
| 1791 | lb->result = 0; |
| 1792 | lb->command = cpu_to_be32 (cmd); |
| 1793 | lb->valid = cpu_to_be32 (DMA_VALID); |
| 1794 | // dump_registers (dev); |
| 1795 | // dump_loader_block (lb); |
| 1796 | wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask); |
| 1797 | |
| 1798 | timeout = command_timeouts[cmd] * 10; |
| 1799 | |
| 1800 | while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS)) |
| 1801 | if (timeout) { |
| 1802 | timeout = msleep_interruptible(timeout); |
| 1803 | } else { |
| 1804 | PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd); |
| 1805 | dump_registers (dev); |
| 1806 | dump_loader_block (lb); |
| 1807 | return -ETIMEDOUT; |
| 1808 | } |
| 1809 | |
| 1810 | if (cmd == adapter_start) { |
| 1811 | // wait for start command to acknowledge... |
| 1812 | timeout = 100; |
| 1813 | while (rd_plain (dev, offsetof(amb_mem, doorbell))) |
| 1814 | if (timeout) { |
| 1815 | timeout = msleep_interruptible(timeout); |
| 1816 | } else { |
| 1817 | PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x", |
| 1818 | be32_to_cpu (lb->result)); |
| 1819 | dump_registers (dev); |
| 1820 | return -ETIMEDOUT; |
| 1821 | } |
| 1822 | return 0; |
| 1823 | } else { |
| 1824 | return decode_loader_result (cmd, be32_to_cpu (lb->result)); |
| 1825 | } |
| 1826 | |
| 1827 | } |
| 1828 | |
| 1829 | /* loader: determine loader version */ |
| 1830 | |
| 1831 | static int __devinit get_loader_version (loader_block * lb, |
| 1832 | const amb_dev * dev, u32 * version) { |
| 1833 | int res; |
| 1834 | |
| 1835 | PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version"); |
| 1836 | |
| 1837 | res = do_loader_command (lb, dev, get_version_number); |
| 1838 | if (res) |
| 1839 | return res; |
| 1840 | if (version) |
| 1841 | *version = be32_to_cpu (lb->payload.version); |
| 1842 | return 0; |
| 1843 | } |
| 1844 | |
| 1845 | /* loader: write memory data blocks */ |
| 1846 | |
| 1847 | static int __devinit loader_write (loader_block * lb, |
| 1848 | const amb_dev * dev, const u32 * data, |
| 1849 | u32 address, unsigned int count) { |
| 1850 | unsigned int i; |
| 1851 | transfer_block * tb = &lb->payload.transfer; |
| 1852 | |
| 1853 | PRINTD (DBG_FLOW|DBG_LOAD, "loader_write"); |
| 1854 | |
| 1855 | if (count > MAX_TRANSFER_DATA) |
| 1856 | return -EINVAL; |
| 1857 | tb->address = cpu_to_be32 (address); |
| 1858 | tb->count = cpu_to_be32 (count); |
| 1859 | for (i = 0; i < count; ++i) |
| 1860 | tb->data[i] = cpu_to_be32 (data[i]); |
| 1861 | return do_loader_command (lb, dev, write_adapter_memory); |
| 1862 | } |
| 1863 | |
| 1864 | /* loader: verify memory data blocks */ |
| 1865 | |
| 1866 | static int __devinit loader_verify (loader_block * lb, |
| 1867 | const amb_dev * dev, const u32 * data, |
| 1868 | u32 address, unsigned int count) { |
| 1869 | unsigned int i; |
| 1870 | transfer_block * tb = &lb->payload.transfer; |
| 1871 | int res; |
| 1872 | |
| 1873 | PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify"); |
| 1874 | |
| 1875 | if (count > MAX_TRANSFER_DATA) |
| 1876 | return -EINVAL; |
| 1877 | tb->address = cpu_to_be32 (address); |
| 1878 | tb->count = cpu_to_be32 (count); |
| 1879 | res = do_loader_command (lb, dev, read_adapter_memory); |
| 1880 | if (!res) |
| 1881 | for (i = 0; i < count; ++i) |
| 1882 | if (tb->data[i] != cpu_to_be32 (data[i])) { |
| 1883 | res = -EINVAL; |
| 1884 | break; |
| 1885 | } |
| 1886 | return res; |
| 1887 | } |
| 1888 | |
| 1889 | /* loader: start microcode */ |
| 1890 | |
| 1891 | static int __devinit loader_start (loader_block * lb, |
| 1892 | const amb_dev * dev, u32 address) { |
| 1893 | PRINTD (DBG_FLOW|DBG_LOAD, "loader_start"); |
| 1894 | |
| 1895 | lb->payload.start = cpu_to_be32 (address); |
| 1896 | return do_loader_command (lb, dev, adapter_start); |
| 1897 | } |
| 1898 | |
| 1899 | /********** reset card **********/ |
| 1900 | |
| 1901 | static inline void sf (const char * msg) |
| 1902 | { |
| 1903 | PRINTK (KERN_ERR, "self-test failed: %s", msg); |
| 1904 | } |
| 1905 | |
| 1906 | static int amb_reset (amb_dev * dev, int diags) { |
| 1907 | u32 word; |
| 1908 | |
| 1909 | PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset"); |
| 1910 | |
| 1911 | word = rd_plain (dev, offsetof(amb_mem, reset_control)); |
| 1912 | // put card into reset state |
| 1913 | wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS); |
| 1914 | // wait a short while |
| 1915 | udelay (10); |
| 1916 | #if 1 |
| 1917 | // put card into known good state |
| 1918 | wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS); |
| 1919 | // clear all interrupts just in case |
| 1920 | wr_plain (dev, offsetof(amb_mem, interrupt), -1); |
| 1921 | #endif |
| 1922 | // clear self-test done flag |
| 1923 | wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0); |
| 1924 | // take card out of reset state |
| 1925 | wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS); |
| 1926 | |
| 1927 | if (diags) { |
| 1928 | unsigned long timeout; |
| 1929 | // 4.2 second wait |
| 1930 | msleep(4200); |
| 1931 | // half second time-out |
| 1932 | timeout = 500; |
| 1933 | while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready))) |
| 1934 | if (timeout) { |
| 1935 | timeout = msleep_interruptible(timeout); |
| 1936 | } else { |
| 1937 | PRINTD (DBG_LOAD|DBG_ERR, "reset timed out"); |
| 1938 | return -ETIMEDOUT; |
| 1939 | } |
| 1940 | |
| 1941 | // get results of self-test |
| 1942 | // XXX double check byte-order |
| 1943 | word = rd_mem (dev, offsetof(amb_mem, mb.loader.result)); |
| 1944 | if (word & SELF_TEST_FAILURE) { |
| 1945 | if (word & GPINT_TST_FAILURE) |
| 1946 | sf ("interrupt"); |
| 1947 | if (word & SUNI_DATA_PATTERN_FAILURE) |
| 1948 | sf ("SUNI data pattern"); |
| 1949 | if (word & SUNI_DATA_BITS_FAILURE) |
| 1950 | sf ("SUNI data bits"); |
| 1951 | if (word & SUNI_UTOPIA_FAILURE) |
| 1952 | sf ("SUNI UTOPIA interface"); |
| 1953 | if (word & SUNI_FIFO_FAILURE) |
| 1954 | sf ("SUNI cell buffer FIFO"); |
| 1955 | if (word & SRAM_FAILURE) |
| 1956 | sf ("bad SRAM"); |
| 1957 | // better return value? |
| 1958 | return -EIO; |
| 1959 | } |
| 1960 | |
| 1961 | } |
| 1962 | return 0; |
| 1963 | } |
| 1964 | |
| 1965 | /********** transfer and start the microcode **********/ |
| 1966 | |
| 1967 | static int __devinit ucode_init (loader_block * lb, amb_dev * dev) { |
| 1968 | unsigned int i = 0; |
| 1969 | unsigned int total = 0; |
| 1970 | const u32 * pointer = ucode_data; |
| 1971 | u32 address; |
| 1972 | unsigned int count; |
| 1973 | int res; |
| 1974 | |
| 1975 | PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init"); |
| 1976 | |
| 1977 | while (address = ucode_regions[i].start, |
| 1978 | count = ucode_regions[i].count) { |
| 1979 | PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count); |
| 1980 | while (count) { |
| 1981 | unsigned int words; |
| 1982 | if (count <= MAX_TRANSFER_DATA) |
| 1983 | words = count; |
| 1984 | else |
| 1985 | words = MAX_TRANSFER_DATA; |
| 1986 | total += words; |
| 1987 | res = loader_write (lb, dev, pointer, address, words); |
| 1988 | if (res) |
| 1989 | return res; |
| 1990 | res = loader_verify (lb, dev, pointer, address, words); |
| 1991 | if (res) |
| 1992 | return res; |
| 1993 | count -= words; |
| 1994 | address += sizeof(u32) * words; |
| 1995 | pointer += words; |
| 1996 | } |
| 1997 | i += 1; |
| 1998 | } |
Randy Dunlap | 3c6b377 | 2006-07-03 19:48:25 -0700 | [diff] [blame] | 1999 | if (*pointer == ATM_POISON) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2000 | return loader_start (lb, dev, ucode_start); |
| 2001 | } else { |
| 2002 | // cast needed as there is no %? for pointer differnces |
| 2003 | PRINTD (DBG_LOAD|DBG_ERR, |
| 2004 | "offset=%li, *pointer=%x, address=%x, total=%u", |
| 2005 | (long) (pointer - ucode_data), *pointer, address, total); |
| 2006 | PRINTK (KERN_ERR, "incorrect microcode data"); |
| 2007 | return -ENOMEM; |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | /********** give adapter parameters **********/ |
| 2012 | |
| 2013 | static inline __be32 bus_addr(void * addr) { |
| 2014 | return cpu_to_be32 (virt_to_bus (addr)); |
| 2015 | } |
| 2016 | |
| 2017 | static int __devinit amb_talk (amb_dev * dev) { |
| 2018 | adap_talk_block a; |
| 2019 | unsigned char pool; |
| 2020 | unsigned long timeout; |
| 2021 | |
| 2022 | PRINTD (DBG_FLOW, "amb_talk %p", dev); |
| 2023 | |
| 2024 | a.command_start = bus_addr (dev->cq.ptrs.start); |
| 2025 | a.command_end = bus_addr (dev->cq.ptrs.limit); |
| 2026 | a.tx_start = bus_addr (dev->txq.in.start); |
| 2027 | a.tx_end = bus_addr (dev->txq.in.limit); |
| 2028 | a.txcom_start = bus_addr (dev->txq.out.start); |
| 2029 | a.txcom_end = bus_addr (dev->txq.out.limit); |
| 2030 | |
| 2031 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
| 2032 | // the other "a" items are set up by the adapter |
| 2033 | a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start); |
| 2034 | a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit); |
| 2035 | a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start); |
| 2036 | a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit); |
| 2037 | a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size); |
| 2038 | } |
| 2039 | |
| 2040 | #ifdef AMB_NEW_MICROCODE |
| 2041 | // disable fast PLX prefetching |
| 2042 | a.init_flags = 0; |
| 2043 | #endif |
| 2044 | |
| 2045 | // pass the structure |
| 2046 | wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a)); |
| 2047 | |
| 2048 | // 2.2 second wait (must not touch doorbell during 2 second DMA test) |
| 2049 | msleep(2200); |
| 2050 | // give the adapter another half second? |
| 2051 | timeout = 500; |
| 2052 | while (rd_plain (dev, offsetof(amb_mem, doorbell))) |
| 2053 | if (timeout) { |
| 2054 | timeout = msleep_interruptible(timeout); |
| 2055 | } else { |
| 2056 | PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out"); |
| 2057 | return -ETIMEDOUT; |
| 2058 | } |
| 2059 | |
| 2060 | return 0; |
| 2061 | } |
| 2062 | |
| 2063 | // get microcode version |
| 2064 | static void __devinit amb_ucode_version (amb_dev * dev) { |
| 2065 | u32 major; |
| 2066 | u32 minor; |
| 2067 | command cmd; |
| 2068 | cmd.request = cpu_to_be32 (SRB_GET_VERSION); |
| 2069 | while (command_do (dev, &cmd)) { |
| 2070 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2071 | schedule(); |
| 2072 | } |
| 2073 | major = be32_to_cpu (cmd.args.version.major); |
| 2074 | minor = be32_to_cpu (cmd.args.version.minor); |
| 2075 | PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor); |
| 2076 | } |
| 2077 | |
| 2078 | // swap bits within byte to get Ethernet ordering |
| 2079 | static u8 bit_swap (u8 byte) |
| 2080 | { |
| 2081 | const u8 swap[] = { |
| 2082 | 0x0, 0x8, 0x4, 0xc, |
| 2083 | 0x2, 0xa, 0x6, 0xe, |
| 2084 | 0x1, 0x9, 0x5, 0xd, |
| 2085 | 0x3, 0xb, 0x7, 0xf |
| 2086 | }; |
| 2087 | return ((swap[byte & 0xf]<<4) | swap[byte>>4]); |
| 2088 | } |
| 2089 | |
| 2090 | // get end station address |
| 2091 | static void __devinit amb_esi (amb_dev * dev, u8 * esi) { |
| 2092 | u32 lower4; |
| 2093 | u16 upper2; |
| 2094 | command cmd; |
| 2095 | |
| 2096 | cmd.request = cpu_to_be32 (SRB_GET_BIA); |
| 2097 | while (command_do (dev, &cmd)) { |
| 2098 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2099 | schedule(); |
| 2100 | } |
| 2101 | lower4 = be32_to_cpu (cmd.args.bia.lower4); |
| 2102 | upper2 = be32_to_cpu (cmd.args.bia.upper2); |
| 2103 | PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2); |
| 2104 | |
| 2105 | if (esi) { |
| 2106 | unsigned int i; |
| 2107 | |
| 2108 | PRINTDB (DBG_INIT, "ESI:"); |
| 2109 | for (i = 0; i < ESI_LEN; ++i) { |
| 2110 | if (i < 4) |
| 2111 | esi[i] = bit_swap (lower4>>(8*i)); |
| 2112 | else |
| 2113 | esi[i] = bit_swap (upper2>>(8*(i-4))); |
| 2114 | PRINTDM (DBG_INIT, " %02x", esi[i]); |
| 2115 | } |
| 2116 | |
| 2117 | PRINTDE (DBG_INIT, ""); |
| 2118 | } |
| 2119 | |
| 2120 | return; |
| 2121 | } |
| 2122 | |
| 2123 | static void fixup_plx_window (amb_dev *dev, loader_block *lb) |
| 2124 | { |
| 2125 | // fix up the PLX-mapped window base address to match the block |
| 2126 | unsigned long blb; |
| 2127 | u32 mapreg; |
| 2128 | blb = virt_to_bus(lb); |
| 2129 | // the kernel stack had better not ever cross a 1Gb boundary! |
| 2130 | mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10])); |
| 2131 | mapreg &= ~onegigmask; |
| 2132 | mapreg |= blb & onegigmask; |
| 2133 | wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg); |
| 2134 | return; |
| 2135 | } |
| 2136 | |
| 2137 | static int __devinit amb_init (amb_dev * dev) |
| 2138 | { |
| 2139 | loader_block lb; |
| 2140 | |
| 2141 | u32 version; |
| 2142 | |
| 2143 | if (amb_reset (dev, 1)) { |
| 2144 | PRINTK (KERN_ERR, "card reset failed!"); |
| 2145 | } else { |
| 2146 | fixup_plx_window (dev, &lb); |
| 2147 | |
| 2148 | if (get_loader_version (&lb, dev, &version)) { |
| 2149 | PRINTK (KERN_INFO, "failed to get loader version"); |
| 2150 | } else { |
| 2151 | PRINTK (KERN_INFO, "loader version is %08x", version); |
| 2152 | |
| 2153 | if (ucode_init (&lb, dev)) { |
| 2154 | PRINTK (KERN_ERR, "microcode failure"); |
| 2155 | } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) { |
| 2156 | PRINTK (KERN_ERR, "failed to get memory for queues"); |
| 2157 | } else { |
| 2158 | |
| 2159 | if (amb_talk (dev)) { |
| 2160 | PRINTK (KERN_ERR, "adapter did not accept queues"); |
| 2161 | } else { |
| 2162 | |
| 2163 | amb_ucode_version (dev); |
| 2164 | return 0; |
| 2165 | |
| 2166 | } /* amb_talk */ |
| 2167 | |
| 2168 | destroy_queues (dev); |
| 2169 | } /* create_queues, ucode_init */ |
| 2170 | |
| 2171 | amb_reset (dev, 0); |
| 2172 | } /* get_loader_version */ |
| 2173 | |
| 2174 | } /* amb_reset */ |
| 2175 | |
| 2176 | return -EINVAL; |
| 2177 | } |
| 2178 | |
| 2179 | static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev) |
| 2180 | { |
| 2181 | unsigned char pool; |
| 2182 | memset (dev, 0, sizeof(amb_dev)); |
| 2183 | |
| 2184 | // set up known dev items straight away |
| 2185 | dev->pci_dev = pci_dev; |
| 2186 | pci_set_drvdata(pci_dev, dev); |
| 2187 | |
| 2188 | dev->iobase = pci_resource_start (pci_dev, 1); |
| 2189 | dev->irq = pci_dev->irq; |
| 2190 | dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0)); |
| 2191 | |
| 2192 | // flags (currently only dead) |
| 2193 | dev->flags = 0; |
| 2194 | |
| 2195 | // Allocate cell rates (fibre) |
| 2196 | // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 |
| 2197 | // to be really pedantic, this should be ATM_OC3c_PCR |
| 2198 | dev->tx_avail = ATM_OC3_PCR; |
| 2199 | dev->rx_avail = ATM_OC3_PCR; |
| 2200 | |
| 2201 | #ifdef FILL_RX_POOLS_IN_BH |
| 2202 | // initialise bottom half |
| 2203 | INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev); |
| 2204 | #endif |
| 2205 | |
| 2206 | // semaphore for txer/rxer modifications - we cannot use a |
| 2207 | // spinlock as the critical region needs to switch processes |
| 2208 | init_MUTEX (&dev->vcc_sf); |
| 2209 | // queue manipulation spinlocks; we want atomic reads and |
| 2210 | // writes to the queue descriptors (handles IRQ and SMP) |
| 2211 | // consider replacing "int pending" -> "atomic_t available" |
| 2212 | // => problem related to who gets to move queue pointers |
| 2213 | spin_lock_init (&dev->cq.lock); |
| 2214 | spin_lock_init (&dev->txq.lock); |
| 2215 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 2216 | spin_lock_init (&dev->rxq[pool].lock); |
| 2217 | } |
| 2218 | |
| 2219 | static void setup_pci_dev(struct pci_dev *pci_dev) |
| 2220 | { |
| 2221 | unsigned char lat; |
| 2222 | |
| 2223 | // enable bus master accesses |
| 2224 | pci_set_master(pci_dev); |
| 2225 | |
| 2226 | // frobnicate latency (upwards, usually) |
| 2227 | pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat); |
| 2228 | |
| 2229 | if (!pci_lat) |
| 2230 | pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat; |
| 2231 | |
| 2232 | if (lat != pci_lat) { |
| 2233 | PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu", |
| 2234 | lat, pci_lat); |
| 2235 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); |
| 2236 | } |
| 2237 | } |
| 2238 | |
| 2239 | static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
| 2240 | { |
| 2241 | amb_dev * dev; |
| 2242 | int err; |
| 2243 | unsigned int irq; |
| 2244 | |
| 2245 | err = pci_enable_device(pci_dev); |
| 2246 | if (err < 0) { |
| 2247 | PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card"); |
| 2248 | goto out; |
| 2249 | } |
| 2250 | |
| 2251 | // read resources from PCI configuration space |
| 2252 | irq = pci_dev->irq; |
| 2253 | |
| 2254 | if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) { |
| 2255 | PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card"); |
| 2256 | err = -EINVAL; |
| 2257 | goto out_disable; |
| 2258 | } |
| 2259 | |
| 2260 | PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at" |
Greg Kroah-Hartman | e29419f | 2006-06-12 15:20:16 -0700 | [diff] [blame] | 2261 | " IO %llx, IRQ %u, MEM %p", |
| 2262 | (unsigned long long)pci_resource_start(pci_dev, 1), |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2263 | irq, bus_to_virt(pci_resource_start(pci_dev, 0))); |
| 2264 | |
| 2265 | // check IO region |
| 2266 | err = pci_request_region(pci_dev, 1, DEV_LABEL); |
| 2267 | if (err < 0) { |
| 2268 | PRINTK (KERN_ERR, "IO range already in use!"); |
| 2269 | goto out_disable; |
| 2270 | } |
| 2271 | |
| 2272 | dev = kmalloc (sizeof(amb_dev), GFP_KERNEL); |
| 2273 | if (!dev) { |
| 2274 | PRINTK (KERN_ERR, "out of memory!"); |
| 2275 | err = -ENOMEM; |
| 2276 | goto out_release; |
| 2277 | } |
| 2278 | |
| 2279 | setup_dev(dev, pci_dev); |
| 2280 | |
| 2281 | err = amb_init(dev); |
| 2282 | if (err < 0) { |
| 2283 | PRINTK (KERN_ERR, "adapter initialisation failure"); |
| 2284 | goto out_free; |
| 2285 | } |
| 2286 | |
| 2287 | setup_pci_dev(pci_dev); |
| 2288 | |
| 2289 | // grab (but share) IRQ and install handler |
Thomas Gleixner | dace145 | 2006-07-01 19:29:38 -0700 | [diff] [blame] | 2290 | err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2291 | if (err < 0) { |
| 2292 | PRINTK (KERN_ERR, "request IRQ failed!"); |
| 2293 | goto out_reset; |
| 2294 | } |
| 2295 | |
| 2296 | dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL); |
| 2297 | if (!dev->atm_dev) { |
| 2298 | PRINTD (DBG_ERR, "failed to register Madge ATM adapter"); |
| 2299 | err = -EINVAL; |
| 2300 | goto out_free_irq; |
| 2301 | } |
| 2302 | |
| 2303 | PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", |
| 2304 | dev->atm_dev->number, dev, dev->atm_dev); |
| 2305 | dev->atm_dev->dev_data = (void *) dev; |
| 2306 | |
| 2307 | // register our address |
| 2308 | amb_esi (dev, dev->atm_dev->esi); |
| 2309 | |
| 2310 | // 0 bits for vpi, 10 bits for vci |
| 2311 | dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS; |
| 2312 | dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS; |
| 2313 | |
| 2314 | init_timer(&dev->housekeeping); |
| 2315 | dev->housekeeping.function = do_housekeeping; |
| 2316 | dev->housekeeping.data = (unsigned long) dev; |
| 2317 | mod_timer(&dev->housekeeping, jiffies); |
| 2318 | |
| 2319 | // enable host interrupts |
| 2320 | interrupts_on (dev); |
| 2321 | |
| 2322 | out: |
| 2323 | return err; |
| 2324 | |
| 2325 | out_free_irq: |
| 2326 | free_irq(irq, dev); |
| 2327 | out_reset: |
| 2328 | amb_reset(dev, 0); |
| 2329 | out_free: |
| 2330 | kfree(dev); |
| 2331 | out_release: |
| 2332 | pci_release_region(pci_dev, 1); |
| 2333 | out_disable: |
| 2334 | pci_disable_device(pci_dev); |
| 2335 | goto out; |
| 2336 | } |
| 2337 | |
| 2338 | |
| 2339 | static void __devexit amb_remove_one(struct pci_dev *pci_dev) |
| 2340 | { |
| 2341 | struct amb_dev *dev; |
| 2342 | |
| 2343 | dev = pci_get_drvdata(pci_dev); |
| 2344 | |
| 2345 | PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev); |
| 2346 | del_timer_sync(&dev->housekeeping); |
| 2347 | // the drain should not be necessary |
| 2348 | drain_rx_pools(dev); |
| 2349 | interrupts_off(dev); |
| 2350 | amb_reset(dev, 0); |
| 2351 | free_irq(dev->irq, dev); |
| 2352 | pci_disable_device(pci_dev); |
| 2353 | destroy_queues(dev); |
| 2354 | atm_dev_deregister(dev->atm_dev); |
| 2355 | kfree(dev); |
| 2356 | pci_release_region(pci_dev, 1); |
| 2357 | } |
| 2358 | |
| 2359 | static void __init amb_check_args (void) { |
| 2360 | unsigned char pool; |
| 2361 | unsigned int max_rx_size; |
| 2362 | |
| 2363 | #ifdef DEBUG_AMBASSADOR |
| 2364 | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); |
| 2365 | #else |
| 2366 | if (debug) |
| 2367 | PRINTK (KERN_NOTICE, "no debugging support"); |
| 2368 | #endif |
| 2369 | |
| 2370 | if (cmds < MIN_QUEUE_SIZE) |
| 2371 | PRINTK (KERN_NOTICE, "cmds has been raised to %u", |
| 2372 | cmds = MIN_QUEUE_SIZE); |
| 2373 | |
| 2374 | if (txs < MIN_QUEUE_SIZE) |
| 2375 | PRINTK (KERN_NOTICE, "txs has been raised to %u", |
| 2376 | txs = MIN_QUEUE_SIZE); |
| 2377 | |
| 2378 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 2379 | if (rxs[pool] < MIN_QUEUE_SIZE) |
| 2380 | PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u", |
| 2381 | pool, rxs[pool] = MIN_QUEUE_SIZE); |
| 2382 | |
| 2383 | // buffers sizes should be greater than zero and strictly increasing |
| 2384 | max_rx_size = 0; |
| 2385 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
| 2386 | if (rxs_bs[pool] <= max_rx_size) |
| 2387 | PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)", |
| 2388 | pool, rxs_bs[pool]); |
| 2389 | else |
| 2390 | max_rx_size = rxs_bs[pool]; |
| 2391 | |
| 2392 | if (rx_lats < MIN_RX_BUFFERS) |
| 2393 | PRINTK (KERN_NOTICE, "rx_lats has been raised to %u", |
| 2394 | rx_lats = MIN_RX_BUFFERS); |
| 2395 | |
| 2396 | return; |
| 2397 | } |
| 2398 | |
| 2399 | /********** module stuff **********/ |
| 2400 | |
| 2401 | MODULE_AUTHOR(maintainer_string); |
| 2402 | MODULE_DESCRIPTION(description_string); |
| 2403 | MODULE_LICENSE("GPL"); |
| 2404 | module_param(debug, ushort, 0644); |
| 2405 | module_param(cmds, uint, 0); |
| 2406 | module_param(txs, uint, 0); |
| 2407 | module_param_array(rxs, uint, NULL, 0); |
| 2408 | module_param_array(rxs_bs, uint, NULL, 0); |
| 2409 | module_param(rx_lats, uint, 0); |
| 2410 | module_param(pci_lat, byte, 0); |
| 2411 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); |
| 2412 | MODULE_PARM_DESC(cmds, "number of command queue entries"); |
| 2413 | MODULE_PARM_DESC(txs, "number of TX queue entries"); |
| 2414 | MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]"); |
| 2415 | MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]"); |
| 2416 | MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies"); |
| 2417 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); |
| 2418 | |
| 2419 | /********** module entry **********/ |
| 2420 | |
| 2421 | static struct pci_device_id amb_pci_tbl[] = { |
| 2422 | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID, |
| 2423 | 0, 0, 0 }, |
| 2424 | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID, |
| 2425 | 0, 0, 0 }, |
| 2426 | { 0, } |
| 2427 | }; |
| 2428 | |
| 2429 | MODULE_DEVICE_TABLE(pci, amb_pci_tbl); |
| 2430 | |
| 2431 | static struct pci_driver amb_driver = { |
| 2432 | .name = "amb", |
| 2433 | .probe = amb_probe, |
| 2434 | .remove = __devexit_p(amb_remove_one), |
| 2435 | .id_table = amb_pci_tbl, |
| 2436 | }; |
| 2437 | |
| 2438 | static int __init amb_module_init (void) |
| 2439 | { |
| 2440 | PRINTD (DBG_FLOW|DBG_INIT, "init_module"); |
| 2441 | |
| 2442 | // sanity check - cast needed as printk does not support %Zu |
| 2443 | if (sizeof(amb_mem) != 4*16 + 4*12) { |
| 2444 | PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).", |
| 2445 | (unsigned long) sizeof(amb_mem)); |
| 2446 | return -ENOMEM; |
| 2447 | } |
| 2448 | |
| 2449 | show_version(); |
| 2450 | |
| 2451 | amb_check_args(); |
| 2452 | |
| 2453 | // get the juice |
| 2454 | return pci_register_driver(&amb_driver); |
| 2455 | } |
| 2456 | |
| 2457 | /********** module exit **********/ |
| 2458 | |
| 2459 | static void __exit amb_module_exit (void) |
| 2460 | { |
| 2461 | PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module"); |
| 2462 | |
| 2463 | return pci_unregister_driver(&amb_driver); |
| 2464 | } |
| 2465 | |
| 2466 | module_init(amb_module_init); |
| 2467 | module_exit(amb_module_exit); |